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A B S T R A C T

Dynamical systems in engineering and physics are often subject to irregular excitations that
are best modeled as random. Monte Carlo simulations are routinely performed on such
random models to obtain statistics on their long-term response. Such simulations, however,
are prohibitively expensive and time consuming for high-dimensional nonlinear systems. Here
we propose to decrease this numerical burden significantly by reducing the full system to very
low-dimensional, attracting, random invariant manifolds in its phase space and performing the
Monte Carlo simulations on that reduced dynamical system. The random spectral submanifolds
(SSMs) we construct for this purpose generalize the concept of SSMs from deterministic systems
under uniformly bounded random forcing. We illustrate the accuracy and speed of random
SSM reduction by computing the SSM-reduced power spectral density of the randomly forced
mechanical systems that range from simple oscillator chains to finite-element models of beams
and plates.

. Introduction

Excitation without temporally recurrent features is ubiquitous in nature and hence many mechanical structures are subjected
o it. Examples include wind forcing on bridges, turbulent airflow over airplane wings and seismic forces from earthquakes on
uildings. This has been stimulating significant interest in stochastic approaches to mechanics problems, dating back to seminal
ontributions by Caughey [1] and Crandall [2] (see also Crandall and Mark [3], Caughey [4], Wirschin et al. [5] and Li and Chen
6] for surveys).

Notable technical advances in the analysis of stochastically forced systems are perturbative methods for higher-order statistics in
eakly nonlinear systems (see, e.g., Caughey [1] and Crandall [2]) and stochastic averaging for systems with weak nonlinearity and
eak damping (see Roberts and Spanos [7]). In these and other related methods, random vibrations have been modeled either as

andom dynamical systems (i.e., ordinary differential equations appended with a white noise perturbation) or stochastic differential
quations (i.e., Itô processes for the differential of the unknown with a drift term and a Brownian motion term); see Arnold [8]
nd Duan [9] for discussions of the technicalities involved in both approaches.

To a large extent, both of these modeling approaches are driven by the convenience of having the Kolmogorov and the Fokker–
lanck partial differential equations (PDEs) at one’s disposal for the first-order statistics of the response. Both approaches, however,
llow for the occurrence of arbitrarily large forcing values with nonzero probability, which is unrealistic in physical settings, as
lready pointed out by Caughey [4]. A similar situation arises in other fields with prominent randomness, such as financial modeling,
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in which stochastic ODEs with Brownian motion are convenient but do not quite reproduce practically observed financial time
eries (see, e.g., Ghaoui and Calafiore [10]). Even from a purely mathematical perspective, showing the existence of the random

equivalents of deterministic structures (such as invariant manifolds) in the phase space under arbitrarily large perturbations is a
utile undertaking. Indeed, even simple structurally stable dynamical features, such as asymptotically stable fixed points or attracting
imit cycles, will be destroyed by unbounded perturbations.

For these reasons, we consider here the physically more realistic case of external random forcing whose realizations are uniformly
bounded in time. Under this assumption, one may reasonably seek random extensions of dynamical structures that are known to
enable mathematically rigorous model reduction in deterministic vibratory systems. Such structures are known in deterministic
ibrations since the seminal work of Shaw and Pierre [11] on nonlinear normal modes (NNMs), defined as invariant manifolds

tangent to modal subspaces of mechanical systems (see also Kerschen et al. [12], Mikhlin and Avramov [13] and Mikhlin and
Avramov [14] for reviews).

More recent work by Haller and Ponsioen [15] and Haller et al. [16] revealed that the envisioned deterministic NNMs only
exist under specific nondegeneracy and nonresonance conditions. Even under those conditions, NNMs are never unique. Rather, a
continuous family of spectral submanifolds (SSMs) exists that are all tangent to any selected span of nonresonant spectral subspaces.
The smoothest such SSM admits a regular Taylor expansion up to the degree of the dynamical system, whereas the remaining
econdary (or fractional) SSMs only admit fractional-powered expressions. The general theory of SSMs has also been extended to
over fixed points with instabilities (Haller et al. [16]) and systems subject to uniformly bounded temporally aperiodic forcing,

including chaotic forcing (see Haller and Kaundinya [17]).
These results on generalized deterministic SSMs have been implemented in a continually expanding open-source MATLAB code,

SMTool, with a growing collection of nonlinear examples (see Jain et al. [18] for the latest version). The package can also handle
arametric resonance (see Thurnher et al. [19]) and algebraic constraints (see Li et al. [20]). Matlab- and Python-based open source

packages, SSMLearn and fastSSM, for a purely data-driven extraction of SSMs have also become available (see Cenedese et al. [21]
and Axås et al. [22]), broadening the applicability of SSM-based model reduction to diverse fields, such as control of soft robots
see Alora et al. [23]), transition problems in fluids (see Kaszás and Haller [24]) and modeling of fluid–structure interactions from

videos (see Xu et al. [25]).
The idea of extending the Shaw–Pierre NNM concept to random vibrations is already implicit in the work of Worden et al. [26].

Motivated by the full decoupling of linear systems in a modal basis, these authors propose an alternative definition of deterministic
NNMs as 𝑛 statistically independent nonlinear mappings from a 2𝑛-dimensional phase space to two-dimensional (2D) spaces. Worden
et al. [26] assume polynomial expansions for these NNM mappings and seek to determine the coefficients in these expansions
rom the response of the system under stochastic forcing. Specifically, they obtain the polynomial coefficients by minimizing the

cross-correlations of envisioned mappings via regression.
Targeting deterministic NNMs via stochastic forcing, Worden et al. [26] implicitly assume that (a) an appropriately modified

otion of an invariant manifold continues to exist under stochastic forcing (b) this manifold is in fact the same as the unforced
anifold, irrespective of the forcing level. While (a) cannot be guaranteed for the unbounded noise employed in their approach and

b) is generally not the case, the idea is clearly a novel and important step in exploring the fate of NNMs under general forcing and
n a data-driven setting. A follow-up paper by Tsialiamanis et al. [27] on the same idea is critical of the first implementation of the

idea and uses instead generative adversarial networks to learn the NNM mappings, still under stochastic forcing. More recent work
by Simpson et al. [28] explores this idea further by employing long-short term neural networks in the procedure. The dimension of
data-driven applications in these advances remains in the tens of degrees of freedom. No explicit reduced-models are obtained in
the end, as the approach seeks only the mapping from the data to reduced coordinates and back.

In contrast, SSMLearn has been successfully employed to extract predictive deterministic SSM-reduced models from experimental
measurements (see Cenedese et al. [29]), experimental videos of continua (of infinite degrees of freedom, see Cenedese et al. [21]
and Yang et al. [30]) and numerical data from finite-element codes exceeding a million degrees of freedom (see Cenedese et al.
31]). For this reason, we do not seek here a further improvement of data-driven deterministic SSM extraction. Rather, we focus on

what the above cited statistical approaches implicitly assume: the existence of random SSMs in stochastically forced deterministic
ystems. We show that a combination of prior results on a class of random invariant manifolds and recent results on deterministic
nvariant manifolds can be used to infer the existence of random SSMs and their reduced dynamics with full mathematical rigor.

This paper is organized as follows. We first prove the existence of random spectral submanifolds (random SSMs) for randomly
forced dynamical systems. These SSMs turn out to exist under smoothness and nonresonance conditions on the deterministic unforced
ystem and under a uniform boundedness assumption on the random forcing. We also derive leading-order formulas for computing

reduced models on random SSMs. We then demonstrate the performance of random SSM reduction in four examples: a suspension
system also known as a quarter-car model moving on an irregular road, a building model subject to earthquakes, a von Kármán beam
ndergoing random base excitation and a rectangular von Kármán plate placed in a windy medium. We conclude by summarizing
ur contributions and discussing future work.

2. SSMs in randomly forced systems

2.1. Setup

We consider small random perturbations of a deterministic set of first-order nonlinear ordinary differential equations (ODEs)
with an attracting fixed point. The randomness of the process is introduced via the dependence of the random perturbation on
2 
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elements 𝝂 of a probability space  , which is endowed with a probability measure P and a corresponding sigma algebra  . The
volving randomness along trajectories will be induced by a metric dynamical system 𝜽𝑡 ∶  →  that creates a time-dependent

random variable 𝜽𝑡 (𝝂) on which the random differential equation depends in a smooth and uniformly bounded fashion.
This smooth dependence will guarantee uniform boundedness for the noise in time, which is a realistic assumption for

pplications in mechanics. In contrast, randomness modeled by classic stochastic differential equations (or Itô processes) can display
arbitrarily large changes in the noise over short periods of time. Such unbounded perturbations would be unrealistic in our context of
eal-life mechanical systems subject to noisy excitation. This was already pointed out in early work on random vibrations by Caughey
4], who observed that unbounded noise is a convenient assumption that is unsupported by physics but yields simpler statistics.

We do not suggest that this convenience assumption leads to fundamentally incorrect results; we simply choose not to make it. We
refer to Arnold [8] and Duan [9] as general texts on random dynamical systems and stochastic differential equations.

Based on these preliminaries, we consider a random differential equation

𝐱̇ = 𝐀𝐱 + 𝐟0 (𝐱) + 𝜖𝐠
(

𝐱,𝜽𝑡 (𝝂)
)

, 𝐱 ∈ 𝐷 ⊂ R𝑛, 0 ≤ 𝜖 ≪ 1, 𝐟0(𝐱) = 
(

|𝐱|2
)

, (1)

on the probability space ( , ,P), where 𝐟0 ∶𝐷 ⊂ R𝑛 → R𝑛 is of smoothness class 𝐶𝑟(𝐷) with 𝑟 ≥ 2. The uniformly bounded function
𝐠 is at least of class 𝐶1 in 𝐱 ∈ 𝐷, 𝐶0 in 𝑡 for fixed 𝝂, and measurable in 𝝂. The domain 𝐷 is assumed compact and forward invariant
for 𝜖 = 0. An example of such a random ODE would be a stochastic ODE that depends on a Brownian motion confined by reflecting
boundaries. Another practical example would be a non-autonomous ODE whose time dependence is generated on the fly at discrete
time instances via a random variable with values in the [0, 1] interval.

2.2. The unforced system (𝜖 = 0)

We assume that 𝐱 = 0 is a stable hyperbolic fixed point for Eq. (1) and the set 𝐷 lies fully in the domain of attraction of this
fixed point. The linearized ODE at the fixed point is then

𝐱̇ = 𝐀𝐱, (2)

and the eigenvalues
{

𝜆𝑗
}𝑛
𝑗=1 of 𝐀 can be ordered so that

Re𝜆𝑛 ≤ Re𝜆𝑛−1 ≤ ⋯ ≤ Re𝜆1 < 0 (3)

holds. We assume, for simplicity, that 𝐀 is diagonalizable, in which case there are 𝑛 real eigenspaces 𝐸1, 𝐸2,… , 𝐸𝑛 corresponding
to the eigenvalues listed in (3). Each eigenspace corresponding to a real eigenvalue is one-dimensional and those corresponding to
 complex conjugated pair are two-dimensional.

We consider a slow spectral subspace
𝐸 = 𝐸1 � … � 𝐸𝑠, dim𝐸 = 𝑑 , (4)

spanned by the first 𝑠 eigenspaces of 𝐀. If all the eigenspaces correspond to single real eigenvalues, then 𝑑 = 𝑠. If all the eigenspaces
correspond to single complex conjugate pairs, then 𝑑 = 2𝑠. We also define the collection of the remaining eigenspaces of 𝐀 as a fast
spectral subspace 𝐹 with dimension 𝑛 − 𝑑.

By construction, 𝐸 is a 𝑑-dimensional, attracting invariant subspace of the linearized ODE (2) that is spanned by the 𝑑 slowest
ecaying solution families of this ODE. After a possible linear change of coordinates, we may assume that

𝐸 =
{

𝐱 ∈ R𝑛 ∶ 𝐱𝑑+1 = ⋯ = 𝐱𝑛 = 0} , 𝐀 =
(

𝐀𝐸 0
0 𝐁

)

, (5)

with 𝐀𝐸 ∈ R𝑑×𝑑 and 𝐁 ∈ R(𝑛−𝑑)×(𝑛−𝑑). Restriction of the full linear ODE to 𝐸 gives an exact, 𝑑-dimensional reduced-order model
ith which all solutions of (2) synchronize once the fastest 𝑛 − 𝑑 solution components of the system have died out. Specifically, in

appropriate coordinates

𝐱 = (𝝃, 𝜼) ∈ R𝑑 × R(𝑛−𝑑)

that block-diagonalize 𝐀, the 𝑑-dimensional reduced linear dynamics on 𝐸 satisfies

𝝃̇ = 𝐀𝐸𝝃, spect𝐀𝐸 =
{

𝜆1,… , 𝜆𝑑
}

.

An important question is whether such a model reduction procedure could also be justified for the full nonlinear, random ODE (1).
As a first step in answering this question, we define the spectral quotient of 𝐸 as the positive integer

𝜎 (𝐸) =

⌊

Re𝜆𝑛
Re𝜆1

⌋

,

with the half brackets referring to the integer part of a positive real number. The slow spectral subspace 𝐸 is called nonresonant
whenever the spectrum of the operator 𝐀𝐸 has no low-order resonance relationship with the spectrum of the operator 𝐁. More
specifically, 𝐸 is nonresonant if

𝑑
∑

𝑗=1
𝑚𝑗𝜆𝑗 ≠ 𝜆𝑘, 2 ≤

𝑑
∑

𝑗=1
𝑚𝑗 ≤ 𝜎 (𝐸) , 𝑘 > 𝑑 . (6)
3 



Z. Xu et al.

i

w
d

i
t

o

Journal of Sound and Vibration 600 (2025) 118923 
Fig. 1. The geometry of the slow spectral subspace 𝐸, the deterministic spectral submanifold 0(𝐸) and the random invariant manifold 𝜖
(

𝐸;𝜽𝑡 (𝝂)
)

.

Haller and Ponsioen [15] define a spectral submanifold 0(𝐸) of the deterministic (𝜖 = 0) limit of system (1) as the smoothest
forward-invariant manifold that is tangent to the spectral subspace 𝐸 at 𝑥 = 0 and has the same dimension as 𝐸. Using results
by Cabré et al. [32], Haller and Ponsioen [15] deduce that such a manifold is well-defined and of class 𝐶𝑟 as long as 𝑟 > 𝜎 (𝐸) and
the conditions (3) and (6) are satisfied. In other words, 0(𝐸) exists and provides a unique, class 𝐶𝑟, nonlinear continuation of the
nvariant spectral subspace 𝐸 in the deterministic limit of the random ODE (1). Near the origin, 0(𝐸) can therefore be written as

a graph

𝜼 = 𝐡0(𝝃), (7)

for some function 𝐡0 ∈ 𝐶𝑟. With the notation

𝐟0(𝐱) =
(

𝐟0𝝃 (𝝃, 𝜼) , 𝐟0𝜼 (𝝃, 𝜼)
)

,

the reduced dynamics on 0(𝐸) satisfies the reduced ODE

𝝃̇ = 𝐟0𝝃
(

𝝃,𝐡0(𝝃)
)

, (8)

which is an exact reduced-order model for system (1) for 𝜖 = 0 in a neighborhood of the origin. We show the geometry of the
subspace 𝐸 and the deterministic spectral submanifold 0(𝐸) in Fig. 1.

Of interest to us here is the continuation of 0(𝐸) and its reduced dynamics for 𝜖 > 0 in the full random ODE (1). To this end,
e define the spectral gap 𝜌 (𝐸) associated with 𝐸 as the integer part of the ratio of the slowest decay rate outside 𝐸 to the fastest
ecay rate inside 𝐸:

𝜌 (𝐸) =

⌊

Re 𝜆𝑑+1
Re 𝜆𝑑

⌋

. (9)

Note that 1 < 𝜌(𝐸) ≤ 𝜎 (𝐸) by definition. If needed, we reduce the size of the domain 𝐷 to make sure that all trajectories in (𝐸)
converge to the fixed point at the origin. In that case, SSM-normal compression rates along each trajectory in (𝐸) will be at
least 𝜌 (𝐸)-times stronger than the SSM-tangential compression rates as 𝑡 → ∞. In other words, 𝑊 (𝐸) is a 𝜌 (𝐸)-normally hyperbolic
nvariant manifold by the classic definition of Fenichel [33]. After possibly modifying the boundary of (𝐸), we can also assume
hat (𝐸) is an inflowing invariant manifold, i.e., all nonzero trajectories cross the boundary of (𝐸) strictly inwards.

2.3. The forced system (𝜖 > 0)

With the help of the noise model 𝜽𝑡 on the probability space  (see Eq. (1)), the solution operator

𝐅𝑡
𝜖 ∶𝑋 ×  → 𝑋 , 𝑡 ∈ R, (10)

of the random ODE (1) defines a random dynamical system (or random flow map) 𝐅𝑡
𝜖 ∶𝐷 → R𝑛 that is measurable in 𝑡 and over  ×𝑋,

and satisfies the cocycle condition
𝐅0
𝜖 (𝐱; 𝝂) = 𝐱,

𝐅𝑡+𝑠
𝜖 (𝐱; 𝝂) = 𝐅𝑠

𝜖
(

𝐅𝑡
𝜖 (𝐱; 𝝂) ;𝜽

𝑡 (𝝂)
)

. (11)

In addition, such a random dynamical system is said to be class 𝐶𝑟 smooth if the mapping 𝐅𝑡
𝜖( ⋅ ; 𝝂) is of class 𝐶𝑟 for all (𝑡, 𝝂).

The second condition in (11) ensures that the evolution along random trajectories satisfies an analogue of the group property
f deterministic flows. Specifically, stitching together subsequent segments of a full random trajectory should result in the same

final position for the piecewise stitched trajectory and for the full trajectory, even though each segment of the stitched trajectory
is initialized under a different element of  chosen at the start time of the segment. The metric dynamical system 𝜽𝑡 ensures that
4 
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these elements of  are properly (and deterministically) related to each other along each random trajectory. In modeling the noise
in Eq. (1), the probability space  is commonly selected as the space of continuous paths {𝝂(𝑠)}𝑠≥0 with 𝝂(0) = 0. In that case,
𝜽𝑡𝝂 ( ⋅ ) = 𝝂 (𝑡 + ⋅ ) − 𝝂(𝑡) is called the Wiener shift under which the probability measure P is invariant and ergodic (see Arnold [8]
or Duan [9]).

A random set  (𝝂) ⊂ 𝐷 is a family of nonempty closed sets such that

𝝂 ↦ inf
𝐲∈(𝝂)

‖𝐱 − 𝐲‖

is a random variable for any 𝐱 ∈ 𝐷. Such a random set is a random manifold if each  (𝝂) is a manifold. A random manifold is a
andom invariant manifold for the random flow map for system (1) if

𝐅𝑡
𝜖 ( (𝝂) ; 𝝂) = 

(

𝜽𝑡 (𝝂)
)

holds for all 𝑡 ∈ R and 𝝂 ∈  . A random manifold ̄ (𝝂) =  (𝝂) ∪ 𝜕 (𝝂) with boundary 𝜕 (𝝂) is called a random inflowing
nvariant manifold (with boundary) if

𝐅𝑡
𝜖 ( (𝝂) ; 𝝂) ⊃ ̄

(

𝜽𝑡 (𝝂)
)

for all 𝑡 < 0 and all 𝝂 ∈  . Similarly, a random manifold ̄ (𝝂) is a random overflowing invariant manifold (with boundary) if
𝐅𝑡
𝜖 ( (𝝂) ; 𝝂) ⊃ ̄

(

𝜽𝑡 (𝝂)
)

for all 𝑡 > 0 and all 𝝂 ∈  .
In Appendix A, we prove the following main theorem on the existence of random SSMs by combining results of Li et al. [34]

and Eldering et al. [35] in our specific setting.

Theorem 1. Assume that
𝑟 ≥ 𝜌 (𝐸) .

Then, for 𝜖 > 0 small enough:
(i) The random ODE (1) has a class-𝐶𝜌(𝐸), random inflowing-invariant manifold 𝜖(𝐸;𝜽𝑡 (𝝂)), which can locally be written as

𝜖(𝐸;𝜽𝑡 (𝝂)) = {

𝐱 = (𝝃, 𝜼) ∈ 𝐷∶ 𝜼 = 𝐡𝜖
(

𝝃;𝜽𝑡 (𝝂)
)

= 𝐡0(𝝃) + 𝜖𝐡1
(

𝝃;𝜽𝑡(𝝂), 𝜖)} ,
where 𝐡1

(

𝝃;𝜽𝑡(𝝂), 𝜖) is measurable in 𝝂, and 𝐶𝜌(𝐸) smooth in 𝝃 and 𝜖. Therefore, 𝜖
(

𝐸;𝜽𝑡 (𝝂)
)

is  (𝜖) 𝐶1-close to (𝐸) in 𝐷.
(ii) 𝜖

(

𝐸;𝜽𝑡 (𝝂)
)

is 𝐶𝜌(𝐸)-diffeomorphic to (𝐸) inside the domain 𝐷 for all 𝝂 ∈  .
(iii) 𝜖

(

𝐸;𝜽𝑡 (𝝂)
)

attracts any solutions of (1) starting inside 𝐷 with probability P = 1.
(iv) 𝜖(𝐸;𝜽𝑡(𝝂)) can be locally written as

𝜖(𝐸;𝜽𝑡(𝝂)) = {

𝐱 = (𝝃, 𝜼) ∈ 𝐷∶ 𝜼 = 𝐡𝜖(𝝃;𝜽𝑡(𝝂)) = 𝐡0(𝝃) + 𝜖𝐡1
(

𝝃;𝜽𝑡(𝝂), 𝜖)} .

(v) The dynamics restricted to 𝜖(𝐸;𝜽𝑡(𝝂)) satisfies the reduced random ODE
𝝃̇ = 𝐟0𝝃

(

𝝃,𝐡𝜖
(

𝝃;𝜽𝑡 (𝝂)
))

+ 𝜖𝐠𝝃
(

𝝃,𝐡𝜖
(

𝝃;𝜽𝑡 (𝝂)
)

,𝜽𝑡 (𝝂)
)

= 𝐟0𝝃
(

𝝃,𝐡0 (𝝃)
)

+ 𝜖
[

𝐷𝜼𝐟0𝝃
(

𝝃,𝐡0 (𝝃)
)

𝐡1
(

𝝃;𝜽𝑡(𝝂), 0
)

+ 𝐠𝝃
(

𝝃,𝐡0 (𝝃) ,𝜽𝑡 (𝝂)
)]

+ 
(

𝜖2
)

. (12)

Proof. See Appendix A. □

We show schematically the random inflowing-invariant manifold 𝜖(𝐸;𝜽𝑡(𝝂)) for one particular 𝝂 ∈  in Fig. 1. By definition,
as any random invariant manifold, 𝜖(𝐸;𝜽𝑡(𝝂)) is time-dependent in any realization of the random ODE (1) and satisfies

𝐅𝑡
𝜖
(

𝜖(𝐸; 𝝂); 𝝂
)

⊃ 𝜖
(

𝐸;𝜽𝑡 (𝝂)
)

for all 𝑡 ≥ 0.
By statement (iv) of Theorem 1, model reduction to the persisting random invariant manifold 𝜖

(

𝐸;𝜽𝑡 (𝝂)
)

proceeds along the
ame lines as in the deterministic case, allowing one to reduce high-dimensional Monte-Carlo simulations to low-dimensional ones.
ote that only 𝜌 (𝐸) continuous derivatives can be guaranteed for the random SSM even though its deterministic limit 0(𝐸) is of

he generally higher smoothness class 𝐶𝑟.

Remark 1 (Computing the SSM-reduced model). The graph (7) of the unforced, deterministic SSM and can be calculated to a high
egree of accuracy using existing the MATLAB software SSMTool (see Jain and Haller [36] and Jain et al. [18]). Therefore, the

leading-order reduced-order model (12) on the random SSM 𝜖
(

𝐸;𝜽𝑡 (𝝂)
)

can be simulated by using 𝐡0 obtained from SSMTool. Note
hat the block-diagonalization used in Eq. (5) for mathematical exposition is not carried out in SSMTool. Rather, the computations
re done directly in the coordinates 𝐱 appearing in the random ODE (1).
5 
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Remark 2 (State-independent random forcing). In applications, the random forcing model frequently has no dependence on the phase
pace variable 𝐱. In that case, we have 𝐠𝝃

(

𝝃,𝐡0 (𝝃) ,𝜽𝑡 (𝝂)
)

≡ 𝐠𝝃
(

𝜽𝑡 (𝝂)
)

and the contributions from terms appearing at 𝑂(𝜖|𝝃|) from
𝜼𝐟0𝝃𝐡1

(

𝝃;𝜽𝑡(𝝂), 0
)

in the reduced Eq. (12) can be neglected near the origin compared to 𝐠𝝃
(

𝜽𝑡 (𝝂)
)

. Therefore, we can simply add
the projection of the full random forcing on the spectral subspace 𝐸 to the unforced reduced dynamics in 0 (𝐸) to obtain the
educed random dynamical system

𝝃̇ = 𝐟0𝝃
(

𝝃,𝐡0 (𝝃)
)

+ 𝜖𝐠𝝃
(

𝜽𝑡 (𝝂)
)

+ 
(

𝜖2
)

. (13)

This approximation has been successfully used to predict accurate deterministic forced response in equation- and data-driven
xamples (see Jain and Haller [36] and Cenedese et al. [21]).

Remark 3 (Relation to the case of non-Random, aperiodic forcing). On a single realization of the uniformly bounded random forcing,
the forcing becomes deterministic but still aperiodic. Haller and Kaundinya [17] gives asymptotic formulas for the corresponding
deterministic, perturbed SSM 𝜖(𝐸 , 𝑡) up to any finite order of accuracy. The leading order formulas for the SSM-reduced model
from Haller and Kaundinya [17] differ from Eq. (12), as we do not anchor the SSM to a unique asymptotic generalized steady state
see Appendix A for details). Furthermore, on each such realization, the SSM is only guaranteed to exist up to a maximal 𝜖 value
hat depends on the realization. There is no guarantee that a common, non-zero, maximal 𝜖 can be chosen for all realizations, which
as necessitated the development of random SSM theory described in this paper.

Remark 4 (Smoothness of the random SSM). For simplicity, we have considered the domain 𝐷 small enough so that 0(𝐸) had
ery simple dynamics: all solutions in the deterministic SSM converged to the origin. This enables us to establish that the strength
f normal hyperbolicity (i.e., how many times normal attraction overpowers tangential compression along 0(𝐸)) is precisely the
pectral gap 𝜌 (𝐸) defined in Eq. (9), which can be computed purely from the spectrum of the matrix 𝐀. This, in turn, enables

us to conclude that the random invariant manifold 𝜖
(

𝐸;𝜽𝑡 (𝝂)
)

is 𝐶𝜌(𝐸) smooth (see the Appendix for details). On larger 𝐷
domains, however, 0(𝐸) may have nontrivial internal dynamics, i.e., may contain further limit sets in addition to the fixed point
at 𝐱 = 0. In that case, an analog of Theorem 1 continues to hold as long as 0(𝐸) remains normally hyperbolic, i.e., normal
ttraction rates to 0(𝐸) still overpower tangential compression rates everywhere along 0(𝐸) as 𝑡 → ∞. Establishing the strength
f normal hyperbolicity of 0(𝐸) in that case, however, requires the exact knowledge of the asymptotic ratio of normal and
angential compression rates along all limit sets within (𝐸). This strength (and hence the guaranteed smoothness) of the persisting
𝜖
(

𝐸;𝜽𝑡 (𝝂)
)

will then be the integer part of the minimum of these ratios taken over all limit sets of 0(𝐸).

Remark 5 (Existence of random SSMs for repelling fixed points). Results similar to those listed in Theorem 1 hold when the origin is
a repelling fixed point, i.e., the matrix 𝐴 has eigenvalues

Re𝜆𝑛 ≥ Re𝜆𝑛−1 ≥ ⋯ ≥ Re𝜆1 > 0. (14)

In that case, the surviving random invariant manifold 𝜖(𝜃𝑡(𝝂)) is overflowing and repels all initial conditions in 𝐷 for small enough
𝜖 > 0.

Remark 6 (Leading order parametrization correction to the random SSM). If we further assume 𝐡1(𝝃;𝜽𝑡(𝝂), 0) to be 𝐶1 in time, then
ne can express the leading-order SSM parametrization 𝐡1(𝟎;𝜽𝑡(𝝂), 0) in the form

𝐡1(𝟎;𝜽𝑡(𝝂), 0) = ((𝐕𝐹 )𝐿)T ∫

𝑡

−∞
𝑒𝐀(𝑡−𝑠)

(

I𝑛 − 𝐏𝐸
)

𝐠(𝟎,𝜽𝑠(𝝂))𝑑 𝑠, (15)

as we show in Appendix B. Here 𝐏𝐸 is the spectral projection onto the slow subspace 𝐸 and the columns of (𝐕𝐹 )𝐿 ∈ R𝑛×(𝑛−𝑑) contain
(𝑛 − 𝑑) left eigenvectors of 𝐀 spanning the fast subspace 𝐹 .

3. Examples

We consider mechanical systems of the form

𝐌𝐪̈ + 𝐂𝐪̇ +𝐊𝐪 + 𝐟𝑛𝑙(𝐪, 𝐪̇) = 𝐩
(

𝜽𝑡 (𝝂) ,𝐪, 𝐪̇
)

, (16)

where 𝐌,𝐂,𝐊 ∈ R𝑛×𝑛 are positive definite mass matrix, and the positive semidefinite damping and stiffness matrices, respectively;
𝐪 ∈ R𝑛 is the vector of generalized coordinates; the function 𝐟𝑛𝑙(𝐪, 𝐪̇) is a vector of geometric and material nonlinearities; and
𝐩
(

𝜽𝑡 (𝝂) ,𝐪, 𝐪̇
)

is a uniformly bounded external or parametric forcing vector with random time dependence.
The second order system (16) can be rewritten in its first order system form

𝐱̇ = 𝐀𝐱 + 𝐟0(𝐱) + 𝐠(𝜽𝑡 (𝝂) , 𝐱), 𝐱 = (𝐪, 𝐪̇)T , (17)

where

𝐀 =
[

𝟎 𝐈
−1 −1

]

, 𝐟0(𝐱) =
[

𝟎
−1

]

,

−𝐌 𝐊 −𝐌 𝐂 −𝐌 𝐟𝑛𝑙(𝐪, 𝐪̇)

6 
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and 𝐠(𝜽𝑡 (𝝂) , 𝐱) =
[

𝟎
𝐌−1𝐩

(

𝜽𝑡 (𝝂) ,𝐪, 𝐪̇
)

]

.

In all our examples, the unforced system admits an asymptotically stable fixed point at 𝐱 = 0. We will assume that a uniform bound
on the forcing is defined as

𝜖 = lim sup
𝑡∈R,𝝂∈ ,𝐱∈𝐷

|

|

𝐠(𝜽𝑡 (𝝂) , 𝐱)|
|

for 𝐷 ⊂ R2𝑛, i.e., we subsume the book-keeping parameter 𝜖 appearing in Eq. (1) into the definition of the forcing for convenience.

Random force generation

In our examples, the forcing vector 𝐩
(

𝜽𝑡 (𝝂) ,𝐪, 𝐪̇
)

, will have the form 𝜖 𝜃𝑡(𝜈) (𝐯+𝐟𝐩(𝐪, 𝐪̇)) where 𝐯 ∈ R𝑛 is a constant vector, 𝐟𝐩 ∈ R𝑛

s a function representing parametric excitation, 𝜖 is a parameter controlling the magnitude of the uniformly bounded forcing, 𝜃𝑡(𝜈)
s a time-dependent scalar random variable appearing in Eq. (1) that is uniformly bounded in time for any 𝜈. We list three possible

ways to generate such noise:

• Method 1: Force generation from a spectral density. In some examples the random forcing signal 𝜃𝑡(𝜈) can be inferred from
an empirical spectral density 𝛷𝜈 (𝜔) = E[(𝜃𝜔(𝜈))2]. Here E is the expectation value operator and 𝜃𝜔(𝜈) is the Fourier transform
of one realization of the random forcing signal 𝜃𝑡(𝜈). Following textbook methods (see Preumont [37]), we can numerically
evaluate a realization of a forcing signal 𝜃𝑡(𝜈) from the spectral density 𝛷𝜈 (𝜔). We specify a frequency range 𝜔 ∈ [𝜔0, 𝜔𝑀 ]
which is equally spaced with spacing 𝛥𝜔. The forcing signal for one realization in this frequency window can then be written
as

𝜃𝑡(𝜈) =
𝑀
∑

𝑖=0

√

2𝛷𝜈 (𝜔0 + 𝑖𝛥𝜔)𝛥𝜔 cos((𝜔0 + 𝑖𝛥𝜔)𝑡 + 𝜙𝑖), (18)

where 𝜔𝑁 = 𝜔0 +𝑀 𝛥𝜔 and 𝜙𝑖 is a uniform random number from the interval [0, 2𝜋]. From a numerical perspective, Eq. (18)
represents a fast Fourier transform of the spectral density. Note that for every realization, one can regard this signal to lie on
a 𝑁– dimensional torus, thus the process is only quasi-random.

• Method 2: Lévy process with a bounded random number generator. A classic method to generate a truly random process
in time is to advect a random ODE describing Brownian motion. However in that case, the random process is an Itô process
and the noise generation is sampled from a Gaussian distribution  which is unbounded. This translates to the increments of
the random variable given by (𝜃𝑡+𝛥𝑡(𝜈) − 𝜃𝑡(𝜈)) following the probability density function  (0, 𝛥𝑡) for all 𝑡 ≥ 0. We make this
process bounded by prescribing the increments to follow a truncated Gaussian distribution   (0, 𝛥𝑡; 𝑎, 𝑏), where the density
function is 0 outside the amplitude interval [𝑎, 𝑏]. If we choose a symmetric interval and also ensure the interval encompasses
regions of high probability, the truncated Gaussian increments offers a bounded Brownian motion which is very close to the
one generated by an Itô process. Since all our examples are mechanical systems, it is convenient to model the randomness
using a second-order system (see Kozin [38]) of the form

𝑚 ̈𝑎 + 𝑐 𝑎̇ + 𝑘𝑎 = 𝜃𝑡(𝜈), (19)

where ä, 𝑎̇ or 𝑎 are interpreted as physically relevant scalar quantities like ground acceleration during an earthquake, uniform
fluid velocity or road elevation. The forcing 𝜃𝑡(𝜈) is a random process generated from a truncated Gaussian distribution. This
setup offers practical benefits when implemented in a numerical scheme as one can evaluate the random forced response in
real time by coupling the above ODE to the mechanical system (16).

• Method 3: Itô process with reflective boundary conditions. Another possible method to implement a bounded noise
generator is to impose doubly reflective boundary conditions on one of the stochastic random variables generated from Eq. (19)
using a Gaussian noise model for 𝜃𝑡(𝜈). The generated random variable will always be confined to [−1, 1].

Random forced response evaluation

In our examples, the linear part of the unforced mechanical system has a slow spectral subspace 𝐸 with 𝑑 = 2 (see Eq. (4)).
herefore, under uniformly bounded random forcing, Theorem 1 is applicable. This allows us to construct a 2D time-dependent

random SSM 𝜖
(

𝐸;𝜽𝑡 (𝝂)
)

. Specifically, we use SSMtool by Jain et al. [18] to compute the autonomous SSM 0(𝐸) as a graph
𝜼 = 𝐡0(𝝃) and its reduced dynamics 𝐟𝝃 (𝝃,𝐡0(𝝃)) as order-𝑁 multivariate polynomials. We then explicitly compute the leading-order
corrections (listed in Theorem 1) to obtain the random SSM-reduced model.

We test the accuracy of the random reduced-order models obtained in this fashion by performing Monte Carlo simulations. We
repeatedly sample 𝑚 random forcing realizations using one of the outlined methods (see Methods 1–3) and record the random forced
response outcomes of the full and reduced-order models for every realization. We further compute the averaged spectral density
(PSD) matrix 𝜱𝐱(𝜔) ∈ C2𝑛×2𝑛 defined as (see Papoulis [39])

𝜱𝐱(𝜔) = E[𝐱(𝜔)(𝐱(𝜔))†] = 1
𝑚
∑

𝐱𝑗 (𝜔)(𝐱𝑗 (𝜔))†, (20)

𝑚 𝑗=1

7 
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Fig. 2. Left: An illustration of the suspension model of Gobbi and Mastinu [43] moving with speed 𝑣 along an irregular road of length 𝐿. Right: A side profile
of the model with system parameters shown.

where 𝐱𝑗 (𝜔) is the fast-Fourier transform of the forced outcome 𝐱𝑗 (𝑡) and [⋅]† denotes the complex conjugate transpose operation.
Note that the diagonal entries of 𝜱𝐱(𝜔) are real and represent the energy content of our outcomes. We will plot one of these diagonal
entries against the frequency 𝜔 to visualize the performance of the reduced-order model in comparison to the full system.

We label a diagonal entry of the matrix as 𝜙𝑓
𝐱 (𝜔), where 𝑓 refers to a specific position or velocity component of the system. For

time integration, we use implicit methods for the full system (see Geradin and Rixen [40]). For the full system simulation in Method
1, we use the implicit Newmark scheme. In Methods 2 and 3, we formulate a second-order implicit scheme provided in Burrage
et al. [41]. For the time integration of SSM-reduced systems, we apply a Runge–Kutta scheme as described in Kloeden and Platen
[42]. We also advect both the full and the SSM-reduced models from the same initial condition, which always lies on the random
SSM.

3.1. Suspension system moving on an irregular road

For the design of the suspension of a car or an offshore platform, one needs to model the stability of these systems under road or
sea irregularity. We use here a simplified model of such a suspension proposed by Gobbi and Mastinu [43], as shown in Fig. 2. We
modify the original example by allowing the springs to have nonlinear cubic stiffness to model additional hardening or softening
behaviors of the spring material. This nonlinearity coupled with the irregular road leads to a parametric forcing experienced by the
suspension system.

The equations of motion (16), with 𝐪 = (𝑥𝑠, 𝑥𝑢)⊤ denoting the displacements of the spring blocks in the suspension system, are
specifically

𝐌 =
[

𝑚𝑠 0
0 𝑚𝑢

]

, 𝐂 =
[

𝑐𝑠 −𝑐𝑠
−𝑐𝑠 𝑐𝑠 + 𝑐𝑢

]

, 𝐊 =
[

𝑘𝑠 −𝑘𝑠
−𝑘𝑠 𝑘𝑠 + 𝑘𝑢

]

, (21)

and 𝐟𝑛𝑙(𝐪) =
(

𝜅1(𝑥𝑠 − 𝑥𝑢)3

−𝜅1(𝑥𝑠 − 𝑥𝑢)3 + 𝜅2𝑥3𝑢

)

.

In Eq. (21), we have ignored gravity for simplicity, which will slightly perturb the equilibrium configuration from 𝐱 = 𝟎. We
further assume that the system is traveling at a constant speed 𝑣 along a road of length 𝐿. This allows us to write the force exerted
by the irregular road on the system as

𝐩
(

𝜽𝑡 (𝝂) ,𝐪, 𝐪̇
)

= 𝜖
(

0
𝑘𝑢𝜃𝑡(ℎ) + 𝑐𝑢𝜃𝑡(∇ℎ)𝑣 + 𝜅2[𝜃𝑡(ℎ)]3 − 3𝜅2[𝜃𝑡(ℎ)]2𝑥𝑢 + 3𝜅2𝑥2𝑢𝜃𝑡(ℎ)

)

, (22)

where ℎ and ∇ℎ are random variables denoting road elevation and gradient, and 𝜖 is a measure of the overall magnitude of forcing.
There are empirical expressions for the spectral densities to model road elevation (see Gobbi and Mastinu [43]) given by

𝜙ℎ(𝜔) =
𝐴𝑣𝑏𝑣

(𝑏𝑣)2 + 𝜔2
, (23)

where the coefficients 𝐴𝑣 and 𝑏 depend on the road irregularity, and 𝑣 is the speed of the system as mentioned.
We estimate the spectral density of the gradient from the elevation as 𝜙∇ℎ(𝜔) = 𝜔2

𝑣 𝜙ℎ(𝜔). We then use Method 1 to sample
for the stochastic signals 𝜃𝑡(ℎ) and 𝜃𝑡(∇ℎ) until the car completes the travel time 𝐿

𝑣 on the road. We perform the sampling for 50
forcing realizations (𝑚 = 50). We set the system parameters as 𝑚𝑠 = 229 [kg], 𝑚𝑡 = 31 [kg], 𝑐𝑠 = 120 [Ns/m], 𝑐𝑢 = 120 [Ns/m],
𝑘𝑠 = 60 [kN/m], 𝑘𝑢 = 20 [kN/m], 𝜅1 = 250 [kN/m3], 𝜅2 = 30 [kN/m3] and 𝑣 = 30 [m/s]. We set the forcing parameters to be
𝐿 = 1800 [m], 𝐴𝑣 = 3.5 × 10−5 [m2] and 𝑏 = 0.4 [rad/m]. The values of road roughness are taken from Gobbi and Mastinu [43].

Fig. 3 shows the power spectral density 𝜙𝑥𝑠
𝐱 (𝜔) of the displacement of the upper mass 𝑚𝑠 in decibel [dB], calculated for the linear

system, the full nonlinear system and the random SSM-reduced model with an order 𝑁 = 7 multivariate Taylor expansion for two
8 
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Fig. 3. PSD 𝜙𝑥𝑠
𝐱 of the displacement of mass 𝑚𝑠 obtained from the SSM-reduced order model (blue) and for the full order model simulation (yellow) for two

egimes of road irregularities. We also plot in red the analytic PSD for the linear system. (a) 𝜖 = 1.5 indicates minor road elevations (b) 𝜖 = 2.5 the road
irregularities are amplified. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

regimes of road irregularity. When the road irregularity is minimal (𝜖 = 1.5), the linear response is close to the nonlinear response
of the system, and our random SSM-reduced model reproduces this trend. As expected, once we increase the road irregularity, the
nonlinear system deviates from the linear one and our leading-order SSM-reduced model captures this trend. The linear predictions
are smooth because we can compute the response statistics analytically (see Appendix B for details).

3.2. Earthquake response of a building

Inspired by building models in civil engineering for modeling earthquake response (see Ho et al. [44]), we now consider a simple
𝑛-storey building modeled by a vertical oscillator chain as shown in Fig. 4. Each mass represents a floor and gravity is neglected
for simplicity. The system is of the form (16) with

𝐪 = [𝑢1 , 𝑢2, … 𝑢𝑛]⊤, 𝐂 = 𝛽𝐊 + 𝛼𝐌,

𝐌 =
⎡

⎢

⎢

⎣

𝑚1 0 0
0 ⋱ 0
0 0 𝑚𝑛

⎤

⎥

⎥

⎦

and 𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘1 + 𝑘2 −𝑘2 0 ⋯ ⋯
−𝑘2 𝑘2 + 𝑘3 −𝑘3 0 ⋯
0 −𝑘3 𝑘3 + 𝑘4 ⋯ ⋯
⋮ ⋮ ⋮ ⋱ 0
⋮ ⋮ ⋮ 𝑘𝑛−1 + 𝑘𝑛 −𝑘𝑛−1
0 ⋯ 0 −𝑘𝑛−1 𝑘𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (24)

The nonlinearity 𝐟𝑛𝑙(𝐪, 𝐪̇) in this example comprises cubic nonlinear springs placed between neighboring storeys with hardening
parameter 𝜅. To model earthquake response, we use Method 3 to generate bounded horizontal ground acceleration noise.
pecifically, we use the random variable 𝑎 in Eq. (19) with parameters 𝑘 = 2 × 10−2 [N/m], 𝑐 = 1 × 10−1 [Ns/m] and 𝑚 = 5 × 10−3 [kg].

The forcing vector is 𝐩
(

𝜽𝑡 (𝝂)
)

= 𝜖 ̈𝑢𝐺(𝑚1,… , 𝑚𝑛)⊤, where 𝜖 is a measure of the ground acceleration intensity and 𝑢̈𝐺 = 𝑎.
We set the building parameters as 𝑚1 = 𝑚2 = ⋯ = 𝑚𝑛 = 7 [kg], 𝛼 = 0 [Hz], 𝛽 = 0.0198 [s], 𝑘1 = ⋯ = 𝑘𝑛 = 4555 [N/m] and

= 2000 [N/m3]. The total number of floors in our building is 𝑛 = 10. Similarly to the previous example, we perform 𝑚 = 50 Monte
arlo simulations and compute the averaged PSD for the degree of freedom 𝑢10, which represents the roof of our building model.

We find that computing an order 𝑁 = 5 random SSM-reduced model is sufficient to reproduce the statistics of the full system.
In contrast to the suspension model in Section 3.1, the current setup induces truly stochastic forcing in time (see Methods 1–3);

is maximally coupled with nonlinear springs; and is of higher dimensions. Our plots in Figs. 5a, b indicate that a 2D random SSM
model suffices to capture the PSD of the full system.

Our leading-order random SSM-reduced models capture the deviations from linearity as the forcing magnitude 𝜖 is increased to 1
see Fig. 5b). Reduction to the random SSM speeds up the Monte Carlo simulations significantly. In Table 1, we show that the time

for the full simulation is nearly 7 times the combined time taken for constructing the SSM-reduced order model and performing the
reduced Monte Carlo simulations (just 35 s).

3.3. Random base excitation of a von Kármán beam

Our previous examples focused on discrete models with localized spring nonlinearities. We now proceed to demonstrate the
applicability of our methods to more challenging continuum beam models with distributed nonlinearities. We use a finite element
9 
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Fig. 4. Schematic model of 𝑛-storey building under seismic excitation.

Fig. 5. PSD 𝜙𝑢10
𝐱 of the roof displacement of the building, from the SSM-reduced model (blue) and from the full simulation (yellow) for two earthquake

magnitudes. We also plot in red the analytic PSD for the linear system. (a) 𝜖 = 0.5 models small ground acceleration intensity. (b) 𝜖 = 1 models large ground
acceleration intensity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Run times for the full building model and its random SSM-reduced counterpart for 50 Monte Carlo
simulations in the 𝜖 = 1 forcing regime. All computations were performed on MATLAB version
2022b installed on 50 nodes of the ETH Zürich Euler super-computing cluster with Intel(R)
Xeon(R) CPU E3-1284L v4 @ 2.90 GHz processor.
Full system (HH:MM:SS) 2D SSM (HH:MM:SS) Number of MC simulations

00:03:22 00:00:35 50

model (FEM) approximation for the von Kármán beam as described by Jain et al. [45] which is based on textbook methods by Reddy
[46].

Specifically, the FEM is derived from non-dimensional PDEs governing the beam dynamics (see Jain et al. [45]). These PDEs
were obtained assuming the Euler–Bernoulli hypothesis for bending and the von Kármán strain approximation allowing for moderate
rotations. These assumptions also imply the von Kármán beam model is only accurate for modeling beam displacements that are
comparable to the beam thickness. The PDEs are discretized using finite elements, where linear shape functions are used for modeling
the axial displacements and cubic shape functions for the remaining degrees of freedom. If we denote with 𝐮 the axial components
10 
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Fig. 6. Schematic view of a cantilevered beam model. The material density is 𝜌 = 2, 700 [kg/m3], the Young’s modulus is 𝐸 = 70 [GPa], the Poisson’s ratio is
0.3, the material viscous damping rate 𝜅 = 108 [Pa s], the length is 𝑙 = 1 [m], the width is 𝑤 = 1 [m] and the thickness is ℎ = 0.001 [m].

Table 2
Run times for beam model and reduced model for 50 Monte Carlo simulations in the 𝜖 = 1
forcing regime. All computations were performed on MATLAB version 2022b installed on 50
nodes of the ETH Zürich Euler super-computing cluster with Intel(R) Xeon(R) CPU E3-1284L v4
@ 2.90 GHz processor.
Full system (HH:MM:SS) 2D SSM (HH:MM:SS) Number of MC simulations

02:39:42 00:01:26 50

and with 𝐯 the non-axial displacements, the ODE describing the FEM under time varying axial loads 𝐪𝐮(𝑡) and transverse loads 𝐪𝐯(𝑡)
take the form:

𝐌1𝐯̈ + 𝜁 𝜉 (𝐊1 + (𝐯)
)

𝐯̇ + 𝜁(𝐯)𝐮̇ +𝐊1𝐯 +
1
𝜉
 (𝐯,𝐮) + (𝐯) = 𝐪𝐯(𝑡),

𝐌2𝐮̈ +
𝜁
𝜉
𝐊2𝐮̇ + 𝜁(𝐯)𝐯̇ + 1

𝜉2
𝐊2𝐮 + 1

𝜉
(𝐯) = 𝐪𝐮(𝑡).

(25)

Here 𝜉 = ℎ∕𝑙 is the thickness-to-length ratio, and 𝜁 = 𝜅
𝑙
√

𝐸 𝜌 is a dimensionless material constant. 𝐌1 and 𝐌2 denote symmetric
mass matrices and 𝐊1 and 𝐊2 are symmetric stiffness matrices. The terms  (𝐯,𝐮), (𝐯) and (𝐯) denote the nonlinear elastic
internal forces, whereas (𝐯), (𝐯) and (𝐯) are nonlinear viscoelastic damping forces. This model is implemented in a finite-element
solver Jain et al. [47], which ultimately yields the matrices 𝐌, 𝐂, 𝐊 and the nonlinearity by 𝐟𝑛𝑙(𝐪, 𝐪̇) in the form (16) for specific
parameter values and boundary conditions. We use 20 beam elements and impose a cantilevered boundary condition at one end
to describe the continuum model, which results in 𝑛 = 60 degrees of freedom. The position vector of the finite element model is
𝐪 =

(

𝑢1, 𝑧1, 𝑤1, … 𝑢20, 𝑧20, 𝑤20
)⊤. Here 𝑢 is the discretized axial displacement, 𝑧 the discretized transverse displacement

and 𝑤 the discretized deflection angle measured from the beam axis of each finite element. In Fig. 6, we show the beam and list
the parameters used in our simulations. These parameter values correspond to a slender sheet made up of aluminum.

We subject this beam to random base excitation, which emulates seismic excitations applied to the cantilevered end of the beam.
Accordingly, the forcing vector takes the form 𝐩

(

𝜽𝑡 (𝝂)
)

= −𝜖 𝜃𝑡(𝜈)𝐌 (

0, 1, 0, … , 0, 1, 0
)⊤. To generate the bounded

random signal 𝜃𝑡(𝜈) we use Method 2 and output the random variable ä for parameter values 𝑚 = 5 [kg], 𝑐 = 100 [Ns/m],
𝑘 = 20 [N/m] from (19).

We monitor the transverse tip displacement of the beam for two maximal base accelerations under the forcing parameters 𝜖 = 0.5
and 𝜖 = 1. We find that computing an order 𝑁 = 7 random SSM-reduced model suffices to reproduce the statistics of the full order
model for both forcing magnitudes.

In Figs. 7a,b, we plot the PSD (in dB) of the tip displacement for 𝑚 = 50 Monte Carlo simulations. Our SSM-reduced computations
show close agreement with full order model. For larger forcing magnitudes 𝜖 = 1, the forced response is amplified for all the
models (see Fig. 7b). Due to no nonlinear damping, the linear model overestimates the amplification while the leading-order random
SSM-reduced model matches the true response accurately.

In Fig. 8, we present the PSD 𝜙𝑢5
𝐱 (in dB) and the time history of the axial displacements 𝑢5 at the quarter length of the beam,

corresponding to its, 5th element. For comparison, we also include the response of the axial displacement of the linear system.
Since a cantilevered configuration does not exhibit coupling between axial and transverse displacements in the linear regime, the
axial displacement remains zero for the linear case. Our random SSM-reduced model is able to capture even the trends in the axial
response accurately.

As before in Table 2, we list the run times of 𝑚 = 50 Monte Carlo experiments for the full and reduced models. The beam problem
has particularly low damping and to reach any relevant statistics one must simulate the forcing realizations for long times. Still, in
just under a minute and a half, our random SSM-reduced order models provide averaged forced outcomes. For comparison, the full
order model takes roughly 2 h and 40 min for the MC simulations.
11 
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Fig. 7. PSD 𝜙𝑧20
𝐱 of the transverse tip displacement of the beam obtained from the SSM-reduced order model (blue) and from the full order model simulation

(yellow) for two earthquake magnitudes. We also plot in red the analytic PSD for the linear system. (a) 𝜖 = 0.5 models small ground acceleration intensity (b)
𝜖 = 1 models large ground acceleration intensity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 8. Axial displacement of the beam at its quarter length obtained from the SSM-reduced order model and full order model simulation for one random forcing
ealization with forcing magnitude 𝜖 = 0.5. (a) The PSD 𝜙𝑢5

𝐱 of the axial displacement. (b) Time series of the axial displacement. The displacement is scaled by
he thickness of the beam. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.4. Von Kármán plate subject to a stochastic pressure field

Our final example is a continuum plate model used in previous SSM-related studies under deterministic forcing (see Jain and
Haller [36] and Li et al. [48]). The plate’s continuum model is based on similar von Kármán strain approximations as the beam
example. These are only valid to describe out-of-plane displacements comparable to the plate’s thickness. We modify the plate model
to be flat, i.e., set the curvature to zero, and impose simply supported boundary conditions at the edges 𝐴 and 𝐷, as shown in Fig. 9.
On these edges, translational displacements are fixed while the rotations are free.

The plate is made up of flat triangular shell elements with each node on the triangle having 6 degrees of freedom. In Fig. 9,
we show these elements with the caption stating the parameter values used in our simulations. Specifically, we chose 400 elements
which amounts to 1320 degrees of freedom. We plug in these parameter values and element numbers in the FE solver of Jain et al.
[47] to obtain the quantities on the left-hand side of Eq. (16).

As for the external forcing, we apply a random uniform body force in the vertical direction 𝐯. This models external wind pressure
acting on a flat plate, where the wind velocity is the random variable (see Zárate-Miñano et al. [49]). We generate the stochastic
elocity using Method 2, with the random variable 𝑎̇ in Eq. (19) modeling the wind velocity. We set 𝑚 = 5 [kg], 𝑐 = 100 [Ns/m],

𝑘 = 20 [N/m] in Eq. (19) to obtain the realizations for 𝑎̇. Piecing all this together, the forcing vector is 𝐩
(

𝜽𝑡 (𝝂)
)

= 𝜖 𝑐𝑑𝜌[𝑎̇(𝑡)]2𝐯. We
urther set 𝑐 𝜌 = 2 [kg/m3], where 𝑐 is the drag coefficient of the plate in air and 𝜌 is the density of the air.
𝑑 𝑑

12 
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Fig. 9. Schematic view of the von Kármán plate model. The material density is 2700 [kg/m3], the Young’s modulus is 70 [GPa], Poisson’s ratio is 0.33, the
material viscous damping rate 𝜅 = 108 [Pa s], the length is 2 [m], the width is 1 [m] and the thickness 0.01 [m]. Blue arrows indicate the direction of the
uniform body force applied. The midpoint of the plate, denoted as 𝑀 , is used to monitor the output signal. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 10. PSD 𝜙𝑧𝑀
𝐱 of the out-of-plane displacement of the center point 𝑀 obtained from the SSM-reduced order model (blue) and from the full-order model

(yellow) for two earthquake magnitudes. We also plot in red the numerical PSD for the linear system for different 𝜖 values. (a) 𝜖 = 1.125 (small wind pressure
fluctuations). (b) 𝜖 = 2 (moderate wind pressure fluctuations). (c) 𝜖 = 3.125 (large wind pressure fluctuations). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
13 
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Fig. 11. In-plane displacement of the plate at center point 𝑀 obtained from the SSM-reduced order model and full order model simulation with moderate
forcing 𝜖 = 2. (a) The PSD 𝜙𝑥𝑀

𝐱 of the in-plane displacement along 𝑥-direction. (b) Time series of the in-plane displacement 𝑥𝑀 . The displacement is scaled by
the thickness of the plate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Run times for plate model and reduced model for 50 Monte Carlo simulations in the 𝜖 = 3.125
forcing regime. All computations were performed on MATLAB version 2022b installed on 50
nodes of the ETH Zürich Euler supercomputing cluster with Intel(R) Xeon(R) CPU E3-1284L v4
@ 2.90 GHz processor.
Full system (HH:MM:SS) 2D SSM (HH:MM:SS) Number of MC simulations

12:50:40 00:01:45 50

In this example, we compute a random SSM-reduced model up to order 𝑁 = 7. We again validate our results with the full order
model for 𝑚 = 50 Monte Carlo simulations. In Figs. 10a–c, we see the PSDs of the reduced-order models capture the trends of the true
ystem for increasing forcing magnitudes. These trends are well documented in the literature for plate models (see, e.g., Reinhall
nd Miles [50]).

In Fig. 11, we also plot the SSM-reduced predictions for the in-plane displacements to compare with the full order model. The
SSM-reduced model to accurately predicts these displacements, which solely arise from nonlinear coupling between the in-plane
nd out-of-plane displacements of the full model of the plate.

The run time comparison between the full and reduced models now yields a dramatic difference. The combined time for
onstructing the random SSM model and the complete Monte Carlo simulation is under 2 min. For the full order model simulation
t takes nearly half a day (13 hours). We refer to Table 3 for the exact solve times.

4. Conclusion

We have extended prior mathematical results on the existence and reduced dynamics of spectral submanifolds (SSMs) from
eterministic dynamical systems to dynamical systems with additive and uniformly bounded random noise. While the mathematical
roofs of our results are valid for the case of small external random forcing, we expect them to extend to larger forcing values
s well, as seen in the examples we presented. This is in line with our findings for moderate deterministic aperiodic forcing (see,
.g., Haller and Kaundinya [17]).

Our main result is that appropriately defined random attracting invariant manifolds perturb from primary attracting SSMs of
he deterministic, unforced limit of a dynamical system. These random SSMs are no longer tangent to eigenspaces of the linearized

system but continue to be invariant under any given realization of the flow map and have the same degree of smoothness as their
nforced counterpart. The leading-order reduced dynamics on the random SSMs consists of the reduced dynamics of the deterministic
imit of the SSM with an additive random term. The deterministic SSM-reduced dynamics can be computed via equation-driven or
ata-driven model reduction applied to the unforced system using SSMTool (Jain et al. [18]) or SSMLearn (see Cenedese et al.

[51]), respectively. For state-independent random forcing, the additional random term in the leading-order SSM-reduced dynamics
is simply the projection of the random forcing to the spectral subspace.

Trajectories of the full system in the domain of attraction of random SSMs synchronize exponentially fast with trajectories of
the SSM-reduced dynamics. This enables us to perform Monte-Carlo simulations directly on the SSM-reduced dynamics to obtain
the response statistics of the full system. Such an SSM-reduced computation brings an immense speed-up relative to simulations
performed on full finite-element problems. This is generally true for any model obtained from model-reduction tools but SSM-
eduction comes with mathematical guarantees and requires no tuning of hyperparameters or training of neural nets. Importantly,

the deterministic core of the SSM-reduced dynamics remains the same even if one changes the noise model.
14 
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The leading-order SSM-reduction formulas derived in this paper only allow us to test our results with the full order model
p to a certain magnitude of forcing. This limitation can be addressed by computing higher-order corrections due to forcing. Such

corrections have already been computed in recent work (Haller and Kaundinya [17]) and integration of these results into the package
SMtool is currently underway. At this point, those higher-order corrections are already directly applicable to any given realization
f a bounded random forcing model, as was illustrated by Haller and Kaundinya [17] for chaotic forcing obtained from numerical

simulations of the classic Lorenz attractor.
In this paper, we have illustrated random SSM reduction in an equation-driven setting where the deterministic core of the reduced

model was obtained from SSMTool. Data-driven random SSM reduction proceeds along the same lines, with SSMLearn providing the
deterministic part of the reduced model. A continually growing body of literature is available on the accuracy of low-dimensional
deterministic models obtained from SSMLearn applied to data generated from finite-element models or experimental data, including
experimental videos (see Cenedese et al. [21], Cenedese et al. [29], Haller et al. [52], Haller et al. [16], Kaszás et al. [53], Axås
and Haller [54], Liu et al. [55], Xu et al. [25], Cenedese et al. [31], Yang et al. [30]). Specific demonstrations of the present results
in those data-driven settings will appear elsewhere.
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Appendix A. Proof of Theorem 1

Following Li et al. [34], we use the following definition of normal hyperbolicity for random invariant manifolds:

Definition 1. For a fixed 𝜖 ≥ 0, a random invariant manifold  (𝝂) of system (1) is normally hyperbolic if for almost every 𝝂 ∈ 
and 𝑥 ∈  (𝝂), there exists a splitting

𝑇𝑥𝑋 = 𝐸𝑢 (𝑥; 𝝂)⊕ 𝐸𝑐 (𝑥; 𝝂)⊕ 𝐸𝑠 (𝑥; 𝝂) , 𝐸𝑐 (𝑥; 𝝂) = 𝑇𝑥 (𝝂) , 𝑥 ∈  (𝝂) ,

of each tangent space 𝑇𝑥R𝑛 along  (𝝂) into subspaces 𝐸𝑖 (𝑥; 𝝂), for 𝑖 = 𝑢, 𝑐 , 𝑠, such that
(i) The splitting is 𝐶0 in 𝑥 and measurable in 𝝂 and has associated projections

𝛱 𝑖 (𝑥; 𝝂) ∶ 𝑇𝑥𝑋 → 𝐸𝑖 (𝑥, 𝝂) ,

for 𝑖 = 𝑢, 𝑐 , 𝑠, such that
(ii) The splitting is invariant, i.e.,

𝐷𝑥𝐅𝑡
𝜖(𝑥; 𝝂)𝐸

𝑖 (𝑥; 𝝂) = 𝐸𝑖 (𝜽𝑡 (𝝂) ,𝐅𝑡
𝜖(𝑥; 𝝂)

)

, 𝑖 = 𝑢, 𝑠.

(iii) The splitting is hyperbolic, i.e., there exist (𝜽𝑡,𝐅𝑡
𝜖)-invariant random variables 𝛼̄ , 𝛽 ∶ → (0,∞) with 𝛼̄ < 𝛽 and a tempered

andom variable 𝐾 ∶ → [1,∞) (i.e., ||
|

𝐾
(

𝑥;𝜽𝑡 (𝝂)
)

|

|

|

has sub-exponential growth as 𝑡 → ±∞ for any 𝑥 ∈  (𝝂)) such that
‖

‖

𝐷𝑥𝐅𝑡
𝜖(𝑥; 𝝂)𝛱

𝑠 (𝑥; 𝝂)‖
‖

≤ 𝐾 (𝑥; 𝝂) 𝑒−𝛽(𝝂,𝑥)𝑡, 𝑡 ≥ 0,
‖

‖

𝐷𝑥𝐅𝑡
𝜖(𝑥; 𝝂)𝛱

𝑢 (𝑥; 𝝂)‖
‖

≤ 𝐾 (𝑥; 𝝂) 𝑒𝛽(𝝂,𝑥)𝑡, 𝑡 ≤ 0,
‖

‖

𝐷𝑥𝐅𝑡
𝜖(𝑥; 𝝂)𝛱

𝑐 (𝑥; 𝝂)‖
‖

≤ 𝐾 (𝑥; 𝝂) 𝑒𝛼̄(𝝂,𝑥)|𝑡|, 𝑡 ∈ R.

The random manifold  is called 𝜌-normally hyperbolic if 𝜌 ̄𝛼 < 𝛽.

Under our assumptions in Section 2.2, 𝐅𝑡
0 ∶𝑋 → 𝑋 is a class 𝐶𝑟 deterministic flow map that has a class 𝐶𝑟, 𝜌-normally hyperbolic,

deterministic invariant manifold 0(𝐸) with 𝜌 ≤ 𝑟. (In this case, we have 𝐸𝑢 (𝑥; 𝝂) = ∅, and 𝛼̄ = 𝛼 and 𝛽 = 𝛽 are deterministic
constants in Definition 1.) If 0(𝐸) were invariant, then the main result of Li et al. [34] applied to this setting would yield for
small enough 𝜖 > 0 that 𝐅𝑡

𝜖( ⋅ ; 𝝂) has a unique, class-𝐶𝑟, compact normally hyperbolic invariant manifold ̃ that is 𝐶1-close and
𝐶𝑟-diffeomorphic to 0(𝐸) for all 𝝂 ∈  . Furthermore, ̃ would be normally attracting. We stress that for a general stochastic
differential equations, even small perturbations can lead to large changes in the flow map over short time. For that reason, the
related random invariant manifold results of Li et al. [34] would only apply because we assumed uniformly bounded noise.

However, 0(𝐸) is not an invariant (boundaryless) manifold but an inflowing-invariant manifold with boundary, as sketched in
Fig. 1. While Li et al. [34] also prove related additional results for inflowing-invariant manifolds, those results require the manifold
15 
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to be normally repelling. In contrast, 0(𝐸) is normally attracting, which makes those additional results Li et al. [34] inapplicable
to our setting without further considerations.

The same issue also arises in the classic persistence theory of normally hyperbolic invariant manifolds with boundary, which is
only applicable to either normally attracting overflowing-invariant manifolds or normally repelling inflowing-invariant manifolds.
This limitation arises from the graph transform method used in proving persistence: the advection of nearby smooth graphs defined
over the unperturbed manifolds under the flow map needs to be a contraction mapping in forward or backward time on the space
of such graphs. Under such advection, however, candidate graphs over normally attracting inflowing invariant manifolds shrink to
urfaces that are no longer graphs over their full initial domains; the same is true near normally repelling overflowing invariant

manifolds in backward time.
To circumvent this issue and still conclude the (nonunique) persistence of the SSM, 0(𝐸), of the deterministic part of the

random ODE in (1) for 𝜖 > 0 small enough, we apply the ‘‘wormhole’’ construct of Eldering et al. [35] to extend 0(𝐸) smoothly
nto a 𝜌(𝐸)-normally hyperbolic, class 𝐶𝑟, normally attracting, compact invariant manifold without boundary. Specifically, we invoke
roposition B1 of Eldering et al. [35], which states that any inflowing-invariant, class 𝐶𝑟, normally attracting, 𝜌-normally hyperbolic

invariant manifold 0 can be extended smoothly so that it becomes a subset of a 𝜌-normally hyperbolic, normally attracting, class
𝐶𝑟 invariant manifold ̂0 without boundary. In addition, the stable foliation of 𝑊 𝑠 (0

)

coincides with that part of the stable
foliation of the extended, boundaryless, normally attracting invariant manifold ̂0. We note that this extension is non-unique and
hence any invariant manifold result applied to ̂0 will unavoidably lose uniqueness when restricted to a statement about 0.

Applying the above random invariant manifold results of Li et al. [34] to a forward- and backward-invariant manifold extension
̂0 of 0(𝐸), we have Definition 1 satisfied for ̂0 with 𝐸𝑢 (𝑥; 𝝂) = ∅, 𝐾 (𝑥; 𝝂) ≡ 𝐾0, 𝛽 (𝝂, 𝑥) ≡ |

|

Re 𝜆𝑑+1||− 𝜈 and 𝛼̄ (𝝂, 𝑥) ≡ |

|

Re 𝜆1||− 𝜈
for some small 𝜈 > 0. The cited results of Li et al. [34] then yield a persisting random invariant manifold ̂𝜖 (𝝂) that is  (𝜖)
𝐶1-close and 𝐶𝜌(𝐸)-diffeomorphic to ̂0. Passing to a subset 𝜖(𝐸; 𝝂) of ̂𝜖(𝝂) that is a graph over 0(𝐸), we finally conclude
he (non-unique) persistence of a normally attracting, class 𝐶𝜌(𝐸) random, inflowing-invariant manifold 𝜖(𝐸;𝜽𝑡(𝝂)) that is  (𝜖)
1-close and 𝐶𝜌(𝐸)-diffeomorphic to 0(𝐸), as claimed in Theorem 1. The  (𝜖) 𝐶1-closeness of the forced SSM to the unforced one
an actually be improved to  (𝜖) 𝐶𝜌(𝐸)-closeness by adding 𝜖 as a dummy variable to the variables over which the unforced SSM
s defined. We finally note that despite the non-uniqueness of the SSM, the Taylor expansion of 𝜖(𝐸;𝜽𝑡(𝝂)) is unique up to order
𝜌(𝐸) in 𝜖.

Appendix B. Deriving the leading order random SSM parametrization

We assume the leading-order SSM parametrization 𝐡1(𝝃;𝜽𝑡(𝝂), 𝜖) to be 𝐶1 in time. We also make explicit the linear change of
oordinates that transforms 𝐀 to the block-diagonal structure Eq. (5), given by

𝐀𝐸 = ((𝐕𝐸 )𝐿)T𝐀(𝐕𝐸 )𝑅, (26)
𝐁 = ((𝐕𝐹 )𝐿)T𝐀(𝐕𝐹 )𝑅,

where we have (𝐕𝐸 )𝑅 ∈ R𝑛×𝑑 and (𝐕𝐸 )𝐿 ∈ R𝑛×𝑑 containing column vectors comprising the right and left eigenvectors associated
with the slow subspace 𝐸. Similarly, (𝐕𝐹 )𝑅 ∈ R𝑛×(𝑛−𝑑) and (𝐕𝐹 )𝐿 ∈ R𝑛×(𝑛−𝑑) comprise the right and left eigenvectors associated with
the remaining (𝑛 − 𝑑)-dimensional fast subspace 𝐹 . The linear coordinate change and its inverse between the phase space variable
𝐱 and the modal coordinates is

(

𝝃
𝜼

)

=
[

((𝐕𝐸 )𝐿)T

((𝐕𝐹 )𝐿)T

]

𝐱, 𝐱 =
[

(𝐕𝐸 )𝑅 (𝐕𝐹 )𝑅
]

(

𝝃
𝜼

)

. (27)

We also choose orthonormal slow left and right eigenvectors such that ((𝐕𝐸 )𝐿)T(𝐕𝐸 )𝑅 = I𝑑 .
Let us denote the random SSM parametrization in the phase space by

𝐱 = 𝐰𝜖(𝝃;𝜽𝑡(𝝂)) = 𝐰0(𝝃) + 𝜖𝐰1(𝝃;𝜽𝑡(𝝂), 𝜖). (28)

This is related to the SSM parametrization in modal coordinates as
(

𝝃
𝐡𝜖(𝝃;𝜽𝑡(𝝂))

)

=
[

((𝐕𝐸 )𝐿)T

((𝐕𝐹 )𝐿)T

]

𝐰𝜖(𝝃;𝜽𝑡(𝝂)). (29)

Differentiating Eq. (28) with respect to time and expressing 𝐱̇ from the governing equations, we obtain the invariance equation
for the random SSM in the form

(

𝐃𝝃𝐰0(𝝃) + 𝜖𝐃𝝃𝐰1(𝝃;𝜽𝑡(𝝂), 𝜖)
)

𝝃̇ + 𝜖𝐰̇1(𝝃;𝜽𝑡(𝝂), 𝜖) =
𝐀𝐰𝜖(𝝃;𝜽𝑡(𝝂)) + 𝐟0

(

𝐰𝜖(𝝃;𝜽𝑡(𝝂))
)

+ 𝜖𝐠
(

𝐰𝜖(𝝃;𝜽𝑡(𝝂)),𝜽𝑡(𝝂)
)

. (30)

Substituting Eq. (12) for 𝝃̇ and collecting terms to 𝑂(𝜖), we obtain the invariance equation at this order as

𝐃𝝃𝐰0(𝟎)𝐠𝝃
(

𝟎, 𝟎,𝜽𝑡(𝝂)
)

+ 𝐰̇1
(

𝟎;𝜽𝑡(𝝂), 0
)

= 𝐀𝐰1
(

𝟎;𝜽𝑡(𝝂), 0
)

+ 𝐠
(

𝟎,𝜽𝑡(𝝂)
)

. (31)

We choose to calculate the SSM parametrization as a graph over the slow subspace 𝐸. The local tangency of the unforced SSM to
𝐸 at the equilibrium implies 𝐃𝝃𝐰0(𝟎) = (𝐕𝐸 )𝑅. We also choose the leading-order forcing term for the random reduced ODE (12) to
be the projection of the full random forcing onto 𝐸, which implies that at 𝑂(𝜖), we have

( 𝑡 ) T ( 𝑡 )
𝐠𝝃 𝟎, 𝟎,𝜽 (𝝂) = ((𝐕𝐸 )𝐿) 𝐠 𝟎,𝜽 (𝝂) . (32)
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These two choices uniquely define the invariance equation satisfied by the leading-order SSM parametrization 𝐰1. Indeed,
substituting for these choices in Eq. (31), we arrive at a unique linear inhomogeneous ODE for 𝐰1,

𝐰̇1
(

𝟎;𝜽𝑡(𝝂), 0
)

= 𝐀𝐰1
(

𝟎;𝜽𝑡(𝝂), 0
)

+
(

I𝑛 − (𝐕𝐸 )𝑅((𝐕𝐸 )𝐿)T
)

𝐠
(

𝟎,𝜽𝑡(𝝂)
)

. (33)

This equation has the general solution

𝐰1
(

𝟎;𝜽𝑡(𝝂), 0
)

=𝑒𝐀(𝑡−𝑡0)𝐰1
(

𝟎;𝜽𝑡0 (𝝂), 0
)

(34)

+ ∫

𝑡

𝑡0
𝑒𝐀(𝑡−𝑠)

(

I𝑛 − (𝐕𝐸 )𝑅((𝐕𝐸 )𝐿)⊤
)

𝐠 (𝟎,𝜽𝑠(𝝂)) 𝑑 𝑠. (35)

If we further assume that the spectrum of 𝐀 is real negative and the coefficients are uniformly bounded, the limit 𝑡0 → −∞ gives us
n unique globally bounded asymptotic expression for 𝐰1,

𝐰1
(

𝟎;𝜽𝑡(𝝂), 0
)

= ∫

𝑡

−∞
𝑒𝐀(𝑡−𝑠)

(

I𝑛 − (𝐕𝐸 )𝑅((𝐕𝐸 )𝐿)T
)

𝐠 (𝟎,𝜽𝑠(𝝂)) 𝑑 𝑠. (36)

Here (𝐕𝐸 )𝑅((𝐕𝐸 )𝐿)T is the oblique projection operator whose range is the slow subspace 𝐸. Expressing this operator as 𝐏𝐸 and using
the linear change of coordinates in Eq. (29), we arrive at the final expression for 𝐡1(𝟎;𝜽𝑡(𝝂), 0),

𝐡1(𝟎;𝜽𝑡(𝝂), 0) = ((𝐕𝐹 )𝐿)⊤ ∫

𝑡

−∞
𝑒𝐀(𝑡−𝑠)

(

I𝑛 − 𝐏𝐸
)

𝐠(𝟎,𝜽𝑠(𝝂))𝑑 𝑠. (37)

Note that Eq. (36) does not require the calculation of the fast eigenvectors and only depends on knowing the slow counterparts.
It also directly gives the result in the physical coordinates 𝐱, unlike Eq. (15). In practice, we will use Eq. (36) to estimate the
leading-order contribution of the random SSM parametrization. We also expect the convolution operation to be dominated by a
small finite set of slowly decaying modes outside 𝐸 when estimating the action of 𝑒𝐀(𝑡−𝑠) on the projected component of the forcing
along the fast spectral subspace 𝐹 .

Since we have chosen a graph-style parametrization for the SSM that projected the external forcing onto the slow dynamics, we
expect the complementary projection of the forcing to appear in the SSM parametrization to take into account any shifts in the SSM
away from the autonomous equilibrium. Note that I𝑛 −𝐏𝐸 is precisely the oblique projection operator that projects the forcing onto
he remaining (𝑛 − 𝑑) fast linear modes. This suggests that if the forcing vector is nearly tangent to the slow subspace 𝐸 and one

is also only interested in predictions for slow observables, we can ignore this leading order contribution as well. In fact, in both
data- and equation-driven SSM computations this term is ignored due to these reasons and one is still able to achieve good accuracy
in predictions (see Cenedese et al. [21], Axås et al. [22] and Jain and Haller [36]). Also, the smoothness assumption in time for
the parametrization is not unreasonable as we can always numerically view continuous random signals as smooth interpolations of
he dataset representing them. For all the forcing vectors and forcing magnitudes in our examples (see Section 3), we found the

leading-order contribution to be negligible. This indicates that the forcing vectors were nearly tangent to the slow subspace 𝐸, in
which case one can, in fact, ignore this contribution and still obtain accurate predictions.

Appendix C. Spectral density for linear systems

Consider the randomly forced linear, time-invariant, multi-degree-of-freedom system

𝐌𝐪̈ + 𝐂𝐪̇ +𝐊𝐪 = 𝐩(𝑡).

By taking the Fourier transform of the above equation, we obtain the energy transfer function in the frequency domain as

𝐇(𝜔) = [−𝜔2𝐌 + 𝑖𝜔𝐂 +𝐊]−1.

If we assume the spectral density matrix of the random forcing 𝐩(𝑡) is Φ𝐩, we can explicitly calculate the spectral density matrix
or 𝐪 as

Φ𝐪(𝜔) = 𝐇(𝜔)Φ𝐩(𝜔)𝐇⋆(𝜔). (38)

When the system is one-dimensional, this relationship simplifies to Φ𝐪(𝜔) = ‖𝐇(𝜔)‖2Φ𝐠(𝜔). For the example in Section 3.1, we
use the above relation to analytically compute the output response when the system is assumed to be linear. For the example, in
Section 3.2, where we apply a reflective boundary for the Itô process, no analytic relationship of the type (38) is available for the
linear system, but one can still use this formula as an approximation for the linear response. This also applies to the example in
Section 3.3, where we sample from a truncated Gaussian distribution. In this case, although the linear relation is not exact, it serves
as a good estimate to capture the overall trend. Lastly, for the example in Section 3.4, not even an approximate analytic relationship
is available for the spectrum of the linear response, which prompts us to use Monte Carlo simulations to obtain the linear response.

Data availability

The codes to generate our results are available on the open-source MATLAB software SSMTool.
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