

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  JUNE 12 2023

Nonlinear model reduction to fractional and mixed-mode
spectral submanifolds
Special Collection: Nonlinear Model Reduction From Equations and Data

George Haller   ; Bálint Kaszás  ; Aihui Liu  ; Joar Axås 

Chaos 33, 063138 (2023)
https://doi.org/10.1063/5.0143936

 04 July 2023 11:33:44

https://pubs.aip.org/aip/cha/article/33/6/063138/2895984/Nonlinear-model-reduction-to-fractional-and-mixed
https://pubs.aip.org/aip/cha/article/33/6/063138/2895984/Nonlinear-model-reduction-to-fractional-and-mixed?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cha/article/33/6/063138/2895984/Nonlinear-model-reduction-to-fractional-and-mixed?pdfCoverIconEvent=crossmark
https://pubs.aip.org/cha/collection/1211/Nonlinear-Model-Reduction-From-Equations-and-Data
javascript:;
https://orcid.org/0000-0003-1260-877X
javascript:;
https://orcid.org/0000-0002-2024-9079
javascript:;
https://orcid.org/0000-0002-0039-1713
javascript:;
https://orcid.org/0000-0002-6840-9297
javascript:;
https://doi.org/10.1063/5.0143936
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2100974&setID=592934&channelID=0&CID=768787&banID=521069223&PID=0&textadID=0&tc=1&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1688470424937330&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0143936%2F17996212%2F063138_1_5.0143936.pdf&hc=1c9f50fcadd20a516de309a91f17a700a20d754f&location=


Chaos ARTICLE scitation.org/journal/cha

Nonlinear model reduction to fractional
and mixed-mode spectral submanifolds

Cite as: Chaos 33, 063138 (2023); doi: 10.1063/5.0143936

Submitted: 27 January 2023 · Accepted: 18May 2023 ·
Published Online: 12 June 2023 View Online Export Citation CrossMark

George Haller,a) Bálint Kaszás, Aihui Liu, and Joar Axås

AFFILIATIONS

Institute for Mechanical Systems, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland

Note: This paper is part of the Focus Issue on Nonlinear Model Reduction From Equations and Data.
a)Author to whom correspondence should be addressed: georgehaller@ethz.ch

ABSTRACT

A primary spectral submanifold (SSM) is the unique smoothest nonlinear continuation of a nonresonant spectral subspace E of a dynamical
system linearized at a fixed point. Passing from the full nonlinear dynamics to the flow on an attracting primary SSM provides a mathemati-
cally precise reduction of the full system dynamics to a very low-dimensional, smooth model in polynomial form. A limitation of this model
reduction approach has been, however, that the spectral subspace yielding the SSM must be spanned by eigenvectors of the same stability
type. A further limitation has been that in some problems, the nonlinear behavior of interest may be far away from the smoothest nonlinear
continuation of the invariant subspace E. Here, we remove both of these limitations by constructing a significantly extended class of SSMs
that also contains invariant manifolds with mixed internal stability types and of lower smoothness class arising from fractional powers in
their parametrization. We show on examples how fractional and mixed-mode SSMs extend the power of data-driven SSM reduction to tran-
sitions in shear flows, dynamic buckling of beams, and periodically forced nonlinear oscillatory systems. More generally, our results reveal
the general function library that should be used beyond integer-powered polynomials in fitting nonlinear reduced-order models to data.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143936

Extraction of reduced-order models for dynamical systems known
only from data has been receiving significant interest in multi-
ple physical disciplines. Most current approaches fit either neural
networks or linear systems to the data. The former approach
tends to produce overly complex and non-interpretable mod-
els with little predictive power outside the range of the training
data. The latter approach is destined to fail over domains of
non-linearizable behavior, such as those with coexisting station-
ary states and transitions between them. Reduction to spectral
submanifolds (SSMs), i.e., special, attracting invariant surfaces
constructed over the strongest modal interactions, is known to
overcome these shortcomings but only under certain assump-
tions on the modes involved. Here, we remove these assumptions
by uncovering a much larger family of SSMs than previously
noted. This family now includes mixed-mode and fractional SSMs
that provide data-driven reduced models for new classes of non-
linearizable physical phenomena. These phenomena include tran-
sitions in fluid flows, buckling of beams, and global dynamics in
externally forced nonlinear mechanical oscillators.

I. INTRODUCTION

Reduced-order modeling seeks to identify a low-dimensional
dynamical system that captures important features of a much higher
(often infinite) dimensional physical system. This problem is too
ambitious to have a general solution and, hence, a number of
approaches with different assumptions have been under develop-
ment. Recent reviews cover a number of these approaches (see, e.g.,
Amsallem et al.1 and Leliévre et al.2) while our focus here is specif-
ically data-driven model reduction, which targets physical systems
defined by data sets rather than equations (see, e.g., the focus issue
by Ghadami and Epureanu3).

Machine learning (ML) methods are broadly used for reduced-
order modeling (Brunton et al.,4 Hartman and Mestha,5 Mohamed,6

Daniel et al.,7 and Calka et al.8) but tend to produce overly com-
plex models that lack physical interpretability and perform poorly
outside their training range (Loiseau et al.9). As an improvement,
physics-inspired machine learning (PIML) seeks to encode physical
features (such as governing equations, symmetries, and conserva-
tion laws) into the learning process (Karniadakis et al.10). Remaining

Chaos 33, 063138 (2023); doi: 10.1063/5.0143936 33, 063138-1

© Author(s) 2023

 04 July 2023 11:33:44

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0143936
https://doi.org/10.1063/5.0143936
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0143936
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0143936&domain=pdf&date_stamp=2023-06-12
https://orcid.org/0000-0003-1260-877X
https://orcid.org/0000-0002-2024-9079
https://orcid.org/0000-0002-0039-1713
https://orcid.org/0000-0002-6840-9297
mailto:georgehaller@ethz.ch
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0143936


Chaos ARTICLE scitation.org/journal/cha

challenges for PIML are the handling of high-frequency features,
application to large-scale examples, and the incorporation of multi-
physics.

A broadly used alternative to ML is the dynamic mode decom-
position (DMD) and its variants, reviewed recently by Schmid.11 The
original DMD algorithm of Schmid12 seeks to fit a linear dynamical
system to a set of observables, while the extended DMD (EDMD) of
Williams et al.13 performs such a fit to a user-specified set of func-
tions defined on those observables. If the observables coincide with
the phase space variables of the system, then DMD can be justified
near fixed points as an approximation to the first-order term in the
spatial expansion of the flow map at the fixed point. In the same set-
ting, EDMD defined with respect to a set of polynomial functions
serves as an approximation of a truncated linearizing transforma-
tion for a dynamical system in a neighborhood of the fixed points.
For more general observables, Koopman operator theory is often
invoked to view EDMD as an attempt to construct special func-
tions of the observables that span an eigenspace of the Koopman
operator (Rowley et al.,14 Budišić et al.,15 and Mauroy et al.16). All
this rationalizes the operational use of DMD or EDMD for continu-
ous or discrete dynamical systems on domains where those systems
exhibit linearizable dynamics. For such problems, DMD and EDMD
are easily implementable, although the efficacy of the latter depends
on the functions of observables used in the procedure.

A number of physical phenomena, however, are fundamentally
non-linearizable over their region of interest given that they dis-
play coexisting isolated stationary states of various stability types,
transitions among them, and bifurcations affecting them. No lin-
earizing coordinate change may ever cover such a range of behaviors
simultaneously, because no linear system can have more than one
isolated stationary state. Most of the interest in data-driven reduced
modeling stems originally from the need to describe, predict, and
control coexisting states and the transitions connecting them, in
problems ranging from transition to turbulence (Avila et al.17) to tip-
ping points in climate (Lenton et al.18). DMD is often proposed for
model reduction in such a non-linearizable setting as well, because
a high-enough dimensional linear dynamical system can always be
fitted with high accuracy to a small number of trajectories of a non-
linear system. Outside the linear range of the system, however, such
a fit simply represents a black-box-type pattern matching with little
predictive power (see, e.g., Cenedese et al.19 for a demonstration of
this on experimental data).

A logical next step toward the reduced modeling of non-
linearizable phenomena is to fit a simple, low-dimensional nonlinear
differential equation to a small set of observables via regression. The
resulting algorithm, the sparse identification of nonlinear dynamics
(or SINDy; Brunton et al.20), has been an influential tool for identi-
fying low-dimensional systems whose nonlinearities are expected to
fall in specific (typically polynomial) function classes. For unsteady
dynamics with a priori unknown dimensionality and nonlineari-
ties, however, the inherent sensitivities of this approach limit its
applicability. Recently, model reduction approaches based on man-
ifold learning have also been proposed (Floryan and Graham21 and
Farzamnik et al.22). These methods can be very effective in locat-
ing candidate surfaces for model reduction operationally, without
identifying the underlying dynamics of the phase space that cre-
ates those surfaces manifolds. It remains, therefore, unclear if these

manifolds are robust under parameter changes or under the addition
of external, time-dependent forcing.

A recent alternative to these model reduction methods is reduc-
tion to spectral submanifolds (SSMs), which were defined by Haller
and Ponsioen23 as the unique smoothest invariant manifolds of a
continuous or discrete nonlinear system that are tangent and locally
diffeomorphic to the spectral subspaces of the linearization of the
system at a fixed point. Therefore, the internal dynamics of attract-
ing SSMs constructed over the slowest set of eigenspaces provides a
perfect, mathematically justifiable reduced-order model for a large
set of trajectories. SSMs can cut through the boundaries of the
domain of attraction of a fixed point and hence can carry non-
linearizable dynamics. These invariant manifolds, termed nonlinear
normal modes (NNMs) at the time, were first envisioned and for-
mally computed in seminal work by Shaw and Pierre24 on nonlinear
mechanical vibrations. The existence of such manifolds was later
proved rigorously under nonresonance conditions even for infinite-
dimensional systems by Cabré et al.,25 who also showed the SSMs
are unique in a high enough smoothness class. Automated compu-
tations of SSMs and their reduced dynamics for large finite-element
problems are now available via the open source package SSMTool of
Jain and Haller,26 whereas an automated data-driven extraction of
SSMs from arbitrary sets of observables can be carried out via the
open source SSMLearn and fastSSM developed by Cenedese et al.19

and Axås et al.27

Applications of data-driven SSM-reduction in mechanical sys-
tem identification and control of soft robots show strong perfor-
mance of this approach in the domain of non-linearizable behavior
(see Cenedese and Haller28, Alora et al.29 and Kaszás et al.30). Based
on their mathematical construction, SSMs are also known to be
robust with respect to parameter changes and the addition of exter-
nal periodic or quasiperiodic forcing. The latter property enables
them to predict experimentally observed forced response based
solely on unforced training data (see Cenedese and Haller28,31) and
closed-loop response based on open-loop training data in applica-
tions to control (Alora et al.29).

There have been, however, two main limitations in the under-
lying SSM theory that have been hindering the application of SSM
reduction to some other important problems. First, the spectral sub-
space underlying the SSM had to be of like-mode type, i.e., spanned
by eigenvectors of the same stability type, which does not hold for
important transitions among exact coherent states in turbulence
(see, e.g., Hof et al.32 and Graham and Floryan33). Similar, mixed-
mode connections are also known to exist in the dynamic buckling
of structures (Abramovich34) and dissipation induced instabilities of
gyroscopic systems (Krechetnikov and Marsden35). A further limita-
tion has been that in problems with long transitions among different
steady states, the actual transition manifold may divert substantially
from the SSM defined as the smoothest nonlinear continuation of
the invariant subspace E. In that case, an approximate polynomial
reduced model will fail to signal the target of the transition. Beyond
transitions in Couette flows (Kaszás et al.30), this limitation also cre-
ates an issue with certain constructs in renormalization group theory
(Li et al.36), as noted by de la Llave.37

Here, we remove both of these limitations for generic finite-
dimensional dynamical systems. Specifically, we construct explicit
parametrizations for a significantly extended class of SSMs that also
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contains invariant manifolds with mixed internal stability types and
of lower smoothness class that arises from fractional powers in their
parametrization. For both continuous and discrete dynamical sys-
tems, we derive these representations explicitly near hyperbolic,
nonresonant, and semisimple fixed points. These three conditions
may certainly be violated in small analytic examples with symme-
tries, but all of them will hold generically in datasets of physical
systems. Importantly, resonances arising from repeated eigenvalues
are not excluded by our results. Via the construct of Poincaré maps,
the secondary SSMs obtained for maps imply the existence of such
manifolds around periodic orbits of continuous dynamical systems.

Beyond the realm of SSM reduction, the specific fractional-
powered representations we derive for the full SSM family should
be useful for other data-driven model reduction methods, such
as EDMD. Indeed, all methods fitting dynamical systems to data
have exclusively been using integer-powered polynomial functions.
Here, we show what fractional powers will also appear generically
in reduced-order models up to a given order of truncation. Using
these additional fractional terms in the fit enables one to keep the
order of the polynomial model relatively low and, hence, mitigate
large derivatives in the model and spurious oscillations in the SSM
in larger distances from the origin. We also discuss normal forms
for the reduced dynamics in fractional SSMs, which have not been
treated in the literature.

In Sec. II, we outline two simple, low-dimensional examples
that illustrate the need for extending the prior theory of primary
SSMs. In Sec. III, we state our main results for continuous dynam-
ical systems along with several remarks on their interpretation
and application. The proofs are lengthy and involve detailed cal-
culations, which prompts us to relegate them to appendixes of
a separate supplementary material. Section IV reformulates the
same results for discrete dynamical systems. Section V develops a

normal form theory for fractional reduced-order models on slow
two-dimensional SSMs, which is the most frequent setting for dis-
sipative mechanical systems exhibiting underdamped oscillatory
behavior. Section VI discusses three examples of data-driven model
reduction to fractional and mixed-mode SSMs arising in three phys-
ical problems: transition in Couette flows, dynamic buckling of a von
Kármán beam, and transition in a forced nonlinear oscillator sys-
tem. The first two examples involve autonomous systems, whereas
the last example involves non-autonomous dynamics.

II. TWO MOTIVATING EXAMPLES

Consider the planar system of ODEs

ẋ = x(y − b),

ẏ = cy(x − a),
(1)

with the parameters a, b, c > 0. This system has two fixed points: a
stable node x0 = (0, 0) and a saddle-type fixed point at x1 =

(

a, b
)

.
Also note that both the x and the y axes are invariant lines. A rep-
resentative phase portrait of (1) for a = b = 1 and c = 2.5 is shown
in Fig. 1(a). This phase portrait mimics the geometry of a number of
important transition problems in fluids, such as transitions between
stationary states in Couette flows (see, e.g., Page and Kerswell38) and
transitions to turbulence in pipe flow (see, e.g., Skufca et al.39). In
the latter context, the saddle point mimics an exact coherent state
(ECS) and its stable manifold models the edge of chaos, the border
between laminar and turbulent behavior. An important objective of
reduced-order modeling in these flows is to forecast whether specific
initial conditions decay to the origin or move toward the interior of
the turbulent region.

FIG. 1. Simple examples illustrating the need to extend the primary SSMs used in nonlinear model reduction to a more general family of invariant manifolds (a) The phase

portrait of system (1) for a = b = 1 and c = 2.5. (b) The phase space geometry of system (2) for k =
√
2/2, a = 0.5, and c = 0.2.

Chaos 33, 063138 (2023); doi: 10.1063/5.0143936 33, 063138-3

© Author(s) 2023

 04 July 2023 11:33:44

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

A Galerkin projection onto POD modes does not produce a
feasible reduced-order model for this simple problem, as we show in
Appendix A of the supplementary material. Linear data-driven tech-
niques, such as DMD and its variants (Schmid11), are clearly unable
to capture simultaneously the two fixed points and the orbit con-
necting them, as was explicitly illustrated for Couette flows by Page
and Kerswell.38

The slow SSM of the origin, i.e., the unique smoothest nonlin-
ear continuation of the slower eigenspace, is the x axis, on which the
reduced dynamics is ẋ = −bx. This gives a correct reduced-order
model for the asymptotic behavior of all trajectories in the domain
of attraction of the origin, yet fails to provide any information about
the truly nonlinear dynamics. This is undesirable as both the coexist-
ing saddle point and the separatrixM connecting it to the origin can
be brought arbitrarily close to the origin by selecting small enough
values for the parameters a and b.

A simple calculation reveals that any trajectory of the linear

part of (1) can be written as a graph y = K |x| ac
b for some choice of

the parameter K ∈ R. This suggest that the manifold M containing
the two fixed points may also just be

[
ac
b

]

times differentiable at the
origin, with the brackets referring to the integer part of a real num-
ber. Our first main objective in this paper is to establish the general
existence and smoothness of secondary SSMs like M in nonlinear
dynamical systems and obtain data-driven reduced models on such
manifolds. These SSMs, however, turn out to lie outside the scope
of usual equation- and data-driven approximation methods that use
polynomials with integer powers. As we will see for this example in
Appendix A of the supplementary material, use of fractional SSMs
enables the data-driven construction for an accurate 1D reduced-
order model for trajectories near the transition orbit. Additionally,
we will show for the planar Couette flow in Sec. VI that the use of
fractional SSMs increases the accuracy of the SSM-reduced model
without the inclusion of higher-order terms in that model.

As a second example, consider the system

ẋ1 = x2,

ẋ2 = x1 − cx2 − x3
1,

ẋ3 = −kx3 + kax2
1 + 2ax1x2,

(2)

for which M =
{

x ∈ R
3 : x3 = ax2

1

}

is a unique, two-dimensional
(2D), attracting C∞ invariant manifold that is tangent to the x3 = 0
spectral subspace. Within this manifold, the restricted dynamics is
just that of a damped Duffing oscillator with two stable spirals and
one saddle point at the origin, as shown in Fig. 1(b).

The x3 = 0 spectral subspace contains both a stable and an
unstable eigenvector of the origin, and hence the results of Cabré
et al.25 are not applicable to conclude the existence of M purely
based on the spectrum of the linearized ODE at the origin. The
more classic result of Irwin on pseudo-unstable manifolds (de la
Llave and Wayne40) does not apply for the parameter values used
in Fig. 1 (see Appendix B of the supplementary material). Our sec-
ond main objective in this paper is to derive reduced-order models
on secondary SSMs such asM in Fig. 1(b). As we will see in Sec. VII,
an important physical application of such mixed-mode SSMs is the
reduced-order modeling of dynamic buckling of beams.

III. GENERALIZED SSMs NEAR FIXED POINTS OF

AUTONOMOUS DYNAMICAL SYSTEMS

We consider a smooth system of n-dimensional ODEs of the
form

ẋ = Ax + f(x), x ∈ R
n, A ∈ R

n×n,

f = O
(

|x|2
)

∈ C∞, 1 ≤ n < ∞, (3)

and assume that its fixed point at x = 0 is hyperbolic, i.e., the
spectrum spect (A) = {λ1, . . . , λn} of A satisfies

0 /∈ Re
[

spect (A)
]

, (4)

with Re
[

spect (A)
]

denoting the real part of the spectrum of the
linear operator A. We note that the C∞ assumption on f can
be relaxed to finite smoothness if Re

[

spect (A)
]

⊂ (−∞, 0) or

Re
[

spect (A)
]

⊂ (0, ∞) holds [see statement (v) of Theorem 1]. We
also note that our results in Sec. IV will also allow for the addition of
small time-periodic forcing term to (3) (see Remark 10).

We further assume that A is semisimple, i.e., the geometric and
algebraic multiplicities of any potentially repeated eigenvalue of A
are equal. This is generally true for physical oscillatory systems in
which possible repeated eigenvalues arise from symmetry and hence
each eigenvalue has its own associated oscillatory mode generated by
an independent eigenvector. We finally assume that with the excep-
tion of possible 1 : 1 resonances created by repeated eigenvalues of
A, there are no further resonances within spect (A), i.e., we have

λj 6=
n
∑

k=1

mkλk, mk ∈ N,

n
∑

k=1

mk ≥ 2, j = 1, . . . , n. (5)

While these nonresonance conditions will typically hold for
generic parameter configurations of typical dissipative systems, they
can easily fail on simple toy examples with non-generic parame-
ter choices. For instance, a simple 2D saddle-type fixed point with
eigenvalues λ1 = −1 and λ2 = 1 will violate infinitely many of the
conditions (5) for j = 1, m1 = m2 + 1 and j = 2, m2 = m1 + 1. The
main motivation for the present paper is the data-driven modeling
of dissipative physical systems in which such exceptional parame-
ter configurations are unlikely. We stress, however, that repeated
eigenvalues arising from a physical symmetry are not excluded by
conditions (5).

We now select and fix an arbitrary spectral subspace E ⊂ R
n of

A and seek to find its nonlinear continuation in the full system (3).
In practical terms, we are interested in nonlinear interactions along
which all modes can be enslaved to a set of linear master modes
spanning E. We assume that spect (A|E) contains p purely real eigen-
values and q pairs of complex conjugate eigenvalues. Similarly, we
assume that spect (A) − spect (A|E) contains r purely real eigenval-
ues and s pairs of complex conjugate eigenvalues. In that case, after
a linear change of coordinates, we can assume a partition of the x
coordinate in the form

x =
(

u,
(

a1, b1

)

, . . . ,
(

aq, bq

)

, v,
(

c1, d1

)

, . . . ,
(

cs, ds

))

∈ R
p
R

2 × . . . × R
2

︸ ︷︷ ︸

q

×R
r × R

2 × . . . × R
2

︸ ︷︷ ︸

s

, (6)
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with p + 2q + r + 2s = n, in which the coefficient matrix A of the
linear part of system (3) takes its real Jordan canonical form

A = diag
[

A, B1, . . . , Bq, C, D1, . . . , Ds

]

, (7)

with

A = diag
[

λ1, . . . , λp

]

∈ R
p×p, Bk =

(

αk −ωk

ωk αk

)

∈ R
2×2,

k = 1, . . . , q,
(8)

C = diag [κ1, . . . , κr] ∈ R
r×r, Dm =

(

βm −νm

νm βm

)

∈ R
2×2,

m = 1, . . . , s.

Some of the eigenvalues λj, αk + iωk, κ` and βm + iνm in the spec-
trum of A may be repeated, as 1 : 1 resonances are allowed by the
nonresonance conditions (5).

Our main result is the simplest to state in complexified coordi-
nates. To this end, we introduce the variables

z = a + ib ∈ C
q, w = c + id ∈ C

s, (9)

and the piecewise constant functions

K`j(ζ ) =
{

K+
`j ζ > 0,

K−
`j ζ ≤ 0,

Omj(ζ ) =
{

O+
mj ζ > 0,

O−
mj ζ ≤ 0,

(10)

with constant families K±
`j ∈ R and O±

mj ∈ C. We also define the
continuous function families

V`(u, z) =
p
∑

j=1

K`j(uj)
∣
∣uj

∣
∣

κ`
λj +

q
∑

k=1

L`k |zk|
κ`
αk , ` = 1, . . . , r,

(11)

Em(u, z) =





p
∑

j=1

Omj(uj)
∣
∣uj

∣
∣

βm
λj +

q
∑

k=1

Qmk |zk|
βm
αk





× e
i

(
∑p

j=1
νm
λj

log|uj|+∑q
k=1

νm
αk

log|zk|
)

, m = 1, . . . , s,

where Qmk ∈ C and

K`j(uj) ≡ 0, if
κ`

λj

< 0, Omj(uj) ≡ 0, if
βm

λj

< 0,

(12)

L`k = 0, if
κ`

αk

< 0, Qmk = 0, if
βm

αk

< 0.

As seen in the proof of our upcoming main theorem, the function
families (11) describe all continuous invariant graphs over E in the
linear part of system (3).

For any positive integer N, any vector e ∈ C
N and any nonneg-

ative integer vector k ∈ N
N, we will use the notation

ek := e
k1
1 e

k2
2 · . . . · e

kN
N ∈ C.

Finally, we will use the notation
∑

2≤monomial order≤K

Mk (u, z) (13)

for expansions involving monomials Mk (u, z) of general positive
(but potentially fractional) powers of u and z. These monomials will
be indexed by a multi-index k ∈ N

p+2q+r+2s but their order (referred
to as monomial order) will be a homogeneous linear function of k,
rather than k itself. We will explicitly write out the monomial order
as functions in simpler settings (see, e.g., Propositions 1 and 2) in
which the notation does not become too involved.

With these definitions, our main result can be stated as follows.
Theorem 1: (i) For any integer order K ≥ 2 of approxima-
tion, there exists a unique set of coefficients hk ∈ C

r+s such that
the full family W (E) of SSMs tangent to the spectral subspace
E of the nonlinear system (3) can locally be written near the
origin as
(

v
w

)

= G(u, z) =
(

V(u, z)
E(u, z)

)

+
∑

2≤monomial order≤K

hkuk1zk2 z̄k3Vk4Ek5 Ēk6

+ o
(

|(u, z)|K
)

,

(14)

k1 ∈ N
p, k2, k3 ∈ N

q, k4 ∈ N
r, k5, k6 ∈ N

s,

k = (k1, k2, k3, k4, k5, k6) ,

where V(u, z) ∈ R
r and E(u, z) ∈ C

s are defined via formulas
(11), with K`j, Omj, L`k, and Qmk satisfying the constraints (12)
but otherwise chosen arbitrarily.

(ii) The reduced dynamics on the individual members of the family
W (E) are given by

(

u̇
ż

)

=








A 0 0 0
0 B1 0 0

0 0
. . . 0

0 0 0 Bq








(

u
z

)

+ f(u,z) (u, z,G(u, z)) , (15)

where f(u,z) denotes the (u, z) coordinate component of
f =

(

f (u,z), f v, fw
)

.
(iii) If

κ`

λj

< 0,
βm

λj

< 0,
κ`

αk

< 0,
βm

αk

< 0 (16)

hold for all values of the indices j, k, `, and m, then W (E) is
unique and of class C∞. Otherwise, W (E) is a family of non-
unique SSMs whose typical member is of smoothness class Cη

with

η = Int

[
+

min
j,k,`,m

{
κ`

λj

,
βm

λj

,
κ`

αk

,
βm

αk

}]

. (17)

Here the Int refers to the integer part of a positive number and
min+ refers to a minimum of the positive elements of a list of
numbers that follow. Even in that case, however, there exists a
unique member W∞(E) of the SSM family that is of class C∞

and satisfies K±
`j ≡ O±

mj = L`k = Qmk = 0 for all j, k, `, and m in

Eq. (11).
(iv) If system (14) is CR in a parameter vector µ ∈ R

P, then W (E)

is also CR in µ.
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(v) If the function f only has finite smoothness, i.e., f = O
(

|x|2
)

∈ Cρ and Re λj has the same nonzero sign for all j = 1, . . . , N,
then statements (i)–(iv) still hold for all K ≤ ρ.

(vi) If the function f is analytic in a neighborhood of the origin and
Re λj has the same nonzero sign for all j = 1, . . . , N, then the
series expansion (14) converges near the origin as K → ∞.

Proof. See Appendix C of the supplementary material. �

Remark 1: (Relation to primary SSMs) We note that to
obtain classical stable and unstable manifolds as well as the primary
(smoothest) SSMs defined by Haller and Ponsioen,23 all constants
K`j, Omj, L`k, and Qmk in the definitions (11) have to be set to zero
and the signs of all λj and αk involved must be the same. In contrast,
the full family of invariant manifolds covered by Theorem 1 is signif-
icantly larger and includes secondary (fractional and mixed-mode)
SSMs. The existing open-source SSMLearn package of Cenedese
et al.41 can be used to compute primary mixed-mode SSMs as well,
even though the SSM theory originally supporting that package
was only available for fixed points that are asymptotically stable in
forward or backward time. This is because the integer-powered poly-
nomial expansions for mixed-mode SSMs satisfy the same type of
invariance equations as their like-mode counterparts and hence can
be approximated from data in the same fashion.

Remark 2: (Relation to non-linearizable dynamics) Incre-
asing K in the general formula (14) generally decreases the size of
the open neighborhood of the origin in which this representation of
the SSM family is valid. Specifically, in the limit of K → ∞, only the
part of the SSM family W (E) is captured by formula (14) that car-
ries linearizable dynamics, given that the main tool used in obtaining
this asymptotic limit of this formula is the C∞ linearization result of
Sternberg.42 In contrast, using a finite K in a data-driven identifica-
tion of W (E) enables the accurate approximation of SSMs on larger
domains containing non-linearizable dynamics, such as coexisting
isolated compact invariant sets and transitions among them. We will
illustrate this on specific examples in Secs. VI–VIII.

Remark 3: (Resonances) As noted after formula (5), 1 : 1 res-
onances are allowed among the eigenvalues of A by the assumptions
of Theorem 1. For other resonances, the nonresonance condition
(5) is substantially less restrictive than what one might be used to
in the classical vibrations literature. For instance, 2λ1 = 3λ2 satisfies
condition (5) and hence is not a resonance in our discussion unless
further matches arise with the remaining eigenvalues, which has low
probability in a physical system. Similarly, the case Imλ1 = 3Imλ2

is considered a 1 : 3 frequency-resonance in the nonlinear vibra-
tions literature, but it is only a resonance in the sense of formula
(5) if we also have the same resonance between the decay rates of
the two corresponding modes, i.e., Reλ1 = 3Reλ2 holds simultane-
ously. This is again highly unlikely for a physical system, especially
in a data-driven setting. If eigenvalue relations violating (5) do need
to be considered for some reason, then primary, like-mode SSMs
defined over spectral subspaces incorporating the resonant eigen-
vectors still exist by the theory of Cabré et al.25 (see Li et al.43,44

for specific examples). Finally, under resonances of order
∑n

k=1 mk

> K, formula (14) still provides an expression for an approximately
invariant manifold with invariance error of o

(

|(u, z)|K
)

. This fol-
lows from the fact that a finite polynomial (and hence analytic)
transformation linearizing the system up to order K still exists.
In a data-driven setting, such a small error in locating invariant

manifolds is generally unavoidable for higher values of K even in
the absence of resonances.

Remark 4: (Constraints on parameters) The constraints on
the parameters in (12) are relevant when the stability types of the
eigenvectors aligned with v` are the opposite of those aligned with uj

or zk, in which case any non-flat invariant graph over E blows up at
the origin. If contrast, if κ`

λj
> 0 and κ`

αk
> 0 hold, then any nonzero

K±
`j and L`k are allowed in expression (11).

Remark 5: (Generic smoothness in theW (E) family) State-
ment (iii) of Theorem 1 specifies the order η of differentiability of
a generic fractional SSM in the family of W (E). For such generic
members of the family, all coefficients appearing in the definition
(11) of the functions V and E are nonzero. Nongeneric subfamilies
of the W (E) family will have higher smoothness classes equal to the
integer part of one of the positive members in the list of quotients in
formula (17). However, as we illustrate in Fig. 2 on a specific case,
these nongeneric subfamilies form measure zero, nowhere dense
subsets of the full W (E) family.

Finally, by their construction in the proof of Theorem 1,
generic members of the fractional SSM family W (E) guaranteed by
statement (i) of the theorem are actually always of class C∞ away
from the origin. At the origin, their Hölder smoothness class is Cη,α

for some 0 ≤ α < 1.
Remark 6: [Use of piecewise constant coefficients] The use

of the piecewise constant functions (10) enables us to pair up arbi-
trary positive and negative branches of fractional SSMs to obtain a
single, continuous invariant manifold. This is illustrated in Fig. 3 for
the linear part of system (3), which already exhibits the same geom-
etry. Replacing the function K`j(uj) simply with a single constant
K`j is possible but limits the general family of graphs to symmetric
ones, as seen in Fig. 3. The same observation is valid for the function
Omj(uj).

Remark 7: (Data-driven construction of fractional and
mixed-mode SSMs) Primary mixed-mode SSMs require no detailed
information on the spectrum of A outside their underlying spectral

FIG. 2. Various members of the SSM familyW(E) in the case of j = 1 , k = 0,
` = 1, and m = 0, shown after a C∞ linearizing transformation near the ori-
gin has been performed (see the proof of Theorem 1). W∞(E) = E: unique
member of smoothness class C∞ ; W1(E): generic member of smoothness

class Cη ;W2(E): nongeneric member of smoothness class CInt [κ1/λ1] ;W3(E):

nongeneric member of class CInt [κ2/λ1] .
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FIG. 3. Infinitely many invariant graphs (fractional SSMs) of smoothness class

C
int

[

κ`
λj

]

pass through any point of the (uj , v`) plane in the linear part of system (3).

The symmetric members of this family are of the form v` = K`j

∣
∣uj
∣
∣

κ`
λj while the

asymmetric members are of the general form v` = K`j(uj)
∣
∣uj
∣
∣

κ`
λj . The single C∞

invariant graph (primary SSM) over the uj axis is the uj axis itself.

eigenspaces. For this reason, mixed-mode SSMs can be directly con-
structed from data featuring decaying nonlinear oscillations near E
via the open source Matlab codes SSMLearn and fastSSM developed
by Cenedese et al.19 and Axås et al.27 (see https://github.com/haller-
group). In contrast, the construction of fractional SSMs requires
decay-rate information both inside and outside E, the latter of which
is not immediately recognizable from decaying oscillation data near
E. In Sec. IX, we mention a few data-driven strategies to obtain
this spectral information external to E. Once this information is
available, the construction of mixed-mode SSMs follows the same
algorithm used in SSMLearn and fastSSM but with the fractional-
powered terms added to the integer-powered representation of the
invariant manifolds. If, however, some of the fractional powers
appearing in the formulas (11) are close to integers, then those frac-
tional terms are advisable to omit in a data-driven construction of
the SSM to avoid an overfit. All these steps in a data-driven imple-
mentation of Theorem 1 are currently under development and will
appear elsewhere. In all our upcoming examples in Secs. VI–VIII,
we obtain linear spectral information outside E from the governing
equations but construct the fractional and mixed-mode manifolds
in a data-driven fashion, using only numerically generated solutions
of those governing equations.

Remark 8: (Uniqueness of invariant manifolds) The C∞

linearizing conjugacies of Sternberg42 used in proving Theorem 1
are only known to be unique under the assumptions of statement
(v) of the theorem (Kvalheim and Revzen45). This, however, does not

affect the uniqueness of W∞(E) or the uniqueness of the members
of the full SSM family W(E). Indeed, as members of W(E) provide
a well-defined foliation by invariant surfaces of a full neighbor-
hood of the origin under a given C∞ linearizing conjugacy, another
C∞ linearization conjugacy cannot change the elements and their
smoothness in this foliation without violating their invariance. Only
the specific parametrization of the fractional and primary SSMs in
W(E) can change when one picks another linearizing conjugacy.
This is also the reason behind the uniqueness of W (E) in statement
(iii), given that conditions (16) cause the linearized system to have a
unique continuous invariant manifold (E itself) that is tangent to E
at the origin and has the same dimension as E. This manifold then
has the same unique C∞ preimage under any C∞ linearizing trans-
formation, and hence the correspondingW (E) is a unique manifold
in the nonlinear system (2).

Remark 9: (Choice of the dimension of the SSM) Theorem 1
provides a hierarchical chain of SSM families, W (E1) ⊂ W (E2)

⊂ . . . ⊂ W (En−1), with each family acting as a nonlinear, invariant
continuation of a corresponding spectral subspace in the hierarchi-
cal chain E1 ⊂ E2 ⊂ . . . ⊂ En−1 of spectral subspaces. In applica-
tions, the asymptotic dynamics are generally captured by the slowest
family W (E1) of these SSM families. If predictions are required for
shorter time scales as well, one can gradually increase the size of the
family by considering W (Ek) under increasing k. This procedure
includes more and more of the transient dynamics while keeping
the core asymptotic dynamics unchanged. One reason for consider-
ing W (Ek) with k > 1 in a data-driven setting is if the data show
significant interaction of the first mode with higher modes up to
order k. In most practical applications of SSMs with larger spec-
tral gaps, however, including the lowest-order primary SSM suffices
(see Cenedese et al.19 and Cenedese et al.46). A similar experience
is emerging from applications of SSMs in model-predictive con-
trol of soft robots, where a two-dimensional SSM constructed along
each spatial degree of freedom already provides a highly accurate
reduced-order model (see Alora et al.29).

The simplest case in applications is wherein E is 1D (p = 1,
q = 0), and there are also r further non-oscillatory modes of the
same stability type (s = 0). For that case, Theorem 1 takes the
following more specific form.

Proposition 1: Assume that p = 1, q = 0, and s = 0 hold.
Then, for any integer order K ≥ 2 of approximation, the full fam-
ily W (E) of SSMs tangent to the spectral subspace E of the nonlinear
system (3) can locally be written as

v =
∑

1≤k1+
∑r

`=1 k4`
κ`
λ1

≤K

Ck(u1)u
k1
1 |u1|

∑r
`=1 k4`

κ`
λ1 + o

(

|u1|K
)

, (18)

with the arbitrary, piecewise constant functions Ck(u1) ∈ R
r

satisfying

Ck`(u1) =
{

C+
k` u1 > 0,

C−
k` u1 ≤ 0,

C±
k` = 0 :

κ`

λ1

< 0 or |k| = 1, k4` 6= 1, ` = 1, . . . , r.
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Proof. See Appendix D of the supplementary material. �

Note that for the primary (smoothest) SSM in the W (E) fam-
ily covered by Proposition 1, there exists a unique parameter vector
sequence Ck with k1 ≥ 2 and k4 = 0.

Another frequent case in practice is wherein E is 2D, carries
oscillations (p = 0, q = 1), and there are also s further oscillatory

modes (r = 0). For that case, Theorem 1 takes the following more
specific form.

Proposition 2: Assume that p = 0, q = 1, and r = 0 hold.
Then, for any integer order K ≥ 2 of approximation, the full fam-
ily W (E) of SSMs tangent to the spectral subspace E of the nonlinear
system (3) can locally be written as

w =
∑

1≤k2+k3+
∑s

m=1(k5m+k6m) βm
α1

≤K

Dkz
k2
1 z̄

k3
1 |z1|

∑s
m=1(k5m+k6m) βm

α1 e
i
∑s

m=1(k5m−k6m) νm
α1

log|z1|
(19)

+ o
(

|z1|K
)

, (20)

k2, k3 ∈ N, k5, k6 ∈ N
s, k =

(

k2, k3, k5, k6

)

,

with the arbitrary constants Dk ∈ C
s satisfying

Dkm = 0 :
βm

α1

< 0 or |k| = 1, k5m 6= 1, m = 1, . . . , s.

Proof. See Appendix D of the supplementary material. �

Note that for the primary SSM W∞(E) in the W (E) family
covered by Proposition 2, there exists a unique parameter vector
sequence Dk with |k| ≥ 2, k5 = k6 = 0.

IV. GENERALIZED SSMs NEAR FIXED POINTS OF

DISCRETE DYNAMICAL SYSTEMS

The techniques and prior results used in the proof of Theorem
1 are also applicable with appropriate modifications to discrete
dynamical systems defined by iterated mappings. This enables us to
derive generalized SSM results for sampled datasets of autonomous
dynamical systems and for the Poincaré maps of time-periodically
forced dynamical systems. The latter extension, in turn, implies the
existence of time-periodic generalized SSMs along periodic orbits of
such systems. We only list the related results for maps in this section
with their proofs relegated to appendixes in the supplementary
material.

We consider an iterated nonlinear mapping of the form

x(ı + 1) = Ax(ı) + f (x(ı)) , x ∈ R
n, A ∈ R

n×n,

f = O
(

|x|2
)

∈ C∞, 1 ≤ n < ∞, (21)

and assume that its fixed point at x = 0 is hyperbolic, i.e., the
spectrum spect (A) = {λ1, . . . , λn} of A satisfies

spect (A) ∩ {λ ∈ C : |λ| = 1} = ∅. (22)

As in the case of continuous dynamical systems, we can also allow f
to be of finite smoothness if spect (A) is fully inside or fully outside
the complex unit circle (see Theorem 2).

We again assume that A is semisimple and the following
nonresonance conditions hold among its eigenvalues:

λj 6=
n
∏

k=1

λ
mk
k , mk ∈ N,

n
∑

k=1

mk ≥ 2, j = 1, . . . , n. (23)

As in the case of continuous dynamical systems that we have already
treated, repeated eigenvalues arising from a physical symmetry are
not excluded by conditions (23).

We select and fix an arbitrary spectral subspace E ⊂ R
n and

assume that the spectrum of A|E contains p purely real eigenvalues
and q pairs of complex conjugate eigenvalues. Similarly, we assume
that the remainder of the spectrum of A contains r purely real
eigenvalues and s pairs of complex conjugate eigenvalues. In that
case, possibly after a linear change of coordinates, we can assume a
partition of the x coordinate in the form

x =
(

u,
(

a1, b1

)

, . . . ,
(

aq, bq

)

, v,
(

c1, d1

)

, . . . ,
(

cs, ds

))

∈ R
p × R

2 × . . . × R
2

︸ ︷︷ ︸

q

×R
r × R

2 × . . . × R
2

︸ ︷︷ ︸

s

, (24)

with p + 2q + r + 2s = n, in which the coefficient matrixA of the
linear part of system (21) takes its real Jordan canonical form

A = diag
[

A, B1, . . . , Bq, C, D1, . . . , Ds

]

, (25)

where

A = diag
[

λ1, . . . , λp

]

∈ R
p×p,

Bk =
(

αk −ωk

ωk αk

)

∈ R
2×2, k = 1, . . . , q,

(26)

C = diag [κ1, . . . , κr] ∈ R
r×r,

Dm =
(

βm −νm

νm βm

)

∈ R
2×2, m = 1, . . . , s.
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To simplify our upcoming formulas, we also assume that

κ` > 0, ` = 1, . . . , r, (27)

which means that the linearized mapping is orientation preserving
along all of the v` directions.

Using again the complexified variables z = a + ib ∈ C
q and

w = c + id ∈ C
s, as well as the piecewise constant functions (10),

we define the discrete analogues of formulas (11) as

V`(u, z) =
p
∑

j=1

K`j

(

uj

) ∣
∣uj

∣
∣

log κ`

log|λj| +
q
∑

k=1

L`k |zk|
log κ`

log
√

α2
k
+ω2

k ,

` = 1, . . . , r,
(28)

Em(u, z) =






p
∑

j=1

Omj

(

uj

) ∣
∣uj

∣
∣

log
√

β2
m+ν2

m

log|λj| +
q
∑

k=1

Qmk |zk|
log

√
β2

m+ν2
m

log
√

α2
k
+ω2

k






× e
i



 1
p+q arctan

(
νm
βm

)




∑p

j=1

log|uj|
log|λj|+

∑q
k=1

log|zk|
log

√

α2
k
+ω2

k









,

m = 1, . . . , s,

where

K`j(uj) ≡ 0, if
log κ`

log
∣
∣λj

∣
∣

< 0,

Omj(uj) ≡ 0, if
log

√

β2
m + ν2

m

log
∣
∣λj

∣
∣

< 0,

(29)

L`k = 0, if
log κ`

log
√

α2
k + ω2

k

< 0,

Qmk = 0, if
log

√

β2
m + ν2

m

log
√

α2
k + ω2

k

< 0.

As in the case of Theorem 1, the function families (28) turn out to
describe all continuous invariant graphs over E in the linear part of
the mapping (21). Our main result on generalized SSMs for the full
nonlinear mapping can then be stated as follows.

Theorem 2: (i) For any integer order K ≥ 2 of approxima-
tion, there exists a unique set of coefficients hk ∈ C

r+s such that
the full family W (E) of SSMs tangent to the spectral subspace E
of the nonlinear mapping (21) can locally be written as
(

v
w

)

= G(u, z) =
(

V(u, z)
E(u, z)

)

+
∑

2≤monomial order≤K

hkuk1zk2 z̄k3Vk4Ek5 Ēk6

+ o
(

|(u, z)|K
)

,

(30)

k1 ∈ N
p, k2, k3 ∈ N

q, k4 ∈ N
r, k5, k6 ∈ N

s,

k = (k1, k2, k3, k4, k5, k6) ,

where V(u, z) ∈ R
r and E(u, z) ∈ C

s are defined via formulas
(28), with K`j, Omj, L`k and Qmk satisfying the constraints (29)
but otherwise chosen arbitrarily.

(ii) The reduced dynamics on the individual members of the family
W (E) are given by

(

u(ı + 1)
z(ı + 1)

)

=








A 0 0 0
0 B1 0 0

0 0
. . . 0

0 0 0 Bq








(

u(ı)
z(ı)

)

+ f(u,z) (u(ı), z(ı),G(u(ı), z(ı))) , (31)

where f(u,z) denotes the (u, z) coordinate component of
f =

(

f(u,z), f v, fw
)

.
(iii) If

log κ`

log
∣
∣λj

∣
∣

< 0,
log

√

β2
m + ν2

m

log
∣
∣λj

∣
∣

< 0,
log κ`

log
√

α2
k + ω2

k

< 0,

log
√

β2
m + ν2

m

log
√

α2
k + ω2

k

< 0

hold for all values of the indices j, k, ` and m, then W (E) is
unique and of class C∞. Otherwise, W (E) is a family of non-
unique SSMs whose typical member is of smoothness class Cη

with

η = Int




+

min
j,k,`,m







log κ`

log
∣
∣λj

∣
∣
,

log
√

β2
m + ν2

m

log
∣
∣λj

∣
∣

,

log κ`

log
√

α2
k + ω2

k

,
log

√

β2
m + ν2

m

log
√

α2
k + ω2

k









 , (32)

where the Int refers to the integer part of a positive number and
min+ refers to a minimum of the positive elements of a list of
numbers that follow. Even in that case, however, there exists a
unique member W∞(E) of the SSM family that is of class C∞

and satisfies K±
`j ≡ O±

mj = L`k = Qmk = 0 for all j, k, ` and m in

Eq. (28).
(iv) If system (21) is CR in a parameter vector µ ∈ R

P, then W (E) is
also CR in µ.

(v) If the function f only has finite smoothness, i.e., f = O
(

|x|2
)

∈ Cρ and log
∣
∣λj

∣
∣ has the same nonzero sign for all j = 1, . . . , N,

then statements (i)–(iv) still hold for all K ≤ ρ.
(vi) If the function f is analytic in a neighborhood of the origin and

log
∣
∣λj

∣
∣has the same nonzero sign for all j = 1, . . . , N, then the

series expansion (14) converges near the origin as K → ∞.
Proof. See Appendix E of the supplementary material. �

Appropriately rephrased versions of Remarks 1–8 continue
to apply in the present, discrete setting. We also add the follow-
ing remark that shows how Theorem 2 can be used to extend the
results of Theorem 1 to small, time-periodic perturbations of the
autonomous system (3).

Remark 10 (Extension to time-periodically forced continu-
ous dynamical systems): Consider a small, temporally T-periodic
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perturbation of the system of ODEs (3) in the form

ẋ = Ax + f(x) + εg(x, t), f = O
(

|x|2
)

∈ C∞, g ∈ C∞,
(33)

g(x, t + T) = g(x, t), 0 ≤ ε � 1.

For ε = 0, if the conditions of Theorem 1 are satisfied, then the
resulting SSM family W (E) also acts as an SSM family for the
period-T Poincaré map defined for the ε = 0 limit of system (33).
By statement (iv) of Theorem 2, the SSMs of this Poincaré map
are smooth functions of ε and hence will smoothly persist for the
Poincaré map of system (33) for small ε > 0 parameter values. This,
in turn, allows us to conclude the existence of T-periodic SSMs for
the full dynamical system (33) for small enough ε > 0. These SSMs
and their reduced dynamics can the sought in the form of a Tay-
lor expansion in ε combined with a Fourier expansion in time, as
explained and demonstrated for primary, non-mixed-mode SSMs

by Haller and Ponsioen,23 Breunung and Haller,47 and Ponsioen
et al.48

Next, we also restate the appropriately modified versions of
Propositions 1 and 2 for maps, whose proofs we write out for
completeness in Appendix F of the supplementary material.

Proposition 3: Assume that p = 1, q = 0, and s = 0 hold.
Then, for any integer order K ≥ 2 of approximation, the full fam-
ily W (E) of SSMs tangent to the spectral subspace E of the nonlinear
mapping (21) can locally be written as

v =
∑

1≤k1+
∑r

`=1 k4`
log κ`
log|λ1| ≤K

Ck(u1)u
k1
1 |u1|

∑r
`=1 k4`

log κ`
log|λ1| + o

(

|u1|K
)

,

(34)

with the arbitrary, piecewise constant functions Ck(u1) ∈ R
r

satisfying

Ck`(u1) =
{

C+
k` u1 > 0,

C−
k` u1 ≤ 0,

C±
k` = 0 :

log κ`

log |λ1|
< 0 or |k| = 1, k4` 6= 1, ` = 1, . . . , r.

Proposition 4: Assume that p = 0, q = 1, and r = 0 hold.
Then, for any integer order K ≥ 2 of approximation, the full fam-
ily W (E) of SSMs tangent to the spectral subspace E of the nonlinear
system (3) can locally be written as

w =
∑

1≤k2+k3+4(k5 ,k6)≤K

Dkz
k2
1 z̄

k3
1 |z1|4(k5 ,k6) ei0(k5 ,k6) log|z1| + o

(

|z1|K
)

(35)

k2, k3 ∈ N, k5, k6 ∈ N
s, k =

(

k2, k3, k5, k6

)

,

4 (k5, k6) =
s
∑

m=1

(

k5m + k6m

) log
√

β2
m + ν2

m

log
√

α2
1 + ω2

1

,

(36)

0 (k5, k6) =
∑s

m=1

(

k5m − k6m

)

arctan
(

νm
βm

)

log
√

α2
1 + ω2

1

,

with the arbitrary constants Dk ∈ C
s satisfying

Dkm = 0 :
log

√

β2
m + ν2

m

log
√

α2
1 + ω2

1

< 0 or |k| = 1, k5m 6= 1,

m = 1, . . . , s.

V. NORMAL FORMS ON 2D FRACTIONAL SSMs

It is often advantageous to bring the dynamics on a general-
ized SSM to a normal form. Normal form transformations simplify
the reduced SSM dynamics (15) and (31) by removing as many
terms from these expansions as possible via near-identity changes of
coordinates. These transformations have been well-understood for
primary SSMs on which the reduced dynamics are expressible via

classical Taylor expansions (see Ponsioen et al.,49 Jain and Haller,26

and Cenedese et al.19,46).
This classical normal form procedure (see, e.g., Arnold50 and

Guckenheimer and Holmes51) is also applicable to mixed-mode pri-
mary SSMs, as those have no fractional-powered terms in their
expansion either. For that reason, available equation- and data-
driven model packages, such as SSMTool and SSMLearn, can
directly be used to compute mixed-mode SSMs and normal forms of
their reduced dynamics, even though the mixed-mode SSM theory
described here in Secs. III and IV was not available at the time of the
development of these packages. Normal forms on fractional SSMs,
however, have not yet been treated in the literature and require a
separate discussion here.

Each normal form transformation is a near-identity change of
coordinates that simplifies a dynamical system near a fixed point
up to a given polynomial order. The simplified dynamical system,
however, is only topologically conjugate to the original system on a
domain on which the transformation is at least continuously invert-
ible. As a consequence, each normal form transformation further
limits the ability of the normalized system to capture nonlinear
dynamical features away from the origin. A clear manifestation of
this limitation is the smooth linearization of Sternberg42 used in
proving Theorems 1 and 2 of this paper. Indeed, this linearization
result succeeds in constructing a C∞ normal form transformation
that removes all nonlinear terms from the polynomial expansion of
the right-hand side of the dynamical system. At the same time, the
transformation only converges on a domain around the fixed point
in which the original system exhibits linearizable behavior, com-
pletely missing all interesting dynamical phenomena that arise from
the coexistence of several isolated invariant sets. For this reason, we
do not advocate linearization for model reduction and only use lin-
earization to identify the local signatures of SSMs which we then
study globally without linearization.
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More generally, we advocate a sparing use of normal form
transformations for SSM-reduced models in order to preserve the
predictive power of SSM-reduced dynamics on larger domains
around the origin. To simplify our discussion, we only cover here
the setting of 2D underdamped, oscillatory SSMs on which low-
order normal forms have proven to be very effective in predicting
coexisting, nontrivial steady states (see Ponsioen et al.,48,52 Jain and
Haller,26 and Cenedese et al.19,46). These extended normal forms only
seek a partial (as opposed to maximal possible) simplification of
the dynamics. Namely, they do not remove near-resonant terms
that would be in principle removable but would result in small

denominators that seriously limit the domain of invertibility of the
normal form transformation (see Cenedese et al.19 for a detailed
discussion for data-driven SSMs). Specifically, in the setting of
Proposition 2, we obtain the following result.

Theorem 3: Assume that p = 0, q = 1 and r = 0 hold.
Then:

(i) For any integer order K ≥ 2 of approximation, there exists
a near-identity change of coordinates that transforms the 2D
reduced dynamics on each member of the SSM family W (E) to
the form

ξ̇ = (α1 + iβ1) ξ +
∑

1≤monomial order≤K

Hkξ
k2
1 ξ̄

k2−1
1 |ξ1|

∑s
m=1(k5m+k6m) βm

α1 e
i
∑s

m=1(k5m−k6m) νm
α1

log|ξ1| + o
(

|ξ1|K
)

,

(37)

k2 ∈ N, k5, k6 ∈ N
s, k =

(

k2, k5, k6

)

,

with the constants Hk ∈ C satisfying

Hk = 0 :
βm

α1

< 0 or |k| = 1, k5m 6= 1, m = 1, . . . , s.

The coordinate change is of class C∞ if minm (βm/α1) < 0 and
of class CInt[minm(βm/α1)] if minm (βm/α1) > 0.

(iii) Assume further that s = 1 and the relation

1

2
<

β1

α1

< 2 (38)

holds between the decay exponent β1 outside E and the decay
exponent α1 inside E. Then in polar coordinates (r, φ) defined
via the relation ξ = reiφ , a truncation of the normal form (37)
that incorporates all possible terms below K = 3 (and possibly
more, depending on the exact value of β1/α1) can be written as

ṙ = α1r + Ar3 + P1r
β1
α1

+1
sin 2

[

Q + ν1

α1

log r

]

+ P2r
2β1
α1

+1

+ P3r
2β1
α1

+1
sin 2

[

Q + ν1

α1

log r

]

,

(39)

φ̇ = ω1 + Br2 + R1r
β1
α1 sin 2

[

Q + ν1

α1

log r

]

+ R2r
2β1
α1

+ R3r
2β1
α1 sin 2

[

Q + ν1

α1

log r

]

,

for appropriate constants A, B, Pj, Q, and Rj that depend on both
the original full system and the specific SSM chosen.

Proof. See Appendix G of the supplementary material. �

Remark 11: In nonlinear vibration studies, the backbone
curve for a given mode is the instantaneous frequency viewed as
a function of the instantaneous amplitude. From the polar normal

form (39), this backbone curve can be approximated up to cubic
order by the formula

�(r) = ω1 + Br2 + R1r
β1
α1 sin 2

[

Q + ν1

α1

log r

]

+ R2r
2β1
α1

+ R3r
2β
α sin 2

[

Q + ν1

α1

log r

]

. (40)

Note that on the unique smoothest (or primary) SSM, only the first
two terms of this expression can have nonzero coefficients.

Remark 12: Another customary notion in nonlinear vibra-
tion studies is the instantaneous damping curve, defined as the
quotient of the rate of change of the instantaneous amplitude and
the instantaneous amplitude itself. From formula (39), we obtain
this curve up to cubic order in the following form:

κ(r) = α1 + Ar2 + P1r
β1
α1 sin 2

[

Q + ν1

α1

log r

]

+ P2r
2β1
α1

+ P3r
2β1
α1 sin 2

[

Q + ν1

α1

log r

]

. (41)

Again, on the primary SSM, only the first two terms in κ(r) are
nonzero; all other terms appear only on secondary SSMs.

Remark 13: Formulas (40) and (41) remain valid for the
slowest, 2D SSM family of a general, multi-degree-of-freedom
dynamical system (n ≥ 2) as long as the relation 1

2
<

β1
α1

< 2 holds

between the decay rates of the first two modes, and all other modes
decay at rates satisfying βm ≥ β1 for m = 2, . . . , s. This is because
under this relation, further factional terms are too high in order to
enter the normal form truncated at cubic order.
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FIG. 4. (a) The geometry of planar Couette flow. (b) Projection of the full Couette flow dynamics onto the first and second POD modes of the dynamics on the spectral
subspace E1 for Re = 134.52. Solid red dot: stable base state; hollow red dot: unstable equilibrium state; black curve: 1D fractional SSM, W∗ (E1) connecting the two
steady states; dashed black line: primary (analytic) slow SSMW∞(E1) coinciding with E1; gray curves: nearby trajectories converging to the base state.

VI. EXAMPLE 1: DATA-DRIVEN FRACTIONAL SSM FOR

TRANSITIONS IN COUETTE FLOW

As a first example, we consider a plane Couette flow between
two plates that move in opposite directions with velocity U, as shown
in Fig. 4(a).

As already mentioned in Sec. II, Page and Kerswell38 showed
in detail the inevitable failure of linear model reduction meth-
ods to capture transitions among coexisting steady states in this
flow. In contrast, Kaszás et al.30 used data-driven SSM reduction
to construct 1D and 2D models for such transitions. These models
were obtained from an integer-powered polynomial approxima-
tion of the SSM. Here, we will show that a lower-order polynomial
approximation to these manifolds is more accurate if we account
for fractional-powered terms in the data-driven construction of the
SSM.

The Navier–Stokes equations governing the evolution of the
velocity field u(x, y, z, t) defined over the domain (x, y, z) ∈ �

= [0, Lx] × [−h, h] × [0, Lz] can be written as

∂u

∂t
+ (u∇)u = −∇p + 1

Re
1u,

∇ · u = 0,

(42)

where Re = Uh/ν denotes the Reynolds number with viscosity ν

and p is the pressure. To eliminate the pressure from (42), we recall
the Helmholtz-decomposition to write u as

u = ∇8 + q,

where 8 is a scalar field and q is divergence free. The Leray projec-
tion of u, denoted by P[u], extracts the divergence-free component
of u, i.e., returns P[u] = q. With this notation, the Leray projection

of (42) becomes

∂u

∂t
= −P [(u∇)u] + 1

Re
1u. (43)

Denoting perturbations from the laminar solution U(y)
= (y, 0, 0) by v, we can rewrite the Leray-projected Navier–Stokes
equation (43) as

∂v

∂t
= 1

Re
1v − P [(U∇) v] − P [(v∇) U] + P [(v∇) v] , (44)

whose linear part,

∂v

∂t
= 1

Re
1v − P [(U∇) v] − P [(v∇) U] , (45)

is known as the Orr–Sommerfeld equation. Assuming periodicity in
x and z allows us to expand v into Fourier series as

v(x, y, z, t) =
∑

n,m

v(y)eλteiαxnx+iαzmz,

where the fundamental wave numbers are defined as αx = 2π
Lx

and

αz = 2π
Lz

. This turns the linearized Eq. (45) into an eigenvalue prob-

lem, with the eigenvalue denoted by λ. Using the explicit expres-
sions of the differential operators involved (see, e.g., Schmid and
Henningson53), one finds that the least stable mode is independent
of x and has eigenvalues and eigenfunctions of the form

λ1 = −π 2 + 4α2
z

4Re
v1 = sin(αzz)





sin(
√

λ1Re y)
0
0



 . (46)

For this mode, a direct calculation shows that

P [(v1∇) v1] = 0,
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i.e., the nonlinear term in Eq. (44) vanishes on the slowest eigen-
function. Consequently,

W∞(E1) = E1 =
{

U(y) + τv1(y, z), τ ∈ R
}

(47)

is the primary, slow SSM of the laminar state.
Indeed, substituting an integer-powered polynomial expansion

for an invariant manifold tangent to E1 into the nonlinear Eq. (44)
yields vanishing Taylor coefficients at all orders. In other words,
such an expansion trivially converges and yields the single flat, ana-
lytic SSM shown as a dashed line in Fig. 4(b). The dynamics on this
primary SSM is governed by the linear system (45), and hence no
connection from the laminar base state U(y) to any nontrivial steady
state can be contained in W∞(E1). As a result, the transition to the
base state to the other nontrivial steady state in system (44) must be
a fractional SSM, W∗ (E1), anchored at the base state, just as in our
simple example (1). We confirm this numerically in Fig. 4(b), whose
geometry bears a close similarity to that of our simple example in
Fig. 1(a).

The fractional SSM W∗ (E1) in Fig. 4(b) has limited differentia-
bility. Yet, a data-driven global approximation for this SSM still gives
satisfactory results for high enough orders of regression, as shown
by Kaszás et al.30 This is because every continuous curve can be
arbitrarily closely approximated by smooth polynomials (Rudin54).
The required order for such an approximation, however, is generally
higher than necessary and leads to larger errors further away from
the origin.

Here, we will seek the globally defined manifold W∗ (E1) in
the asymptotic form (34), which has the same approximation power
as polynomial expansions but also has the correct local form and
correct degree of smoothness near the origin. We show that a data-
driven fit of this exact fractional form for W∗ (E1) is indeed more
accurate at a given order than the one with purely integer-powered
polynomials.

We use Channelflow of Gibson et al.55 with a spectral discretiza-
tion of n = O

(

105
)

for the nonlinear system (44). For the parameter
values chosen (Lx = 5π/2, Lz = 4π/3), we have p = 1, q = 0, and
r + s = n − 1 in terms of the notation used in Sec. III. We use the
discrete formulation of our results from Sec. IV with an integer time
sampling, which Kaszás et al.30 found to give more robust reduced
models than the continuous time formulation. The eigenvalues of
the linearized map λmap and the linearized flow λflow at the base state
are related to each other via λmap = eλflow .

For these parameters, formulas (34) give the fractional SSM
parametrization

v =
∑

1≤k1+
∑r

`=1 k4`
log κ`
log|λ1| ≤K

Cku
k1+

∑r
`=1 k4`

log κ`
log|λ1|

1 + o
(

|u1|K
)

,

(48)

k =
(

k1, k2

)

∈ N × N
r, Ck ∈ R

n.

In this expression, we have omitted the modulus of u1 in the frac-
tional powered terms as we are only interested in the positive branch
of W∗ (E1) along which u1 ≥ 0 can be chosen. A linear term with
k = (1, 0) also appears in expression (48) because the linear part
of system (44) has not been diagonalized in the current set of
coordinates.

The spectral ratio log κ1/ log λ1 = 1.989 703 in Table I shows
that W∗ (E1) is only once continuously differentiable by formulas
(32) if the coefficient hk with k = (0, 1, 0, . . . , 0) is nonzero.

Furthermore, Kaszás et al.30 show that this heteroclinic connec-
tion between the base state is a graph over the square root of the
energy input rate, J =

√
|I|, with the energy input rate defined as

I[u] = 1

2LxLz

∫ Lx

0

∫ Lz

0

(
(

∂u

∂y
u

)

y=1

+
(

∂u

∂y
u

)

y=−1

)

dz dx − 1.

(49)

Based on this, we will construct the fractional SSM W∗ (E1) as
a graph over J. Formally, this can be achieved by a change of
coordinates. The observable J is a function of the state,

J = F(x) = F(u1, . . . , up, a, b, v, c, d),

where we recall the decomposition of (24). By the inverse function
theorem, on a neighborhood of x = 0, there exists a function G such
that u1 = G(J, u2, . . . , up, a, b, v, c, d), as long as

∂F

∂u1

∣
∣
∣
∣
x=0

6= 0.

Let us now introduce the new state vector x̂ =
(

J, û2, . . . , ûp, â, b̂, v̂,

ĉ, d̂
)

, which is related to x through x = g(x̂), where

g(x̂) =
(

G(J, û2, . . . , ûp, â, b̂, v̂, ĉ, d̂), û2, . . . , ûp, â, b̂, v̂, ĉ, d̂
)T

.

Under this change of coordinates, (3) must be transformed as

˙̂x = (Dx̂g)
−1
A(Dx̂g)x̂ + f̂(x̂). (50)

Since the linear part of (50) is related to the linear part of (3)
through a similarity transformation, they have the same spectrum.
This means, that we may view the manifolds as graphs over the vari-
able J, and the parametrization contains the same fractional powers
as the parametrization in the original phase space.

To compute W∗ (E1) up to order 5 , we need to find all terms in
(48) with integer and fractional powers up to K = 5. These powers

TABLE I. Leading eigenvalues of the base state in the plane Couette flow at

Re= 134.52. The second column contains the first five eigenvalues, while in the third

column we report the corresponding spectral ratios logκ j/log |λ1 |.

Value
log κj

log |λ1|
(spectral ratio)

log |λ1 | −0.035 068
log κ1 −0.069 776 1.989 703
log κ2 −0.073 369 2.092 178
log κ3 −0.140 274 4.000 013
log κ4 −0.168 877 4.815 674
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satisfy

k1 +
K−k1∑

`=1

k4`

log κ`

log |λ1|
≤ 5.

Since
log κ5

log |λ1| > 5, we only have to use fractional terms arising from

the eigenvalues with κ1, . . . , κ4 in (48). We also see from Table I

that the fractional powers
log κj

log|λ1| and
log κj

log|λ1| are very close to the inte-

ger powers 2 and 4, which are also present in expansion (48). While
some of the near-integer spectral ratios arise due to resonances in the
infinite-dimensional system, they are never exact resonances in the

finite truncation of the system that we work with here. Nevertheless,
to avoid sensitivity and overfit (see Remark 7), we set k41 = k43 = 0.
Based on these considerations, a quintic-order approximation for
the SSM-reduced map J(ı) 7→ J(ı + 1) can be written as

J(ı + 1) =
∑

k1+k42
log κ2
log|λ1| +k44

log κ4
log|λ1| ≤5

Rk1 ,k42 ,k45 J(ı)
k1+k42

log κ2
log |λ1 | +k44

log κ4
log |λ1 | .

(51)

We determine the coefficients Rk1 ,k42 ,k44 from linear regression
by minimizing the squared error

Ns∑

ı=1

∥
∥
∥
∥
∥
∥
∥
∥

J(ı + 1) −
∑

k1+k42
log κ2
log|λ1| +k44

log κ4
log|λ1| ≤5

Rk1 ,k42 ,k45 J(ı)
k1+k42

log κ2
log |λ1 | +k44

log κ4
log |λ1 |

∥
∥
∥
∥
∥
∥
∥
∥

2

,

along a training trajectory started on the heteroclinic orbit for the
available data snapshots indexed by ı = 1, . . . , Ns. This regression
gives the coefficients listed in Table II for the reduced mapping (51).

In Fig. 5, we compare the predictions of the model (51) with
those of the model

J(ı + 1) = 0.962 62J(ı) + 0.042 65J2(ı) − 0.102 82J3(ı)

+ 0.244 85J4(ı) − 0.147 38J5(ı), (52)

which we obtain from a classical, integer-powered polynomial
regression up to order K = 5. Note that this model is purely a

numerical fit, given that the only SSM with an integer-powered
expansion in the problem is W (E1) = E1, whose expansion coef-
ficients are all zero up to any order.

As seen from Fig. 5, there is a noticeable improvement in the
correct, fractional expansion of the model relative to the formal,
polynomial fit to the same data setup to the same order. The poly-
nomial fit ignores five terms in the regression that do appear in
the actual reduced dynamics below quintic order. The accuracy of
the polynomial fit can only be increased by adding higher-order,
integer-powered polynomials, which in turn add higher derivatives
and hence more sensitivity to the model.

FIG. 5. Performance of the fractional SSM-reduced model (51) for the planar Couette flow transition problem. Left: Reduced, 1D fractional model predictions (red) for 10
trajectories of the full system that were not used in regressing the model. Right: Instantaneous (gray) and mean errors (solid purple) for the fractional model and for a purely
integer-powered fit (dashed purple) to the training trajectories. The relative error is defined as |Jtrue(ı) − Jpredicted(ı)|/max Jtrue(ı).
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TABLE II. Coefficients Rk1 ,k42 ,k44
in the reduced model (51) for transitions along the

fractional SSMW* (E1) in the planar Couette flow.

k1 k42 k44 Rk1 ,k42 ,k44

1 0 0 0.961 82
2 0 0 0.826 16
0 1 0 −1.038 09
3 0 0 0.436 71
1 1 0 0.353 38
2 1 0 −0.615 52
4 0 0 −1.655 68
0 2 0 0.677 65
0 0 1 4.524 49
5 0 0 −3.471 46

VII. EXAMPLE 2: DATA-DRIVEN, MIXED-MODE,

SSM-REDUCED MODEL FOR THE DYNAMIC BUCKLING

OF A BEAM

In our second example, we discuss the data-driven construc-
tion of a mixed-mode, SSM-reduced model for buckling using a
discretized nonlinear von Kármán beam model. This model is a
second-order approximation of geometrically exact beam theory
that reproduces the bending-stretching coupling arising from bend-
ing displacements in the order of the beam thickness. We use the
finite-element code of Jain et al.,56 who applied a combination of
slow-fast reduction and SSM reduction to study oscillations of this
beam model. In contrast, here we apply a sufficiently large longitudi-
nal compression force and seek to derive an SSM-reduced nonlinear
model for the ensuing buckling dynamics.

Schematically shown in Fig. 6, the finite element model of the
von Kármán beam consists of 13 nodes, each with three degrees of
freedom (DOF): axial, transversal, and rotational. By setting bound-
ary conditions as pinned-pinned, we constrain two DOFs of the left-
most node and one DOF of the rightmost node. Therefore, the full
system before model reduction has 12 elements and 72 DOFs. The
beam is made of steel, with a Young’s modulus E = 1.9 × 1011 Pa,
density ρ = 7850 kg/m3, viscous damping rate κ = 7 × 106 kg m/s,
length L = 2 m, height h = 0, 01 m, and width w = 0.05 m. Euler’s

critical horizontal load for buckling is given by PN = N2π 2EI/L2,
with I denoting the area moment of inertia of the cross section of
the beam. Accordingly, to generate the first buckling mode (N = 1),
we apply the force

F = N2π 2EI/L2 = 1

12
π 2Ebh3/L2. (53)

A. 2D primary mixed-mode SSM

Under the external force (53), the beam has three equilibria:
one unstable equilibrium corresponding to purely axial displace-
ment and two stable equilibria corresponding to the upper and lower
buckled states. The first 10 eigenvalues of the linearized finite ele-
ment model at the unstable equilibrium are listed in Table III, where
we have already labeled the eigenvalues based on the role they will
play in the construction of a mixed-mode SSM tangent to the 2D
eigenspace

E = E1 ⊕ E2, (54)

with the 1D eigenspaces, E1 and E2 corresponding to the eigen-
values λ1 = 11.06 and λ2 = −11.10, respectively. The remaining
eigenvalues are all of the form βm ± iνm with m > 4.

To obtain a reduced model that captures the dynamics of buck-
ling, we seek reduction to a member of the SSM family W (E).
Therefore, we have p = 2, q = r = 0, and s = n − 2 with n = 144
in terms of the notation used in Theorem 1. By statement (ii)
Theorem 1, a typical member of this mixed-mode family is only
continuous, given that

η = Int

[
+

min
j,k,`,m

{
βm

λj

}]

= Int

[

min
m≥1

{
βm

λ2

}]

= Int

[
0.36

11

]

= 0.

All these fractional SSMs and the primary SSM, W∞(E), contain
all three fixed points and are all tangent to the 2D stable subspaces
of the two buckled fixed points, as illustrated in Fig. 6(b). For this
reason, we select W∞(E) for constructing a reduced-order model
because we can then use a classical polynomial expansion without
fractional powers.

By Remark 1, the SSMLearn package of Cenedese et al.41 can be
used directly to approximate the primary mixed-mode SSM in this
example. We use two training trajectories whose initial conditions

FIG. 6. (a) Schematic of the geometry of the beam buckling under a horizontal force F. (b) Schematic of the familyW (E) of 2D mixed-mode SSMs connecting the unstable
unbuckled state to the two stable buckled states. The whole familyW (E) is tangent to the unstable subspace E1, as shown. However, onlyW

∞(E) is tangent to the full
spectral subspace E.
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TABLE III. The first 10 eigenvalues of the linearized finite-element model for a buckling beam at its unstable fixed point. Our notation is relative to the 2D eigenspace E defined

in (54).

λ1 λ2 β1 ± iν1 β2 ± iν2 β3 ± iν3 β4 ± iν4

11.06 −11.10 −0.36 ± i119.36 −1.83 ± i295.56 −5.80 ± i541.50 −14.19 ± i858.19

are obtained via a positive and a negative vertical force applied to
the midpoint of the beam, respectively. We then turn off the verti-
cal forces and record the approach of the resulting two trajectories
to the upper and lower buckled state of the beam. The two trajec-
tories obtained in this fashion are shown in Fig. 7(a), projected to a
3D coordinate space comprising the transverse displacement q18 and
velocity q̇18 of the midpoint, as well as the axial displacement q35 of
right endpoint. Figure 7(b) shows the primary mixed-mode SSM,
W∞(E), projected onto the same coordinate system, along with
truncated versions of the two training trajectories. Figure 7(c) shows
truncated training trajectories in model coordinates from the spec-
tral subspace E = E1 ⊕ E2. Finally, Fig. 7(d) shows two truncated

test trajectories of the full mechanical model system and predictions
for them by the W∞(E)-reduced and normalized 2D model.

Following the procedure outlined by Cenedese et al.41 for data-
driven primary SSMs, we find that both the invariance error of
the manifold and the accuracy of the reduced-order model for
the dynamics on the manifold are minimal at a polynomial order
of 11. This minimum, however, is quite weak for the invariance
error and allows us to choose an order K = 7 approximation
that reaches almost the same accuracy, resulting in a 0.1% nor-
malized error in fitting W∞(E) to the trajectories (see Cenedese
et al.41 on computing this error). Figure 7(b) shows the result of
the data-driven identification of W∞(E) by SSMLearn, along with

FIG. 7. Construction and testing of a reducedmodel on the 2D, primary, mixed-mode SSM of the buckling beam problem. (a) Training trajectories. (b) The primary mixed-mode
SSM,W∞(E), together with the two training trajectories. (c) Training trajectories in model coordinates. (d) Test trajectories of the full system along with model predictions
for them.
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TABLE IV. Same eigenvalues as in Fig. 3, but now labeled with respect to the modified definition (55) of the spectral subspace E.

λ1 λ2 α1 ± iω1 β1 ± iν1 β2 ± iν2 β3 ± iν3

11.06 −11.10 −0.36 ± i119.36 −1.83 ± i295.56 −5.80 ± i541.50 −14.19 ± i858.19

two training trajectories used in the procedure. Each training tra-
jectory is truncated to a segment with no initial transients, which
ensures that the trajectory is close to the SSM to be inferred from the
data.

The training trajectories are also shown in Fig. 7(c) in modal
coordinates that parametrize the spectral subspace E. Finally,
Fig. 7(d) shows a highly accurate prediction by the 2D seventh-
order reduced model on W∞(E) for two test trajectories of the full
system that were not used in the construction of the SSM-reduced
model. We applied no normal form transformation to this model,
because the two stable buckled states are far from the origin and
hence are fully expected to lie outside the validity of a truncated
normal form.

B. 4D primary mixed-mode SSM

The reduced-order model derived in Sec. VII A already cap-
tures the core dynamics (i.e., all stable and unstable steady states)
of the bucking beam. To illustrate how enlarging the dimension of
the SSM reveals more transient behavior for larger initial conditions
(see Remark 9), we repeat the above procedure for a 4D primary
SSM constructed over the enlarged spectral subspace

E = E1 ⊕ E2 ⊕ E3. (55)

Here, the newly added, 2D real eigenspace E3 corresponds to the
eigenvalue pair −0.36 ± i119.36 in Fig. 3. This means that we now
have p = 2, q = 1, r = 0, and s = n − 4 with n = 144 in the appli-
cation of Theorem 1. Accordingly, our notation for the eigenvalues

featured in the theorem changes from that in Fig. 3 to that in
Table IV.

By Theorem 1, a typical fractional SSM in the W (E) family is
still only continuous, given that

η = Int

[
+

min
j,k,`,m

{
βm

λj

,
βm

αk

}]

= Int

[

min
m≥1

{
βm

λ2

,
βm

α1

}]

= Int

[
1.83

11

]

= 0. (56)

The geometry depicted in Fig. 6(b) remains similar for the choice
of E in (55) which again prompts us to choose the primary, mixed-
mode SSM W∞ (E) for reduced-order modeling. This SSM, how-
ever, is now 4D and hence cannot be easily visualized.

We initialize four new training trajectories in a way that they
involve oscillations from the second buckling mode as well. To
generate each training trajectory, we apply two vertical forces of
opposing orientations at 1/4 and 3/4 of the total length of the
beam to create a static, horizontal S-shaped equilibrium state for the
beam. We then turn off these forces and use the resulting trajectories
shown in Fig. 8(a) for extracting the 4D mixed-mode SSM W∞(E)

and its reduced dynamics. Figures 8(b) and 8(c) show extended
model prediction accuracy that now even capture transients of the
test trajectories that were not used in constructing the model.

We close by recalling that within mixed-mode SSM families,
just as within like-mode SSMs, there are primary and secondary
(fractional) SSMs. For instance, the SSMs computed in Secs. VII A
and VII B are primary mixed-mode SSMs. They also have fractional

FIG. 8. Construction and testing of a reduced model on the 4D, primary mixed-mode SSM of the buckling beam problem. (a) Four training trajectories projected to a 3D
plane of the q̇18 transverse velocity of midpoint, the q̇9 transverse velocity of quarter-node, and the q36 rotation of the endpoint. (b) The quarter-node displacement of a test
trajectory of the full beam model and a prediction for it by theW∞(E)-reduced and normalized 4D model. (c) Same as (b) but for the quarter-node velocity of a test trajectory.
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FIG. 9. The periodically forced Shaw–Pierre oscillator from Ponsioen et al.52

mixed-mode counterparts, which we did not have to compute in this
case because of the manifold geometry shown in Fig. 6(b).

VIII. EXAMPLE 3: FRACTIONAL AND MIXED-MODE

SSMs IN A FORCED OSCILLATOR SYSTEM

Our third example involves a forced version of the two-
DOF nonlinear oscillator system originally proposed by Shaw and
Pierre,24 which has been widely used to illustrate the concept of non-
linear normal modes in mechanical systems. A forced and slightly
modified version of this example (shown in Fig. 9) was considered
by Ponsioen et al.52 with small forcing amplitudes for SSM-based
model reduction. That system comprises two identical rigid bodies
of mass m > 0 that move horizontally without friction, with their
positions marked by the coordinates q1 and q2. The bodies are con-
nected to each other and two walls via identical springs of linear
stiffness k > 0. The first spring also has a softening cubic nonlin-
earity with coefficient γ > 0, while the other two springs are subject
to linear damping with coefficient c > 0. The first body is subjected
to external forcing of amplitude A and frequency �.

With the notation p1 = q̇1, p2 = q̇2 , the first-order form of the
equations of motion for the system is








q̇1

ṗ1

q̇2

ṗ2








=











0 1 0 0

−2
k

m
− c

m

k

m

c

m
0 0 0 1

k

m

c

m
−2

k

m
−2

c

m


















q1

p1

q2

p2








+









0

A cos �t − γ

m
q3

1

0

0









. (57)

We first identify fractional SSMs near the trivial equilibrium of this
system in the absence of external forcing (A = 0). As a next step,
under the addition of external time-periodic forcing (A > 0), we
construct a data-driven reduced model on a primary mixed-mode
SSM of an unstable periodic orbit to capture transitions between
coexisting periodic orbits. This second part of the example, there-
fore, serves as an illustration of our mixed-mode SSM results for
discrete dynamical systems.

A. Fractional SSMs in the unforced Shaw–Pierre

example (A =0)

Following Shaw and Pierre24 and Ponsioen et al.,49 we fix
the non-dimensionalized parameter values m = 1, c = 0.3, k = 1,
γ = 0.5. In that case, the eigenvalues of the linearized system near
the origin are

α ± iω = −0.0741 ± 1.0027i β ± iν = −0.3759 ± 1.6812i, (58)

FIG. 10. Primary and fractional slow SSMs in the unforced (A = 0) limit of the Shaw–Pierre model (57). The q1 and p1 coordinates of the slow SSMs are plotted in panels (a)
and (b), respectively. Red surface: order K = 7 approximation of the analytic SSM W∞ (E). Gray surface: fractional SSM of orderK = 7 with P = 0.5 and Q = 1. Black
curve: a general, decaying trajectory off the primary SSM.
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FIG. 11. Forced response curves (i.e., maximal amplitudes of the observed
steady-state oscillations of the first mass as a function of the forcing frequency�)
of the Shaw–Pierre system for different forcing amplitudes A. Dashed lines rep-
resent the backbone curves (i.e., theoretical centerpieces of the forced response
curves) predicted by SSMTool from a reduced-order model on the analytic slow
SSM.

where we have already applied the notation of Theorem 1 to the
2D spectral subspace E corresponding to the slower decaying pair
of complex eigenvalues. Then, after a linear change of coordinates,
system (57) with A = 0 will take the form







ȧ

ḃ
ċ

ḋ







=






α ω 0 0
−ω α 0 0
0 0 β ν

0 0 −ν β











a
b
c
d




+ f(a, b, c, d). (59)

This system is of the general form (3) with j = 0, k = 1, ` = 0,
and m = 1. Therefore, formula (11) simplifies to the single complex
function

E(z) = Q |z|
β
α ei ν

α log|z|,

where Q ∈ C is a complex parameter.
In terms of the real (a, b, c, d) coordinates, the full family of 2D

invariant graphs of the linear part over the E spectral subspace takes
the form

(

c(a, b)
d(a, b)

)

= P1

(

a2 + b2
) β

2α






cos
(

P2 + ν

2α
log

[

a2 + b2
]
)

sin
(

P2 + ν

2α
log

[

a2 + b2
]
)




 ,

(60)

P1 = |Q| , P2 = arg Q,

which defines a two-parameter-family of invariant graphs in the
linearized system, parametrized by P1, P2 ∈ R.

As guaranteed by statement (i) of Theorem 1, the correspond-
ing 2D, slow SSM family W (E) in the full nonlinear system (59) can
be written near the origin as

w = E(z) +
∑

2≤k1+k2+ (k3+k4)β

2α ≤K

hkzk2 z̄k3Ek5 Ēk6 + o
(

|z|K
)

,

(61)

k =
(

k2, k3, k5, k6

)

.

By the complexification formula (9), when truncated at order
K and re-indexed, this SSM family can be written in real

FIG. 12. Panels (a)–(c) show, for � = 1.07 A = 0.11, the Floquet multipliers of the upper periodic orbit, the saddle-type periodic orbit in the middle, and the lower periodic
orbit, respectively. The green dashed line represents the unit circle.
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FIG. 13. Training trajectories for constructing the 2D primary, mixed-mode SSM, W∞ (E), of the Poincaré map of the Shaw–Pierre model (57). (a) Iterates of the four
training initial conditions initialized near the saddle-type fixed point. The unstable eigenvector e1 is shown with the black vertical line. (b) Magnification of the region around
the saddle.

coordinates as
(

c
d

)

=
∑

2≤k1+k2+ (k3+k4)β

2α ≤K

P
k3+k4
1

(

Ck

Dk

)

ak1bk2
(

a2 + b2
) β(k3+k4)

2α

× cosk3

(

P2 + ν

2α
log

[

a2 + b2
]
)

× sink4

(

P2 + ν

2α
log

[

a2 + b2
]
)

, (62)

where

C0010 = D0001 = 1,

and all other Ck and Dk coefficients with |k| = 1 are zero.
In all nonlinear normal mode and SSM calculations available

in the literature for this model, only the k3 = k4 = 0 terms of the
above expansion have been used and hence only the unique primary
SSM, W∞ (E), has been exploited for reduced-order modeling. This
restriction to W∞ (E) is fully justified when β/α is relatively large
(β/α > K), in which case the fractional terms do not yet appear in
the truncated expansion (62). For the parameter configuration used
by Shaw and Pierre24 and Ponsioen et al.,49 the eigenvalues in (58)
give

β

α
= 5.0729,

which means that fractional powers only appear in the expansion for
any member of the W (E) family for orders K > 5. The sixth order
Taylor coefficients happen to vanish in this case, but the fractional

coefficient
√

a2 + b2
5.0729(k3+k4)

does appear and starts shaping the
secondary SSMs and their reduced dynamics already below order 6.

To show the difference between the primary SSM W∞ (E)

and the secondary (fractional) SSMs in the full SSM family (62),
we explicitly calculate the Taylor expansion of the C∞ linearizing
transformation underlying the results of Theorem 1 for the present
model up to and including order 7. In Fig. 10, we show the trans-
formed images of some of the SSMs of the linearized system (60)

under the inverse of that linearizing transformation. Note the differ-
ence between the smooth W∞ (E) [P = 0, Q = 0 in (60)] and the
general fractional SSMs, which arises because fractional terms do
start appearing beyond order K = 6. The figure also shows a gen-
eral, decaying trajectory that follows the fractional SSM and only
approaches W∞ (E) closer to the origin.

B. Mixed-mode SSM of a periodic orbit in the forced

Shaw–Pierre example (A >0)

Let us now consider system (57) with a lower value of damp-
ing, c = 0.03, as in Ref. 52 for which the forced response curves
of the model are given in Fig. 11 for several forcing amplitudes
A. Also shown are the theoretically computed backbone curves

FIG. 14. Fixed points and test trajectories on the primary, mixed-mode SSM,
W∞ (E), of the Poincaré map of the Shaw–Pierre model (57). The test trajecto-
ries are initialized near the saddle point and their iterates are denoted by colored
dots. The extracted SSM is the green surface.
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FIG. 15. Test trajectories of the full Poincaré map and their corresponding predictions from the 2D reduced model on W∞ (E) for the Shaw–Pierre model (57). (a) Test
trajectories shown as colored dots, initialized near the saddle-type fixed point of the map. (b) and (c) Evolution of q1 and p1, respectively, along with the predictions of the
fifth-orderW∞ (E)-reduced model. The discrete iterates are connected into continuous lines for visual clarity.

from SSMTool (see Jain and Haller26), which are based on a
leading-order approximation to the time-periodic perturbation of
W∞ (E). Note that for larger forcing amplitudes with A > 0.085,
even theO (15) theoretical predictions based on W∞ (E) divert from
the actual periodic response.

To improve on these predictions, we focus on the forcing fre-
quency � = 1.07 and forcing amplitude A = 0.11 for which three
periodic orbits coexist: a high-amplitude stable periodic orbit, a
saddle-type periodic orbit, and a low-amplitude stable periodic
orbit. Their stability types can be more specifically determined by
computing their Floquet multipliers numerically, which we show in
Fig. 12. For our analysis, the most important is the spectrum of the
saddle-type periodic orbit. With the notation used in Theorem 2,
the Floquet multipliers of that periodic orbits are λ1, λ2, and β ± iν,
where

λ1 = 1.0835, λ2 = 0.7726, β = −0.4132, ν = 0.6474.

To explore transitions among the coexisting periodic orbits,
we consider the time-T Poincaré map associated with the forced
system (57). All three periodic orbits have period T and hence all
are hyperbolic fixed points of this map, as seen from their Flo-
quet multipliers in Fig. 12. To capture connections among the fixed
points, we seek to construct the 2D mixed-mode SSM family tan-
gent to the 2D spectral subspace E that is spanned by the stable
and unstable real eigenvectors of the saddle points. Of these mixed-
mode SSMs, we only consider the primary one, W∞ (E), for the
same reason as in the beam buckling problem [see Fig. 6(b)]. The
existence and uniqueness of this W∞ (E) follows from statement
(iii) of Theorem 2, given that the Floquet multipliers of the saddle
fixed point are nonresonant.

Since the Poincaré map is not known explicitly, we have no
direct access to the quantities featured in Sec. III for the map formu-
lation of our main results. For a data-driven construction, we launch

four trajectories along the tangent space with initial conditions

x(1,2,3,4)
0 = x0 ± δe1 ± δe2,

where x0 is the location of the saddle-type fixed point, e1 is its unsta-
ble eigenvector, e2 is its weakest stable eigenvector, and δ = 0.01. We
use these trajectories for extracting the primary mixed-mode SSM
W∞ (E) via polynomial regression. In Fig. 13, we show the iterates
of the four training trajectories under the time-T map of system (57)
via a projection onto the (q1, p1) coordinate plane.

To illustrate the accuracy of this reduced-order model on
W∞ (E), we generate 20 test trajectories that are initialized near
the saddle. Each initial condition has a distance of 2 × 10−2 from
the saddle point. Figure 14 shows that these test trajectories indeed
closely track the extracted W∞ (E) in a 3D projection from the 4D
phase space of the Poincaré map.

We can also make predictions for the time evolution of these
test trajectories using solely the reduced discrete model. The result-
ing trajectories obtained from the iterations of the full Poincaré map
and the predictions for them using the 2D reduced dynamics match
closely, as seen in Fig. 15.

IX. CONCLUSIONS

We have extended the existing theory of (primary, or
smoothest) spectral submanifolds to the full family of continuous
invariant manifolds that emanate from a nonresonant fixed point
of a generic finite-dimensional, class C∞ continuous or discrete
dynamical system. This extended family now includes nonlinear
continuations of spectral subspaces of mixed stability type and/or
of finite smoothness. For the latter type of manifolds (fractional
SSMs), we have derived a formal expansion with specific fractional
powers that can be inferred from the spectrum of the linearized sys-
tem. We have obtained similar results for discrete dynamical systems
defined by iterated mappings. We have illustrated our results for
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both discrete and continuous dynamical systems on the data-driven
reduced-order modeling of non-linearizable behavior in three phys-
ical systems: a canonical shear flow, a buckling beam, and a forced
nonlinear rigid body system.

The main technical tool we rely on to prove these results is a
classic linearization result of Sternberg,42 coupled with the explicit
construction of all continuous invariant manifolds through the ori-
gin of a general, multi-dimensional linear system with a hyperbolic
fixed point. Neither this linearization result nor its refinements (see,
e.g., Sell57) are specific enough about the smoothness of the lineariz-
ing transformation, except for the class of C∞ dynamical systems
considered here, for which the linearization is also of class C∞.
We note that the linearizing transformation only converges on a
domain around the fixed point in which the original system exhibits
linearizable behavior, completely missing all interesting dynamical
phenomena that arise from the coexistence of several isolates invari-
ant sets. For this reason, we do not advocate linearization for model
reduction and only use linearization here to identify the function
basis over which an SSMs should be more globally approximated
from data. Specifically, we use truncated, finite fractional expansions
for the SSMs and its reduced dynamics in our three data-driven
examples. These truncated expansions continue to be well-defined
outside the domain of linearizable behavior as well and hence have
the potential to capture nontrivial dynamics, as we illustrate on
examples.

A conceptual limitation of the results in this paper is that it
assumes the underlying dynamical system to be finite dimensional.
This is not an issue for numerical data sets of solid or fluid mechan-
ics, as those are always generated from finite-dimensional discretiza-
tion of their originally infinite-dimensional governing equations.
Nevertheless, for experimental data obtained from a physical sys-
tem, it would be desirable to have a general, infinite-dimensional
extension of Sternberg’s linearization results that we use. Such an
extension is available for the most frequent case in practice, wherein
the spectrum of the linearized system is either fully in the left-hand
or the right-hand side of the complex plane, i.e., satisfies the con-
ditions of statement (v) in Theorem 1 or 2 (see Elbialy58). This
extension implies that the finite-dimensional like-mode, primary
and fractional SSMs we have identified infinite-dimensional limits
under appropriate spectral gap conditions. As for primary mixed-
mode SSMs, their existence and uniqueness in infinite dimensions
has been known under appropriate spectral gap conditions as long as
they are also pseudo-unstable or pseudo-stable manifolds, i.e., nor-
mally hyperbolic and purely repelling or purely attracting, respec-
tively (Elbialy59). Primary pseudo-stable manifold SSMs, which also
include primary like-mode SSMs, have also been proven to exist by
Buza60 specifically for the Navier–Stokes equations.

A more practical challenge for the fully data-driven application
of our results is that the fractional powers in the parametrization of
secondary SSMs depend on the real part of the spectrum of the lin-
earization outside the underlying spectral subspace E. While traces
of frequencies outside of E can be extracted from the frequency
analysis of the available data, the real parts of the eigenvalues are
more difficult to identify. An option is to treat the leading-order
fractional powers as unknowns and determine them from a maxi-
mum likelihood regression. This approach shows promise in some
of our preliminary numerical tests, but may also identify physically

incorrect values for the fractional powers in some other examples we
have considered. Another option is to estimate the real parts of the
dominant eigenvalues outside E from a linear data-driven method,
such as DMD or EDMD. A third option is to excite individual modes
at small amplitudes and infer their decay rates by fitting one-degree-
of-freedom linear oscillators to their forced response curves. The
detailed implementation of these strategies will be pursued in other
publications.

The backbone curves and damping curves derived in Sec. IV
from a fractional normal form should be helpful in explaining
some unexpected backbone curves and instantaneous damping
curves observed in detailed experimental data from gravity mea-
surements and hydrogel oscillations (Cenedese61 and Eriten62). In
those experiments, the observed shapes of backbone curves and
instantaneous damping curves cannot be explained without includ-
ing the fractional-powered terms in formulas (40) and (41), which
provided the original motivation of our present study. These exper-
imental datasets along with others will be analyzed elsewhere with
the methods developed here.

We close by noting that the fractional polynomial powers
identified in Theorems 1 and 2 generically arise in the reduced
dynamics of any non-unique invariant manifold emanating from
hyperbolic fixed points. This implies that even other data-driven
modeling approaches ignoring the existence of SSMs (e.g., EDMD
and SINDy) would benefit from including such fractional powers in
the dictionary of functions that they seek to fit to data.

SUPPLEMENTARY MATERIAL

See supplementary material for technical details for Exam-
ple 1 (Appendix A) and Example 2 (Appendix B). We also prove
Theorem 1 (Appendix C), Propositions 1 and 2 (Appendix D),
Theorem 2 (Appendix E), Propositions 3 and 4 (Appendix F), and
Theorem 3 (Appendix G).
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