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A B S T R A C T

We develop a model reduction technique for piecewise smooth dynamical systems using spectral submanifolds.
Specifically, we construct low-dimensional, sparse, nonlinear and piecewise smooth models on unions of slow
and attracting spectral submanifolds (SSMs) for each smooth subregion of the phase space and then properly
match them. We applied this methodology to both equation-driven and data-driven problems, with and without
external forcing.
1. Introduction

The ever increasing need to reduce complex, high-dimensional dy-
namical systems to simple, low-dimensional models has yielded a num-
ber of different reduction techniques (see Benner et al. [1], Rowley
and Dawson [2], Ghadami and Epureanu [3], Brunton et al. [4], Taira
et al. [5] and Touzé et al. [6] for recent reviews). Here, we focus
on an extension of one of these methods, spectral submanifold (SSM)
reduction, to piecewise smooth mechanical systems.

Defined originally for smooth dynamical systems by Haller and
Ponsioen [7], a primary SSM is the smoothest invariant manifold that
is tangent to, and has the same dimension as, a spectral subspace of
the linearized system at a steady state. As such, SSMs mathematically
formalize and extend the original idea of nonlinear normal modes
(NNMs) introduced in seminal work by Shaw and Pierre [8,9] and Shaw
et al. [10] (see Mikhlin and Avramov [11] for a recent review).

The existence, uniqueness and persistence of SSMs in autonomous
and non-autonomous systems have been proven whenever no resonance
relationship holds between the linearized spectrum within the spectral
subspace and outside that subspace (Haller and Ponsioen [7], Cabré
et al. [12] and Haro and de la Llave [13]). The primary SSM tangent
to the spectral subspace spanned by the slowest linear modes attracts
all nearby trajectories and hence its internal dynamics is an ideal,
mathematically justified nonlinear reduced model.

Recent work has revealed the existence of an additional, infinite
family of secondary (or fractional) SSMs near the primary one in 𝐶∞

dynamical systems (Haller et al. [14]). Fractional SSMs are also tangent
to the same spectral subspace as their primary counterpart, but they are
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only finitely many times differentiable. Accordingly, they can only be
approximated via fractional-powered polynomial expansions.

When the equations of the system are known, its SSMs can be
approximated via Taylor expansion at the stationary state using the
SSMTool algorithm developed by Jain and Haller [15] and Jain et al.
[16]. SSMTool can compute a low-dimensional reduced order model
even for systems with hundreds of thousands degrees of freedom. The
SSM-reduced models can in turn predict the response of the system
to small harmonic forcing (Jain and Haller [15], Jain et al. [17] and
Ponsioen et al. [18]) and its bifurcations (Li and Haller [19] and Li et al.
[20]). In the absence of governing equations, SSMs and their reduced
dynamics can also be approximated from data using the SSMLearn algo-
rithm developed in Cenedese et al. [21]. Such data-driven SSM-reduced
models have been found to capture the essentially nonlinear features
of autonomous systems and also accurately predict nonlinear response
under additional external forcing (Cenedese et al. [21,22,23]). A more
recent variant of the same algorithm, fastSSM, provides a simplified,
faster SSM-reduction procedure with somewhat reduced accuracy (Axås
et al. [24]). Application of these methodologies has proven successful in
a variety of examples, both numerical and experimental, ranging from
beam oscillations and sloshing in water tank to structural vibrations
and transition in shear flows (Cenedese et al. [21,22], Axås et al. [24]
and Kaszás et al. [25]).

As most model reduction methods, SSM reduction also assumes
that the full system to be reduced is sufficiently many times differ-
entiable. In the absence of the required smoothness, such reduction
methods either fail or apply only under modifications. For example,
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in Cardin et al. [26,27], the authors showed the existence of a slow
manifold in the context of singular perturbation, seeking an extension
of invariant manifold-based model reduction for piecewise smooth
systems. In particular, they study how the sliding mode present in
such systems is affected by singular perturbation and prove that all
hyperbolic equilibria and periodic orbits on the sliding region of the
reduced problem persist. Motivated by a possible extension of the
center manifold reduction of smooth systems to piecewise smooth
systems, Weiss et al. [28,29] and Küpper [30] identify invariant cones
as tools to reduce the dynamics and study bifurcation phenomena,
when the equilibrium lies on the switching manifold between regions
of smooth behavior. More precisely, invariant cone-like manifolds are
found for nonlinear perturbations of linear piecewise smooth systems
and they are constructed starting from a fixed point of the Poincaré
map.

A further notable contribution is the study of Szalai [31] on model
reduction for non-densely defined piecewise smooth systems in Ba-
nach spaces. This highly technical approach uses singular perturba-
tion techniques to develop meaningful reduced order models on low-
dimensional invariant manifolds (including SSMs) across switching
surfaces. In this paper, we pursue a less technical, but more readily
applicable objective. We consider finite-dimensional, piecewise smooth
dynamical systems with a single switching surface that contains a fixed
point. By extending the two smooth systems from either side of this
surface, we conclude the existence of two smooth SSMs, which are
separated from each other by a discontinuous jump. We then track full
trajectories by appropriately switching between the two SSM-reduced
dynamics.

For continuous piecewise linear systems, with no discontinuities
across the switching surface, the SSMs would coincide with the slow
spectral subspaces. In that setting, Karoui and Leine [32] already put
forward the idea of model reduction to two locally invariant half-
manifolds. Through the application of a continuous matching approach,
those authors remove the discontinuity characterizing the slow mani-
folds, thereby preserving the continuous nature of the original systems
they study.

The structure of this paper is as follows. We first describe our
model reduction procedure for piecewise smooth system in Section 2,
recalling basic concepts of SSM theory. The normalized non-smoothness
parameter is assumed to be small. We then apply this procedure to
a simple equation-driven example in Section 3, in which we compute
the SSMs analytically and compare several switching strategies among
different SSMs. Finally, in Section 4 we discuss a data-driven example
of a von Kármán beam for which we carry out model reduction under
different types of non-smoothness.

2. Method

For model reduction in a piecewise smooth system, we consider
separately the subregions of the phase space in which the system is
smooth and apply the results of primary SSM theory separately in
those subregions. In particular, we smoothly extend each subsystem
locally across its domain boundary and locate primary, smooth SSMs
anchored at fixed points in that boundary for the extended system.
Such an SSM will only act as an invariant manifold for the full system
over its original subregion of smooth dynamics. These various subsets
of SSMs form the skeleton of an attractive set for the full system,
with pieces of this skeleton connected by trajectories sliding off from
them and converging to other pieces of the skeleton (see Fig. 1).
The reduced dynamics across different SSM pieces then needs to be
connected appropriately by a reduced-order model, as we detail below.

In the following, we first introduce some terminology from the the-
ory of piecewise smooth dynamical systems, then give a more thorough
description of our construction of a reduced-order model.
2



2.1. Piecewise smooth systems

Let us consider the 𝑛-dimensional dynamical system

�̇� = 𝐟 (𝐱; 𝛿), 𝐱 ∈ R𝑛, 𝛿 ∈ R, (1)

where 𝐱 is the state vector and 𝐟 (𝐱; 𝛿) is a nonlinear and piecewise
smooth right-hand side, depending smoothly on the parameter 𝛿 and
the time 𝑡, but not necessarily on the phase-space variable 𝐱. For sim-
plicity, we assume 𝐟 (𝐱; 𝛿) to be non-smooth across a single hypersurface
𝛴 of dimension 𝑛− 1 that contains the origin 𝐱 = 𝟎. Namely, the phase
space is split into two regions separated by the hypersurface 𝛴, and
𝐟 (𝐱, 𝛿) is smooth within each of these regions.

The surface 𝛴 is usually called a switching surface, defined by a
calar-valued switching function 𝜎(𝐱) as

= {𝐱 ∈ R𝑛 ∶ 𝜎(𝐱) = 0} (2)

The phase space is then partitioned as R𝑛 = 𝛴+ ∪ 𝛴 ∪ 𝛴−, where

𝛴− = {𝐱 ∈ R𝑛 ∶ 𝜎(𝐱) < 0} ,
𝛴+ = {𝐱 ∈ R𝑛 ∶ 𝜎(𝐱) > 0} .

(3)

The original piecewise smooth system (1) can now be written as

�̇� = 𝐟 (𝐱; 𝛿) =
{

𝐟+(𝐱; 𝛿), 𝐱 ∈ 𝛴+,
𝐟−(𝐱; 𝛿), 𝐱 ∈ 𝛴−,

(4)

where we assume that 𝐟±(𝐱; 𝛿) both extend to smooth functions of 𝐱 in
an open neighborhood of 𝛴. We also assume that

𝐟 (𝐱; 0) ≡ 𝐟±(𝐱; 0), 𝐟 (𝟎; 0) = 𝟎,
0 ∉ Re[Spect(D𝐱𝐟 (𝟎; 0))].

(5)

In other words, for 𝛿 = 0, the discontinuity of system (1) disappears
nd 𝐱 = 𝟎 is a hyperbolic fixed point of (1), contained in 𝛴 for this value
f 𝛿. Note that by the theory developed by Filippov [33], the dynamics
ithin 𝛴 can be approximated by constructing a proper inclusion

see Appendix A.1). According to the convex Filippov’s inclusion, the
ynamics within the switching surface reads

̇ = 𝐟𝛴 =
(𝐟− ⋅ ∇𝜎)𝐟+ − (𝐟+ ⋅ ∇𝜎)𝐟−

(𝐟− − 𝐟+) ⋅ ∇𝜎
. (6)

We assume that trajectories intersecting 𝛴 exhibit two possible
ehaviors:

• Crossing: the orbit crosses through 𝛴 if

(∇𝜎 ⋅ 𝐟+)(∇𝜎 ⋅ 𝐟−) > 0 on 𝛴. (7)

• Sliding: the orbit slides along the switching surface if

(∇𝜎 ⋅ 𝐟+)(∇𝜎 ⋅ 𝐟−) < 0 on 𝛴. (8)

In the case of sliding, the vector field is tangent to the switching
surface and can be expressed as a convex combination of 𝐟+ and
𝐟− along 𝛴. The switching surface 𝛴 then either attracts or repels
neighboring trajectories, depending on the direction of the vector
fields in 𝛴+ and 𝛴−, as seen in Fig. 2. In the former case, the
solution generally evolves along the switching surface. In the
latter case, a solution still exists, but it is not unique in forward
time.

.2. Model reduction strategy

We now outline a procedure which allows us to extend SSM-based
odel reduction to piecewise smooth systems. Our approach utilizes

he primary SSMs constructed over slow modes existing on both sides of
by the theory of SSMs for smooth systems reviewed in Appendix A.2.
By our assumptions in Section 2.1, for 𝛿 = 0, system (1) has a

yperbolic fixed point at 𝐱 = 𝟎. Any nonresonant spectral subspace 𝐸0
f the linearized system at 𝐱 = 𝟎 will then admit a unique, primary SSM,

0, under the addition to the nonlinear terms of 𝐟 (𝐱; 0). For small 𝛿 ≠ 0,



International Journal of Non-Linear Mechanics 163 (2024) 104753L. Bettini et al.
Fig. 1. Reduced-order modeling strategy for piecewise smooth dynamical systems using primary SSMs. The plots depict a specific example, described in Section 4 and reported
here for motivation. Fig. (a) represents the two half primary SSMs, + and −, anchored at their respective equilibrium points, 𝑥+0 and 𝑥−0 , and separated by the switching
surface 𝛴. Fig. (b) exemplifies the crossing between two subregions. The black curve is the trajectory of the full system, which is approximated by the reduced dynamics (blue
and red curves) lying on + and −. The full solution quickly synchronizes with the reduced one, even though the latter involves a physical discontinuity. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. The orbits can cross either from 𝛴− to 𝛴+ (a) or from 𝛴+ to 𝛴− (b).
Alternatively, they can exhibit an attracting (c) or a repelling sliding mode (d).

hyperbolic fixed points will continue to exist (𝛿)-close to 𝐱 = 𝟎 for the
two ODEs �̇� = 𝐟±(𝐱; 𝛿) by the implicit function theorem. These fixed
points, 𝐱±0 (𝛿), will have their own SSMs, ±

𝛿 , that are smooth, (𝛿)
perturbations of 0 by the smooth dependence of SSMs on parameters
(Haller and Ponsioen [7]). Restricting ±

𝛿 in their relevant domains
𝛴± defines the half primary SSMs ±, which are open and locally
invariant sets under (4). As a consequence, the set + ∪ − is a
piecewise smooth attracting set for system (1).

We now recall the reconstruction of a general SSM and its re-
duced dynamics from the data through which the system is observed
(see Cenedese et al. [21] and Axås et al. [24] for more detail). We
seek the parametrization of the manifold  as a graph over its a
priori unknown tangent space 𝑇, which is the image of the spectral
subspace 𝐸 in the space of observables 𝐲 ∈ R𝑛, where 𝐲 collects
the variables through which the system is observed. In particular, we
approximate the manifold via a multi-variate Taylor expansion

𝐲(𝜼) = 𝐌𝜼1∶𝑚 = 𝐕𝜼 +𝐌2∶𝑚𝜼2∶𝑚, (9)

where 𝐌 = [𝐕,𝐌2,… ,𝐌𝑚], with 𝐌𝑖 ∈ R𝑛×𝑑𝑖 and 𝑑𝑖 refers to the number
of 𝑑-variate monomials at order 𝑖. We refer to 𝜼 = 𝐕𝑇 𝐲 as reduced
3

coordinates, where the columns of the matrix 𝐕 ∈ R𝑛×𝑑 are orthonormal
vectors that span 𝑇. The notation (⋅)𝑙∶𝑟 refers to the vector containing
all monomials composed of the entries of the vector (⋅), with monomials
ranging from 𝑙 to 𝑟. In Eq. (9), 𝑙 = 1 and 𝑟 = 𝑚. For instance, if
𝝃 = [𝜉1𝜉2]𝑇 , then

𝜼2∶3 = [𝜂21 , 𝜂1𝜂2, 𝜂
2
2 , 𝜂

3
1 , 𝜂

2
1𝜂2, 𝜂1𝜂

2
2 , 𝜂

3
2 ]

T.

Learning  from a set of training data {𝐲𝑗} in the observable space
means finding the optimal matrix 𝐌∗, such that
(

𝐕∗,𝐌∗) = argmin
𝐕,𝐌2∶𝑚

∑

𝑗

‖

‖

‖

𝐲𝑗 − 𝐕𝐕𝑇 𝐲𝑗 −𝐌2∶𝑚(𝐕𝑇 𝐲𝑗 )2∶𝑚
‖

‖

‖

, (10)

subject to the constraints

𝐕𝐕𝑇 = I, 𝐕𝐌2∶𝑚 = 𝟎. (11)

The dynamics on the SSM in the reduced coordinates 𝜼 can then be
approximated as

�̇� = 𝐑𝜼1∶𝑟, (12)

where the elements of 𝐑 ∈ R𝑑∶𝑑1∶𝑟 are found by solving the minimiza-
tion problem

𝐑∗ = argmin
𝐑

‖

‖

‖

�̇�𝑗 − 𝐑𝜼1∶𝑟𝑗
‖

‖

‖

. (13)

In the present work, we assume to know a priori the model of the
system that generates the data 𝐲𝑗 , as well as the linear parts of the
parametrization (9) and reduced dynamics (12), as in Cenedese et al.
[23]. More specifically, in the piecewise smooth context, we suppose
that the governing equations, the domains 𝛴±, and the switching
function 𝜎(𝐱) defining 𝛴 are known. The slow SSMs analyzed here are
normally hyperbolic and hence smoothly persist under differentiable
noise in the input to our methodology (Fenichel and Moser [34]).

With these ingredients, we will use the smoothly extended versions
of the right-hand sides 𝐟±(𝐱; 𝛿) to generate training data {𝐲±𝑗 } from both
ODEs �̇� = 𝐟±(𝐱; 𝛿) in a neighborhood of the switching surface. We then
construct the SSMs, ±

𝛿 , separately, but only keep their subsets ±

falling in the domains 𝛴±, respectively. Our reduced-order will then
switch between the reduced dynamics of ± based on appropriately
reduced switching conditions that we will discuss in our upcoming
examples.

In this work, we employ an event-driven integration technique
based on the single-step, explicit Runge–Kutta ODE45 solver of MAT-
LAB. The method integrates the dynamical system until the switching
surface is detected and checks whether condition (8) is satisfied to
determine if crossing or sliding is going to occur.
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𝑞

Fig. 3. Two-degree-of-freedom modified Shaw-Pierre mechanical system with friction.
(a) System geometry. (b) Coulomb friction law added to the first mass.

3. Example 1: Shaw-Pierre model with friction

We add friction to a modified version of the mechanical system
studied by Shaw and Pierre [8], as introduced in Haller and Ponsioen
[7]. The resulting system is sketched in Fig. 3.

Dry friction is modeled via the classical Coulomb’s law (Leine and
Nijmeijer [35]), where the static friction coefficient 𝛿 (active when
̇1 = 0) is equal to the dynamic one (valid when �̇�1 ≠ 0). We now follow
the procedure outlined in Section 2 for the computation of a reduced
order model for this piecewise smooth system.

Non-smooth formulation. The equations of motion of the system in
Fig. 3 are
(

𝑚1 0
0 𝑚2

)(

𝑞1
𝑞2

)

+
(

𝑐 −𝑐
−𝑐 2𝑐

)(

�̇�1
�̇�2

)

+
(

2𝑘 −𝑘
−𝑘 2𝑘

)(

𝑞1
𝑞2

)

+
(

−𝛼𝑞31
0

)

=
(

−𝐹𝛿(�̇�1)𝑚1𝑔
0

)

,
(14)

where 𝑔 denotes the constant of gravity and 𝐹𝛿(�̇�1) refers to the friction
law in Fig. 3(b), where

𝐹𝛿(�̇�1) =

{

+𝛿, �̇�1 > 0,
−𝛿, �̇�1 < 0.

In the following, 𝛿 = 𝛿𝑔. With the notation 𝑥1 = 𝑞1, 𝑥2 = �̇�1, 𝑥3 = 𝑞2
and 𝑥4 = �̇�2, we can rewrite Eq. (14) as a first-order system of ODEs

�̇� = 𝐀0𝐱 + 𝐟𝐧𝐥 ∓ 𝐟𝜹, (15)

with

𝐀0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0

− 2𝑘
𝑚1

− 𝑐
𝑚1

𝑘
𝑚1

𝑐
𝑚1

0 0 0 1
𝑘
𝑚2

𝑐
𝑚2

− 2𝑘
𝑚2

− 2𝑐
𝑚2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐟𝐧𝐥 =
(

0,− 𝛼
𝑚1

𝑥31, 0, 0
)T

, 𝐟𝜹 =
(

0, 𝛿, 0, 0
)T .

The sign of the velocity 𝑥2 of the first mass decides whether the
friction force is positive or negative, hence this velocity defines the
4

switching function

𝜎(𝐱) = 𝑥2 = �̇�1. (16)

Therefore, we have the splitting R4 = 𝛴+ ∪ 𝛴 ∪ 𝛴−, where

𝛴± =
{

𝐱 ∈ R4 ∶ sign(𝜎(𝐱)) = ±1
}

. (17)

The piecewise smooth system (1) is here specifically defined as

�̇� = 𝐟±(𝐱; 𝛿)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑥2

− 2𝑘
𝑚1

𝑥1 −
𝑐
𝑚1

𝑥2 +
𝑘
𝑚1

𝑥3 +
𝑐
𝑚1

𝑥4 −
𝛼
𝑚1

𝑥31 ∓ 𝛿

𝑥4
𝑘
𝑚2

𝑥1 +
𝑐
𝑚2

𝑥2 −
2𝑘
𝑚2

𝑥3 −
2𝑐
𝑚2

𝑥4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
(18)

Given that ∇𝜎 = (0, 1, 0, 0)T, a crossing of 𝛴 at a point 𝐱 ∈ 𝛴 takes place
if ∇𝜎 ⋅ 𝐟+ and ∇𝜎 ⋅ 𝐟− have the same nonzero sign at 𝐱, i.e.,

⎧

⎪

⎨

⎪

⎩

− 2𝑘
𝑚1

𝑥1 +
𝑘
𝑚1

𝑥3 +
𝑐
𝑚1

𝑥4 −
𝛼
𝑚1

𝑥31 > 𝛿,

− 2𝑘
𝑚1

𝑥1 +
𝑘
𝑚1

𝑥3 +
𝑐
𝑚1

𝑥4 −
𝛼
𝑚1

𝑥31 > −𝛿,
or

⎧

⎪

⎨

⎪

⎩

− 2𝑘
𝑚1

𝑥1 +
𝑘
𝑚1

𝑥3 +
𝑐
𝑚1

𝑥4 −
𝛼
𝑚1

𝑥31 < 𝛿,

− 2𝑘
𝑚1

𝑥1 +
𝑘
𝑚1

𝑥3 +
𝑐
𝑚1

𝑥4 −
𝛼
𝑚1

𝑥31 < −𝛿.

(19)

Attracting sliding motion along 𝛴 ensues when

|

|

|

− 2𝑘
𝑚1

𝑥1 +
𝑘
𝑚1

𝑥3 +
𝑐
𝑚1

𝑥4 −
𝛼
𝑚1

𝑥31
|

|

|

< 𝛿. (20)

Inside the switching surface 𝛴, the first mass is in the state of sticking
and the second mass acts as a linear harmonic oscillator, i.e., we have

�̇� =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

0

𝑥4
𝑘
𝑚2

𝑥1 −
2𝑘
𝑚2

𝑥3 −
2𝑐
𝑚2

𝑥4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐱 ∈ 𝛴. (21)

The conditions for repulsive sliding mode are

⎧

⎪

⎨

⎪

⎩

− 2𝑘
𝑚1

𝑥1 +
𝑘
𝑚1

𝑥3 +
𝑐
𝑚1

𝑥4 −
𝛼
𝑚1

𝑥31 > 𝛿,

− 2𝑘
𝑚1

𝑥1 +
𝑘
𝑚1

𝑥3 +
𝑐
𝑚1

𝑥4 −
𝛼
𝑚1

𝑥31 < −𝛿,
(22)

which cannot be satisfied for any 𝐱 ∈ 𝛴. As a consequence, the Shaw-
Pierre system with friction exhibits either crossing or attracting sliding
(or sticking) behavior.

We will simulate the behavior of the system with the parameter
values used by Shaw and Pierre [8] and Haller and Ponsioen [7],

𝑚1 = 𝑚2 = 1, 𝑐 = 0.3, 𝑘 = 1, 𝛼 = 0.5,

and will consider a range of 𝛿 values in our analysis.

Analysis of the linearized system. The two different dynamical systems
defined in (18) have their own fixed points and smooth SSMs anchored
at them. The fixed points are defined by

𝐱±0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑞±0
0

1
2 𝑞

±
0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

± 3
√

√

2
3
√

√

2

(23)
𝑞0 = ± −𝛿 + 𝛿 + 1 ∓ 𝛿 + 𝛿 + 1.
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We shift coordinates so that the origin in the two cases coincides with
𝐱±0 , respectively:

𝝃± = 𝐱 − 𝐱±0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑞1 − 𝑞±0
�̇�1

𝑞2 −
1
2 𝑞

±
0

�̇�2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (24)

In these coordinates, system (18) becomes

�̇�± = �̃�0𝝃± + 𝐟 𝐈𝐈𝐧𝐥 (𝝃
±) + 𝐟 𝐈𝐈𝐈𝐧𝐥 (𝝃

±) + 𝐟0, (25)

with

�̃�0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0

−2 − 3
2 (𝑞

±
0 )

2 −0.3 1 0.3

0 0 0 1

1 0.3 −2 −0.6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐟 𝐈𝐈𝐧𝐥 (𝝃
±) =

(

0,− 3
2 𝑞

±
0
(

𝜉±1
)2 , 0, 0

)T
,

𝐟 𝐈𝐈𝐈𝐧𝐥 (𝝃
±) =

(

0,− 1
2

(

𝜉±1
)3 , 0, 0

)T
,

𝐟0 =
(

0,− 3
2 𝑞

±
0 − 1

2 (𝑞
±
0 )

3 ∓ 𝛿, 0, 0
)T

.

(26)

The matrix �̃�0 is unaffected by the sign choice in 𝑞±0 , therefore both
cases have the same spectral properties and hence the same spectral
subspaces.

The eigenvalues of �̃�0 for 𝛿 = 10−1 are

𝜆1,2 = −0.0741 ± 𝑖 1.0027,
𝜆3,4 = −0.3759 ± 𝑖 1.6812,

whose eigenvectors give rise to two two-dimensional real invariant
subspaces, 𝐸1 and 𝐸2.

3.1. Computation of SSMs

According to the definition given in Appendix A.2, the relative
spectral quotients of 𝐸1 and 𝐸2 are

𝜎(𝐸1) = Int
[ Re 𝜆3,4

Re 𝜆1,2

]

= 5. (27)

Changing the friction coefficient 𝛿 has a mild effect on the eigenvalues
and hence the spectral quotients will not change for the range of fric-
tion coefficients studied here. Considerations about the existence and
uniqueness of the SSMs in the positive and negative cases are exactly
the same, as they share the same linearized dynamics, even though
they are anchored at different points. The nonlinear contribution of the
spring 𝐟𝐧𝐥 is an autonomous term that is analytic on the whole phase
space.

Based on these facts, the results in Haller and Ponsioen [7] guar-
antee the existence and uniqueness of the slow two-dimensional SSM,
1(0), because the required nonresonance conditions among the eigen-
values are satisfied up to order 𝜎(𝐸1) (see Haller and Ponsioen [7] for
details). Therefore, we can state that the analytic SSM 1(0) exists
and it is unique among all 6 invariant manifolds tangent to 𝐸1 at the
origin. We introduce coordinates aligned with 𝐸1 and 𝐸2 by letting

𝝃± = 𝐕𝜼±, (28)

where

𝜼± = (𝐲±, 𝐳±) ∈ 𝐸1 × 𝐸2,

and 𝐕 is the matrix whose columns are the eigenvectors of 𝐀0. The
reduced coordinates 𝐲± act as the master variables over which we seek
the slow SSM as a graph.

We report the analytical computation of the SSM in Appendix A.3.
5

Fig. 4. The two half primary SSMs + and −, separated by the switching surface
𝛴, for 𝛿 = 10−1. The blue and the red lines are the intersection of the primary SSMs
±

𝛿 defined in the whole state space with the switching surface. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

3.2. Combination of SSMs and the switching surface

We now restrict the SSMs constructed at 𝐱±0 to their region of
validity imposed by condition (17). The resulting restricted SSMs are
separated by the switching surface 𝛴, as seen in Fig. 4.

As the two pieces of primary SSMs form an attracting set for the
full system, the dynamics restricted to them provides a reduced-order
model for nearby initial conditions. We now describe how we connect
the dynamics across the different SSM pieces when a trajectory hits
the switching surface and satisfies the crossing condition (19). In this
scenario, coming from one SSM, we need a new initial condition lying
on the other one. By Fig. 5, the intersection between the incoming tra-
jectory and the switching surface (blue dot in Fig. 5(a)) is associated to
a set of both reduced 𝐲± =

(

𝑦±1 , 𝑦
±
2
)T and observable 𝐱 =

(

𝑞1, �̇�1, 𝑞2, �̇�2
)T

coordinates. We then exploit the relationship between the two sets of
reduced coordinates for the two SSMs to find the new initial condition
(red dot in Fig. 5(a)) as
(

𝑦−1
𝑦−2

)

=
(

𝑦+1
𝑦+2

)

+ 𝐕−1
12 (𝐱

+
0 − 𝐱−0 ), (29)

where the rectangular matrix 𝐕−1
12 contains the first two rows of 𝐕−1.

Formula (29) defines the new initial condition on − as the projection
of the final point on + onto −. In other words, we are assuming that
the fast dynamics dominates the slow dynamics across the switching
surface and along a linear approximation of the stable fiber of −,
to which the blue point belongs. As a result, the new initial condition
defines a trajectory on the manifold that approximates the one to which
the trajectory of the full dynamics converges the fastest.

Coming from +, the new initial condition (𝑦−1 , 𝑦
−
2 ) on − accord-

ing to Eq. (29) does not lie in the intersection between the −
𝛿 and the

switching surface (orange line). As a consequence, all physical variables
experience a discontinuity while crossing from one SSM to the other.
Discontinuities in the solution are unavoidable, but one can investigate
further strategies in order to enforce physical consistency for specific
variables, as seen in Fig. 5.

Studying the reduced dynamics according to these various choices
in a time frame when only crossing occurs, we observe that the initial
condition defined by (29) tracks the full solution most accurately (see
Appendix A.3.2). Therefore, we will use this matching scheme for initial
conditions in the following.

If the sliding condition (8) is satisfied for the reduced dynamics
across the switching surface, then sliding occurs instead of crossing.
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Fig. 5. Different strategies for the computation of the new initial condition of the
reduced dynamics across the switching surface 𝛴. The orange lines represent the
intersection of the SSMs with 𝛴. When a trajectory on one SSM (blue line) hits the
switching surface, the projection of the intersection point onto the new SSM according
to Eq. (29) (red dot) represents a new initial condition. Alternatively, we can enforce
that the new initial condition lies on the switching surface, minimizing the difference
of all physical variables across the jump (green dot) or ensuring the continuity of 𝑞1
(purple dot). If we require that both 𝑞1 and 𝑞2 are continuous (light blue dot), then
the new initial condition lands far from the switching surface. The black line in (b)
depicts the set of points on the manifold − with the same value of 𝑞1 as the final
point of the blue trajectory on +. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

In such a case, the convex Filippov inclusion provides us with a closed
form for the dynamics within the switching surface (6), as explained in
Section 2.1 and detailed in Appendix A.1. In this context, the 𝐟+ and
𝐟− present in Eqs. (6) and (8) denote the reduced dynamics on + and
−.

3.3. Poincaré map and invariant set

We now seek an actual attractor (i.e., a closed invariant set with
an open domain of attraction) near the locally invariant, attracting set
+ ∪−. More specifically, we seek the intersection of this attractor
with the switching surface 𝛴. To this end, we consider a set of initial
conditions around the intersection of ±

𝛿 with 𝛴 in the (𝑞1, 𝑞2, �̇�2) space
and let them evolve until the sticking regime is reached. Recording
the crossing of trajectories through 𝛴 defines a Poincaré map, which
reveals an invariant curve 𝛤 with a discontinuity close to the origin
(green straight piecewise continuous line in Fig. 6). The two segments
of this invariant curve lie in proximity to the intersection of ±

𝛿 with
𝛴 (blue and red lines) on either side of the origin. The points at the
discontinuity of 𝛤 are denoted as 𝑥±𝑒𝑑𝑔𝑒. The preimages of 𝑥±𝑒𝑑𝑔𝑒 under
the Poincaré map correspond to the intersections of 𝛤 with the surfaces
that defines the sticking conditions (𝑥±𝑝𝑟𝑒 in Fig. 6(a)). In particular,
these points define the edge states for which crossing is still possible.
In these states, the sum of forces from springs and dampers is almost
6

equal to the static friction force, but sufficient to induce crossing. The
invariant curve 𝛤 and 𝑥±𝑒𝑑𝑔𝑒 have been computed integrating the full
model, but they can be directly approximated from the reduced-order
model (see Appendix A.3.3).

3.4. Non-autonomous problem

Under small periodic external force applied to both masses, system
(1) becomes
(

𝑚1 0

0 𝑚2

)(

𝑞1
𝑞2

)

+

(

𝑐 −𝑐

−𝑐 2𝑐

)(

�̇�1
�̇�2

)

+

(

2𝑘 −𝑘

−𝑘 2𝑘

)(

𝑞1
𝑞2

)

+

(

−𝛼𝑞31
0

)

±

(

𝛿𝑚1

0

)

= 𝜖 1
√

2

(

1

1

)

cos𝛺𝑡,

(30)

where 0 ≤ 𝜖 << 1. In terms of the coordinates introduced in Eq. (24)
and the quantities defined in Eq. (26), we have

�̇�± = �̃�0𝝃± ± 𝐟 𝐈𝐈𝐧𝐥 (𝝃
±) + 𝐟 𝐈𝐈𝐈𝐧𝐥 (𝝃

±) + 𝐟0 + 𝜖 𝐟𝜖(𝛺𝑡), (31)

with

𝐟𝜖 =
1
√

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
1
𝑚1

0
1
𝑚2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

cos𝛺𝑡 = 𝐟0 cos𝛺𝑡.

To obtain an approximation for the time-dependent SSMs on the two
sides of the switching surface, we again rely on a cubic Taylor expan-
sion, but with the addition of a 2𝜋∕𝛺-periodic time-dependent term
(the details are reported in Appendix A.3.4).

We now compare the SSM-reduced model with the full-order one
in terms of forced response curves computed for different forcing
amplitudes |𝐟0| and friction coefficients 𝛿. For each case, we compute
the response of the full system using the numerical continuation soft-
ware COCO of Dankowicz and Schilder [36] for a range of forcing
frequencies. In contrast, results of the reduced model come from the
direct integration of the reduced dynamics.

Fig. 7 shows highly accurate predictions for forced responses for the
smallest value of the forcing amplitude 𝜖, even for large values of 𝛿.
Generally, the prediction error grows for larger forcing amplitudes. This
behavior arises from higher amplitude responses, if we maintain the
same order of approximation for the SSM (in this case cubic). Indeed,
as detailed in Appendix A.3.1, the invariance error grows with the
response amplitude.

Consequently, the observed discrepancy between the full- and
reduced-order model at high values of 𝜖 (shown in the subplots 7(a),
7(b) and 7(c)) can be reduced by just increasing the order of approxima-
tion of the SSM. In contrast, for larger 𝛿 values (see sub Fig. 7(d)), the
amplitude response remains low enough for the reduced-order model
based on cubic order SSM approximation to be sufficiently accurate,
even for higher forcing amplitudes.

4. Data-driven model reduction of a piecewise smooth beam
model

We now apply our nonsmooth SSM-reduction procedure in a data-
driven setting. We consider a finite-element model of a von Kármán
beam with clamped-clamped boundary conditions. Each finite element
has three degrees of freedom: axial deformation, transverse displace-
ment and transverse rotation. The beam is approximated by four ele-
ments with uniform grid, resulting in a total of 9 degrees of freedom,
i.e., in an 18-dimensional phase space. The finite-element discretization
is carried out using elements featuring cubic shape functions for the
transverse deflection and linear shape functions for the axial displace-
ment (Jain et al. [17]). The material is aluminium, with Young modulus

3
𝐸 = 70GPa, density 𝜌 = 2700Kg/m , Poisson ratio 𝜈 = 0.3 and material
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Fig. 6. The invariant curve 𝛤 (in green) of the Poincaré map for the Shaw-Pierre model with friction presents a discontinuity close to the origin. The gray surfaces delimit the
region where the sticking regime can occur if �̇�1 = 0 and contain the two fixed points 𝑥±0 . (a): 𝑥±𝑒𝑑𝑔𝑒 are the iterates of the edge configurations for which crossing is possible (𝑥±𝑝𝑟𝑒),
before entering the sticking regime, according to the full-order model. (b): an approximation of the invariant curve 𝛤 is derived as a portion of the blue and red lines, namely the
intersection of the positive and negative SSMs with the switching surface, where �̃�±𝑒𝑑𝑔𝑒 are the iterates of �̃�±𝑝𝑟𝑒. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 7. Forced response curves for the forced Shaw-Pierre example with friction, obtained for different values of the friction coefficient 𝛿. For each case, the amplitudes of the
forcing (𝜖 in Eq. (30)) are 0.15, 0.2 and 0.25. The black curves represent the solution of the full-order model; the red dashed curves indicate the forced response without friction;
the set of green dots represents the reduced-order model approximation.
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Fig. 8. (a) Geometry of the clamped-clamped von Kármán beam. In each of the cases shown in the subplots (b), (c), (d), the non-smoothness is localized at the midpoint section
A-A, where 𝑞𝑚𝑖𝑑 represents the vertical displacement of the beam in that section. (b): Coulomb friction, (c) soft impact, (d) friction on moving ground.
damping modulus 𝑘 = 1 × 106 Pa s. We set the length 1 [m], the width
5 [cm] and the thickness 2 [cm].

We consider three different cases of non-smoothness introduced at
the middle of the beam (section A-A of Fig. 8(a)), with the parameter
𝛿 playing a different role in each case.

1. Coulomb friction: Dry friction is present in the vertical motion
of the beam, in its middle section, as seen in Fig. 8(b). The
resulting switching function reads

𝜎(𝐱) = �̇�𝑚𝑖𝑑 , (32)

and the switching surface

𝛴± =
{

𝐱 ∈ R𝑁 ∶ sign(𝜎(𝐱)) = ±1
}

, (33)

with 𝑁 denoting the phase space dimension of the discretized
beam model. Once discretization has been performed, the equa-
tions read

𝑀 �̈� + 𝐶�̇� +𝐾𝐪 + 𝐟𝑛𝑙(𝐪, �̇�) = 𝐟±𝛿 , (34)

where

𝐟±𝛿 = (0 ⋅ ⋅ ⋅ 0, ∓𝛿, 0 ⋅ ⋅ ⋅ 0)𝑇 . (35)

In Eq. (35), the forcing acts only on the element located at the
midpoint. The behavior within the switching surface is qualita-
tively the same as in the Shaw-Pierre example of Section 3, in
that both crossing and attractive sliding (sticking) regimes are
possible. We define a normalized non-smooth coefficient 𝛿 by
dividing 𝛿 by the maximal elastic force at the midpoint.

2. Soft impact: The section A-A of the beam collides with a spring
when the vertical displacement is negative. The switching func-
tion now is

𝜎(𝐱) = 𝑞𝑚𝑖𝑑 . (36)

Formally, Eq. (34) is still valid, but

𝐟+𝛿 = 𝟎, and 𝐟−𝛿 = (0 ⋅ ⋅ ⋅ 0, −𝛿𝑥𝑚𝑖𝑑 , 0 ⋅ ⋅ ⋅ 0)𝑇 . (37)

The behavior of the system is asymmetric with respect to the
𝑞𝑚𝑖𝑑 = 0 position, due to the presence of the further stiffness on
8

one side, as seen in Fig. 9.
According to conditions (7) and (8), only crossing between the
regions 𝛴+ and 𝛴− is admissible, while sticking is not allowed.
In this case, the coefficient 𝛿 represents the increased stiffness
acting on the midpoint of the beam for 𝑞𝑚𝑖𝑑 < 0 and it is naturally
normalized by the linear stiffness of the beam.

3. Friction on moving ground: Assume that the midpoint of
the beam rides on a belt moving with constant velocity 𝑣𝑔𝑟𝑜𝑢𝑛𝑑
(Fig. 8(d)) and dry friction is present between the beam and the
belt. The piecewise smooth forcing term is then given by

𝐟±𝛿 = (0 ⋅ ⋅ ⋅ 0, 𝛿𝑓𝑛𝑠, 0 ⋅ ⋅ ⋅ 0)T, (38)

where
𝑓𝑛𝑠(�̇�𝑚𝑖𝑑 ) = −sign (�̇�1 − 𝑣𝑔𝑟𝑜𝑢𝑛𝑑 )

×
(

1 + 𝛼
𝑒

exp
( 𝛽 − |�̇�𝑚𝑖𝑑 − 𝑣𝑔𝑟𝑜𝑢𝑛𝑑 |

𝛽

))

,
(39)

as shown in Fig. 10. This friction model, similar to that used
in Leine and Nijmeijer [35], takes into account that the value of
the static friction to be overpowered in order to trigger a relative
motion is higher than the kinetic friction force when the relative
motion is different from zero. The switching function in this case
is

𝜎(𝐱) = �̇�𝑚𝑖𝑑 − 𝑣𝑔𝑟𝑜𝑢𝑛𝑑 , (40)

which splits the phase space according to the relative motion
between the beam element at the midpoint and the moving
belt. Interestingly, the difference between static and dynamic
friction forces causes the fixed points of the positive and negative
systems to be unstable under certain parameter values, trigger-
ing a limit cycle. Also in this case both crossing and sticking
are allowed: the presence of sticking to the switching surface
represents indeed a crucial factor in sustaining the limit cycle.

The data-driven procedure for the computation of the reduced order
model is similar for all three piecewise-smooth systems. We constructed
two different slow SSMs in each case, one for each region 𝛴+ and 𝛴−.
Within each of these regions, the beam equations are analytic and hence
the SSMs are approximated by a convergent Taylor expansion near the
respective equilibrium points. We generate decaying trajectories which
serve as training data, under 𝐟+ and 𝐟−, separately. The initial condition
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Fig. 9. Decaying trajectory of the von-Kármán beam with soft-impact located at the
midpoint. The orange line refers to the switching between the two sub-regions. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 10. Friction law dependent on the relative velocity between the midpoint of the
von Kármán beam and the moving belt. In contrast to the Coulomb friction model,
here the static friction force is different from the dynamic one.

is a deformed configuration caused by transverse static loading of 12
kN at the midpoint.

We seek a two-dimensional SSM, approximated by a 5th-order
expansion and a 5th-order approximation of the reduced dynamics.
According to Whitney’s embedding theorem [37], the minimal em-
bedding dimension for a two-dimensional SSM is 𝑝 = 5, which is
satisfied for our specific case, as we observe the full system. The error
of the reconstructed SSM-based reduced model is quantified by the
normalized mean-trajectory error (NMTE, see Cenedese et al. [21]) for
each region 𝛴+ and 𝛴−. For a data set of 𝑃 instances of observable
points 𝐲𝑗 ∈ R𝑝 and their reconstruction �̂�𝑗 :

NMTE = 1
‖𝐲‖

1
𝑃

𝑃
∑

𝑗=1
‖𝐲𝑗 − �̂�𝑗‖, (41)

where 𝐲 is a relevant normalization vector. Finally, we combine the
two SSM-based reduced models according to their individual ranges
of validity dictated by the switching function. We then employ the
model trained on decaying trajectories to predict unforced trajectories
(see Fig. 11) and force response. Based on the arguments of Cenedese
et al. [21], moderate forcing terms can simply be added to the reduced
model constructed from unforced data. Here, we consider a transversal
periodic forcing applied to the midpoint. As seen in Fig. 12 for the
9

Fig. 11. Model-testing trajectories of the unforced von Kármán beam with different
kinds of non-smoothness, and their reconstructions from an unforced, nonsmooth, SSM-
based model. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Coulomb friction and soft impact cases, the piecewise-smooth reduced
order model closely tracks the response for a range of frequencies
around the first mode of the system, even when the effect of the
non-smoothness factor 𝛿 is not negligible. Increasing 𝛿 intensifies the
dissipation in the system, entailing a lower amplitude of the response.
In the soft impact case, 𝛿 strengthens the stiffness in some operating
region, which leads to an overall shift of the resonance toward higher
frequencies.

Modeling the sticking regime is delicate, as the constraints confining
the trajectory within the switching surface must be enforced. This be-
comes especially relevant when the dynamics enter and exit the sticking
regime multiple times, as in the case of the limit cycle that characterizes
the beam with friction on moving ground, for a range of parameters.
Since the condition for the sticking regime to occur is expressed in
terms of physical variables, choosing the physical coordinates (vertical
displacement and velocity at the midpoint) as the reduced variables
for the SSM parametrization is advantageous. This is not the standard
choice, as we usually employ a pair of coordinates spanning the slowest
spectral subspace in order to describe a two-dimensional SSM. More
details are given in the Appendix B. Let us consider a configuration
of parameters wherein the limit cycle is triggered for the autonomous
system already: adding forcing in this case generates an invariant
periodic or quasiperiodic torus. The behavior of the response depends
on the relationship between the frequency of the limit cycle of the
autonomous system (𝑓𝐿𝐶 ) and that of the forcing term (𝑓𝐹 ). In Fig. 13
we report the case for 𝑓𝐹 ∕𝑓𝐿𝐶 = 1.125, where the reduced order model
(in green) is able to accurately capture the multi-frequency periodic
solution of the full order system (in black).

5. Conclusions

We have presented an SSM-based model reduction procedure appli-
cable to nonlinear, piecewise smooth dynamical systems. More specifi-
cally, we apply the classic SSM theory separately to different regions
of the phase space where the system is smooth. Proper matching
conditions are then enforced as crossing between those regions occurs.

The method proposed here accurately captured the piecewise
smooth dynamics in both equation- and data-driven examples. The
equation-driven examples included forced and unforced versions of a
2-DOF nonlinear oscillator with Coulomb friction. In this case, the SSMs
involved were computed analytically.

The data-driven examples included forced and unforced von Kár-
mán beam models with different types of piecewise smooth elements
at their midpoints. In this case, the SSMs involved were calculated
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Fig. 12. Response curves for the von Kármán beam forced periodically at the midpoint
with Coulomb friction (a) and soft impact (b) with the same forcing level (35 kN). In
both cases, the effect of non-smoothness is evident. The smooth case (𝛿 = 0) and full
model cases are computed via the continuation software COCO [36], while the response
of the reduced model is retrieved by numerical integration.

using an extended version of the SSMLearn algorithm. Not only did
the piecewise-smooth reduced order model correctly capture single
trajectories for all these different sources of non-smoothness, but it
also accurately predicted the forced response. When the sticking regime
played a crucial role in the system dynamics (a limit cycle existed
for the beam with friction on moving ground), we proposed a specific
parametrization of the SSMs based on physical coordinates. We did this
to automatically verify the sticking conditions, as they are expressed in
those coordinates.

In the present work, we assumed that the phase space is split
in two regions, where the system is smooth. We then applied SSM
reduction procedure with only one switching surface. In principle, the
same procedure can be generalized to multiple switching surfaces, but
it would require a careful choice of the reduced physical coordinates
for the parametrization of SSMs. Indeed, if one wants to correctly track
the sticking regime to different switching surfaces, different relevant
physical coordinates might be needed. A further limitation of our
10
Fig. 13. Periodic orbit lying on a torus generated by external forcing (50𝑁 , 𝑓𝐹 ∕𝑓𝐿𝐶 =
1.125) applied to a von Kármán beam with friction on a moving ground, with unstable
slowest eigenvalues. Fig. (b) shows the temporal history of the red dots in Fig. (a). Figs.
(c) and (d) compare the reduced-order model (in green) with the full order one (in
black). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

method is the assumed smallness of the normalized non-smoothness
parameter, for which the two equilibria, and hence their respective
SSMs, lie close to each other.

Possible future work could investigate a more invasive effect of non-
smooth elements to the system dynamics. In such a case, the condition
relating points across a switching surface we have presented might not
be able to furnish a proper initial condition in order for the reduced
trajectory to synchronize with the solution of the full system. A new
strategy taking into account the dynamics normal to the SSMs may then
be required.
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𝐱

𝜆

Table A.1
Coefficients of the graph-style parametrization for the positive case.

(2,0) (1,1) (0,2) (3,0) (2,1) (1,2) (0,3)

ℎ+
1 8.2 10−3 −2.4 10−2 −7.3 10−3 2.7 10−2 −1.5 10−3 2.3 10−3 −1 10−3

ℎ+
2 1.5 10−2 1.7 10−2 −2.8 10−3 3.4 10−3 4.6 10−2 7.2 10−3 3.2 10−2

Table A.2
Coefficients of the graph-style parametrization for the negative case.

(2,0) (1,1) (0,2) (3,0) (2,1) (1,2) (0,3)

ℎ+
1 −8.2 10−3 2.4 10−2 7.3 10−3 2.7 10−2 −1.5 10−3 2.3 10−3 −1 10−3

ℎ+
2 −1.5 10−2 −1.7 10−2 2.8 10−3 3.4 10−3 4.6 10−2 7.2 10−3 3.2 10−2

Appendix A. Piecewise smooth systems

A.1. Filippov’s closure for piecewise-smooth systems

In order to extend the validity of the governing Eqs. (4) to the
switching surface 𝛴, we define an extended system, according to the
ilippov’s convex inclusion method

̇ ∈ 𝐅(𝐱) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐟+(𝐱), 𝐱 ∈ 𝛴+

co
{

𝐟−(𝐱), 𝐟+(𝐱)
}

𝐱 ∈ 𝛴

𝐟−(𝐱), 𝐱 ∈ 𝛴−,

(A.1)

where

co {𝐟−, 𝐟+} =
{1 + 𝜆

2
𝐟+ + 1 − 𝜆

2
𝐟− , 𝜆 ∈ [−1, 1]

}

. (A.2)

Filippov’s inclusion allows us to derive a model for the dynamics within
the switching surface 𝛴. Indeed, exploiting the invariance relationship
�̇�(𝐱) = 0 = ∇𝜎 ⋅ �̇� = 0, we obtain

𝛴 =
(𝐟− + 𝐟+) ⋅ ∇𝜎
(𝐟− − 𝐟+) ⋅ ∇𝜎

, (A.3)

and hence Eq. (6).

A.2. Model reduction strategy

We recall some fundamental concepts about primary smooth SSMs
and their relevance for model reduction (Haller and Ponsioen [7]).
Restricting ourselves to a single region in which governing equations
are smooth, we write

�̇� = 𝐟 (𝐱,Ω𝑡; 𝜖) = 𝐀𝐱 + 𝐟0 + 𝜖𝐟1(𝐱,Ω𝑡),

𝐟0(𝐱) = (|𝐱|2), 0 ≤ 𝜖 ≪ 1,
(A.4)

where 𝐀 ∈ R𝑛 is the constant matrix of the linear part, 𝐟0 ∶ R𝑛 → R𝑛

and 𝐟1 ∶ R𝑛×T𝑙 → R𝑛, where T𝑙 = 𝑆1×⋯×𝑆𝑙 is the l-dimensional torus
and with 𝐟0, 𝐟1 being class 𝑟 functions. The degree of smoothness of
the right-hand side is 𝑟 ∈ N+∪{∞, 𝑎}, where 𝑎 refers to analyticity. The
eigenvalues 𝜆𝑗 = 𝛼𝑗 + 𝑖𝜔𝑗 ∈ C of 𝐀 are counted with their multiplicities
and addressed in descending order according to their real part

Re𝜆𝑛 ≤ Re𝜆𝑛−1 ≤ ... ≤ Re𝜆1 < 0. (A.5)

The real and imaginary parts of the eigenvectors or generalized eigen-
vectors of 𝐀 relative to the 𝑗th eigenvalue gives rise to the 𝑗th real
modal subspace 𝐸𝑗 ⊂ R𝑛. The direct sum of modal subspaces defines a
spectral subspace

𝐸𝑗1 ,…,𝑗𝑞 = 𝐸𝑗1 ⊕𝐸𝑗2 ⊕⋯⊕𝐸𝑗𝑞 . (A.6)

If we further assume that Re𝜆𝑗 < 0 ∀𝑗, projecting the linearized system
onto the nested hierarchy of slow spectral subspaces

1 2 𝑘
11

𝐸 ⊂ 𝐸 ⊂ ..., 𝐸 ∶= 𝐸1,…,𝑘 for 𝑘 = 1,… , 𝑛 (A.7)
defines a strategy for reducing the order of the linearized dynamics with
increasing accuracy as 𝑘 is increased (Galerkin projection method). We
want now to study the existence of a nonlinear continuation of such a
spectral subspace, in order to be able to reduce the order of the model,
but in the presence of nonlinear and also time-dependent terms. In
particular, let us fix a specific spectral subspace 𝐸 = 𝐸𝑗1 ,…,𝑗𝑞 . If the
non-resonance condition

⟨𝑚,Re𝜆⟩𝐸 ≠ Re𝜆𝑙 , 𝜆𝑙 ∉ Spect(𝐴|𝐸 ), 2 ≤ |𝑚| ≤ 𝛴(𝐸) (A.8)

holds, then infinitely many nonlinear continuations of 𝐸 exist, for 𝜖
small enough (Haller et al. [14]). Here |𝑚| ∶=

∑𝑞
𝑗=1 𝑚𝑗 . In (A.8), 𝛴(𝐸)

is the absolute spectral quotient defined as

𝛴(𝐸) = Int
⎡

⎢

⎢

⎣

min
𝜆∈Spect(𝐴)−Spect(𝐴|𝐸 )

Re𝜆

max
𝜆∈Spect(𝐴|𝐸 )

Re𝜆

⎤

⎥

⎥

⎦

. (A.9)

Among all 𝛴(𝐸)+1 invariant manifolds there is a unique smoothest one,
the primary SSM (𝐸), which can therefore be approximated more
accurately than the other infinitely many nonlinear continuations of 𝐸.
In the case of autonomous systems (𝜖 = 0), the non-resonance condition
can be relaxed to

⟨𝑚, 𝜆⟩𝐸 ≠ 𝜆𝑙 , 𝜆𝑙 ∉ Spect(𝐴|𝐸 ), 2 ≤ |𝑚| ≤ 𝜎(𝐸), (A.10)

where 𝜎(𝐸) is the relative spectral quotient, defined as

𝜎(𝐸) = Int
⎡

⎢

⎢

⎣

min
𝜆∈Spect(𝐴)

Re𝜆

max
𝜆∈Spect(𝐴|𝐸 )

Re𝜆

⎤

⎥

⎥

⎦

. (A.11)

A.3. Equation-driven model reduction for the Shaw-Pierre model

Once we obtain the governing equations of the system centered
at the two fixed points 𝐱±0 (Eq. (25)), we perform a linear change of
coordinates,

𝝃± = 𝐕𝜼±, (A.12)

where

𝜼± = (𝐲±, 𝐳±) ∈ 𝐸1 × 𝐸2

and 𝐕 is the matrix composed of the eigenvectors of 𝐀0 as columns.
For ease of notation, the superscript ± is dropped in the following
equations. The equations of motion now read

�̇� = 𝐀𝐲𝐲 +
(

𝐫 𝐟 𝐈𝐈𝐈𝐧𝐥
)

𝐲 ±
(

𝐫 𝐟 𝐈𝐈𝐧𝐥
)

𝐲 =
(

−0.0789 1.0342
−1.0342 −0.0789

)

𝐲

+
(

0.9968
−0.0761

)

𝑞𝐼𝐼𝐼 (𝜼) ±
(

0.9968
−0.0761

)

𝑞𝐼𝐼 (𝜼)
(A.13)

and

�̇� = 𝐀𝑧𝐳 +
(

𝐫 𝐟 𝐈𝐈𝐈𝐧𝐥
)

𝐳 ±
(

𝐫 𝐟 𝐈𝐈𝐧𝐥
)

𝐳 =
(

−0.3711 1.6987
−1.6987 −0.3711

)

𝐳

+
(

−0.8278
0.1808

)

𝑞𝐼𝐼𝐼 (𝜼) ±
(

−0.8278
0.1808

)

𝑞𝐼𝐼 (𝜼),
(A.14)

where

𝑞𝐼𝐼𝐼 (𝜼) = −1
2
(0.1645𝑧1 + 0.3070𝑧2 + 0.0441𝑦1 − 0.4828𝑦2)3

and

𝑞𝐼𝐼 (𝜼) = 3
2
𝑞0(0.1645𝑧1 + 0.3070𝑧2 + 0.0441𝑦1 − 0.4828𝑦2)2.

For each case, we seek a cubic Taylor expansion as an approximation
of the slow primary SSM anchored at 𝝃± = 0 in the form

𝐳 =
3
∑

𝐡𝐩𝐲𝐩, 𝐩 = (𝑝1, 𝑝2) ∈ N2, (A.15)

|𝐩|=2
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Table A.3
Coefficients of the reduced dynamics for the positive case.

(1,0) (0,1) (2,0) (1,2) (0,2) (3,0) (2,1) (1,2) (0,3)

𝑟+1 −0.074 1.004 1.4 10−4 3.8 10−3 2.6 10−2 −1.8 10−5 4.5 10−4 1.4 10−2 6.5 10−2

𝑟+2 −1.004 −0.074 −3.0 10−5 −8.1 10−4 −5.5 10−3 3.9 10−6 −9.7 10−5 −3.1 10−3 −1.4 10−2
Table A.4
Coefficients of the reduced dynamics for the negative case.

(1,0) (0,1) (2,0) (1,2) (0,2) (3,0) (2,1) (1,2) (0,3)

𝑟+1 −0.074 1.004 −1.4 10−4 −3.8 10−3 −2.6 10−2 −1.8 10−5 4.5 10−4 1.4 10−2 6.5 10−2

𝑟+2 −1.004 −0.074 3.0 10−5 8.1 10−4 5.5 10−3 3.9 10−6 −9.7 10−5 −3.1 10−3 −1.4 10−2
where

𝐲𝐩 = 𝑦𝑝11 𝑦𝑝22 , 𝐡𝐩 =
(

ℎ1,𝐩
ℎ2,𝐩

)

∈ R2.

The expanded formula is reported in Eq. (A.16) below:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑧±1 = ℎ±,(2,0)1 𝑦21 + ℎ±,(1,1)1 𝑦1𝑦2 + ℎ±,(0,2)1 𝑦22
+ ℎ±,(3,0)1 𝑦31 + ℎ±,(2,1)1 𝑦21𝑦2 + ℎ±,(1,2)1 𝑦11𝑦

2
2

+ ℎ±,(0,3)1 𝑦32,

𝑧±2 = ℎ±,(2,0)2 𝑦21 + ℎ±,(1,1)2 𝑦2𝑦2 + ℎ±,(0,2)2 𝑦22
+ ℎ±,(3,0)2 𝑦31 + ℎ±,(2,1)2 𝑦21𝑦2 + ℎ±,(1,2)2 𝑦11𝑦

2
2

+ ℎ±,(0,3)2 𝑦32.

(A.16)

Also the reduced dynamics can be written in the form of a Taylor
expansion:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑟±1 = 𝑟±,(1,0)1 𝑦1 + 𝑟±,(0,1)1 𝑦2 + 𝑟±,(2,0)1 𝑦21 + 𝑟±,(1,1)1 𝑦1𝑦2
+ 𝑟±,(0,2)1 𝑦22 + 𝑟±,(3,0)1 𝑦31 + 𝑟±,(2,1)1 𝑦21𝑦2
+ 𝑟±,(1,2)1 𝑦11𝑦

2
2 + 𝑟±,(0,3)1 𝑦32

𝑟±2 = 𝑟±,(1,0)2 𝑦1 + 𝑟±,(0,1)2 𝑦2 + 𝑟±,(2,0)2 𝑦21 + 𝑟±,(1,1)2 𝑦2𝑦2
+ 𝑟±,(0,2)2 𝑦22 + 𝑟±,(3,0)2 𝑦31 + 𝑟±,(2,1)2 𝑦21𝑦2
+ 𝑟±,(1,2)2 𝑦11𝑦

2
2 + 𝑟±,(0,3)2 𝑦32.

(A.17)

The invariance equation on the primary SSM reads

𝐷𝑦𝐡(𝐲)𝐴𝑦 𝐲 +𝐷𝑦𝐡(𝐲) 𝐫𝑦
[

𝑞𝐼𝐼𝐼 (𝐲,𝐡(𝐲)) ± 𝑞𝐼𝐼 (𝐲,𝐡(𝐲))
]

= 𝐴𝑧 𝐡(𝐲) + 𝐫𝑧
[

𝑞𝐼𝐼𝐼 (𝐲,𝐡 (𝐲)) ± 𝑞𝐼𝐼 (𝐲,𝐡 (𝐲))
]

.
(A.18)

Equating powers of 𝐲 leads to a set of linear equations with the
parametrization coefficients as unknowns ((A.19) and (A.20)) that can
be solved as long as nonresonance conditions are satisfied. The values
of the coefficients in (A.16) and (A.17) are reported in Tables A.1, A.2,
A.3 and A.4, for 𝛿 = 0.1.

(2, 0) ∶ 𝐷𝑦𝐡(2)𝐴𝑦𝐲 = 𝐴𝑧𝐡(2) ± 𝐫𝑧𝑞𝐼𝐼,(2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝑎1
(

2Re(𝜆1) − Re(𝜆2)
)

− 𝑎2Im(𝜆1) − 𝑏1Im(𝜆2)

= ±3𝛼𝑞0𝑟𝑧,1𝑝23
𝑎2

(

2Re(𝜆1) − Re(𝜆2)
)

+ 2𝑎1Im(𝜆1) − 2𝑎3Im(𝜆1)

−𝑏2Im(𝜆2) = ±6𝛼𝑝3𝑝4𝑞0𝑟𝑧,1

𝑎3
(

2Re(𝜆1) − Re(𝜆2)
)

+ 𝑎2Im(𝜆1) − 𝑏3Im(𝜆2)

= ±3𝛼𝑞0𝑟𝑧,1𝑝24
𝑏1

(

2Re(𝜆1) − Re(𝜆2)
)

+ 𝑎1Im(𝜆2) − 𝑏2Im(𝜆1)

= ±3𝛼𝑞0𝑟𝑧,2𝑝23
𝑏2

(

2Re(𝜆1) − Re(𝜆2)
)

+ 𝑎2Im(𝜆2) + 2𝑏1Im(𝜆1)
−2𝑏3Im(𝜆1) = ±6𝛼𝑝3𝑝4𝑞0𝑟𝑧,2

𝑏3
(

2Re(𝜆1) − Re(𝜆2)
)

+ 𝑎3Im(𝜆2) + 𝑏2Im(𝜆1)
2

(A.19)
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⎩

= ±3𝛼𝑞0𝑟𝑧,2𝑝4
(3, 0) ∶ 𝐷𝑦𝐡(3)𝐴𝑦𝐲 ±𝐷𝑦𝐡(2)𝐫𝑦𝑞𝐼𝐼,(2) = 𝐴𝑧𝐡(3)

+ 𝐫𝑧
(

𝑞𝐼𝐼𝐼,(3) ± 𝑞𝐼𝐼,(3)
)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑎4
(

3Re(𝜆1) − Re(𝜆2)
)

∓ 𝑟𝑧,1(6𝛼𝑞0(𝑎1𝑝1 + 𝑏1𝑝2)𝑝3)

−𝑎5Im(𝜆1) − 𝑏4Im(𝜆2) ± 3𝛼𝑝23𝑞0(2𝑎1𝑟𝑦,1 + 𝑎2𝑟𝑦,2)

= −𝑟𝑧,1𝛼𝑝33
𝑎5

(

3Re(𝜆1) − Re(𝜆2)
)

+ 3𝑎4Im(𝜆1) − 2𝑎6Im(𝜆1)

−𝑏5Im(𝜆2) ∓ 𝑟𝑧,1(3𝛼𝑞0(2𝑝4(𝑎1𝑝1 + 𝑏1𝑝2)

+2𝑝3(𝑎2𝑝1 + 𝑏2𝑝2))) ± 3𝛼𝑝23𝑞0(𝑎2𝑟𝑦,1 + 2𝑎3𝑟𝑦,2)

±6𝛼𝑝3𝑝4𝑞0(2𝑎1𝑟𝑦,1 + 𝑎2𝑟𝑦,2) = −𝑟𝑧,13𝛼𝑝23𝑝4

𝑎6
(

3Re(𝜆1) − Re(𝜆2)
)

+ 2𝑎5Im(𝜆1) − 3𝑎7Im(𝜆1)

−𝑏6Im(𝜆2) ∓ 𝑟𝑧,1(3𝛼𝑞0(2𝑝4(𝑎2𝑝1 + 𝑏2𝑝2)
+2𝑝3(𝑎3𝑝1 + 𝑏3𝑝2))) ± 3𝛼𝑝24𝑞0(2𝑎1𝑟𝑦,1 + 𝑎2𝑟𝑦,2)

±6𝛼𝑝3𝑝4𝑞0(𝑎2𝑟𝑦,1 + 2𝑎3𝑟𝑦,2) = −𝑟𝑧,13𝛼𝑝3𝑝24
𝑎7

(

3Re(𝜆1) − Re(𝜆2)
)

∓ 𝑟𝑧,1(6𝛼𝑞0(𝑎3𝑝1 + 𝑏3𝑝2)𝑝4)

+𝑎6Im(𝜆1) − 𝑏7Im(𝜆2) ± 3𝛼𝑝24𝑞0(𝑎2𝑟𝑦,1 + 2𝑎3𝑟𝑦,2)

= −𝑟𝑧,1𝛼𝑝34
𝑏4

(

3Re(𝜆1) − Re(𝜆2)
)

∓ 𝑟𝑧,2(6𝛼𝑞0(𝑎1𝑝1 + 𝑏1𝑝2)𝑝3)

+𝑎4Im(𝜆2) − 𝑏5Im(𝜆1) ± 3𝛼𝑝23𝑞0(2𝑏1𝑟𝑦,1 + 𝑏2𝑟𝑦,2)

= −𝑟𝑧,2𝛼𝑝33
𝑏5

(

3Re(𝜆1) − Re(𝜆2)
)

+ 𝑎5Im(𝜆2) + 3𝑏4Im(𝜆1)

−2𝑏6Im(𝜆1) ∓ 𝑟𝑧,2(3𝛼𝑞0(2𝑝4(𝑎1𝑝1 + 𝑏1𝑝2)
+2𝑝3(𝑎2𝑝1 + 𝑏2𝑝2))) ± 3𝛼𝑝23𝑞0(𝑏2𝑟𝑦,1 + 2𝑏3𝑟𝑦,2)

±6𝛼𝑝3𝑝4𝑞0(2𝑏1𝑟𝑦,1 + 𝑏2𝑟𝑦,2) = −𝑟𝑧,23𝛼𝑝23𝑝4

𝑏6
(

3Re(𝜆1) − Re(𝜆2)
)

+ 𝑎6Im(𝜆2) + 2𝑏5Im(𝜆1)

−3𝑏7Im(𝜆1) ∓ 𝑟𝑧,2(3𝛼𝑞0(2𝑝4(𝑎2𝑝1 + 𝑏2𝑝2)

+2𝑝3(𝑎3𝑝1 + 𝑏3𝑝2))) ± 3𝛼𝑝24𝑞0(2𝑏1𝑟𝑦,1 + 𝑏2𝑟𝑦,2)

±6𝛼𝑝3𝑝4𝑞0(𝑏2𝑟𝑦,1 + 2𝑏3𝑟𝑦,2) = −𝑟𝑧,23𝛼𝑝3𝑝24
𝑏7

(

3Re(𝜆1) − Re(𝜆2)
)

∓ 𝑟𝑧,2(6𝛼𝑞0(𝑎3𝑝1 + 𝑏3𝑝2)𝑝4)

+𝑎7Im(𝜆2) + 𝑏6Im(𝜆1) ± 3𝛼𝑝24𝑞0(𝑏2𝑟𝑦,1 + 2𝑏3𝑟𝑦,2)

= −𝑟𝑧,2𝛼𝑝34

(A.20)

A.3.1. Errors
Considering the positive case, we report in Fig. A.14 the relative

errors between the dynamics of the full system and the reduced one.
The initial condition is given slightly outside the SSM: the attracting
properties of the SSM are evident as the error reduces significantly
with time. Moreover, increasing the value of 𝛿 means intensifying the
amplitude of the constant external forcing and therefore the error of

the reduced dynamics is shifted upwards.
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Fig. A.14. Relative error on the displacement of the first mass for different values of 𝛿.
The invariance error represents the accuracy of the Taylor expan-
sion in approximating the invariant manifold and the reduced dynamics
computed on it. It is quantified as

𝐸𝑖𝑛𝑣 = 1
𝑁

𝑁
∑

𝑖=1

‖LHS(𝑦𝑖) − RHS(𝑦𝑖)‖2
‖RHS(𝑦𝑖)‖2

,

𝑦𝑖 ∈ 𝑌𝑠 ⊂ 𝐷(𝜌) = {(𝑦1, 𝑦2) ∈ R2 ∶ ‖𝑦‖ = 𝜌},

(A.21)

where LHS and RHS refer to the left-hand and right-hand sides of
Eq. (A.18) and 𝜌 denotes the distance from the fixed point in reduced
coordinates (𝑦1, 𝑦2) (see Fig. A.15).

A.3.2. Choice of initial conditions across SSMs
Fig. 5 shows how different strategies for enforcing continuity of

certain physical variables across the switching surface affect the evolu-
tion of the reduced trajectory, when crossing occurs. The most effective
strategy in tracking the full dynamics is the one corresponding to the
red line in Fig. A.16, where no continuity constraint is enforced.

Assuming that the reduced trajectory jumps from the manifold +

to −, the final point on + is defined by

𝜼+ =
(

𝐲+, 𝐳+
)

(A.22)

and corresponds to the physical coordinates

𝐱 = 𝐕𝜼+ + 𝐱+0 . (A.23)

The same physical coordinates can be described by the coordinates
related to −, namely,

𝐱 = 𝐕𝜼− + 𝐱−0 . (A.24)

Equating (A.23) and (A.24), we then obtain the relationship between
the reduced coordinates (29).

This strategy has a clear geometric meaning: projecting the final
point on one of the manifolds onto the other one gives a linear ap-
proximation of a stable fiber emanating from the second manifold. As
a consequence, the new initial condition generates a trajectory on the
second manifold that approximates the one to which the full trajec-
tory converges the fastest. In contrast, the other possible approaches
prioritize the continuity of physical coordinates without enhancing the
approximation of the stable fiber. In other words, trajectories resulting
form these other approaches do not improve the approximation of the
one to which the trajectory of the full dynamics converges.
13
Fig. A.15. Invariance error for different values of distance from the fixed point 𝐱+0 .
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. A.16. Relative errors between the solution of the reduced model according to the different strategies and the full model, evaluated for the displacement of the first mass and
for 𝛿 = 10−3. The colors refer to the strategies depicted in Fig. 5: projection onto the new SSM (red), minimization of all physical variables (green), continuity of 𝑞1 (purple) and
continuity of both 𝑞1 and 𝑞2 (light blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
A.3.3. Approximation of Poincaré map and invariant set.
The Poincaré map of the full order model introduced in Section 3.3

can be approximated by exploiting information from the reduced-order
model only. Since the invariant curve unveiled by the Poincaré map lies
close to the intersection between the positive and negative SSMs and
the switching surface (blue and red lines in Fig. A.17), the invariant
set can be approximated by those curves up to specific points, �̃�±𝑒𝑑𝑔𝑒,
which need to be estimated and play the same role as 𝑥±𝑒𝑑𝑔𝑒 for the full
order model. We call the average of the blue and red lines the centerline
(dashed line in Fig. A.17).

Recalling that the preimages of 𝑥±𝑒𝑑𝑔𝑒 under the Poincaré map are the
intersections of 𝛤 with the gray surfaces (𝑥±𝑝𝑟𝑒), we want to approximate
such configurations for the reduced-order model as well (�̃�±𝑝𝑟𝑒). The
strategy is described for the computation of �̃�−𝑒𝑑𝑔𝑒, but the same applies
to �̃�+𝑒𝑑𝑔𝑒. Referring to Fig. A.17, we consider the intersection of the
centerline and that of the blue line with the gray surface. We take
then the average of such intersections to obtain the light blue circle.
Such a point is projected (light blue cross) onto the − (not shown
in the figure), representing the initial condition sought. The reduced
order model is then advected on − until the switching surface is
hit, identifying �̃�−𝑒𝑑𝑔𝑒. We note that this procedure requires information
coming from the reduced-order model only.

A.3.4. Non-autonomous problem
The time-dependent SSMs related to the positive and negative cases

are sought in the form of a cubic Taylor expansion

𝐳 =
3
∑

|𝐩|=2
𝐡𝐩𝐲𝐩 + 𝜖𝐡𝜖(𝛺𝑡), 𝐩 = (𝑝1, 𝑝2) ∈ N2. (A.25)

The invariance equation is now slightly modified to read

𝐷𝑦𝐡(𝐲)𝐴𝑦 𝐲 +𝐷𝑦𝐡(𝐲) 𝐫𝑦
[

𝑞𝐼𝐼𝐼 (𝐲,𝐡(𝐲)) ± 𝑞𝐼𝐼 (𝐲,𝐡(𝐲))
]

+ 𝜖
(

𝑉 −1𝐟𝜖
)

𝑦 + 𝜖𝐷𝑡𝐡𝜖 = 𝐴𝑧 𝐡(𝐲) + 𝐫𝑧
[

𝑞𝐼𝐼𝐼 (𝐲,𝐡 (𝐲))

± 𝑞𝐼𝐼 (𝐲,𝐡 (𝐲))
]

+𝜖
(

𝑉 −1𝐟𝜖
)

𝑧 .

(A.26)

Collecting the terms of order 𝜖, we obtain a set of ordinary differential
equations, which can be solved by a Fourier representation of the
periodic forcing and time dependent terms in the parametrization,
whereby the forcing term becomes

𝐡𝜖 =
∑

𝑛
�̂�𝜖,𝑛𝑒𝑖𝑛𝛺𝑡 = �̂�−1𝑒−𝑖𝛺𝑡 + �̂�1𝑒𝑖𝛺𝑡. (A.27)

The reduced order model well reproduces the dynamics of the system,
as long as the forcing amplitude 𝜖 remains small and the assumption of
14
Fig. A.17. Approximation of the invariant set induced by the Poincaré map (piecewise
continuous green line) exploiting information coming from the reduced order model
only. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

small friction coefficient holds. Fig. A.18 shows how the full trajectory
rapidly approaches the reduced one, as the initial condition lies outside
the primary SSM. They both eventually land on the attracting limit
cycle induced by forcing. In particular, the rate at which the reduced-
order model prediction converges to the full-order model trajectory is
definitely greater than the rates at which the limit cycle is approached
by both of them, which is then practically identical.

Appendix B. Parametrization of invariant manifolds

In this section, we recall some concepts for the construction of
reduced order models with invariant manifolds in a data-driven setting.
In particular, referring to [23], we show that one can choose arbitrary
reduced coordinates, as long as they describe the invariant manifold
as a graph. This justifies the choice of physical coordinates as reduced
coordinates in the von Kárman beam example with friction on moving
ground, as it allows us to check the sticking condition in a convenient
way .
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Fig. A.18. Trajectories of the full (black dashed) and reduced (red) models in modal coordinates (𝜂1 , 𝜂2 , 𝜂3), starting from the initial condition 𝐱0 = (0, 0, 0.76, 0.76), with friction
coefficient 𝛿 = 10−2 and forcing parameter 𝜖 = 10−1.
In the setting of Eq. (A.4), we consider a generic spectral subspace

𝐸2𝑞 = 𝐸𝑗1 ⊕𝐸𝑗2 ⊕⋯⊕𝐸𝑗𝑞 , (B.1)

and denote as Spectr(𝐀|𝐸2𝑞 ) the set of the eigenvalues related to 𝐸2𝑞 .
This spectral subspace can be represented by the span of the eigenvec-
tors of 𝐀|𝐸2𝑞 . The eigenvectors are collected as columns of the matrix
𝐕𝐸2𝑞 ∈ C2𝑛×2𝑞 satisfying 𝐀𝐕𝐸2𝑞 = 𝐕𝐸2𝑞𝐑𝐸2𝑞 , where 𝐑𝐸2𝑞 is a diagonal
matrix containing Spectr(𝐀|𝐸2𝑞 ) as diagonal. Matrix 𝐕𝐸2𝑞 defines also its
adjoint 𝐖𝐸2𝑞 ∈ C2𝑞×2𝑛, such that 𝐖𝐸2𝑞𝐀 = 𝐑𝐸2𝑞𝐖𝐸2𝑞 and normalized
according to 𝐖𝐸2𝑞𝐕𝐸2𝑞 = 𝐈. Assuming that the spectral subspace 𝐸2𝑞

satisfies the nonresonance conditions (A.8), then the phase space is
characterized by SSMs tangent to 𝐸2𝑞 , among which the primary one
is the smoothest and addressed as (𝐸2𝑞). If we want to study the
dynamics on the manifold (𝐸2𝑞), we need the coordinate chart 𝐲 =
𝐰(𝐱,Ω𝐭; 𝜖) and its inverse, i.e. the parametrization of the manifold
𝐱 = 𝐯(𝐲,Ω𝑡; 𝜖)

𝐲 = 𝐰(𝐯(𝐲,Ω𝑡; 𝝐),Ω𝐭; 𝝐), 𝐱 = 𝐯(𝐰(𝐱,Ω𝐭; 𝝐),Ω𝐭; 𝝐). (B.2)

Hence, the reduced dynamics read

�̇� = 𝐫(𝐲,Ω𝑡; 𝜖). (B.3)

Since the mappings 𝐯,𝐰 are invariant under the full and the reduced
dynamics 𝐟 and 𝐫, we write

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷𝐲𝐯(𝐲,Ω𝑡; 𝜖) 𝐫(𝐲,Ω𝑡; 𝜖) +𝐷𝑡𝐯(𝐲,Ω𝑡; 𝜖)

= 𝐟 (𝐯(𝐲,Ω𝑡; 𝜖),Ω𝑡; 𝜖),

𝐷𝐱𝐰(𝐱,Ω𝑡; 𝜖) 𝐟 (𝐱,Ω𝑡; 𝜖) +𝐷𝑡𝐰(𝐱,Ω𝑡; 𝜖)

= 𝐫(𝐰(𝐱,Ω𝑡; 𝜖),Ω𝑡; 𝜖).

(B.4)

Moreover, as the SSM depends smoothly on the parameter 𝜖, we seek
the expansions for 𝐰, 𝐯 and 𝐫 in the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐰(𝐱,Ω𝑡; 𝜖) = 𝐖0 + 𝐰𝑛𝑙(𝐱) + 𝜖𝐰1(Ω𝑡) + (𝜖‖𝐱‖),

𝐯(𝐲,Ω𝑡; 𝜖) = 𝐕0 + 𝐯𝑛𝑙(𝐲) + 𝜖𝐯1(Ω𝑡) + (𝜖‖𝐲‖),

𝐫(𝐲,Ω𝑡; 𝜖) = 𝐑0 + 𝐫𝑛𝑙(𝐲) + 𝜖𝐫1(Ω𝑡) + (𝜖‖𝐲‖),

(B.5)

with 𝐖0 ∈ C2𝑞×2𝑛, 𝐕0 ∈ C2𝑛×2𝑞 and 𝐑0 ∈ C2𝑞×2𝑞 and such that
range(𝐕0) = 𝐸2𝑞 and Spectr(𝐑0) = Spectr(𝐀|𝐸2𝑞 ). Substituting the
expansions (B.5) into (B.2) and taking the linear contributions for 𝜖 = 0,
we obtain

𝐖 𝐕 = 𝐈, (B.6)
15

0 0
while considering Eqs. (B.4) gives:

𝐖0𝐀𝐕0 = 𝐑0. (B.7)

Since the spectra of 𝐑0 and that of 𝐀 are the same,

𝐑0 = 𝐏𝐑𝐸2𝑞𝐏−1, (B.8)

holds, which, coupled with Eq. (B.7), yields:

𝐖0 = 𝐏𝐖𝐸2𝑞 and 𝐕0 = 𝐕𝐸2𝑞𝐏−1. (B.9)

In principle, the coordinate chart can be arbitrarily chosen as a pro-
jection to the reduced coordinates defined by 𝐖0, as long as it is able
to describe the manifold as a graph. In other words, once we define
𝐖0 and we know the eigenvectors spanning the tangent plane to the
manifold 𝑉𝐸2𝑞 , then from (B.6) and the second relation of (B.9) we
compute the matrix 𝐏 as

𝐏 = 𝐖0𝐕𝐸2𝑞 . (B.10)

This means that the vectors spanning the plane where the new reduced
coordinates live (columns of 𝐕0) define an alternative coordinate chart
of the same manifold, as long as the matrix 𝐏 is nonsingular. When we
add forcing (𝜖 ≠ 0), we need to solve

𝐫1(𝜴𝑡) = 𝐖0𝐀𝐯1(𝜴𝑡) +𝐖0𝐟1 (𝟎,𝜴𝑡; 0) ,

𝐯1(𝜴𝑡) =
(

𝐈 − 𝐕0𝐖0
)

𝐀𝐯1(𝜴𝑡)

+
(

𝐈 − 𝐕0𝐖0
)

𝐟1 (𝟎,𝜴𝑡; 0) .

(B.11)

which takes into account additional non-modal contributions to the
forcing in reduced coordinates, as explained in Cenedese et al. [23].

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijnonlinmec.2024.104753.
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