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A B S T R A C T

We derive asymptotic estimates for the projection of the vorticity onto principal directions of material
stretching in 3D flows. In flows with pointwise bounded vorticity, these estimates predict vorticity alignment
with Lyapunov vectors along trajectories with positive Lyapunov exponents. Specifically, we find that in
inviscid flows with conservative body forces, the vorticity exactly aligns with the intersection of the planes
orthogonal to the dominant forward and backward Lyapunov vectors along trajectories with positive Lyapunov
exponent. Furthermore, we derive asymptotic estimates for the vorticity alignment with the intermediate
eigenvector of the rate-of-strain tensor for viscous flows under general forcing. We illustrate these results on
explicit solutions of Euler’s equation and on direct numerical simulations of homogeneous isotropic turbulence.
1. Introduction

Investigating the distribution of the vorticity in three dimensional
(3D) flows is crucial for uncovering the intricate and chaotic dynam-
ics driving the formation of the complex structures in turbulence.
Specifically, understanding the stretching and tilting of the vorticity
along a Lagrangian particle trajectory sheds light on the underlying
mechanisms driving the formation and evolution of these structures.

The geometry of vortex lines is closely linked to the global existence
of solutions in 3D Navier stokes flows [1–4] and to the vortex stretching
mechanism [5–8]. Pioneering experiments from Taylor [9] showed
that vortex stretching is responsible for the vorticity production and
dissipation in isotropic turbulence. In the absence of external forcing,
the dynamics of the vorticity 𝝎(𝒙, 𝑡) ∈ R3 at a point 𝒙 ∈ R3 and time
𝑡 ∈ R depend on both the rate-of-strain tensor, 𝐒(𝒙, 𝑡) = 1

2
(𝛁𝒗(𝒙, 𝑡)𝑇 +

𝛁𝒗(𝒙, 𝑡)) of the velocity field 𝒗(𝒙, 𝑡) and on the viscous term 𝜈𝜟𝝎(𝒙, 𝑡),
as seen from the vorticity transport equation
𝐷
𝐷𝑡

𝝎(𝒙, 𝑡) = 𝐒(𝒙, 𝑡)𝝎(𝒙, 𝑡) + 𝜈𝜟𝝎(𝒙, 𝑡). (1)

This equation shows that in Euler flows, i.e. inviscid flows with 𝜈 =
0, vortex lines evolve as material lines. Similarly, in high-Reynolds
number flows, the non-local viscous contribution in the Navier–Stokes
equation is negligible over short time scales and the vorticity evolves
approximately as a material vector [9]. The instantaneous stretching of
the vorticity vector 𝝎 is therefore closely related to the eigenvectors and
eigenvalues of the rate-of-strain tensor 𝐒. In inviscid flows, the long-
term stretching and tilting of the vorticity vector along a Lagrangian
particle trajectory is most naturally described in a Lagrangian setting
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through the eigenvalues and eigenvectors of the Cauchy–Green strain
tensor [10].

Over the last two decades, extensive research has been dedicated to
investigate statistical correlations between the vorticity and the rate-
of-strain tensor. Experimental [11,12] and numerical [13–16] studies
in turbulence have suggested that the vorticity tends to align preferen-
tially with the intermediate eigenvector of 𝐒(𝒙, 𝑡), whose corresponding
eigenvalue tends to be positive. Vortex lines in regions of high vor-
ticity tend to be straight and well-aligned, thereby displaying highly
organized structures [17]. Regions of high vorticity frequently arise in
connection with a preferential alignment with the intermediate eigen-
vector of the rate-of-strain tensor [13,15,18]. Other studies by Kerr
[19] and Jiménez [15] proposed that, in regions of approximately
2D velocity, the vorticity aligns with the intermediate rate-of-strain
eigenvector. In that 2D case, the vorticity is neither stretched nor tilted.
Rather, the alignment occurs because the vorticity and the intermediate
eigenvector of 𝐒(𝒙, 𝑡) are approximately orthogonal to the plane of the
flow in such regions.

In addition to the studies that focus on the instantaneous alignment
between the vorticity and the eigenvectors of the rate-of-strain ten-
sor, Xu et al. [20] and Pumir et al. [21] started incorporating dynamical
information into the analysis. They considered the evolution of the
vorticity along a trajectory and compared the alignment between the
vorticity at time 𝑡 + 𝛥𝑡 with the most stretching direction specified
by the strain rate at time 𝑡. They found that over short times, the
vorticity evolving along a trajectory aligns with the most stretching
direction of 𝐒(𝒙, 𝑡). However, for 𝛥𝑡 > 2𝜏𝜂 , where 𝜏𝜂 is the Kolmogorov
time scale, the observed alignment breaks down. This is in agreement
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with the theory of Objective Eulerian Coherent Structures (OECS)
developed by Serra and Haller [22]: over short times, material elements
align with the dominant eigenvector of 𝐒(𝒙, 𝑡). This alignment persists
along a trajectory as long as the eigenvectors of the rate-of-strain
tensor vary slowly along that trajectory [23,24]. This persistence of
the rate-of-strain hypothesis was first proposed by Batchelor [25,26]
as a convenient assumption that allows the study of deformation of
material elements under a fixed strain rate. Numerical and experi-
mental Lagrangian data was not readily available at that time and
hence this assumption could not be verified until the 1980s. Numerical
simulations performed by Girimaji and Pope [27,28] finally showed,
however, that the persistence of strain assumption remains valid only
over times of the order of 2𝜏𝜂 .

As an alternative, Hamlington et al. [29,30] proposed to split the
rate-of-strain tensor into a local and non-local component 𝐒 = 𝐒𝐿 + 𝐒𝐵 .
Here 𝐒𝐿 is the local rate-of-strain induced by a vortical structure in
a spherical neighborhood, and 𝐒𝐵 is the non-local background rate-
of-strain induced in the vicinity of the structure by all the remaining
vorticity. This decomposition is non-unique since it depends on the
radius of the local neighborhood. Furthermore, the non-local rate-
of-strain 𝐒𝐵 is not easily computable in practice since it relies on
higher-order spatial derivatives of the velocity field. Hamlington et al.
[29,30] showed through numerical simulations that the vorticity pref-
erentially aligns both with the most stretching eigenvector of the
non-local (background) rate-of-strain 𝐒𝐵 and with the intermediate
eigenvector of the regular rate-of-strain 𝐒.

The evolution of the vorticity can also be studied in a Lagrangian
setting, i.e., along a trajectory. Ni et al. [10] compared numerically the
evolution of the vorticity with that of thin rods (which approximate
material fibers) dispersed in a fluid. Both the vorticity and the rods
were found to align with the most stretching direction of the Cauchy–
Green strain tensor under forward advection. The alignment of the
vorticity was argued to be weaker compared to that of the thin rods,
since the viscous term was expected to cause its dynamics to divert
from purely material evolution. We will further discuss the validity of
these findings in view of the results of this paper (see the discussion
after Remark 1).

Finally in further related work, Tsinober [31], Guala et al. [32]
and Lüthi et al. [33] studied the evolution of the vorticity along a La-
grangian particle trajectory with respect to the rate-of-strain eigenvec-
tors for non-zero viscosity. They showed numerically that over longer
time intervals, the viscous term enhances the preferential alignment
of the vorticity with the intermediate eigenvector of the rate-of-strain
tensor.

A statistical description of the Navier–Stokes equation allows mod-
eling the evolution of the vorticity dynamics using the Fokker–Planck
equation [34–36]. By decoupling the evolution of the vorticity vector
from the dynamics of the rate-of-strain tensor and hence treating
the vorticity as a passive vector, Johnson and Meneveau [37] estab-
lished a probabilistic model that captures the temporal correlations
of rate-of-strain tensor and vorticity along a Lagrangian fluid trajec-
tory. Additionally, Carbone and Wilczek [38] derived a model for
the vorticity dynamics in low-Reynolds number flows that takes into
account the first-order contribution of the pressure in the velocity
gradient dynamics. The model is asymptotically exact at small Reynolds
numbers and correctly predicts the preferential alignment between the
vorticity and the intermediate eigenvector of the rate-of-strain tensor
up to intermediate Reynolds numbers. For high Reynolds number,
however, the modeling assumptions break down.

Here we derive precise estimates on the vorticity evolution in a La-
grangian frame that imply various alignment results for incompressible
flows with bounded vorticity. First, for inviscid flows with potential
body forces, we obtain an exact alignment between the vorticity and
the normal of the plane of the forward and backward Lyapunov vectors
(i.e. asymptotic limits of the forward and backward material stretching
260

exponents). This normal coincides with the intermediate Lyapunov
vector along trajectories whose forward and backward dynamics are
identical. We similarly provide estimates for the alignment of the
vorticity with principal stretching directions of the rate-of-strain tensor
in general forced viscous flows. These estimates depend on the principal
strains, the variation of the rate-of-strain tensor along a trajectory and
the curl of the external (viscous and non-potential) forces. We illustrate
all these results on laminar and turbulent flow data.

2. Lagrangian setup

Consider a 3D incompressible velocity field

�̇� = 𝒗(𝒙, 𝑡), 𝛁 ⋅ 𝒗 = 0, (2)

n the spatial domain 𝒙 ∈ 𝑈 ⊂ R3. A trajectory of this velocity field that
tarts from the position 𝒙0 at time 𝑡0 is denoted by 𝒙(𝑡; 𝑡0,𝒙0). The flow
ap 𝐅𝑡

𝑡0
∶ 𝒙0 ↦ 𝒙(𝑡; 𝑡0,𝒙0) is then defined as the mapping from initial

ositions into current positions along trajectories. The equation of
ariations (or linearized flow) along 𝒙(𝑡; 𝑡0,𝒙0) is a homogeneous system
f non-autonomous linear ordinary differential equations (ODEs) of the
orm

̇ (𝑡) =
[

𝛁𝒗
(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)]

𝝃(𝑡), (3)

here 𝛁𝒗
(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)

indicates the gradient of the velocity field and
(𝑡) ∶= 𝝃(𝑡; 𝑡0,𝒙0). This system of ODEs describes the material evolution
f a perturbation 𝝃(𝑡) along 𝒙(𝑡; 𝑡0,𝒙0), starting from an infinitesimally
mall perturbation 𝝃0 to the initial condition 𝝃0. The general solution
f this system is

(𝑡) = 𝛁𝐅𝑡
𝑡0

(

𝒙0
)

𝝃0. (4)

aking the inner product of (3) with 𝝃(𝑡) and integrating in time gives
hat the length of 𝝃(𝑡) evolves as

𝝃(𝑡)|2 =
⟨

𝝃0,𝐂𝑡
𝑡0

(

𝒙0
)

𝝃0
⟩

, 𝐂𝑡
𝑡0

(

𝒙0
)

=
[

𝛁𝐅𝑡
𝑡0

(

𝒙0
)

]T
𝛁𝐅𝑡

𝑡0

(

𝒙0
)

,

ith 𝐂𝑡
𝑡0

(

𝒙0
)

denoting the right Cauchy–Green strain tensor. This
ymmetric, positive definite tensor has three real, positive eigenvalues
hat can be ordered as

< 𝜆1(𝑡, 𝑡0,𝒙0) ≤ 𝜆2(𝑡, 𝑡0,𝒙0) ≤ 𝜆3(𝑡, 𝑡0,𝒙0),

1(𝑡; 𝑡0,𝒙0)𝜆2(𝑡; 𝑡0,𝒙0)𝜆3(𝑡; 𝑡0,𝒙0) = 1, (5)

here the second relation follows from the incompressibility of 𝒗(𝒙, 𝑡).
n the turbulence literature, the eigenvalues and eigenvectors are fre-
uently written in descending order, whereas in the literature on
agrangian Coherent Structures (LCSs) they are listed in ascending
rder. In this work, we follow the LCS literature (see, e.g., [39], for
recent review) to remain consistent with the cited references. The

orresponding unit eigenvectors of 𝐂𝑡
𝑡0

(

𝒙0
)

satisfy

𝑡
𝑡0

(

𝒙0
)

𝝃𝑗 (𝑡; 𝑡0,𝒙0) = 𝜆𝑗 (𝑡; 𝑡0,𝒙0)𝝃𝑗 (𝑡; 𝑡0,𝒙0), (6)
⟨

𝝃𝑖, 𝝃𝑗
⟩

= 𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, 2, 3. (7)

he vectors 𝝃𝑗 (𝑡; 𝑡0,𝒙0) are also the right singular vectors of 𝛁𝐅𝑡
𝑡0

(

𝒙0
)

.
A useful identity is

𝛁𝐅𝑡
𝑡0

(

𝒙0
)

𝝃𝑗 (𝑡; 𝑡0,𝒙0) =
√

𝜆𝑗 (𝑡; 𝑡0,𝒙0)𝜼𝑗 (𝑡; 𝑡0,𝒙0), 𝑗 = 1, 2, 3, (8)

where the orthonormal vectors 𝜼𝑗 (𝑡; 𝑡0,𝒙0) are the left singular vectors
of 𝛁𝐅𝑡

𝑡0

(

𝒙0
)

corresponding to the singular values
√

𝜆𝑗 (𝑡; 𝑡0,𝒙0), respec-
ively (see, e.g., Haller [39]). Based on formula (8), the finite time
yapunov exponent (FTLE) is often used to identify an overall growth
xponent in the temporal evolution of 𝜆3(𝑡, 𝑡0,𝒙0) over a time interval
[𝑡0, 𝑡1] via the formula

FTLE𝑡1
𝑡0

(

𝒙0
)

= 1
|

|

𝑡1 − 𝑡0||
log

√

𝜆3(𝑡1; 𝑡0,𝒙0). (9)

A well-defined asymptotic growth exponent for
√

𝜆3(𝑡1; 𝑡0,𝒙0) may
continue to exist as 𝑡 → ±∞. In such cases, the maximal forward- and
1
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backward Lyapunov exponents 𝜇±
3
(

𝑡0,𝒙0
)

of the trajectory 𝒙(𝑡; 𝑡0,𝒙0)
an be defined as the limiting singular values

±
3
(

𝒙0, 𝑡0
)

= lim
𝑡→±∞

1
|

|

𝑡 − 𝑡0||
log

⎛

⎜

⎜

⎝

|

|

|

𝛁𝐅𝑡
𝑡0

(

𝒙0
)

𝝃3(𝑡; 𝑡0,𝒙0)
|

|

|

|

|

𝝃3(𝑡; 𝑡0,𝒙0)||

⎞

⎟

⎟

⎠

= lim
𝑡→±∞

1
|

|

𝑡 − 𝑡0||
log

√

𝜆3(𝑡, 𝑡0,𝒙0). (10)

Similarly, the dominant forward and backward Lyapunov vectors can
be defined as the limiting dominant singular vectors:

𝜻±3 (𝒙0, 𝑡0) = lim
𝑡→±∞

𝝃3(𝑡; 𝑡0,𝒙0). (11)

The existence of the limits (10) and (11) cannot be a priori guaran-
teed for trajectories of a general velocity field (2). In unsteady flows,
continuous Lyapunov spectra take over the role of discrete Lyapunov
exponents [40]. Flows restricted to compact regions are generally
expected to have bounded Lyapunov spectra for most initial conditions
but the conditions guaranteeing this are technically involved and lie
beyond the scope of this paper.

If, however, the incompressible velocity field 𝒗(𝒙, 𝑡) ≡ 𝒗(𝒙) is steady
and the domain 𝑈 is compact and invariant under the flow, then the
limits (10) and (11) (along with further Lyapunov vectors and expo-
nents corresponding to the remaining singular values of 𝛁𝐅𝑡

𝑡0

(

𝒙0
)

) exist
for almost all 𝒙0 by the multiplicative ergodic theorem of Oseledets
[41]. This theorem is originally stated for maps, which in turn implies
the existence of these limits for time periodic flows as well via the
Poincaré maps associated with those flows. We note that Eqs. (10)
and (11) refer to the theoretical Lyapunov exponents and vectors
defined for infinitesimally small initial perturbations to the underlying
trajectories [41,42]. Alternative definitions for Lyapunov vectors are
also available and generally give different results (see, e.g., Wolfe and
Samelson [43]).

3. Eulerian setup

We assume now that in an inertial frame, the velocity field 𝒗(𝒙, 𝑡) in
Eq. (2) is a solution of the 3D, incompressible Navier–Stokes equation
𝐷𝒗(𝒙, 𝑡)

𝐷𝑡
= −1

𝜌
∇𝑝(𝒙, 𝑡) + 𝜈𝛥𝒗(𝒙, 𝑡) + 𝒇 (𝒙, 𝑡), (12)

with the constant density 𝜌, the pressure field 𝑝(𝒙, 𝑡) and the body force
ector 𝒇 (𝒙, 𝑡). Taking the curl of this equation gives the incompressible
orticity transport equation
𝐷𝝎
𝐷𝑡

= [𝛁𝒗]𝝎 + 𝜈𝛥𝝎 + 𝛁 × 𝒇 , (13)

for the vorticity 𝝎 = 𝛁×𝒗. We note that the last term on the right–hand
side of Eq. (13) vanishes if all body forces acting on the fluid are
potential forces.

For the remainder of this work, we assume that the velocity field
remains regular, i.e., the vorticity does not blow up in finite time. We
are aware that there are degenerate initial conditions for which the 3D
inviscid (𝜈 = 0) vorticity transport equation (13) may yield unbounded
vorticity growth [44–46]. We exclude, however, such degenerate cases
from our discussion and emphasize that in experimentally observable
flows a finite time blow up of the vorticity is not possible.

Analogously to the maximal material stretching exponent quantified
by the FTLE𝑡1

𝑡0

(

𝒙0
)

field defined in (9), we can define the vorticity
stretching exponent (VSE) field [37] as

VSE𝑡1
𝑡0

(

𝒙0
)

= 1
|

|

𝑡1 − 𝑡0||
log

|

|

|

𝝎
(

𝒙(𝑡1; 𝑡0,𝒙0), 𝑡1
)

|

|

|

|

|

|

𝝎
(

𝒙0, 𝑡0
)

|

|

|

, (14)

hich we will use in our later formulas and numerical experiments
o characterize the long–term evolution of the vorticity magnitude.
orticity alignment is often studied with respect to the eigenvectors
𝑗 (𝒙, 𝑡) of the rate–of–strain tensor

(𝒙, 𝑡) = 1 [

[𝛁𝒗 (𝒙, 𝑡)]T + 𝛁𝒗 (𝒙, 𝑡)
]

.
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2

This symmetric tensor is objective, i.e., it transforms properly as a linear
operator under any Euclidean frame change of the form 𝒙 = 𝐐(𝑡)𝒚+𝒃(𝑡),
where 𝐐(𝑡) ∈ SO(3) is an arbitrary time–dependent rotation tensor and
(𝑡) ∈ R3 is an arbitrary translation vector. The eigenvectors 𝒆𝑗 (𝒙, 𝑡) of

𝐒(𝒙, 𝑡) are also objective, because the strain eigenvectors �̃�𝑗 (𝒚, 𝑡) in the
𝒚-frame come out to be

�̃�𝑗 (𝒚, 𝑡) = 𝐐T(𝑡)𝒆𝑗 (𝒙, 𝑡). (15)

In contrast, the vorticity �̃� of the transformed velocity field obeys the
formula

�̃�(𝒚, 𝑡) = 𝐐T(𝑡) [𝝎(𝒙, 𝑡) − �̇�(𝑡)] , (16)

where �̇�(𝑡) is the vorticity associated with the frame change (see Haller
[39]). This shows that unlike 𝒆𝑗 (𝒙, 𝑡), the vorticity field 𝝎(𝒙, 𝑡) is not
bjective. A comparison of formulas (15) and (16) implies that any
ossible alignment (or lack thereof) observed between the vorticity
nd the rate–of–strain eigenvectors is inherently frame–dependent due
o the non–preservation of the inner product under a general frame
hange:

�̃�(𝒚, 𝑡), �̃�𝑗 (𝒚, 𝑡)
⟩

=
⟨

𝝎(𝒙, 𝑡), 𝒆𝑗 (𝒙, 𝑡)
⟩

+
⟨

�̇�(𝑡), 𝒆𝑗 (𝒙, 𝑡)
⟩

.

his is also true for our upcoming alignment results, which will specif-
cally be valid in inertial frames. In such frames, the fundamental form
f Eq. (12) remains unchanged.

. Vorticity alignment for Euler flows in the Lagrangian frame

Under potential body forces, the inviscid limit of Eq. (13), re-
tricted to a trajectory 𝒙(𝑡; 𝑡0,𝒙0) of the velocity field 𝒗(𝒙, 𝑡), is a
on–autonomous, homogeneous linear system of ODEs of the form
𝐷𝝎
𝐷𝑡

=
[

𝛁𝒗
(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)]

𝝎. (17)

This linear system formally coincides with the equation of variations,
and hence by Eq. (4), its solution can be written as

𝝎
(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)

= 𝛁𝐅𝑡
𝑡0

(

𝒙0
)

𝝎0
(

𝒙0
)

. (18)

Using the shorthand notation

𝝎𝑡(𝒙0) ∶= 𝝎
(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)

,

we square both sides of Eq. (18) to obtain

|

|

𝝎𝑡(𝒙0)||
2 = |

|

|

𝛁𝐅𝑡
𝑡0

(

𝒙0
)

𝝎𝑡0

(

𝒙0
)

|

|

|

2
, (19)

whose right-hand side can be upper estimated as

|

|

|

𝛁𝐅𝑡
𝑡0

(

𝒙0
)

𝝎𝑡0

(

𝒙0
)

|

|

|

2
=
⟨

𝝎𝑡0

(

𝒙0
)

,𝐂𝑡
𝑡0

(

𝒙0
)

𝝎𝑡0

(

𝒙0
)

⟩

(20)

≤ 𝜆3(𝑡; 𝑡0,𝒙0)
|

|

|

𝝎𝑡0

(

𝒙0
)

|

|

|

2
. (21)

At the same time, using the identity (8), we obtain the lower estimate

|

|

|

𝛁𝐅𝑡
𝑡0

(

𝒙0
)

𝝎𝑡0

(

𝒙0
)

|

|

|

2
=
|

|

|

|

|

|

𝛁𝐅𝑡
𝑡0

(

𝒙0
)

3
∑

𝑗=1

⟨

𝝎𝑡0

(

𝒙0
)

, 𝝃𝑗 (𝑡; 𝑡0,𝒙0)
⟩

⋅𝝃𝑗 (𝑡; 𝑡0,𝒙0)
|

|

|

2

=
|

|

|

|

|

|

3
∑

𝑗=1

⟨

𝝎𝑡0

(

𝒙0
)

, 𝝃𝑗 (𝑡; 𝑡0,𝒙0)
⟩

⋅
√

𝜆𝑗 (𝑡; 𝑡0,𝒙0)𝜼𝑗 (𝑡; 𝑡0,𝒙0)
|

|

|

|

2

=
3
∑

𝑗=1

⟨

𝝎𝑡0

(

𝒙0
)

, 𝝃𝑗 (𝑡; 𝑡0,𝒙0)
⟩2

𝜆𝑗 (𝑡; 𝑡0,𝒙0)

≥
⟨

𝝎𝑡0

(

𝒙0
)

, 𝝃𝑗 (𝑡; 𝑡0,𝒙0)
⟩2

𝜆𝑗 (𝑡; 𝑡0,𝒙0), (22)

𝑗 = 1, 2, 3.
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|

|

|

I
b
(
i

𝜇

𝜻

I

𝜻

Combining the expressions (19) and (22) with 𝑗 = 3, we obtain the
estimate
⟨

𝝎𝑡0

(

𝒙0
)

, 𝝃3(𝑡; 𝑡0,𝒙0)
⟩2

𝜆3(𝑡; 𝑡0,𝒙0) ≤ |

|

𝝎𝑡(𝒙0)||
2 , (23)

or, equivalently,
⟨

𝝎𝑡0

(

𝒙0
)

, 𝝃3(𝑡; 𝑡0,𝒙0)
⟩2

≤
|

|

𝝎𝑡(𝒙0)||
2

𝜆3(𝑡; 𝑡0,𝒙0)
. (24)

Using the unit vector

𝐞𝝎0

(

𝒙0
)

=
𝝎𝑡0

(

𝒙0
)

|

|

|

𝝎𝑡0

(

𝒙0
)

|

|

|

,

along with Eq. (24), we obtain the upper estimate

⟨

𝐞𝝎0

(

𝒙0
)

, 𝝃3(𝑡; 𝑡0,𝒙0)
⟩2

≤ 1
𝜆3(𝑡; 𝑡0,𝒙0)

|

|

|

𝝎𝑡
(

𝒙0
)

|

|

|

2

|

|

|

𝝎𝑡0

(

𝒙0
)

|

|

|

2
, (25)

hich can be rewritten as
⟨

𝐞𝝎0

(

𝒙0
)

, 𝝃3(𝑡; 𝑡0,𝒙0)
⟩

|

|

|

|

≤ 𝑡
𝑡0

(

𝒙0
)

∶= 𝑒
[

VSE𝑡𝑡0 (𝒙0)−FTLE
𝑡
𝑡0
(𝒙0)

]

(𝑡−𝑡0). (26)

This last inequality suggests that in incompressible Euler flows, mate-
rial stretching drives the vorticity vector away from aligning with 𝝃3,
whereas vorticity stretching has the opposite effect.

Assume now that the largest forward and backward Lyapunov expo-
nents 𝜇±

3
(

𝑡0,𝒙0
)

along the trajectory 𝒙
(

𝑡; 𝑡0,𝒙0
)

exist and are positive,
i.e.,

0 < 𝜇±
3
(

𝒙0, 𝑡0
)

∶= lim
𝑡→±∞

1
2
(

𝑡 − 𝑡0
) log 𝜆3(𝑡; 𝑡0,𝒙0) < ∞, (27)

which implies that

lim
𝑡→±∞

FTLE𝑡
𝑡0
(𝒙0) = 𝜇±

3 (𝒙0), (28)

lim
𝑡→±∞

𝝃3(𝑡; 𝑡0,𝒙0) = 𝜻±3 (𝒙0, 𝑡0). (29)

For flows with pointwise uniformly bounded vorticity, the first term on
the right-hand side of the inequality (26) vanishes in the limits 𝑡 → ±∞.
Using the asymptotic estimates we then deduce the following alignment
results for incompressible Euler flows defined on a compact invariant
domain 𝑈 subject to potential body forces.

Theorem 1. Consider an incompressible Euler velocity field 𝒗(𝒙, 𝑡), defined
on the invariant flow region 𝑈 with pointwise uniformly bounded vorticity,
subject only to potential forces. Assume that along a trajectory 𝒙(𝑡; 𝑡0,𝒙0),
the maximal Lyapunov exponents 𝜇±

3
(

𝒙0, 𝑡0
)

are well defined and positive,
and the corresponding dominant Lyapunov vectors 𝜻±3 (𝒙0, 𝑡0) satisfy the
non-degeneracy condition

𝜻+3 (𝒙0, 𝑡0) ∦ 𝜻−3 (𝒙0, 𝑡0).

Define then

𝒏(𝒙0, 𝑡0) = 𝜻+3 (𝒙0, 𝑡0) × 𝜻−3 (𝒙0, 𝑡0)

as the vector along the intersection of the two planes orthogonal to 𝜻±3 (𝒙0).
Then, the vorticity 𝝎

(

𝒙0, 𝑡0
)

exactly aligns with 𝒏(𝒙0, 𝑡0), i.e.,

𝝎
(

𝒙0, 𝑡0
)

∥ 𝒏(𝒙0, 𝑡0). (30)

Theorem 1 states that in order for the vorticity to remain bounded
along a trajectory with positive Lyapunov exponents, it must be orthog-
onal to the most stretching directions in both forward and backward
time. This direction is well defined as long as the forward and backward
most stretching directions are distinct. If, in addition, the flow domain
is compact and the velocity field is steady or time periodic, then the
Lyapunov vectors and exponents are guaranteed to exist for almost
all initial conditions 𝒙0 according to the multiplicative ergodic theory
of Oseledets [41]. We, therefore, obtain the following strengthened
262

result in that case.
Corollary 1. In a steady or time periodic, incompressible Euler velocity
field 𝒗(𝒙, 𝑡), defined on a compact invariant domain 𝑈 with pointwise
uniformly bounded vorticity subject only to potential body forces, we have,
at almost all initial points 𝒙0, the exact alignment

𝝎(𝒙0) ∥ 𝒏(𝒙0).

Remark 1. We now discuss a special setting in which the vorticity
𝝎(𝒙0, 𝑡0) specifically aligns with the asymptotic limit of the intermediate
left Cauchy–Green eigenvector, 𝝃2(𝑡; 𝑡0,𝒙0). We first note that a total of
three pairs of Lyapunov exponents and vectors can be defined via the
limits

𝜇±
𝑗
(

𝒙0, 𝑡0
)

= lim
𝑡→±∞

1
|

|

𝑡 − 𝑡0||
log

√

𝜆𝑗 (𝑡, 𝑡0,𝒙0), (31)

𝜻±𝑗 (𝒙0, 𝑡0) = lim
𝑡→±∞

𝝃𝑗 (𝑡; 𝑡0,𝒙0), 𝑗 = 1, 2, 3. (32)

f these limits exist for a given
(

𝒙0, 𝑡0
)

pair and the forward- and
ackward-asymptotic behaviors of a trajectory 𝒙(𝑡; 𝑡0,𝒙0) are the same
e.g., 𝒙(𝑡; 𝑡0,𝒙0) is a periodic orbit, a quasiperiodic torus or a chaotic
nvariant set), then we have

+
3
(

𝒙0, 𝑡0
)

= 1
𝜇−
1
(

𝒙0, 𝑡0
) , 𝜇+

2
(

𝒙0, 𝑡0
)

= 1
𝜇−
2
(

𝒙0, 𝑡0
) ,

𝜇+
1
(

𝒙0, 𝑡0
)

= 1
𝜇−
3
(

𝒙0, 𝑡0
) , (33)

𝜻+3 (𝒙0, 𝑡0) = 𝜻−1 (𝒙0, 𝑡0), 𝜻+2 (𝒙0, 𝑡0) = 𝜻−2 (𝒙0, 𝑡0),
+
1 (𝒙0, 𝑡0) = 𝜻−3 (𝒙0, 𝑡0). (34)

n this case, we have
+
3 (𝒙0, 𝑡0) × 𝜻−3 (𝒙0, 𝑡0) = 𝜻+3 (𝒙0, 𝑡0) × 𝜻+1 (𝒙0, 𝑡0)

= 𝜻−3 (𝒙0, 𝑡0) × 𝜻−1 (𝒙0, 𝑡0) (35)

As a consequence, if the forward- and backward-asymptotic behaviors
along a trajectory are the same, then the vorticity vector 𝝎𝑡0

(

𝒙0
)

aligns
exactly with the single intermediate Lyapunov vector 𝜻±2 (𝒙0, 𝑡0) in flows
satisfying the conditions of Corollary 1.

Remark 2. We now contrast our conclusions with previous vorticity
alignment results in the Lagrangian frame. Ni et al. [10] propose
that the evolving vorticity 𝝎

(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)

tends to align with the
dominant left singular vector 𝜼3(𝑡; 𝑡0,𝒙0) of the deformation gradient
𝛁𝐅𝑡

𝑡0

(

𝒙0
)

. Their argument is based on the fact that a generic initial
condition of the inviscid vorticity transport equation (17) will align
with 𝛁𝐅𝑡

𝑡0

(

𝒙0
)

𝝃3(𝑡; 𝑡0,𝒙0), given that the initial condition 𝝃3(𝑡; 𝑡0,𝒙0)
stretches the most over the time interval [𝑡0, 𝑡]. Ni et al. [10] attribute
the lack of a perfect alignment between 𝝎

(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)

and 𝜼3(𝑡; 𝑡0,𝒙0)
to viscous effects. Note, however, that such a perfect alignment can-
not take place in inviscid flows (under potential body forces) along
trajectories with pointwise uniformly bounded vorticity and positive
maximal Lyapunov exponent. The reason is that such an alignment
between 𝝎

(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)

and 𝜼3(𝑡; 𝑡0,𝒙0) would lead to unbounded vor-
ticity growth. Indeed, by Eq. (22), the vorticity would grow unbounded
in forward time unless

⟨

𝝎𝑡0

(

𝒙0
)

, 𝝃3(𝑡; 𝑡0,𝒙0)
⟩

= 0, i.e., unless the

vorticity is exactly normal to the dominant stretching direction at all
points along a trajectory with positive Lyapunov exponents. This initial
alignment then implies that, by the identity (8), the evolving vorticity
and the left singular vector must, in fact, satisfy

𝝎
(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)

⟂ 𝜼3(𝑡; 𝑡0,𝒙0) (36)

in an inviscid flow with bounded vorticity, as opposed to 𝝎
(

𝒙(𝑡; 𝑡0,𝒙0),
𝑡) ∥ 𝜼3(𝑡; 𝑡0,𝒙0).

As most trajectories in a turbulent flow have positive Lyapunov
exponents, we conclude for near-inviscid, turbulent flows under po-
tential external forces the following: The alignment of the vorticity

over asymptotically long time intervals should be the weakest with the
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dominant left singular eigenvector 𝜼3(𝑡; 𝑡0,𝒙0) in comparison with the
other two singular vectors. Numerical simulations, such as those of Ni
et al. [10], may well show substantial alignment with 𝜼3(𝑡; 𝑡0,𝒙0), but
this can only be the result of numerical instability. Indeed, the slightest
inaccuracy in computing 𝝎𝑡0

(

𝒙0
)

and the inevitably growing inaccu-
racies in computing 𝜼3(𝑡; 𝑡0,𝒙0) could result in a non-zero vorticity
component along 𝜼3(𝑡; 𝑡0,𝒙0), signaling an alignment with 𝜼3(𝑡; 𝑡0,𝒙0).
Such an observed alignment, however, may only be real under more
substantial viscous forces for trajectories that in fact enhance, rather
than impede, the alignment.

5. Vorticity alignment for Navier–Stokes flows in the Eulerian
frame

We first recall the identity

[𝛁𝐯]𝝎 = (𝐒 +𝐖)𝝎 = 𝐒𝝎 + 1
2
𝝎 × 𝝎 = 𝐒𝝎,

here 𝐖(𝒙, 𝑡) = 1
2

[

[𝛁𝐯 (𝒙, 𝑡)]T − 𝛁𝐯 (𝒙, 𝑡)
]

is the spin tensor. Based on
this identity, we can re-write the homogeneous linear system of ODEs
(17) as
𝐷𝝎
𝐷𝑡

=
[

𝐒
(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)]

𝝎. (37)

We assume now that along a trajectory, 𝒙(𝑡; 𝑡0,𝒙0), the rate-of-strain ten-
sor has a uniformly bounded variation from its initial value 𝐒0(𝒙0, 𝑡0) ∶=
𝐒(𝒙

(

𝑡0; 𝑡0,𝒙0
)

, 𝑡0), i.e., there exists a function 𝜞
(

𝒙0, 𝑡
)

such that

𝐒
(

𝒙(𝑡; 𝑡0,𝒙0), 𝑡
)

= 𝐒0(𝒙0, 𝑡0) + 𝜞
(

𝒙0, 𝑡
)

,
|

|

|

𝜞
(

𝒙0, 𝑡
)

|

|

|

≤ 𝛾
(

𝒙0
)

< ∞, 𝑡 ∈ R. (38)

The eigenvalues 𝜎0𝑗 (𝒙0, 𝑡0) and corresponding eigenvectors 𝐞0𝑗 (𝒙0, 𝑡0) of
𝐒0(𝒙0, 𝑡0) then satisfy

𝐒0(𝒙0, 𝑡0)𝐞0𝑗 (𝒙0, 𝑡0) = 𝜎0𝑗 (𝒙0, 𝑡0)𝐞0𝑗 (𝒙0, 𝑡0), (39)

𝜎01(𝒙0, 𝑡0) ≤ 𝜎02(𝒙0, 𝑡0) ≤ 𝜎03(𝒙0, 𝑡0),
3
∑

𝑗=1
𝜎0𝑗 (𝒙0, 𝑡0) = 0. (40)

Along such a trajectory, the vorticity transport equation (13) can be
re-written as
𝐷𝝎
𝐷𝑡

= 𝐒0(𝒙0, 𝑡0)𝝎 + 𝜈𝛥𝝎 + 𝛁 × 𝐟 + 𝜞
(

𝒙0, 𝑡
)

𝝎, (41)

whose integral form becomes

𝝎𝑡
(

𝒙0
)

= 𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑡0)𝝎𝑡0

(

𝒙0
)

+ ∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)

[

𝜈𝛥𝝎𝑠(𝒙0)

+ 𝛁 × 𝒇 (𝒙(𝑠; 𝑡0,𝒙0), 𝑠) + 𝜞
(

𝒙0, 𝑠
)

𝝎𝑠(𝒙0)
]

𝑑𝑠. (42)

Using this equation in a derivation outlined in the Appendix A, we ob-
tain the following forward-and backward-asymptotic estimates for the
alignment between the vorticity and the principal Eulerian stretching
directions:
⟨

𝐞𝝎0
, 𝐞03(𝒙0, 𝑡0)

⟩2
≤ 1−

(

1 −
|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

, (43)

⟨

𝐞𝝎0
, 𝐞01(𝒙0, 𝑡0)

⟩2
≤ 1−

(

1 −
|

|

|

|

|

∫

−∞

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞01(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

, (44)

with

𝒉𝑡(𝒙0; 𝜈,𝒇 ) ∶=
𝜈𝛥𝝎𝑡(𝒙0) + 𝛁 × 𝒇 (𝒙(𝑡; 𝑡0,𝒙0), 𝑡) + 𝜞

(

𝒙0, 𝑡
)

𝝎𝑡(𝒙0)
| |

.
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|

|

𝝎𝑡0 (𝒙0)|
|

The eigenvectors 𝐞0𝑗 (𝒙0, 𝑡0) are mutually orthogonal and hence
⟨

𝐞01(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
+
⟨

𝐞02(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
+
⟨

𝐞03(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
= 1. (45)

The angle 𝛽(𝒙0, 𝑡0) between the vorticity 𝝎0 and the intermediate
eigenvector 𝐞02(𝒙0, 𝑡0) of the rate-of-strain tensor then satisfies

sin2 𝛽(𝒙0, 𝑡0) =
⟨

𝐞01(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
+
⟨

𝐞03(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
. (46)

Combining the inequalities (43)–(44) with Eq. (46) then gives the
following strengthened version of Theorem 1 with respect to the eigen-
vectors of the rate-of-strain tensor.

Theorem 2. Consider an incompressible Navier–Stokes velocity field
𝒗(𝒙, 𝑡), defined on the invariant flow region 𝑈 with pointwise uniformly
bounded vorticity. Assume that along a trajectory 𝒙(𝑡; 𝑡0,𝒙0), the rate-of-
strain tensor has a uniformly bounded variation 𝜞

(

𝒙0, 𝑡
)

around its initial
value 𝐒0(𝒙0, 𝑡0), as in Eq. (38). Finally, assume that 𝐒0

(

𝒙0, 𝑡0
)

has no
repeated eigenvalues. Then the angle 𝛽(𝒙0, 𝑡0) between the vorticity 𝝎

(

𝒙0, 𝑡0
)

and the intermediate rate-of-strain eigenvector 𝐞02(𝒙0, 𝑡0) satisfies

sin2 𝛽(𝒙0, 𝑡0) ≤

2 −

(

1 −
|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

−

(

1 −
|

|

|

|

|

∫

−∞

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞01(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

. (47)

Note that both the forward and backward integrals from Theorem 2
are guaranteed to converge provided that the viscous and external body
forces are uniformly bounded. The pointwise convergence proof of the
upper bound (47) is given in the Appendix B. We consider this to be an
important result as it guarantees the existence of the asymptotic limits
in the upper bound of Theorem 2.

By writing out the right-hand side of inequality (47), we can further
upper estimate sin2 𝛽(𝒙0, 𝑡0) as

sin2 𝛽(𝒙0, 𝑡0) ≤

2

(

|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

+
|

|

|

|

|

∫

−∞

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞01(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)

(48)

Therefore, the upper bound from inequality (47) becomes tight if the
forward and backward integrals are sufficiently small
|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

≪ 1, (49)

|

|

|

|

|

∫

−∞

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞01(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

≪ 1. (50)

Physically, the integrals from Theorem 2 represent a weighted aver-
age, i.e. convolution, between the exponential of the principal strain
rates

(

𝜎03(𝒙0) > 0, 𝜎01(𝒙0) < 0
)

and the sum of the strain rate variation
times the vorticity and the curl of the viscous and non-conservative
forces normalized by the initial vorticity magnitude. The exponential
functions respectively vanish in the asymptotic limits 𝑡 → ±∞ and the
exponential decay is determined by the exponents 𝜎03(𝒙0) and 𝜎01(𝒙0).
The asymptotic estimates in Eqs. (43)–(44) are therefore monotoni-
cally decreasing functions of 𝜎03(𝒙0) and −𝜎01(𝒙0). High stretching and
compression in the 𝐞03(𝒙0) − 𝐞01(𝒙0) plane results in a quick exponen-
tial decay of the upper bounds (43)–(44). Under the conditions of
Theorem 2, we have therefore obtained that the vorticity vector approx-
imately aligns with the intermediate rate-of-strain eigenvector in high
strain regions provided that the curl of the viscous and external forces
and the strain rate variation along a short trajectory segment are small
relative to the initial vorticity magnitude. We expect these conditions
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to hold for a large number of trajectories in isotropic turbulent flows
characterized by high Reynolds numbers [27].

Note that Theorem 2 is also valid for low Reynolds number flows. In
such flows, however, viscous forces are high and the upper bound (47)
is not guaranteed to be tight. The alignment between 𝝎0 and 𝒆02

(

𝒙0, 𝑡0
)

generally depends on the interplay between the rate-of-strain tensor,
the viscous forces, and body forces. For sufficiently high Reynolds num-
bers, Theorem 2 provides mathematical evidence for the preferential
alignment of the vorticity with the intermediate eigenvector of the rate-
of-strain tensor. This strong preferential alignment increases for high
Reynolds numbers provided that the curl of the body forces and the
variation of the rate-of-strain tensor remain small.

For inviscid flows under potential forces, we then obtain the follow-
ing strengthened version of Theorem 2.

Corollary 2. In inviscid flows defined on a compact invariant domain 𝑈
ith pointwise uniformly bounded vorticity and potential forces, the angle
(𝒙0, 𝑡0) between the vorticity 𝝎0 and the intermediate eigenvector 𝐞02(𝒙0, 𝑡0)

of the initial rate-of-strain tensor 𝐒0(𝒙0, 𝑡0) satisfies

sin2 𝛽(𝒙0, 𝑡0) ≤

2 −
⎛

⎜

⎜

⎝

1 −
|

|

|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠)

⟨

𝐞03(𝒙0, 𝑡0),Γ(𝒙0, 𝑠)
𝜔𝑠(𝒙0)
|

|

|

𝜔𝑡0 (𝒙0)
|

|

|

⟩

𝑑𝑠

|

|

|

|

|

|

|

⎞

⎟

⎟

⎠

2

−
⎛

⎜

⎜

⎝

1 −
|

|

|

|

|

|

|

∫

−∞

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠)

⟨

𝐞01(𝒙0, 𝑡0),Γ(𝒙0, 𝑠)
𝜔𝑠(𝒙0)
|

|

|

𝜔𝑡0 (𝒙0)
|

|

|

⟩

𝑑𝑠

|

|

|

|

|

|

|

⎞

⎟

⎟

⎠

2

. (51)

The upper bound (51) increases as a function of 𝜎03 and −𝜎01,
and decreases as a function of 𝜞 . Therefore, for inviscid flows with
arbitrary time dependence and uniformly bounded vorticity, we expect
strong preferential alignment between the vorticity and the intermedi-
ate eigenvector of the rate-of-strain tensor in high strain regions with
small variations of 𝜞 . We expect this preferential alignment to increase
on average if the fluid is dominated by areas of such behavior.

In steady flows, the rate-of-strain tensor has no explicit time depen-
dence and the variation of the rate-of-strain tensor is identically zero at
fixed points. For such flows, therefore, Corollary 2 implies that at fixed
points, the vorticity aligns exactly with the intermediate eigenvector
of the rate-of-strain tensor 𝐒0(𝒙0) since the right-hand side vanishes at
such points. At fixed points we thus have sin2 𝛽(𝒙0, 𝑡0) ≡ 0. Additionally,
sin2 𝛽(𝒙0, 𝑡0) depends continuously on the initial conditions 𝒙0. There-
fore, the preferential alignment between 𝝎𝑡0 and 𝐞02(𝒙0) extends to a
sufficiently small neighborhood around the fixed point.

6. Numerical examples

We first investigate the alignment properties of the vorticity in an
analytic non-integrable 3D Euler flow with chaotic trajectories. We then
proceed to analyze vorticity alignment in 3D homogenous isotropic
turbulence data from the Johns Hopkins Turbulence Database [47].

6.1. Steady ABC-flow

As a first example, we consider the fully 3D steady Arnold–Beltrami–
Childress (ABC) flow [48], given by the velocity field

𝒗(𝒙) =
⎛

⎜

⎜

⎝

𝐶 sin(𝑧) + 𝐵 cos(𝑦)
𝐴 sin(𝑥) + 𝐶 cos(𝑧)
𝐵 sin(𝑦) + 𝐴 cos(𝑥)

⎞

⎟

⎟

⎠

, (52)

defined on the 3D toroidal domain 𝑈 ∈ [0, 2𝜋]3 with 𝐴 =
√

2, 𝐵 = 1, 𝐶 =
3. This velocity field is an exact solution of the incompressible Euler

equation. The flow shows a very rich behavior and admits a variety of
features analogous to KAM tori and hyperbolic structures [49,50]. The
ABC-flow is a Beltrami flow that satisfies:

𝒗(𝒙) = 𝝎(𝒙), (53)
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and hence the vorticity is globally bounded. Since 𝒗(𝒙) is a steady veloc-
ity field defined on a compact domain given by the three-dimensional
torus, Oseledets multiplicative ergodic theorem guarantees the exis-
tence of the mathematically exact Lyapunov exponents 𝜇±

3 (𝒙0) and the
Lyapunov vectors 𝜻±3 (𝒙0) for almost all initial conditions 𝒙0. The finite
time Lyapunov exponent and the right singular vectors 𝝃3(𝒙0) of the
inearized flow map are thus guaranteed to converge for nearly all
nitial conditions to 𝜇±

3 (𝒙0) and 𝜻±3 (𝒙0). We will compute the linearized
low map ∇𝐅𝑡1

𝑡0
(𝒙0) along a trajectory launched from 𝒙0 over a suffi-

iently long time interval 𝑡 ∈ [𝑡0, 𝑡1] and then obtain FTLE𝑡1
𝑡0
(𝒙0) and

3(𝑡1; 𝑡0,𝒙0) from a singular value decomposition (SVD) of ∇𝐅𝑡1
𝑡0
(𝒙0), as

one by Oettinger and Haller [51].
Figs. 1a–2a respectively show the 𝑡1

𝑡0
field (defined in Eq. (26)),

omputed over the time intervals [0, 1] and [0, 10]. Features of the 𝑡1
𝑡0

ield are related to those of the FTLE𝑡1
𝑡0

field for sufficiently small VSE𝑡1
𝑡0

,

s seen from the formula (26). Negative trenches of the VSE𝑡1
𝑡0

field
ndicate areas where the vorticity vector is compressed, whereas posi-
ive ridges of the VSE𝑡1

𝑡0
field indicate vortex stretching. Minima in the

𝑡1
𝑡0

field reveal areas where the vorticity is preferentially orthogonal to
the most stretching direction given by 𝝃3(𝑡1; 𝑡0,𝒙0). The zoomed insets
in Fig. 1 show that for short intervals, vortex stretching (VSE > 0) is
caused by the initial alignment of 𝝎0 with the most stretching direction
𝝃3. On the contrary compression of the vorticity vector (VSE < 0) is
associated with orthogonality between 𝝎0 and 𝝃3. The contribution of
VSE𝑡1

𝑡0
to the 𝑡1

𝑡0
field becomes negligible as time increases because the

vorticity remains bounded (see also zoomed insets of Fig. 2). Taking the
asymptotic limits 𝑡1 → ±∞, we therefore conclude the following from
Corollary 1: For almost all initial conditions with positive Lyapunov
exponents, the vorticity exactly aligns with

𝒏(𝒙0) = 𝜻+3 (𝒙0) × 𝜻−3 (𝒙0),

i.e., with the direction along the intersection of the two planes or-
thogonal to the forward and backward dominant Lyapunov vectors
𝜻±3 (𝒙0).

If the forward and backward most stretching directions are collinear
(𝜻+3 (𝒙0) ∥ 𝜻−3 (𝒙0)), then there is no unique intersection line between the
two planes. In that case the angle 𝛼(𝒙0) between 𝝎0 and 𝒏(𝒙0) is not
well defined. Away from such degenerate points, sin2 𝛼(𝒙0) is given by

sin2 𝛼(𝒙0) =
|

|

|

𝐞𝝎𝑡0
× 𝒏(𝒙0)

|

|

|

2

|

|

𝒏(𝒙0)||
2

=

|

|

|

𝐞𝝎𝑡0
×
(

𝜻+3 (𝒙0) × 𝜻−3 (𝒙0)
)

|

|

|

2

|

|

|

𝜻+3 (𝒙0) × 𝜻−3 (𝒙0)
|

|

|

2

=

(⟨

𝐞𝝎𝑡0
, 𝜻+3 (𝒙0)

⟩

𝜻−3 (𝒙0) −
⟨

𝐞𝝎𝑡0
, 𝜻−3 (𝒙0)

⟩

𝜻+3 (𝒙0)
)2

|

|

|

𝜻+3 (𝒙0) × 𝜻−3 (𝒙0)
|

|

|

2

=

⟨

𝐞𝝎𝑡0
, 𝜻+3 (𝒙0)

⟩2
+
⟨

𝐞𝝎𝑡0
, 𝜻−3 (𝒙0)

⟩2

|

|

𝒏(𝒙0)||
2

(54)

his formula shows sin2 𝛼(𝒙0) to be inversely proportional to |

|

𝒏(𝒙0)||
2.

herefore, in regions where the forward and backward dominant Lya-
unov vectors are nearly collinear

(

|

|

𝒏(𝒙0)||
2 ≪ 1

)

, the numerical com-
utation of sin2 𝛼(𝒙0) will be noisy.

Fig. 3 displays sin2 𝛼(𝒙0) together with the FTLE and the Lagrangian
veraged Vorticity Deviation (LAVD) given by:

AVD𝑡
𝑡0
(𝒙0) =

1
|

|

𝑡 − 𝑡0|| ∫

𝑡

𝑡0

|

|

|

𝝎𝑠(𝒙0) − 𝝎𝑠(𝒙0)
|

|

|

𝑑𝑠, (55)

here 𝝎𝑠(𝒙0) denotes the spatially averaged vorticity. The LAVD is
an objective diagnostic used to visualize vortical flow structures from
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Fig. 1. Vorticity alignment and Lagrangian diagnostics for the ABC-flow for 𝑡 ∈ [0, 1]. The Lagrangian diagnostic 𝑡
𝑡0

(

𝒙0
)

∶= 𝑒
[

VSE𝑡
𝑡0
(𝒙0)−FTLE𝑡

𝑡0
(𝒙0)

]

(𝑡−𝑡0) (panel a) is an upper bound
to |

|

|

⟨

𝐞𝝎0

(

𝒙0
)

, 𝝃3(𝑡; 𝑡0 ,𝒙0)
⟩

|

|

|

(panel c). The individual exponents of 𝑡
𝑡0

(

𝒙0
)

are FTLE𝑡
𝑡0

(

𝒙0
)

(panel b) and VSE𝑡
𝑡0

(

𝒙0
)

(panel d).
three-dimensional velocity data [52]. We approximate the leading Lya-
punov exponent over a finite time interval as

𝜇+
3 (𝒙0) ∼ FTLE200

0 (𝒙0).

In the Appendix C, we show that the chosen time interval guarantees
statistical convergence for all three Lyapunov exponents and vectors.

Elliptic (or vortical) flow structures are shear dominated areas
characterized by high LAVD-values. Material elements stretch alge-
braically within those regions and we therefore expect a vanishing
leading Lyapunov exponent [53]. In contrast, hyperbolic flow areas
are characterized by positive dominant Lyapunov exponents because
of exponentially stretching material lines.

Fig. 3 reveals that the dominant forward and backward Lyapunov
vectors are nearly collinear within elliptic flow regions (see Fig. 3c–d).
By approximating 𝜇+

3 (𝒙0) from a finite time computation, we find that
Lyapunov exponents vanish within elliptic flow areas, i.e., generalized
KAM tori. Our computations on the steady ABC flow highlight that the
vorticity aligns with 𝒏(𝒙0) in hyperbolic flow regions characterized by
positive leading Lyapunov exponents (see Fig. 3a–b), as predicted by
Theorem 1. This is also highlighted by the joint PDFs of the Lyapunov
exponent 𝜇3

(

𝒙0
)

with the alignment diagnostic sin2 𝛼
(

𝒙0
)

and the
rotational diagnostic LAVD200

0
(

𝒙0
)

(see Fig. 4).
Fig. 4a confirms that the vorticity statistically aligns with the direc-

tion 𝒏(𝒙0) in regions of high material stretching, i.e., hyperbolic flow
regions. The joint PDF in Fig. 4b shows that elliptic flow regions iden-
tified by high LAVD-values coincide with minimal stretching regions,
i.e., domains with vanishing leading Lyapunov exponent. Therefore,
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within elliptic flow regions, the vorticity is no longer guaranteed to
align with the direction 𝒏(𝒙0), because the assumptions of Theorem 2
cease to be satisfied.

In Fig. 5 we show the alignment between the vorticity and the eigen-
vectors of the rate–of–strain tensor. We approximate the asymptotic
estimates (43)–(47) from a forward and backward computation over
a finite time interval 𝑡 ∈ [0,±200] and define

L200
0 (𝒙0) = 1 − (1−
|

|

|

|

|

|

|

∫

200

0
𝑒−𝜎03(𝒙0 ,𝑡0)𝑠

⟨

𝐞03(𝒙0, 𝑡0),Γ(𝒙0, 𝑠)
𝜔𝑠(𝒙0)
|

|

|

𝜔𝑡0 (𝒙0)
|

|

|

⟩

𝑑𝑠

|

|

|

|

|

|

|

⎞

⎟

⎟

⎠

2

, (56)

L−200
0 (𝒙0) = 1 − (1−
|

|

|

|

|

|

|

∫

−200

0
𝑒−𝜎01(𝒙0 ,𝑡0)𝑠

⟨

𝐞01(𝒙0, 𝑡0),Γ(𝒙0, 𝑠)
𝜔𝑠(𝒙0)
|

|

|

𝜔𝑡0 (𝒙0)
|

|

|

⟩

𝑑𝑠

|

|

|

|

|

|

|

⎞

⎟

⎟

⎠

2

, (57)

L200
−200(𝒙0) = L−200

0 (𝒙0) + L200
0 (𝒙0). (58)

According to Corollary 2, the vorticity preferentially aligns with the
intermediate eigenvector 𝐞02(𝒙0) of the rate-of-strain tensor 𝐒0(𝒙0) =
𝐒(𝒙0) given that L200

−200(𝒙0) is sufficiently small. Contrary to common
observations for homogenous isotropic turbulence, the vorticity shows
preferential alignment with 𝐞02(𝒙0) in the ABC flow only for very small
regions. These regions coincide with areas where L200

−200(𝒙0) is minimal
(see zoomed insets of Fig. 5). The zoomed insets additionally display
branches of unstable (white line) and stable (magenta line) manifolds,
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Fig. 2. Same as Fig. 1 but over the time interval [0, 10].
which are approximated through ridges of the backward and forward
FTLE field. At the intersection between stable and unstable manifolds,
the vorticity strongly aligns with the intermediate eigenvectors of the
rate-of-strain tensor.

Therefore, the Eulerian alignment observed in homogenous
isotropic turbulence generally does not carry over to inviscid flows with
bounded vorticity. Instead, the vorticity is exactly orthogonal to the
forward and backward leading Lyapunov vectors in unforced inviscid
flows along trajectories with positive forward and backward Lyapunov
exponents.

6.2. Forced homogenous isotropic turbulence from Johns Hopkins Turbu-
lence Database

Next, we investigate vorticity alignment in forced homogenous
isotropic turbulence from the Johns Hopkins Turbulence Database
(JHTDB) [47]. The isotropic turbulence fields were obtained from a
10243-node direct numerical simulation (DNS) that is publicly available
from the JHTDB over a periodic box of size [0, 2𝜋]3. The Taylor–
Reynolds number fluctuates around 𝑅𝑒𝜆 ∼ 433. In order to keep the
velocity field at a statistically stationary state, the flow is externally
forced at large scales by keeping the total energy constant in modes
such that their wave number magnitude is less than or equal to 2. The
main parameters of the simulation are given in Table 1.

The Lagrangian trajectories and the velocity gradients are publicly
accessible through a web-based interface. The total simulation time of
the stored trajectories is 20 Kolmogorov time scales (𝜏𝜂), with the data
provided at a time step of 0.1𝜏 . Once the trajectories are calculated,
266

𝜂

Table 1
Parameters for the data from the homogenous isotropic turbulence simulation of the
Johns Hopkins Turbulence Database (JHTDB).

Dataset Nodes 𝜈 𝜂 𝜏𝜂 𝑅𝑒𝜆
JHTDB 10243 1.85 ⋅ 10−4 2.87 ⋅ 10−3 0.045 433

the velocity gradients are computed at each point using a 4th-order
central finite difference method with 4th-order Lagrange interpolation.
We select a 2D slice over a domain-size given by 50𝜂 × 50𝜂, where 𝜂
is the Kolmogorov length scale. For this study, we use 150 × 150 =
22 500 Lagrangian particle trajectories to compute the relevant statis-
tical quantities. The viscous and non-conservative forces are computed
from the vorticity evolution according to Eq. (13). We approximate
the asymptotic estimates (43)–(47) over a long but finite time interval
[𝑡0, 𝑡0 ± 20𝜏𝜂] through

L
𝑡0+20𝜏𝜂
𝑡0

(𝒙0) = 1 − (1−

|

|

|

|

|

∫

𝑡0+20𝜏𝜂

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

, (59)

L
𝑡0−20𝜏𝜂
𝑡0

(𝒙0) = 1 − (1−

|

|

|

|

|

∫

𝑡0−20𝜏𝜂

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞01(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

, (60)

L
𝑡0+20𝜏𝜂
𝑡0−20𝜏𝜂

(𝒙0) = L
𝑡0+20𝜏𝜂
𝑡0

(𝒙0) + L
𝑡0−20𝜏𝜂
𝑡0

(𝒙0). (61)
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Fig. 3. Alignment diagnostics vs. hyperbolic and elliptic regions in the ABC flow. The zoomed insets show an elliptic region with invariant tori surrounded by hyperbolic region
with chaotic dynamics.
We have verified in the Appendix D, that the upper bounds (59)–(60)
statistically converge over the chosen time interval.

In Fig. 6 we plot the upper bounds defined in Eqs. (59)–(61) (panels
(a,d,g)), the alignments between 𝝎𝑡0 and the eigenvectors of the rate-
of-strain tensor 𝐒0(𝒙0, 𝑡0) (panels (b,e,h)), and the principal strain rates
𝜎0𝑗 (𝒙0, 𝑡0) (panels (c,f,i)) over the initial conditions 𝒙0. In panel (g), we
have used a different colormap for L

𝑡0+20𝜏𝜂
𝑡0−20𝜏𝜂

(𝒙0) > 1. Trenches of the

L
𝑡0+20𝜏𝜂
𝑡0

(𝒙0) and L
𝑡0−20𝜏𝜂
𝑡0

(𝒙0) fields indicate areas where the vorticity is
preferentially orthogonal to 𝐞03(𝒙0, 𝑡0) or 𝐞01(𝒙0, 𝑡0). By combining the
forward and the backward estimates, we obtain that low values of the
L𝑡0+20𝜏
𝑡0−20𝜏

(𝒙0) field guarantee strong alignment between 𝝎𝑡0 and 𝐞02(𝒙0).
Furthermore, the scalar fields of the upper bounds (panels (a,d,g))
are topologically similar to the corresponding alignment fields (panels
(b,e,h)).

The white continuous inset in Fig. 6 highlights a region where
the estimate L

𝑡0+20𝜏𝜂
𝑡0−20𝜏𝜂

(𝒙0) suggests strong alignment between 𝝎𝑡0 and

𝐞02(𝒙0, 𝑡0). Specifically, this area displays high stretching and com-
pression in the 𝐞03(𝒙0, 𝑡0) and 𝐞01(𝒙0, 𝑡0) directions (see panels (c,f)).
Therefore, the deformation principally occurs on a 2D-plane spanned
by 𝐞03(𝒙0, 𝑡0) and 𝐞01(𝒙0, 𝑡0). The vorticity is constrained to point out of
that plane and align with 𝐞02(𝒙0). Such high strain areas have frequently
been associated with regions where the vorticity preferentially aligns
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with the intermediate eigenvector of the rate–of–strain tensor [32].
Note, however, that regions of intense alignment between the 𝝎𝑡0 and
𝐞02(𝒙0, 𝑡0) can also arise in low strain areas (see dashed white insets
in Fig. 6). We emphasize that in those areas, the estimate L

𝑡0+20𝜏𝜂
𝑡0−20𝜏𝜂

(𝒙0)
guarantees preferential alignment between 𝝎𝑡0 and 𝐞02(𝒙0, 𝑡0).

Fig. 7 displays the cumulative distributive functions (CDF) for the
scalar fields from Fig. 6. For 65% of the initial conditions, the vorticity
is preferentially aligned with 𝐞02(𝒙0). Additionally, the CDFs in panel
(b) show that the vorticity is more likely to be orthogonal to 𝐞01(𝒙0)
than to 𝐞03(𝒙0). This is also reflected in the distribution of L𝑡0+20𝜏𝜂

𝑡0
(𝒙0)

and L
𝑡0−20𝜏𝜂
𝑡0

(𝒙0) (see panel (a)). We attribute this to the fact that
the CDF of 𝜎02(𝒙0, 𝑡0) is skewed towards positive values and therefore
𝜎03(𝒙0, 𝑡0) is on average smaller than −𝜎01(𝒙0, 𝑡0). This implies that the
exponential decay rate of the forward integral is smaller than the one
of the backward integral. By taking into account the effect of viscous
and non-conservative forces as well as the strain rate variation along
a trajectory, the asymptotic estimate L

𝑡0+20𝜏𝜂
𝑡0−20𝜏𝜂

guarantees that for 15%

of the initial conditions, the vorticity preferentially aligns with the
intermediate Eulerian stretching direction (see panel (a)).

Finally, we compare the statistics of the upper bounds (59)–(61)
with the corresponding exact vorticity alignments. Each panel in Fig. 8
displays the joint probability density function (PDF) of the estimates
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Fig. 4. Joint PDF of sin2 𝛼 and leading forward Lyapunov exponent 𝜇+
3 , where 𝛼 denotes

the angle between the initial vorticity 𝝎𝑡0 and the direction 𝒏(𝒙0 , 𝑡0) (panel a). Joint
PDF of LAVD200

0 and 𝜇+
3 (panel b).

L
𝑡0+20𝜏𝜂
𝑡0

,L
𝑡0−20𝜏𝜂
𝑡0

and L
𝑡0+20𝜏𝜂
𝑡0−20𝜏𝜂

together with their exact vorticity align-
ments. The colored contour plots in Fig. 8 show the joint PDFs and the
histograms on the top and the right of each panel indicate the indi-
vidual PDFs. The white dots coincide with a ridge in the joint PDF and
highlight the average correlation between the exact alignments and the
corresponding upper bounds. Panel (a) shows that as the upper bound
of the forward estimate L

𝑡0+20𝜏𝜂
𝑡0

decreases, the inner product between
𝐞𝜔𝑡0

and 𝐞03 decreases and the vorticity vector becomes preferentially
orthogonal to the most stretching direction 𝐞03. The alignment diag-
nostic

⟨

𝒆𝝎𝑡0
, 𝒆03

⟩2
, therefore, varies directly as a function of its upper

bound L
𝑡0+20𝜏𝜂
𝑡0

. A similar direct relationship holds for the backward
alignment estimate in Eq. (60) as well (see panel (b)). Panel (c) displays
the joint PDF between

sin2 𝛽 = 1 −
⟨

𝒆𝝎𝑡0
, 𝒆02

⟩2

and the numerical estimate L
𝑡+20𝜏𝜂
𝑡0−20𝜏𝜂

from the asymptotic upper bound
of Theorem 2. We again obtain that, on average, sin2 𝛽 varies as a
268
function of the estimate L
𝑡+20𝜏𝜂
𝑡0−20𝜏𝜂

. This shows that the upper bound from
Theorem 2 is statistically correlated with the alignment between the
vorticity and the intermediate eigenvector of the rate-of-strain tensor.

Our results for homogenous isotropic turbulence demonstrate that
Theorem 2 provides a conservative but physically insightful upper
bound on the squared sine of the angle between the vorticity and the
intermediate eigenvector of the rate-of-strain tensor.

7. Conclusions

We have reconsidered here the phenomenon of vorticity alignment
(or lack thereof) with the Lyapunov vectors and various distinguished
Eulerian stretching directions in flows with pointwise bounded vor-
ticity. As a first observation, we have pointed out that any observed
alignment of vorticity with distinguished Eulerian or Lagrangian strain
directions is a fundamentally frame-dependent phenomenon. This fol-
lows from the frame-dependence of the direction of the vorticity vector
and the frame-indifference of the eigenvectors of common Eulerian and
Lagrangian strain tensors. As a consequence, any observed preferential
alignment reported so far is specific to inertial frames and will not
persist in other frames.

Next, we have derived a general Lagrangian estimate for the an-
gle between the vorticity vector and the asymptotic limits of the
eigenvectors of the Cauchy–Green strain tensor, whenever those limits
exist. This estimate enabled us to conclude that in inviscid flows with
pointwise uniformly bounded vorticity and conservative body forces,
the vorticity must be exactly orthogonal to the planes spanned by the
dominant forward and backward Lyapunov vectors (Theorem 1) along
trajectories with positive forward and backward maximal Lyapunov
exponents. For steady and time periodic flows defined on compact
domains, this conclusion can be strengthened, given that the Lyapunov
exponents are known to exist for almost all initial conditions by Os-
eledets multiplicative ergodic theorem (Corollary 1). If the forward-
and backward asymptotic behaviors along a trajectory coincide, then
Corollary 1 implies a perfect alignment between the vorticity and the
intermediate Lyapunov vector in inviscid flows (Remark 1). To our
knowledge, this is the first exact mathematical result that establishes
preferential vorticity alignment with intermediate stretching directions,
which is the Lagrangian analog of the empirically observed preferential
alignment between the vorticity and the intermediate eigenvector of
the rate-of-strain tensor in the Eulerian setting.

Our results underline that the previously reported asymptotic align-
ment between the vorticity and the left singular vector of the deforma-
tion gradient cannot happen along trajectories with bounded vorticity
and positive Lyapunov exponents (Remark 2). Indeed, such an align-
ment would imply temporally unbounded vorticity growth and hence
establish a contradiction. In homogeneous isotropic turbulence, most
initial conditions are expected to have positive Lyapunov exponents,
and hence numerical indications of vorticity alignment with the most
stretching direction are likely to arise from the unavoidable numerical
errors arising in the computation of Lagrangian strain eigenvectors over
long time intervals.

Finally, we considered viscous flows with non-conservative body
forces and with pointwise bounded vorticity. For such flows, our The-
orem 2 gives an exact upper estimate on the deviation between the
vorticity and the intermediate eigenvector of the rate-of-strain ten-
sor. The asymptotic estimate provides physical conditions such that
the vorticity preferentially aligns with the intermediate eigenvector
of the rate-of-strain tensor. This alignment is strong in high strain
regions given that over short trajectory segments the variation of
the rate-of-strain tensor is small and the curl of viscous and non-
conservative forces are small relative to the initial vorticity magnitude.
We have demonstrated this in DNS data on homogeneous and isotropic
turbulence.
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Fig. 5. Vorticity alignment and Eulerian diagnostics for the ABC flow. Numerical estimates (56)–(58) for the asymptotic upper bound from Corollary 2 (panels a, d, g). Exact
Eulerian vorticity alignments (panels b, e, h). Principal strains, i.e., eigenvalues of the rate-of-strain tensor (panels c, f, i). The zoomed insets display branches of unstable (white
line) and stable (magenta line) manifolds in proximity of a hyperbolic fixed point. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Appendix A. Proof of Theorem 2

We recall from Section 5 the integral form of the vorticity transport
equation (41),

𝝎𝑡
(

𝒙0
)

= 𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑡0)𝝎𝑡0

(

𝒙0
)

+ ∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠, (A.1)

where

𝒈 (𝒙 ; 𝜈,𝒇 ) ∶= 𝜈𝛥𝝎 (𝒙 ) + 𝛁 × 𝒇 (𝒙(𝑡; 𝑡 ,𝒙 ), 𝑡) + 𝜞
(

𝒙 , 𝑡
)

𝝎 (𝒙 ) (A.2)
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𝑡 0 𝑡 0 0 0 0 𝑡 0
contains the contribution of the viscous and non-potential external
forces, and the strain rate variation Γ times the vorticity. Squaring both
sides of Eq. (A.1) yields

|

|

𝝎𝑡(𝒙0)||
2 = |

|

|

𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑡0)𝝎𝑡0
|

|

|

2

+ 2

⟨

𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑡0)𝝎𝑡0 ,∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

⟩

+
|

|

|

|

|

∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

|

2

(A.3)

The eigenvalue decomposition from formula (39) implies

𝑒𝐒0(𝒙0 ,𝑡0)𝑡𝒆0𝑗 (𝒙0, 𝑡0) = 𝑒𝜎0𝑗 (𝒙0 ,𝑡0)𝑡𝐞0𝑗 (𝒙0, 𝑡0) (A.4)

and we can therefore write
|

|

|

𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑡0)𝝎𝑡0

(

𝒙0
)

|

|

|

2

=
|

|

|

|

|

|

𝑒𝐒0(𝒙0 ,𝑡0)𝑡
3
∑

𝑗=1

⟨

𝝎𝑡0

(

𝒙0
)

, 𝐞0𝑗 (𝒙0, 𝑡0)
⟩

𝐞0𝑗 (𝒙0, 𝑡0)
|

|

|

|

|

|

2

=
|

|

|

|

|

|

3
∑

𝑗=1

⟨

𝝎𝑡0

(

𝒙0
)

, 𝐞0𝑗 (𝒙0, 𝑡0)
⟩

𝑒𝜎0𝑗 (𝒙0 ,𝑡0)𝑡𝐞0𝑗 (𝒙0, 𝑡0)
|

|

|

|

|

|

2

=
3
∑

⟨

𝝎𝑡0

(

𝒙0
)

, 𝐞0𝑗 (𝒙0, 𝑡0)
⟩2

𝑒2𝜎0𝑗 (𝒙0 ,𝑡0)𝑡

𝑗=1
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Fig. 6. Numerical estimates for the asymptotic upper bounds from Eqs. (59)–(61) in the homogeneous isotropic turbulence dataset (panels a, d, g). Exact vorticity alignment
(panels b, e, h). Principal strain rates from 𝐒0

(

𝒙0 , 𝑡0
)

(panels c, f, i). All diagnostics are plotted with respect to the initial conditions 𝒙0. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. CDF of the upper bounds defined in Eqs. (59)–(61) (panel a). CDF of
⟨

𝐞𝜔𝑡0
, 𝐞01(𝒙0 , 𝑡0)

⟩2
,
⟨

𝐞𝜔𝑡0
, 𝐞03(𝒙0 , 𝑡0)

⟩2
and sin2 𝛽(𝒙0 , 𝑡0) = 1 −

⟨

𝐞𝜔𝑡0
, 𝐞02(𝒙0 , 𝑡0)

⟩2
(panel b). CDF of the

principal strain rates (panel c).
≥
⟨

𝝎𝑡0

(

𝒙0
)

, 𝐞0𝑗 (𝒙0, 𝑡0)
⟩2

𝑒2𝜎0𝑗 (𝒙0 ,𝑡0)𝑡, 𝑗 = 1, 2, 3. (A.5)

Combining the last inequality with Eq. (A.3) gives
⟨

𝝎𝑡0

(

𝒙0
)

, 𝐞03(𝒙0, 𝑡0)
⟩2

𝑒2𝜎03(𝒙0 ,𝑡0)𝑡

≤ |

|

𝝎𝑡(𝒙0)||
2 − 2

⟨

𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑡0)𝝎𝑡0 ,∫

𝑡
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

⟩
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𝑡0
−
|

|

|

|

|

∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

|

2

≤ |

|

𝝎𝑡(𝒙0)||
2 + 2 ||

|

𝝎𝑡0
|

|

|

|

|

|

|

|

∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(2𝑡−𝑡0−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

|

−
|

|

|

|∫

𝑡
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

2

. (A.6)

|

𝑡0 |
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Fig. 8. Joint PDF of L𝑡0+20𝜏𝜂
𝑡0

and
⟨

𝐞𝜔𝑡0
, 𝐞03

⟩2
(panel a), L𝑡0−20𝜏𝜂

𝑡0
and

⟨

𝐞𝜔𝑡0
, 𝐞01

⟩2
(panel b), and L𝑡0+20𝜏𝜂

𝑡0−20𝜏𝜂
and sin2 𝛽 restricted to L𝑡0+20𝜏𝜂

𝑡0−20𝜏𝜂
≤ 1 (panel c). The white markers define a ridge

in the joint PDFs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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E
i
(
t
i

A
t

T
⟨

T
e

s

By dividing both sides of Eq. (A.6) by 𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0) and introducing
the notation

𝐞𝜔𝑡0
(𝒙0) ∶=

𝝎𝑡0 (𝒙0)
|

|

|

𝝎𝑡0 (𝒙0)
|

|

|

,

we re-write inequality (A.6) as
⟨

𝐞𝜔𝑡0
, 𝐞03(𝒙0, 𝑡0)

⟩2

≤
|

|

𝝎𝑡(𝒙0)||
2

|

|

|

𝝎𝑡0 (𝒙0)
|

|

|

2
𝑒−2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0) + 2

|

|

|

|

|

∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(2𝑡−𝑡0−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

|

|

|

|

𝝎𝑡0 (𝒙0, 𝑡0)
|

|

|

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)

−

⎛

⎜

⎜

⎜

⎜

⎝

|

|

|

|

|

∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

|

|

|

|

𝝎𝑡0 (𝒙0, 𝑡0)
|

|

|

𝑒𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)

⎞

⎟

⎟

⎟

⎟

⎠

2

= 𝑒2
(

VSE𝑡𝑡0 (𝒙0)−𝜎03(𝒙0 ,𝑡0)
)

(𝑡−𝑡0) + 2

|

|

|

|

|

∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(2𝑡−𝑡0−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

|

|

|

|

𝝎𝑡0 (𝒙0, 𝑡0)
|

|

|

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)

−

⎛

⎜

⎜

⎜

⎜

⎝

|

|

|

|

|

∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

|

|

|

|

𝝎𝑡0 (𝒙0, 𝑡0)
|

|

|

𝑒𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)

⎞

⎟

⎟

⎟

⎟

⎠

2

, (A.7)

where VSE𝑡
𝑡0
(𝒙0) is the vorticity stretching exponent defined in formula

(14). For flows with bounded vorticity the first term in the inequality
(A.7) vanishes in the asymptotic limit 𝑡 → ∞. By using the eigenvalue
decomposition (A.4), we write out the individual terms in Eq. (A.7) as
|

|

|

|

|

∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(2𝑡−𝑡0−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

|

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
(A.8)

=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∫

𝑡

𝑡0

𝑒𝜎01(𝒙0 ,𝑡0)(2𝑡−𝑡0−𝑠)

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
⟨𝐞01(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

∫

𝑡

𝑡0

𝑒𝜎02(𝒙0 ,𝑡0)(2𝑡−𝑡0−𝑠)

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
⟨𝐞02(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

∫

𝑡

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

,

and
|

|

|

|

|

∫

𝑡

𝑡0
𝑒𝐒0(𝒙0 ,𝑡0)(𝑡−𝑠)𝒈𝑠(𝒙0; 𝜈,𝒇 ) 𝑑𝑠

|

|

|

|

|

𝑒𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
(A.9)

=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∫

𝑡

𝑡0

𝑒𝜎01(𝒙0 ,𝑡0)(𝑡−𝑠)

𝑒𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
⟨𝐞01(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

∫

𝑡

𝑡0

𝑒𝜎02(𝒙0 ,𝑡0)(𝑡−𝑠)

𝑒𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
⟨𝐞02(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

∫

𝑡

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

. (A.10)

With the notation

‖𝒈‖∞ = sup
𝑡∈R,𝒙0∈𝑈

|

|

𝒈𝑡(𝒙0, 𝑡0; 𝜈,𝒇 )|| ,

we then have for the individual terms in formulas (A.8)–(A.9)

∫

𝑡

𝑡0

𝑒𝜎01(𝒙0 ,𝑡0)(2𝑡−𝑡0−𝑠)

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
⟨𝐞01(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠 (A.11)

≤ 𝑒𝜎01(𝒙0 ,𝑡0)(2𝑡−𝑡0)

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0) ∫

𝑡

𝑡0
𝑒−𝜎01(𝒙0 ,𝑡0)𝑠𝑑𝑠 ‖𝒈‖∞

= 𝑒𝜎01(𝒙0 ,𝑡0)(2𝑡−𝑡0)

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)

[

𝑒−𝜎01(𝒙0 ,𝑡0)𝑡0 − 𝑒−𝜎01(𝒙0 ,𝑡0)𝑡

𝜎01(𝒙0, 𝑡0)

]

‖𝒈‖∞

=
[

𝑒2𝜎01(𝒙0 ,𝑡0)(𝑡−𝑡0) − 𝑒𝜎01(𝒙0 ,𝑡0)(𝑡−𝑡0)
]

‖𝒈‖∞ ,
272

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0) 𝜎01(𝒙0, 𝑡0)
and similarly

∫

𝑡

𝑡0

𝑒𝜎02(𝒙0 ,𝑡0)(2𝑡−𝑡0−𝑠)

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
⟨𝐞02(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

≤
[

𝑒2𝜎02(𝒙0 ,𝑡0)(𝑡−𝑡0) − 𝑒𝜎02(𝒙0 ,𝑡0)(𝑡−𝑡0)

𝑒2𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)

]

‖𝒈‖∞
𝜎02(𝒙0, 𝑡0)

, (A.12)

∫

𝑡

𝑡0

𝑒𝜎01(𝒙0 ,𝑡0)(𝑡−𝑠)

𝑒𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
⟨𝐞01(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

≤ 𝑒−𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
[

1 − 𝑒𝜎01(𝒙0 ,𝑡0)(𝑡−𝑡0)
]

‖𝒈‖∞
𝜎01(𝒙0, 𝑡0)

, (A.13)

∫

𝑡

𝑡0

𝑒𝜎02(𝒙0 ,𝑡0)(𝑡−𝑠)

𝑒𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
⟨𝐞02(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

≤ 𝑒−𝜎03(𝒙0 ,𝑡0)(𝑡−𝑡0)
[

1 − 𝑒𝜎02(𝒙0 ,𝑡0)(𝑡−𝑡0)
]

‖𝒈‖∞
𝜎02(𝒙0, 𝑡0)

, (A.14)

xcept for trajectories where the eigenvalues of 𝐒0(𝒙0, 𝑡0) are repeated,
.e., at singularities of 𝐒0(𝒙0, 𝑡0), the right-hand side of the inequalities
A.11)–(A.14) vanishes in the asymptotic limit 𝑡 → ∞. By combining
he latter statements, we obtain the following simplified version of
nequality (A.7) in the asymptotic limit 𝑡 → ∞:
⟨

𝐞𝜔𝑡0
, 𝐞03(𝒙0, 𝑡0)

⟩2

≤ 2

|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

|

|

|

𝝎𝑡0 (𝒙0, 𝑡0)
|

|

|

−

⎛

⎜

⎜

⎜

⎜

⎝

|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

|

|

|

𝝎𝑡0 (𝒙0, 𝑡0)
|

|

|

⎞

⎟

⎟

⎟

⎟

⎠

2

= 1 −

⎛

⎜

⎜

⎜

⎜

⎝

1 −

|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0), 𝒈𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

|

|

|

𝝎𝑡0 (𝒙0, 𝑡0)
|

|

|

⎞

⎟

⎟

⎟

⎟

⎠

2

= 1 −

(

1 −
|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

, (A.15)

where we introduced the notation

𝒉𝑡(𝒙0; 𝜈,𝒇 ) ∶=
𝜈𝛥𝝎𝑡(𝒙0) + 𝛁 × 𝒇 𝑡(𝒙0) + 𝜞

(

𝒙0, 𝑡
)

𝝎𝑡(𝒙0)
|

|

|

𝝎𝑡0 (𝒙0, 𝑡0)
|

|

|

=
𝒈𝑡(𝒙0; 𝜈,𝒇 )
|

|

|

𝝎𝑡0 (𝒙0, 𝑡0)
|

|

|

.

pplying the same reasoning in backward time and taking the asymp-
otic limit 𝑡 → −∞ yields
⟨

𝐞𝜔𝑡0
, 𝐞01(𝒙0, 𝑡0)

⟩2
≤ 1 − (1−

|

|

|

|

|

∫

−∞

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞01(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

(A.16)

he eigenvectors 𝐞0𝑗 (𝒙0, 𝑡0) are mutually orthogonal and hence

𝐞01(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
+
⟨

𝐞02(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
+
⟨

𝐞03(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
= 1. (A.17)

he angle 𝛽(𝒙0, 𝑡0) between the vorticity 𝝎0 and the intermediate
igenvector 𝐞02(𝒙0, 𝑡0) of the rate-of-strain tensor then satisfies

in2 𝛽(𝒙0, 𝑡0) =
⟨

𝐞01(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
+
⟨

𝐞03(𝒙0, 𝑡0), 𝐞𝜔𝑡0

⟩2
. (A.18)

By combining the last equation with the inequalities (A.15)–(A.16) we
obtain

sin2 𝛽(𝒙0, 𝑡0) ≤ 2−
(

1 −
|

|

|

|∫

∞
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

)2

−

|

𝑡0 |
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(

1 −
|

|

|

|

|

∫

−∞

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞01(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

(A.19)

This concludes the proof of Theorem 2.

Appendix B. Proof of convergence of the upper bound from Theo-
rem 2

We start by writing out the upper bound from Theorem 2

sin2 𝛽(𝒙0, 𝑡0) ≤ 2−
(

1 −
|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

−

(

1 −
|

|

|

|

|

∫

−∞

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞01(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

)2

. (B.1)

In order to show that the right-hand side of (B.1) has a well defined
asymptotic limit, it suffices to show that both forward and backward
improper integrals of inequality (B.1) converge over

[

𝑡0,±∞
]

. Assume
that the combined effect of the viscous and external body forces is
uniformly bounded, i.e.,

‖

‖

𝒉𝑡(𝒙0; 𝜈,𝒇 )‖‖∞ < 𝐾, (B.2)

where ‖

‖

𝒉𝑡(𝒙0; 𝜈,𝒇 )‖‖∞ ∶= sup𝑡∈R,𝒙0∈U
|

|

𝒉𝑡(𝒙0; 𝜈,𝒇 )|| denotes the infinity
norm of 𝒇 . The relationship (B.2) then implies that the forward integral
of inequality (B.1) is upper bounded by
|

|

|

|

|

∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞03(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

(B.3)

≤ ‖

‖

𝒉𝑡(𝒙0; 𝜈,𝒇 )‖‖∞ ∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠)𝑑𝑠 (B.4)

≤ 𝐾 ∫

∞

𝑡0
𝑒𝜎03(𝒙0 ,𝑡0)(𝑡0−𝑠)𝑑𝑠 (B.5)

= 𝐾
𝜎03(𝒙0, 𝑡0)

. (B.6)

Similarly the backward integral in formula (B.1) satisfies
|

|

|

|

|

∫

−∞

𝑡0
𝑒𝜎01(𝒙0 ,𝑡0)(𝑡0−𝑠) ⟨𝐞01(𝒙0, 𝑡0),𝒉𝑠(𝒙0; 𝜈,𝒇 )⟩ 𝑑𝑠

|

|

|

|

|

(B.7)

≤ 𝐾
|

|

𝜎01(𝒙0, 𝑡0)||
. (B.8)

Therefore, both forward and backward improper integrals from in-
equality (B.1) are bounded and have well defined asymptotic limits.
This implies that the upper bound from Theorem 2 converges provided
that the viscous and external body forces are uniformly bounded.

Appendix C. Convergence of Lyapunov exponents and vectors in
steady ABC flow

The convergence of the Lyapunov exponents and vectors in the
steady ABC flow is guaranteed for almost all initial conditions by
Oseledets theorem [41]. We numerically approximate the Lyapunov
exponents and vectors through the singular values and vectors of the
gradient of the flow 𝛁𝐅𝑡

𝑡0

(

𝒙0
)

over a finite time interval. We check

the convergence of the limits (10)–(11) over an ensemble of initial
conditions 𝒙0. As shown in Fig. C.9, the forward Lyapunov exponents
and vectors, approximated from the singular values and vectors of
the gradient of the flow map, have converged at 𝑡 = 200. The for-
ward Lyapunov vectors 𝜻 𝑖

(

𝒙0
)

are numerically estimated as 𝜻 𝑖
(

𝒙0
)

=
𝝃
(

200;𝒙
)

. A similar statements holds for the backward asymptotics.
273

𝑖 0
Fig. C.9. (panel a) The time averaged logarithms of the singular values
√

𝜆𝑖
(

𝑡,𝒙0
)

of
the gradient of the flow map 𝛁𝐅𝑡

𝑡0

(

𝒙0
)

statistically converge to the Lyapunov exponents
𝜇𝑖

(

𝒙0
)

. The overline denotes the average over the initial conditions 𝒙0. (panel b)
Similarly, the right singular vectors 𝝃𝑖

(

𝑡;𝒙0
)

of 𝛁𝐅𝑡
𝑡0

(

𝒙0
)

converge to the Lyapunov
vectors 𝜻 𝑖

(

𝒙0
)

.

Fig. D.10. L𝑡0±𝑡
𝑡0

(

𝒙0
)

denotes the average of L𝑡0±𝑡
𝑡0

(

𝒙0
)

over the initial conditions 𝒙0 as
a function of time 𝑡. The upper bounds L𝑡0±𝑡

𝑡0

(

𝒙0
)

statistically converge.

Appendix D. Convergence of 𝐋𝒕𝟎±𝒕
𝒕𝟎

(

𝒙𝟎
)

The asymptotic estimate of Theorem 2 convergences pointwise pro-
vided that the viscous and external body forces are uniformly bounded
(see Appendix B). We approximate this estimate over a finite time
interval

[

𝑡0, 𝑡0 ± 𝑡
]

through the forward and backward integrals (59)–
(60). Fig. D.10 displays the average over the initial conditions 𝒙0 of the
upper bounds L𝑡0±𝑡

𝑡0

(

𝒙0
)

as a function of time 𝑡. We confirm that both
the forward and backward upper bounds L𝑡0±𝑡

𝑡0

(

𝒙0
)

have statistically

converged at 𝑡 = 20𝜏𝜂 . Note that the limits of the forward and backward
integrals generally do not coincide. This follows from the fact 𝜎03 is on
average smaller than 𝜎−01 (see Fig. 6).
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