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Abstract We introduce a method for constructing
reduced-order models directly from videos of dynam-
ical systems. The method uses non-intrusive track-
ing to isolate the motion of a user-selected part in
the video of an autonomous dynamical system. In the
space of delayed observations of this motion, we recon-
struct a low-dimensional attracting spectral submani-
fold (SSM) whose internal dynamics serves as a math-
ematically justified reduced-order model for nearby
motions of the full system. We obtain this model in
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a simple polynomial form that allows explicit identifi-
cation of important physical system parameters, such
as natural frequencies, linear and nonlinear damp-
ing and nonlinear stiffness. Beyond faithfully repro-
ducing attracting steady states and limit cycles, our
SSM-reduced models can also uncover hidden motion
not seen in the video, such as unstable fixed points
and unstable limit cycles forming basin boundaries.
We demonstrate all these features on experimental
videos of five physical systems: a double pendulum,
an inverted flag in counter-flow, water sloshing in tank,
a wing exhibiting aeroelastic flutter and a shimmying
wheel.

Keywords Object tracking - Data-driven dynamics -
Computer vision - Reduced-order modeling - Spectral
submanifolds

1 Introduction

Nonlinear dynamical systems are prevalent in numer-
ous fields of nature and engineering. Examples include
sloshing in tank trucks [1], turbulent flows [2], space-
craft motion [3], and vibrations in jointed structures [4].
Full-order modeling of such systems is often challeng-
ing due to their high degrees of freedom and uncertain
physical parameters. For these reasons, reduced-order
modeling of nonlinear mechanical systems has been
an increasingly active area of research that promises
major benefits in system identification [5], design opti-
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mization [6] and model-predictive control [7]. A further
recent boost to this effort is the trend is to construct dig-
ital twins, i.e., highly accurate, interpretable and pre-
dictive models of the current states of physical assets
[8].

A common approach to reducing nonlinear dynami-
cal systems to lower-dimensional models is the proper
orthogonal decomposition (POD) followed by a
Galerkin projection [9,10]. This approach implicitly
assumes that model subspaces of the linearized sys-
tem remain nearly invariant under inclusion of nonlin-
earities, which is a priori unknown and can often be
secured only by selecting an unnecessarily large num-
ber of linear modes. Another popular model reduc-
tion technique is the Dynamic Mode Decomposition
(DMD) and its variants [11,12], which find the best fit-
ting linear autonomous dynamical system for the avail-
able observable data. Passing to the dominant modes of
this linear system then provides a linear reduced-order
model of the full dynamics. While very efficient in cap-
turing linearizable dynamics, DMD methods always
return linear systems and hence cannot model intrin-
sically nonlinear phenomena, such as coexisting iso-
lated attracting fixed points, limit cycles or transitions
between such states [13,14].

Machine learning methods based on the training of
neural networks [15,16] have also been explored as
data-driven model reduction alternatives, but they often
lack physical interpretability, are prone to overfitting
and require large amounts of data and extensive tun-
ing. Within the category of machine learning, sparse
identification of nonlinear dynamics (SINDy) [17] can
provide interpretable models but only if an appropriate
reduced set of variables is already known. Even in that
case, however, the outcome of the process is generally
sensitive to the choice of sparsification parameters.

In recent years, reduction to spectral submanifolds
(SSMs) has appeared as a new alternative for construct-
ing reduced-order models for nonlinear dynamical sys-
tems from data [18-21]. A primary SSM of a dynami-
cal system is the unique smoothest invariant manifold
tangent to a nonresonant spectral subspace of the lin-
earized system at a steady state. Such manifolds have
long been envisioned and formally approximated as
nonlinear normal modes (NNMs) in a series of papers
initiated by the seminal work of Shaw and Pierre [22] in
the 1990’s. The existence, uniqueness and smoothness
of such manifolds, however, has only been clarified
more recently for various types of steady states [23—
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26] and general external forcing [27]. Importantly, the
internal dynamics of attracting SSMs tangent to a span
of slowest eigenmodes provide a mathematically exact
reduced-order model with which all nearby trajectories
synchronize exponentially fast.

Analytic and data-driven tools, available as open-
source MATLAB codes, have been developed for con-
structing SSM-based reduced-order models. For ana-
lytic treatments, the SSMTool [28] package computes
SSMs directly from governing equations, whereas the
data-driven methods SSMLearn [19] and fastSSM [21]
construct models from time-series data. These SSM-
reduction algorithms have been successfully applied
to several nonlinear systems known from numerical or
experimental data. Examples include flow past a cylin-
der [19], a Brake-Reuss beam [20], water tank slosh-
ing [21], transition to turbulence in pipe flows [29]
and finite element models of various structures going
beyond a million degrees of freedom [28,30].

While all these studies demonstrate the applicabil-
ity and robustness of SSM models inferred from data,
the scarce availability of experimental measurements in
many physical settings motivates the extension of SSM-
based model reduction to general video data. Such
an extension should ideally work with generic video
footage, such as an excerpt from a documentary or
instructional video, that was not necessarily generated
in a sterile environment for the sole purpose of model
reduction. An additional benefit of a purely video-based
model reduction would be its nonintrusive nature. This
is especially important for slender structures where an
attached sensor would alter the behavior of the sys-
tem. In other cases, video-based system modeling may
be the only viable option because the placement of a
reliable physical sensor is unrealistic due to extreme
temperatures, pressure or humidity.

While video-based analysis has been widely used
in various engineering and scientific disciplines, such
as robotics [31], medical imaging [32], manufacturing
[33], autonomous driving [34], structural health moni-
toring [35], fluid mechanics (particle image velocime-
try) [36], and unsupervised physical scene understand-
ing [37], their application in reduced-order modeling
of nonlinear dynamical systems has remained largely
unexplored. Indeed, video-based modeling has been
mostly tried for identifying parameters in systems
whose governing equations are already known (see [38]
for areview). The same reference proposes a method to
infer nonlinear dynamics by training neural networks
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on videos generated by solutions of simple, polynomial
ODEs [38]. So far, however, no applications of these
methods to videos of real physical experiments have
appeared.

A major challenge in video-based reduced-order
modeling is the visual tracking of physical systems,
which is complicated by changes in object motion,
cluttered backgrounds, occlusion, and changes in tar-
get appearance [39—41]. Generic tracking, also known
as short-term or model-free tracking, involves contin-
uously localizing a target in a video sequence using a
single example of its appearance, usually initialized in
the first frame. While nearly all existing tracking algo-
rithms focus on object localization, our goal here is to
use visual tracking as an experimental sensing method
for dynamical systems. In other words, we are inter-
ested in the accurate recovery of trajectories rather than
locating objects in videos.

The tracking algorithms developed in recent decades,
such as correlation-based methods [42-46] and con-
volutional neural network-based (CNN) methods [47—
51], are founded on the assumption that the appearance
of the tracked object changes over time, requiring a
process that learns such changes. The main objective
of these methods is to continuously update the model of
the tracked object, learning its evolving shape and size,
to ensure its robust and accurate localization. How-
ever, due to the changing nature of the object’s repre-
sentation, the tracked features are not constant observ-
ables on the phase space, and are therefore typically
unsuitable for system identification. In response to the
challenge of precise trajectory extraction from videos
for dynamical problems, Kara et al. [52] proposed a
tracking algorithm based on deep learning, addressing
the identity switching problem encountered in particle
tracking scenarios such as walking droplets and gran-
ular intruders experiments. Their approach, however,
relies on a machine learning model that necessitates
manual labeling of data for training the tracker.

In this work, we introduce a tracking algorithm
that prioritizes trajectory recovery to assemble data for
SSM-based model reduction from videos of physical
systems. The tracking method is based on the clas-
sic template matching technique [53], which achieves
marker-free and rotation-aware tracking that requires
only a one-time initialization from the user. With the
trajectories obtained from our proposed tracker, we
train SSM-reduced polynomial models, employing the
open-source MATLAB package SSMLearn [19]. The

main steps of this procedure are summarized in Fig. 1.
We illustrate on several examples that the methodology
developed here extracts simple, accurate and predictive
polynomial ODE models from videos of a diverse set of
physical systems. These include a double pendulum, an
elastic flag in counter flow, water sloshing in a moving
tank, aeroelastic flutter of a tail fin and wheel shimmy.

2 Marker-free tracking with template matching

In this section, we describe our model-free track-
ing algorithm used for recovering trajectory data from
experimental videos, which we have implemented in
Python using the open-source OpenCV framework
[55]. Figure 2 illustrates the flowchart of this tracking
algorithm which we also summarize later in Algorithm
1.

2.1 Template matching and tracking algorithm

Template matching has been actively developed in the
computer vision community for the last few decades
[56—-64] with applications to manufacturing [65,66],
medical imaging [67,68], geoinformatics [69], and
general object tracking [70-75]. The technique iden-
tifies instances of a predefined template image within a
larger target image by comparing pixel-by-pixel simi-
larity [53]. This is achieved by computing match scores,
typically a cross-correlation or sum of square errors,
from the intensity values of the template and those of
small patches of the target image with the same pixel
dimensions. The optimal match is selected as the loca-
tion with the best match score. This approach is appli-
cable under our assumption that the appearance and
size of the object to be modeled remain constant over
time. The matching procedure is summarized in lines
5-14 in Algorithm 1.

More specifically, the template matching process
starts by selecting a template, a rectangular sub-image,
from a reference video frame Iieference(X,y) € RS,
where ¢ is the number of channels. For a gray-scale
image ¢ = 1 and RGB image ¢ = 3. We denote the i-th
channel of an image with subscript (-); (i.e. RGB image
I = (11, I, I3)). The reference video frame is usually
the first frame of the video. Let T (x;, y;) € R repre-
sent the template image with a separate set of coordi-
nates (x;, y;) and I (x, y) € R€ represent a target frame
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Fig. 1 Schematic of our Tracking and Modeling Approach—
(green) First, we prepare input videos or image sequences that
capture transient phenomena. We select a template on the video
to track. The tracking algorithm outputs the (x, y) pixel and tem-
plate rotation as time-series data. (orange) Next, the data is pre-
processed with possible noise reduction and delay-embedded to

produce a suitable observable space. (blue) Finally, we train a
reduced-order model with the SSMLearn algorithm [19] in the
delay-embedded space to make predictions for previously unseen
initial conditions or to predict behavior under additional external
forcing. (Color figure online)
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Fig.2 Schematic of Template-Matching Tracking Algorithm—
We initialize one or multiple templates whose centers correspond
to the points to track. This initialization is only done in the first
frame of the video. On the next frame of the video, we crop out
a smaller search region to look for the template we have selected
from the initial frame. The template matching algorithm is then
applied for each template rotated at fixed intervals, giving opti-
mal match locations for each. Note that the similarity score field
in the figure shows 1 — R for better visualization. The red cross
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indicates the location of the optimal match. If multiple good
matches overlap each other, we remove the redundant matches
with the Non-Maximum Suppression algorithm [54]. With the
best match found at the target frame, the match location and
rotational angle can be used to update the search region as well
as the range of template rotations for the subsequent frames. The
output from each iteration is collected as time-series data. (Color
figure online)
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where we search for the template. The dimensions, in
pixel widths and heights, of the template 7' need to be
strictly smaller than the target image I . If abackground-
removed image mask was used, then 7 € Band / € B,
where B represents the set of Boolean values {0, 1}.

We use image intensity as the matching quantity and
the Normalized Sum of Square Difference (NSSD) as
the similarity metric [56]. By computing a similarity
score between the template T and all locations on I
with the NSSD, we obtain a similarity function R € R
from

R(x,y)=r(T,I)
Sy i, y) = Ii(x 4+ x, 3+ ¥)°
Vi TG 302 X TG+ x5+ )2
(1)

where r is an operator that maps a pair of template
and target image to a similarity function R. We note
that R(x, y) is a scalar function as each summation in
(1) is done over all ¢ channels. This process is akin to
applying a convolution filter on the target image, where
a small template image is swept across the target image
and a metric is computed for each location.

The best similarity score (i.e., the smallest value of
R(x, y)) indicates the optimal match between the tem-
plate and the search image. We extend this procedure
to account for object rotations by computing similarity
functions for templates rotated at fixed intervals and
finding the minimum NSSD across all the similarity
functions with the Non-Maximum Suppression (NMS)
algorithm (described in subsection 2.3). By repeating
the matching for all subsequent frames in the video, the
algorithm achieves accurate motion tracking over time.

To improve computational efficiency, we utilize the
previously detected location and angle to narrow the
search region and angle sweep of the next frame. Thus,
instead of processing an entire frame, we search a
smaller sub-image S(x, y) € R¢ of I(x, y) (see line 4
of Algorithm 1). By assuming the motion in the video
data exhibits spatial and temporal coherence, we limit
the search area to a window surrounding the previously
matched location and rotation range. The size of the
search window and the range of rotations must exceed
the maximum displacement and rotation observed in
the tracked object throughout the video. Therefore, hav-
ing prior knowledge of the system and video quality
(such as frame rate) can inform the selection of these

parameters. Based on the examples we presented in this
work, a search region of 1 to 2 times the pixel length
of the template dimensions and a rotation range within
+15° degrees about previously matched template rota-
tion with an interval of 5° is a good starting point.

2.2 Background removal through frame averaging

A helpful preprocessing step for motion extraction
involves separating foreground objects from the back-
ground. A simple yet effective technique is background
subtraction through frame averaging. This preprocess-
ing step is applied to the double pendulum and inverted
flag examples presented in Sect. 4. The technique cor-
responds to lines 1-4 in Algorithm 1.

Frame averaging seeks to extract the foreground
objects from a sequence of images or video by sub-
tracting the static background, obtained from time-
averaging image intensities from each video frame.
This method works under the assumption that the back-
ground in a video sequence tends to remain constant
or have minimal changes over time, while the fore-
ground objects introduce significant variations in terms
of image intensities.

The process of frame averaging for an RGB-colored
video I € R? is represented by

1
Tnean () = > 1(x, 1), 2)
t

where x = (x, y), t is the time corresponding to each
frame, and N is the total number of frames in the video.
This operation is allowed as the RGB color space is a
linear additive space.

The average frame I ey i subtracted from each
individual frame in the video sequence. The result is a
difference image D € R3,

D(x,1) = [I(x, 1) = I'mean(x)], 3)

that highlights the foreground objects. The larger the
magnitude of the difference, the more likely the pixel
is in the foreground.

To refine the foreground-background segmentation,
we take the maximum value of the ¢ channels of the
difference frame, that is

Dax(x,1) = 1n<lz?l§c D;(x,1). 4
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By thresholding Dp,x as

Dmask (x, 1) = h(Dmax, Dihresh)

_ I, Dthesh < Dmax(x, 1) 5)

N 0, otherwise

we obtain a boolean mask that separates the foreground
from the background. The mask contains foreground
shape information and we can track features directly in
this binary image.

2.3 Non-maximum suppression

To remove redundant bounding boxes or detections,
we use the non-maximum suppression (NMS) algo-
rithm [54]. It involves sorting the bounding boxes based
on their confidence scores, selecting the box with the
highest score, and suppressing other boxes with high
overlap. This process ensures that only the most accu-
rate and non-overlapping detections are retained. NMS
is widely employed in object detection algorithms to
improve accuracy by eliminating duplicate detections.
As it is expected that our problems have multiple over-
lapping close matches from different rotated templates,
we use the NMS algorithm to eliminate the ambiguity
systematically. In all the examples presented in this
work, we keep only the global best match.

The overlap of the bounding boxes is measured with
the Jaccard index [76], which is more commonly known
as the Intersection over Union (IoU) metric in computer
vision, defined as

|A N B|
= , (6)
|A] +|B] — |[AN B|

AN B
JA-B) =08

where | - | indicates the size of set, and J(A, B) has a
range of [0, 1] by design.

The NMS algorithm corresponds to lines 15-30 in
Algorithm 1 and is summarized in the following steps:

1. Obtain a list of detection boxes £ with a corre-
sponding list of confidence scores R and rotations
7.

2. Find the detection, £,,, with the best similarity score
(minimum of R) from set L.

3. Remove the detection £,, from the set £ and
appends it to the set of final output detections K.
Repeat this for match scores R and rotations 7.
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4. Using the Jaccard index (6) as the overlap metric,
remove all detection boxes that have an overlap with
L, greater than a threshold IoU sy in the set L.
Repeat this for match scores R and rotations 7.

5. Repeat step 2-4 until either £ is empty or the size of
IC reaches the required number of non-intersecting
matches nmatches-

As we track a single point in all five video exam-
ples, we set nmaiches = 1. We remark that our pro-
posed tracking algorithm with NMS can potentially
track multiple identical objects, however this is not pur-
sued in this paper. Lastly, we find an overlap threshold
of IoUnresh = 0.3 to be effective across all videos.

2.4 Summary

Our template-matching-based tracking algorithm is
summarized in Algorithm 1. The tracking algorithm
has three main steps: 1. Optional background subtrac-
tion pre-processing, 2. Generate candidate templates
and apply template matching, 3. Apply non-maximum
suppression to obtain optimal estimate of object loca-
tion. We apply the algorithm to every video frame and
collect the output position and rotation of the tracked
template as time-series data.
The inputs to the algorithm/tracking routine are:

1. user-selected template in the form of a small patch
on the first frame of a video,

2. target frame to search for matches,

3. optional averaged frame to use for background sub-
traction,

4. threshold value for maximum difference image to
refine background removal,

5. aregion on the target frame to search for matches
which is updated at every frame based on the pre-
vious match location,

6. intersection over union threshold to remove the
overlapping bounding box from matches,

7. angle sweep bounds and intervals which are updated
at every frame based on the rotation previous tem-
plate match,

8. number of non-overlapping best matches to search
for.

In practice, the user only needs to initialize the
tracker by selecting a region, to be tracked, in the first
frame. The tracking algorithm is evaluated at every
frame of the video, outputting the (x, y) locations of
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the best matches as well as the corresponding rota-
tion angle of the template. The algorithm then uses the
match location information to update the search region
and the angle sweep bounds for the next frame to speed
up computation. We find updating the search region to
aregion within 2 times the pixel length of the template
centering the previously matched (x, y) location and
415° about the previously matched rotation angle with
an interval of 5° work well for the examples presented
in this work.

3 Data-driven reduced-order models on spectral
submanifolds

Here we summarize available mathematical results on
model reduction to SSMs in smooth nonlinear sys-
tems and the SSMLearn algorithm used in constructing
SSM-reduced models from data.

3.1 Problem setup

Consider an n-dimensional dynamical system of the
form

i =Ax + f(x),
x eR", A e R™",
FiR"= R f~O(x?), £(0)=0, @)

where f is of differentiability class C” in x and A is
the linear part of the system.

For simplicity of exposition, we assume that A is
diagonalizable and x = 0 is an asymptotically stable
fixed point, that is

Re iy <0 VX € Spect(A), (8)

where Spect(A) = {11, A2, ..., A, } denotes the eigen-
values of the linear part of the system at the origin.
Recent work extended this result from stable to gen-
eral hyperbolic fixed points with a possible mix of sta-
ble and unstable eigenvalues [26].

We select a d-dimensional spectral subspace £ C
R”, that is, the direct sum of a set of eigenspaces of A.
We denote the spectrum of A within E by Spect(A|g).
If the spectral subspace E is non-resonant with the

spectrum of A outside of E, i.e.,

d d
hj# Y midk, mp €N, Y mp =2,

k=1 k=1
Aj € Spect(A)\Spect(A|g), Ax € Spect(A|g), (9)

then E generally has infinitely many nonlinear contin-
uations, as invariant manifolds of dimension d emanat-
ing from x = 0 and tangent to E, in the system (7)
[25]. Within this family of invariant manifolds, there
is a unique smoothest member, which we define as the
primary spectral submanifold. This SSM is normally
attracting, can be approximated via a Taylor expansion
at the fixed point, and is therefore an ideal candidate
for nonlinear model reduction. SSMs can be efficiently
computed from the equations of motion using the open-
source package SSMTool [28].

3.2 SSM-based data-driven modeling algorithm

When the equations of motion are unknown, model
reduction can also be applied directly to time-dependent
observable data describing the evolution of the dynam-
ical system. Recently, SSM theory has been applied to
both simulated and experimental data to capture essen-
tial nonlinear dynamics and enable accurate predic-
tions for motions not used in the training or for behav-
ior under additional external forcing [18,19,77,78].
Such data-driven models can even outperform analyt-
ical models as they are not necessarily bound to the
domain of convergence of the Taylor expansions used
for the SSMs and their reduced dynamics [21].

To construct SSM-reduced models from data, we
use the methodology presented in [19], which is imple-
mented in the open-source MATLAB package SSM-
Learn. The method consists of two main steps: geome-
try identification and reduced dynamics modeling. As
the low-dimensional SSM attracts nearby trajectories,
we approximate it as a polynomial using nearby tran-
sient training data in the phase space or observable
space. We then model the reduced dynamics by identi-
fying a vector field or map from the high-dimensional
training trajectories projected onto the SSM local coor-
dinates. Here we provide a summary of the SSMLearn
algorithm; a complete description can be found in [19].

We start with the geometry identification. To obtain
a graph-style model of a d-dimensional SSM from data,

@ Springer
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Algorithm 1 Template Matching-Based Tracking Algorithm

Input:
T (x;. y), template image
I(x,y), target frame
I mean(x, y), background image from frame average
Dinresh, difference image threshold value
search_region, region on target frame for matching
IoUthresh» Intersection over Union (overlap) threshold
Omins Omax, Ointerval, angle sweep bounds and interval
Nmatch, number of best matches

Output:
IC, list of top left (x, y) coordinates of found matches
T, list of rotation of the found matches

/* preprocess by removing background */

1: D < [T — I'pean|
2: Dmax < maxj<j<3 D;
3: Diask < h(Dmax, Dihresh)
4: S <« crop I or Dpy,si at search_region
/* template matching */
5. L« {}
6: R <« {}
7T « ()
8: for 0 € {x : Omin < X < Omax, ;l—;;’gl\lll €7} do

9:  rotate T by 0
10: R <~ r(T,S)
11: L« LU{(x,y)| R(x,y) <0.5}
122 R« RU{(x,y) | R(x,y) < 0.5}
13: n < [{(x,y) | R(x,y) <0.5}|
14: T «<TU{b},

/* Non Maximum Suppression */

150 K<« {}

16:  while £ # ¢ and |K| < nmaech do
17: m < argmin; R ;

18: K<~ KUL,

19: L<—L—Ly

20: R<«~R—-—Rn

21: T «~T—-T1,

22: for £; € Ldo

23: if J(Ly, Li) > IoUpesh then
24 L« L—L;

25: R <« R—-R;

26: T «—T—-17T;

27: end if

28: end for

29: end while

30: end for

31: return K, 7

> threshold

> match position array
> match score array
> match angle array

> template match

> number of potential good matches

> match position array for output

> remove overlapping matches

we construct the SSM as a polynomial parameterized
by local coordinates on its tangent space. To this end,
we define a matrix V € R"™4  whose columns are
orthonormal vectors spanning the tangent space of the
yet unknown SSM. The reduced coordinates & (r) € R?
are defined as a projection of the trajectories y(t) € R”
onto the tangent space V, that is

E=V'y. (10)

@ Springer

We seek to approximate and parameterize the mani-
fold with a Taylor expansion in & about the fixed point
at the origin, y = 0, in the form
Y~ ME™ = VE+ Moyg™ = v(6). (1D
Here M € R™*» is a matrix of manifold parame-
terization coefficients, with dj.,, denoting the number

of d-variate monomials from orders 1 up to m. The
notation ()" refers to a vector of all monomials at



Modeling nonlinear dynamics

orders [ through m. For example, if x = [xf, xz]T,
23 _ 1,2 2 .3 .2 2 3T
then x~7 = [x{, x1x2, X5, X7, X{x2, X1x5, X531 ' . Mo
denotes a submatrix of M that has only columns asso-
ciated with ()™ vector, s0 M., € R"*%2m_
The matrices V and M are solved for simultaneously
by minimizing the cost function

V. M) = argmmZuy, M*(VFTy )b,
————

(V*, M*)
g*
(12)
subject to the constraints
viv=I VM, =0. (13)

In the second step, after we have found the parame-
terization of the manifold, we approximate the reduced
dynamics up to r-th order on the manifold as

E~ RE" =r(), (14)
where R € R4*41r ig a matrix of coefficients of the

reduced dynamics. We solve for the matrix R through
minimization of the cost function

R= argmmZ I1€; — R*&/"|
j=1

2

yj) _ R*(VTyj)lzr

5)

We then transform the reduced dynamics to its nor-
mal form, which is the simplest complex polynomial
form that preserves the local trajectory structure up
to a smooth, near-identity deformation with a smooth
inverse. Transforming the equations to a normal form
therefore provides insights into the qualitative behav-
iors of the system, such as stability properties, fixed
points, limit cycles, and bifurcations [79].

We compute the n-th order normal form of R to
obtain a near-identity polynomial transformation of &
to complex conjugate normal form coordinates z € C¢.
We define the transformations ¢ : z +— &, its inverse
t7! : & — z, and the dynamics in normal form n :
ZH>zas

E=1t(z T)=Tz" =Wz + Ty,2"", (16)

z=t"'(&, H)=HE" =W ¢+ Hp,, (W™ '£)>",
(17)

z=n( N)=Nz'"" = Az + N, 2%", (18)

T (CdXdlzn’ Hc CdXdl:n’ N € (CdXdlzn’

where A € R?*¢ is a diagonal matrix of eigenvalues of
the linear part Ry, = WAW-!of R,and W € RIxd
contains the associated eigenvectors.

The normal form transformation and its dynamics
are solved for simultaneously with the minimization of
the cost function

(H, N) = argmin Z | Vet~ ;. HY)E,
(H*,N*) —_—
7*

—n(t~'(&;, H"), N)|*. (19)
N—————
z*

Finally, with the the matrix H computed, we solve
for T with

N

T =argmin Y _||lt(¢”" & H), T*) = §;|°.  (20)
T* j:l \qz,—/
J

Our reduced model is thus described fully by (10,
11,16, 17, 18).

3.3 Delay embedding

In practice, observing or measuring all variables that
span the full phase space of a dynamical systems is
impractical if not impossible. This prompts us to con-
struct data-driven SSM-reduced models in an appro-
priate observable space. We achieve this by delay-
embedding the SSM in the observable space based on
the Takens embedding theorem [80].

Delay embedding involves constructing an embed-
ding space using time-delayed copies of a given observ-
able scalar time series s(¢) = u(x), where p is a dif-
ferentiable scalar observable function p : R™ul — [R.
The function px returns a measured feature of the sys-
tem (7), such as the displacement of a particular mate-
rial point. A new state vector y € R? is constructed
from p delayed measurements of the original scalar
time series separated by a timelag Az, that is
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s(t)
s(1 + At)

y(t) = s(t 4+ 2At) . @D

s(t+ (17.— 1)At)

Takens’s theorem states that if x () lies on an d-
dimensional invariant manifold in the full phase space,
then the embedded state y(z) also lies on a diffeo-
morphic manifold in the p-dimensional embedding
space, if p > 2d + 1 and u and Ar are generic (as
defined in Remark 1 in [81]). This result can also be
extended to higher-dimensional observable quantities
(p : Rl RMobserve)) ‘under appropriate nondegen-
eracy conditions outlined in [81-83].

Near a fixed point, more can be said about the struc-
ture of the embedding. It was recently shown that the
orientation of eigenspaces at a fixed point in delay-
embedded space is directly determined by the eigen-
values of the system linearized there [81]. Thus local
spectral properties of the full phase space have a direct
geometrical interpretation in the observable space that
can be exploited to improve system identification.

In our context, coordinates extracted from a video
represent observables of the underlying physical sys-
tem. Takens’s theorem applies to these observables
after we delay-embed them with an appropriate time
lag, which we select based on the established method
of average mutual information [84] (see Appendix B
for more details).

3.4 Backbone curve from the normal form

By expressing z in polar coordinates (p, 0), defined as
zZj = pjeie-f for j = 1, ..., m, we obtain the extended
normal form of an oscillatory SSM of dimension 2m
of the form

pji=vip.0)p;j, (22)
j=1,..m peRl 6eT", (23)

which enables us to perform analyses such as extract-
ing different modal contributions, applying slow-fast
decomposition, and constructing backbone curves.

If there is no resonance in the linearized eigenfre-
quencies, then y; and w; from (22) and (23) are func-
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tions of the amplitudes p only [85]. This allows us
to decouple the amplitude dynamics from the phase
dynamics.

The zero-amplitude limit of y; and w; corresponds
to the linearized damping and frequency of the jth
eigenmode, that is

thtgo(yj(p, 0) +iwj(p,0) =1;. (24)

Thus, y; and w; represent the nonlinear extension of
damping and frequency of the system.

To gain physical insight into the amplitude depen-
dence of instantaneous damping and frequency through
backbone curves, the amplitude in the normal coor-
dinates must be transformed back into the observable
space. For a general 2D case, the amplitude A can be
determined through

_ _ 0 —i0
Ap) = max 0@, 2 = (oe®. pe),
25)

where the function g : R” + R maps from the observ-
able space to the amplitude of a particular observable,
such as a degree of freedom.

The backbone and damping curves are expressed as
parametric functions

Bdamping = {y(p), A(p)}pEO» (26)
Bfrequency = {w(p), A(P)}p>0- (27)

4 Applications

‘We now apply our tracking and SSMLearn algorithms
to five examples with little to no modification across
the examples.

4.1 Double pendulum

As our first example, we consider the compound double
pendulum shown in Fig.3a. The double pendulum in
our study consists of a pair of rods; the upper rod weighs
253 g and measures 200mm, while the lower rod is
180 mm long and weighs 114 g. The rods are connected
with a roller bearing and both have a width of 25 mm.

We record videos of the transient decay response
of the double pendulum released from different initial
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Fig. 3 Data-driven Nonlinear Reduced-order Model on the
Slowest SSM of a Double Pendulum—a System setup of the dou-
ble pendulum. b Snapshots of processed video frames. ¢ Train-
ing trajectory in physical length, which was computed by scaling
pixels to known physical length from measurements. d Training
trajectory and fitted manifold plotted in the two reduced coordi-

conditions. All videos are recorded with the iPhone 12
Pro, utilizing only the wide camera, at a frame rate of
240 FPS with 1920x1080 resolution. The camera has
up to 12 megapixels resolution with /1.6 aperture.

To extract data from the videos, we initialize the
tracker once by selecting a template, in the form of a
bounding box, in the first frame of the video. The center
of the template corresponds to the end of the lower
pendulum rod. The algorithm tracks the template for
all subsequent frames in the video and outputs time-
series data of the (x, y) pixel locations of the template
center. Figure 3b illustrates snapshots of tracked video.
One of the two training trajectories is shown in panel
(c) of Fig.3, while the black trajectories in panel (e)
are used as test data. Since the physical lengths of the
pendulum arms are known, we scale the output pixel
data to physical length in meters.

From the video-extracted trajectory data, we aim to
learn the reduced dynamics on the slow 2-dimensional
SSM emanating from the slow eigenspace of the linear
part of the system. The minimal embedding dimension

oy

— Training Trajectory 1
—'I‘ra_ininp,‘ Trajectory 2

f

2 Amplitude [m]

62 64 66 -02 -01

0.1

6 0
Frequency [rad/s|]  Damping [1/s]

nates &1 > and x. e Test trajectory and its reconstruction by the
SSM model. f Backbone (left) and damping (right) curve out-
put of the SSMLearn model, showing the nonlinearities in the
system. The analytical result computed from SSM7Tool [28] is
plotted together for reference. (Color figure online)

is 5 according to Takens’s theorem (p > 2d + 1). Thus
we embed the training data (both x and y) five times
with a time delay of 0.20s (50 frames of 240 FPS video)
to reconstruct the SSM in the observable space.

Figure3d shows the identified 5th-order,*
2-dimensional SSM in three coordinates: x and the two
reduced coordinates, &1 2. The choice of polynomial
order of the SSM parameterization is a compromise
between model accuracy, complexity, and the risk of
over-fitting. For all the examples in the present paper,
we choose a manifold expansion order that results in
less than 3% parameterization error (see Appendix A
for error quantification).

On the SSM, SSMLearn returns the reduced dynam-
ics in a Sth-order normal form
op~ 1 = —0.09352 + 0.8130p% — 2.256p",

6 = 6.366 — 0.4733p> — 1.953p".

We now use the model (28), trained on a single
trajectory, to make predictions of the test trajectory
released from a different initial condition. The reduced
model takes the initial condition of the test trajectory

(28)
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as the only input and reconstructs the entire decay
response with a reconstruction error of 2.1%.

For comparison, we also derived the equations of
motions for this double pendulum system and applied
the equation-driven SSM identification package, SSM-
Tool, (see Appendix C for more details). In this cal-
culation, the damping from the two joints was mod-
eled as linear using the Rayleigh dissipation function.
The geometry of the double pendulum was modeled
by two rods with distributed mass. We constrained the
motion of the double pendulum to a vertical plane
which resulted in a two-degree-of-freedom mechani-
cal model. This four-dimensional dynamical system is
fully described by two angles 6; fori = 1, 2 relative to
the vertical, and their respective angular velocities 6;.

The frequency and backbone curves obtained from
the video data and from the equation of motions are
plotted together in Fig. 3f. The frequency learned from
data is consistent with the analytical result within 2%
error. However, the analytically predicted nonlinear
damping curve on the right differs from the actual
damping curve identified from the video. This shows
that the idealized linear damping used in our mechan-
ical model fails to capture the actual low-amplitude
damping characteristic of the system, which is likely
dominated by dry friction that is independent of rota-
tional speed. The presence of dry friction is also evi-
dent from the more pronounced model mismatch at
lower oscillation amplitude. This result illustrates well
the use of our video-based SSM-reduction procedure
in accurate nonlinear system identification.

4.2 Inverted flag

As our second example, we consider an inverted flag,
a flexible elastic sheet with its trailing edge clamped
subject to a fluid flow. This is in contrast to a conven-
tional flag where the leading edge is constrained. The
experimental configuration, based on [86], is shown in
Fig.4a, where the free end of the flag (in blue) is fac-
ing an incoming uniform water flow U. The study of
inverted flags has gained much interest in recent years
[87-89] for its potential applications in energy harvest-
ing systems.

Across the parameter space of the inverted flag,
including flag flexural rigidity and incoming flow prop-
erties, the inverted flag motion can display a variety
of phenomena, including the undeformed equilibrium
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state, stable small-deflection state, small-deflection
flapping, large-amplitude periodic flapping and chaotic
flapping [87]. Here we focus on the large-amplitude
periodic flapping regime, wherein the inverted-flag sys-
tem exhibits greater strain energy than conventional
flag flapping [87]. These large bending strains make the
inverted-flag system a promising candidate for energy
harvesting technologies that convert strain energy to
electricity. In the large-amplitude flapping regime, the
system has a stable limit cycle and three unstable
fixed points, which have been identified numerically as
steady-state solutions to the full governing equations
[87]. One fixed point is the undeformed equilibrium
position, which becomes an unstable saddle point at
sufficiently low bending stiffness. The other two sym-
metric fixed points are located between the saddle point
and the limit cycle deflection amplitude.

In the experiments, an inverted flag with a white
edge is released from different positions with near-
zero velocity and allowed to evolve into a periodic orbit
[86]. After preprocessing the videos with background
removal, we track the endpoint of the inverted flag with
our proposed algorithm. Three frames selected at dif-
ferent times of a training video are shown in Fig. 4b. To
construct an SSM model, we train on four trajectories,
as shown in Fig.4c. The pixel coordinates have been
normalized against the width of the video.

We delay-embed the x coordinate signal of the flag
end point with a time delay of 0.33s (10 frames of
30 FPS video) to create a 5-dimensional observable
space, in which SSMLearn identifies a 2-dimensional,
3rd-order SSM. Since the origin is a saddle point, SSM-
Learn outputs reduced dynamics corresponding to two
real eigenvalues with opposite signs. We identify the
reduced dynamics on the SSM up to 9th order, with the
full equations presented in Appendix D.

In Fig.4c, we apply the model to four unseen test
trajectories released from different initial positions and
plot the reconstructions with the full test dataset. The
long term predictions of our model remain bounded
with a reconstruction error of up to 6.3%, which we
attribute to primarily to phase errors in prediction.
Given that a small phase shift leads to high trajectory
error, we have further analyzed and quantified phase
error growth of our model predictions with windowed-
cross-correlation [90] in Appendix E. We find that for
all four tests, the phase error remain within 5% of oscil-
lating period.



Modeling nonlinear dynamics

a
ECAMERA
C
Training Trajectories Test Trauectones
m Test, M
: =N fa/W
5 8 \Ji '!i
"o 5 10 15 0
1 r
=2 o ‘ CHE ": ‘ﬁ
3 = y Ve vy
"o 5 10 15 0 60 80 100
— — 1 e Aaa s a a :‘. 2 & ; R (W
8 8 g':'?,.ﬁ-i-"’é% Vi
0 5 10 15 0 20 40 60 80 100
1 ARA s8a )
8 SR '9:'-*%5%; i
0 5 10 15 0 20 40 60 8 100
Time [s] Time s3]

Fig. 4 Data-driven Nonlinear Reduced-order Model on the
Mixed-Mode SSM of an Inverted Flag—a System setup. b
Three selected video frames (top row) and the corresponding
background-removed and tracked location (bottom row). ¢ The

In Fig.4d, we construct a phase portrait by plac-
ing various initial conditions on the SSM and advect
both forward and backward in time. We find that we
recover the stable (blue) and unstable (red) manifold
of the saddle point and the three fixed points (green) of
the system, along with the stable limit cycle.

4.3 Liquid sloshing

As our third example, we consider fluid oscillation in a
partially filled container subject to horizontal external
forcing. The sloshing motion of the fluid can be strongly
nonlinear [91]. Increased fluid oscillation results in
greater shearing at the tank wall, and the damping of
the system grows nonlinearly with sloshing amplitude.
Further, the study in [19] found a softening response in
the system, where the frequency decreases at a higher

training trajectories and test trajectories with model predictions.
d Phase portrait in reduced coordinates, illustrating the three
fixed points in green, stable manifold in blue, and unstable man-
ifold in red. (Color figure online)

amplitude. Understanding and modeling the system’s
nonlinear response is crucial for the design and analy-
sis of structures that involve liquid-containing systems,
such as fluid-transporting trucks [1] and spacecraft fuel
tanks [92].

Here, we study videos from sloshing experiments
performed by [36]. The experiments were performed in
arectangular tank of width 500 mm partially filled with
water up to a height of 400 mm, as shown in Fig. 5a. The
tank was mounted on a platform excited harmonically
by a motor. Videos of the surface profile were recorded
with a monochrome camera (1600x1200 pixels at 30
Hz) mounted on a frame moving with the tank. The
flow was illuminated by an LED light behind the tank,
which creates a distinct shadow of the meniscus. The
light source was placed approximately 2m away from
the tank to provide uniform illumination and to avoid
heating the fluid.
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Fig. 5 Data-driven
Nonlinear Reduced-order
Model on the Slowest SSM

of Water Sloshing in a
Tank—a Sloshing

experiment setup with

partially filled tank and
cameras, mounted on a

platform linked to a motor
[91]. b The four points
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In [36], the surface profile was extracted with a
combination of image gradient and thresholding image
processing techniques, specialized for the experimen-
tal setup and video format. SSM-based models con-
structed from unforced decaying surface profile data
were trained in [19,21]. Here, we will apply our track-
ing method to extract the liquid surface heights at four,
evenly spaced horizontal positions. We initialize four
templates, as shown in Fig. 5b with the search region
constrained to only the vertical direction. This is the
only modification made to our tracking algorithm. The
horizontal constraint is required as the shadow of the
meniscus is indistinguishable along the surface. We
assume the deformation of the surface is locally small,
that is, the surface profiles within each template only
undergo rigid rotations and vertical translations during
sloshing motion.
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In Fig.5e we plot a decaying response signal
extracted from experiment videos. We use one such
decaying trajectory for training and another one for test-
ing. We delay-embed the four extracted signals y; 2.3 4
five times, with Ar = 0.033s (1 frame of 30 FPS video),
to create a 20-dimensional observable space, in which
SSMLearn identifies a 3rd-order, 2-dimensional SSM
illustrated in Fig. Sc.

On the SSM, we identify the reduced dynamics up
to 3rd order and compute its 3rd order normal form

op~ = —0.062 — 0.029p2,

. 29
6 =7.80 — 0.60p2, 29

where the first-order frequency term agrees with an

analytical computation of the eigenfrequency [36].
InFig. 5d, we plot the nonlinear damping and soften-

ing response, with respect to the vertical pixels ampli-
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tude of the tracked point furthest to the left y;, captured
by our model.

In Fig. 5Se we test our model on an unseen trajectory.
By inputting only the initial condition and integrating
forward in time, our model reconstructs the full test
trajectory within 4% error. We find our model to be
accurate and correctly capture the essential nonlinear-
ities of the system.

4.4 Aerodynamic flutter

As our fourth example, we consider aeroelastic flutter,
a fluid—structure interaction phenomenon characterized
by aself-excited structural oscillation wherein energy is
drawn from the airstream through the movement of the
structure [93]. In a dynamical systems setting, flutter
corresponds to a supercritical Hopf bifurcation where
the bifurcation parameter is the airspeed.

Modeling aeroelastic flutter is important for the
design of flexible aerodynamic structures. In applica-
tions where the structural resilience of flexible bod-
ies is crucial, the oscillatory motion plays a significant
role in influencing the structure’s dynamics and fail-
ure. Aside from posing challenges in design scenarios,
flutter also emerges as a method for harnessing energy
[94]. The simultaneous need to address and enhance
flow-induced motion is thus important across diverse
engineering fields.

Here, we consider a video of a flutter test from 1966
released by NASA [95]. The test was conducted with a
Piper PA-30 Twin Commanche piloted by Fred Haise.
We assume the variation in the airspeed is small after the
aeroelastic flutter initiation. As the horizontal tailplane
in the video moves out of frame, we track the black hook
at the bottom of the plane with our tracker and apply
inverse translation to the video frame to apply frame
stabilization. Figure 6a shows four stabilized frames of
the video with three tracked corners of the tailplane in
different colors.

We plot the extracted vertical displacements of the
three corners in Fig. 6b. There is no reading for the blue
and red corners in the last two seconds of the video as
the plane moves partially out of the frame. Hence we
use only the bottom right corner of the tailplane (green
bounding box and signal) to construct our reduced
model.

For a two-degree-of-freedom (binary) aeroelastic
model at moderate speed, coupling wing bending and

torsion, the system has two complex conjugate pairs
of eigenvalues corresponding to eigenmodes with pos-
itive damping and distinct frequencies [93]. The flutter
begins when the damping in one of the modes crosses
zero, which occurs when the flow velocity exceeds a
critical airspeed and the system undergoes a Hopf bifur-
cation. The effective dampings in each of the motions
must be simultaneously zero and the frequencies of
both motions must be identical [96]. Hence, the oscil-
lation will have a single frequency. This argument
extends to more than two degrees of freedom.

Further, in Fig. 6¢, we plot a spectrogram of the train-
ing signal with the power spectral density normalized
in each time slice. We find only a single dominant fre-
quency is present in the signals, so we aim to iden-
tify a 2D SSM in an appropriate observable space for
our model reduction. We delay-embed the signal with
At = 0.0667s, to construct an SSM-based model ina 5-
dimensional observable space. We identify and param-
eterize a 3rd-order, 2D SSM, on which SSMLearn out-
puts a 7th-order reduced dynamics and computes a 7th-
order normal form

oo~ =40.4844 — 1.679p — 8.516p* + 27.28°,

6 = 15.90 — 34.64p> + 377.1p* — 1213p°.
(30)

In Fig. 6d, we integrate in time the initial condition
of the original trajectory beyond the original data, we
observe the oscillation sustains for all future time and
its amplitude remains bounded. The trajectory in the
normal space is illustrated in Fig. 6e, where the trajec-
tory grows initially and enters a stable constant ampli-
tude oscillation. We find that the limit cycle is captured
by our model and the dynamics predictions remain
bounded.

4.5 Wheel shimmy

As our last example, we consider the self-excited
vibration of towed wheels, often referred to as wheel
shimmy. This phenomenon can occur in a large range
of vehicles including motorcycles [97], tractors [98]
and aircraft landing gears [99], with significant safety
implications.

The rich dynamics of the wheel shimmy originate
from the elastic tyres whose ground contact regions
are subject to partial sticking and sliding [100]. The
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Fig. 6 Data-driven Nonlinear Reduced-order Model on the
Unstable Manifold for Tailplane Flutter—a Four selected frames
of the tailplane flutter video with the three tracked corners in dif-
ferent colors. The black margins of frames are paddings for frame
stabilization since the subject is not static in the video. b Vertical
displacements of the three tracked corners. Since the tailplane
moves up and leaves the frame in the last two seconds of the
video, there are no valid readings for the blue and red corners for

time delay in the tyre-ground contact and dry friction
result in subcritical Hopf bifurcations in the infinite-
dimensional and non-smooth system, giving rise to
bistable parameter domains. In the bistable parame-
ter region, the stable rectilinear motion and periodic
oscillation coexist with domains of attraction separated
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t > 8 s. ¢ Spectrogram of the displacement signal at the bottom
right corner (green) of the horizontal stabilizer. d Original tra-
jectory of the vertical displacement of the bottom right corner,
y2, in black and its reconstruction in blue. By advecting the ini-
tial condition beyond the time of the original data, we observe
a sustained and bounded limit cycle oscillation. e Reconstructed
trajectory in the normal form coordinates. The model captures
the limit cycle behavior. (Color figure online)

by unstable limit cycles. The experimental, analytical,
and numerical findings collectively affirm the presence
of subcritical bifurcations in the rectilinear motion,
wherein bistable parameter domains were observed
under fixed caster length and a range of towing speeds
[100-102].
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Fig. 7 Data-driven
Nonlinear Reduced-order
Model on the Slowest SSM
of Wheel-Shimmy—a The
experimental rig with a
treadmill in green, towed
bicycle wheel in yellow,
encoder in orange, and
camera in magenta. The red
box indicates the region we
use for extracting data. b
Three examples of
processed frames, where the
tracked bolts are highlighted
with green and red
bounding boxes. The x and
y coordinates of the box
centers are used to compute
yaw angle 6. ¢ Test

0 1 2 3

trajectories for limit cycle d *
and decaying oscillations,
and their reconstructions
predicted by the trained 12
model. d Damping curve
output by the SSM-reduced
model trained from video
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Here, we study a caster-wheel system running on a
treadmill with a fixed set of system parameters, caster
length and tow speed, in a bistable domain. We record
top-down videos (1920x1080 px, 50 Hz) to generate
training and test data. The experimental setup is shown
in Fig. 7a, which is a modification from the one studied
in [100,101]. On top of the treadmill, a bicycle wheel
is fixed to a caster, which is mounted to the rack by a
rotational joint. A rotational encoder built on the joint
provides yaw angle reading for validation.

We track two bolts (see Fig. 7b) on the rotating caster
bar to obtain (x, y) pixel positions of the bolt cen-
ters, which we use to compute yaw angle readings (see
Appendix G for video data validation). Perturbations
by hand push were applied to the wheel to generate tra-
jectories that converge to the stable fixed point, 6 = 0,
and the periodic orbit. Two such trajectories are plotted
in Fig.7c. We use a pair of trajectories, capturing the
transients of decaying vibrations and large amplitude
oscillations, for training and another pair for testing.
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Frequency analysis shows that only a single fre-
quency is present in the signals, so we aim to iden-
tify a 2D SSM in an observable space for our model
reduction. Based on Takens’s embedding theorem, we
delay-embed the signal five times with a time delay
At = 0.02s (1 frame of 50 FPS video). In the 5-
dimensional observable space, SSMLearn identifies a
3rd-order, 2-dimensional manifold, on which we iden-
tify the reduced dynamics in the Sth-order normal form

pp~! = —0.8583 + 12.11p% — 37.71p%,
6 = 15.17 — 9.155p> + 7.398p".

€Y

Note that a Sth-order normal form is the minimal order
to model the bistable dynamics of the system because
we expect two zeros in the damping curve correspond-
ing to the unstable and stable limit cycle amplitudes.
In Fig.7c, we test our model by advecting two
unseen initial conditions and comparing them against
the full test trajectories. With our training settings, we
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find a reconstruction error of 3.17% for the limit cycle
and 5.07% for the decaying oscillation.

As a reference, we train a model using yaw angle
readings from the encoder installed on the rotating joint
(sampling rate of 200 Hz) with the same trajectories and
training setting. We plot the damping curve output by
the two models, trained on video data and encoder data,
in Fig.7d. The damping curves from the two models
are consistent and predict a similar unstable limit cycle
amplitude of 10.2° and the stable limit cycle amplitude
of 14.7°, differing by only < 3.5%. The small dis-
crepancy in the damping curves near zero amplitude
between the two models is due to a higher signal-to-
noise ratio affecting both measurement methods. For
the video data, this is caused by the video resolution,
while the encoder data is limited by sensor precision.
Figure 7e shows the phase portrait constructed by inte-
grating two initial conditions near the unstable limit
cycle.

5 Conclusion

We have developed a tracking algorithm based on
rotation-aware template matching to extract data from
experiment videos, which we have used to construct
nonlinear reduced-order models with the open-source
MATLAB package SSMLearn. We have obtained
SSM-based models that accurately captured nonlinear
phenomena such as the nonlinear damping of a dou-
ble pendulum, the softening response of water tank
sloshing, multiple coexisting isolated steady states of
an inverted flag, stable limit cycle oscillations in the
tailplain flutter of an aircfraft and bistable dynamics
in wheel shimmy. This broad range of applications
demonstrates the versatility of the tracking method and
the general applicability of SSM-reduced models con-
structed from video data.

The main objective of conventional trackers is object
localization, whereas the purpose of our tracking algo-
rithm is experimental sensing. Conventional filter-
based trackers are unsuitable for this purpose because
the tracked points or features are implicitly defined
and updated at each frame, which leads to relatively
higher noise, uncertainty in extracted time series data,
and drifting issues (see Appendix F for a comparison).

Although the tracking method devised here can
extract accurate trajectories for the construction of
reduced-order models, a limitation is its computational
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cost, which is notably higher than state-of-the-art CSRT
trackers [46], as well as its limited robustness to envi-
ronmental changes (see Appendix F for procesing time
comparison). Our tracking algorithm takes a brute-
force approach to identify optimal matches in target
frames, involving the computation of similarity scores
between the template and all locations in the search
region for multiple potential template rotations. Even
though the tracker utilizes information from previous
matches to reduce the range of search regions and tem-
plate rotations, the computational cost remains high.

In future work, we envision reducing the computa-
tional time significantly by parallelizing the matching
computation without compromising its accuracy. Addi-
tionally, one can improve computational efficiency by
incorporating motion models to reduce search regions
or by calculating matching correlations in the fre-
quency domain similar to the technique used in DCF-
based methods [45,46]. Exploring alternative hand-
crafted features, such as histograms of oriented gradi-
ents (HoG) or Gabor filters, could also enhance track-
ing robustness but at the cost of reduced model inter-
pretability.

Up to a rotation, our template matching tracking
method assumes that variations in appearance and light-
ing are small and a single initialization of the template
is therefore sufficient throughout the full video length.
It would be possible to extend our template matching
to other classes of linear transformations to account for
small general rotations and deformations. This, how-
ever, would require high-fidelity video and improve-
ments to the computational performance.

These limitations can be addressed in future devel-
opments of the algorithm presented here. Our gen-
eral conclusion is that in situations where the speed
of extracting an SSM-reduced model is not critically
important, the present form of our algorithm already
provides reliable models for nonlinear system identifi-
cation, trajectory prediction, and localization of hidden
features of the dynamics such as unstable limit cycles.
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Appendix A Error metric

The root mean square error (RMSE) is a commonly
used metric in statistics and machine learning to eval-
uate the accuracy or performance of a prediction or
model. It is defined as

N
1 .
RMSE = | =3 (5 — )%,

i=1

which would not suffice in our context where the obser-
vation vector y(f) € R” is not a scalar and for each tra-
jectory, each dimension of the y(¢) could take different
ranges of values.

In other words, the prediction error for each dimen-
sion of the output should be normalized by the cor-
responding range of the state. For instance, the error
of the two phase space variables of a single pendu-
lum, 6 and 6, should be normalized separately as they
could take different ranges of values: 6 € [0, 27) and
6 e (—o0, 00).

To quantify the performance of models that have
multi-dimensional output, we use a variation of RMSE
extended to vector observations, which will be referred

to as the extended root mean square error (ERMSE)
defined as

ERMSE

_ iil - Viti) — i) ?
N n max; yj () — min; yj (%))

i=1" j=1
(AD)

for each y(¢) € R” output vector with N samples and
the corresponding reconstruction y(¢) from model.

Alternatively, a modified version of the root mean
trajectory error (NMTE) defined in [21] as

N

1 1 .
> 15 — ya)ll.
i=1

NMITE= ———
N || max; y ()]

can also be used. Instead of normalizing the average
vectorial error against the maximum norm of y(#), we
normalize each dimension/component to its range sep-
arately and then compute the average. We will refer to
this metric as component-normalized mean trajectory
error (CNMTE) defined as

CNMTE

e 5 — i)
_NZ Z(maxi y;j(t;) — min; Yj(li)) '

i=1 j=1

(A2)

Even though the expression of (Al) and (A2) are
similar, there is a difference in meaning. The ERMSE
is an extension of RMSE, which aims to measure the
performance of machine-learning models, where mod-
els take multiple inputs and produce multiple outputs
of different scales. The outputs are not assumed to be
related to one another. In contrast, the CNMTE carries
a physical meaning as it takes the average of the norm
of the normalized vectorial error of the states, which
represents trajectory differences.

The choice of which metric to use thus depends on
the setting. We will use the ERMSE to quantify the
error of manifold parameterization, as this step of the
procedure involves fitting a polynomial to a set of scat-
tered data points from all the training trajectories. In
contrast, CNMTE will be used to quantify the error of
dynamics predictions from the reduced model, a con-
text in which comparing trajectories is important.
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a Time Delay and Model Error for Double Pendulum Example
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Fig. 8 Mutual Information, Manifold Parameterization Error,
and Prediction Error with Varying Time Delay—a The averaged
mutual information (blue line) with variations across observable
dimensions (gray shaded region) are plotted with the manifold
parameterization (orange scatter) and trajectory reconstruction
(blue scatter) errors of the reduced-model of the double pendu-

Appendix B Time delay selection and model
robustness

The selection of time delay, in numbers of time snap-
shots, for each of our models was informed by the
method of average mutual information [84, 103].

To illustrate the effect of time delay on model perfor-
mance, we train models for the double pendulum and
liquid sloshing systems with varying time delay and
compare the behaviour of model errors with average
mutual information. The results are plotted in Fig.8.
The small variations in the two errors across a wide
range of time delay demonstrate the robustness of our
data-driven models, which are constrained only by
the mutual information contained in the training data.
Thus, we select the time delay close to the first local
minima of average mutual information. We note that
the behaviour of model errors, with respect to average
mutual information, for other systems modelled in this
paper shows similar trends.

In both error plots in Fig. 8, we observe a decrease in
model prameterization error and a increase in the pre-
diction error near the local maxima of average mutual
information. This is a consequence of time delay coin-
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b Time Delay and Model Error for Liquid Slosh Example
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lum. b Same as (a) but for the liquid sloshing reduced-model.
The ERMSE error of manifold parameterization is averaged over
the training trajectories while the CNMTE error of test trajectory
reconstruction is averaged over the test trajectories. Errors larger
than 25% are not shown in the plots. (Color figure online)

ciding with the system periodicty. Delay-embedding
the observable vector with these small ranges of time
delay collapses the manifold in phase space (hence the
small parameterization error), and the essential dynam-
ics of the system cannot be captured in the delay-
embedded space. Consequently, this leads to high tra-
jectory prediction error.

Appendix C Equations of motion for the double
pendulum

The derivation of the equations of motion begins with
the definitions for the coordinates and velocity of the
center of masses of the two pendulum rods

1 1
(x1,y1) = <511 sin 6y, —511 cos91> .
L 1 . 1 .
(x1,y1) = | =116y cos Oy, =110, sinb; |,
2 2
. | N
(x2,y2) = <11 sin 01 + 512 sinf,, —I[j cos

1
—=1 6,
7 5 cos 2)
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. 1 .
(X2, y2) = <1191 cosby + 51292 cos s,
. 1 . .
1161 sin 0] + 51292 sinf, |,

where g is the gravitational acceleration constant.
These definitions assume the mass centers of the two
rods coincide with the halfway point of the physical
rod lengths.

The kinetic energy T and potential energy V are

DTSRRI BRI
T = om (43D + 5mais +53)

1 . 1 .
—16% + 1,62,
+211+222

1o/ N 1, 1 5\ .,
= (EWH (511> + 511 + 57’}12[1) 91

A

(L L 2+129'2
2"2\27) TR

B

1 ..
+ Emzlllz 016, cos (B — 61),

—
C

V =migyr +magy,

1 1
=—gh (zml + mz) cosf; — znglz cos b,

[N — e e’
D E

where I 2 are the associated moments of inertia, and
A, B,C, D, E are all constants consisting of system
parameters.

Invoking the parallel axis theorem, we compute the
moment of inertia of the pendulum as a summation of
contribution from a rectangular prism and two semi-
cylinders at both ends.

I = - Mg (2 + w?)
12 13 1

semicylinder 16 92 wj
+ li + 2wi 2
2 3rm ’

where w; corresponds to the width of the pendulum
arms.

Thus, we can immediately write the Lagrangian of
the conservative system as

L=T-V.

The equations of motion of the conservative system
could be obtained by solving the Euler-Lagrange Equa-
tions

d /oL oL

_<__)__:o, fori = 1,2, (©3)
dr \ 94 9gi

which yield

. 1 2 . A2

gy = e C*sin (6 — 62) cos (61 — 62)0;

+2BCsin (6; — 6;)63

+2BDsinf; — CE cos (6 — 0) sin 92], (C4)

. 1 .
b = E[ — 2ACsin (6) — 62)67

— C?sin (61 — 62) cos (6] — 62)67
— CDcos (01 —6)sinf; + 2AE sin 92:|,
(C5)

2

A=Yy (40" + 41+ St
2

B = Lmo (40)} + 113

1
where € = amahiby,
D = (3my +m)gly,
E = imagh,

K = C?cos? (6; — 6,) — 4AB.

As the real system is not conservative, we must fur-
thermore include a dissipation in the analytical model.

C.1 Rayleigh dissipation function

In 1881, Lord Rayleigh demonstrated that when a dis-
sipative force F is proportional to velocity, it can be
represented by a scalar potential that depends on the
generalized velocities ¢. This scalar potential is known
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as the Rayleigh dissipation function D

D(g) = % YN Bijdidi- (C6)

i=1 j=1

and it provides an elegant way to incorporate linear
velocity-dependent dissipative forces in Lagrangian
and Hamiltonian mechanics.

Dissipative drag force in the direction of ¢ is then
defined as the negative velocity gradient of the dissipa-
tion function (C6), that is

F = -V;D().

In the context of a double pendulum, it is reasonable
to assume that frictions from the two joints are the main
sources of dissipation in the system as opposed to other
factors such as air resistance.

If we consider the two joints as free bodies, the dis-
sipation from the first joint only depends on the rate
of rotation of the upper arm, whereas the second joint
linking the two arms depends on the relative rate of
rotation of the two rods. Thus, the dissipation function
for the system is of the form

B2

D= %«9124- 7(92 — 1)
— ———
Joint1 Joint2
_ _ D _ ; ;
= =35 = —(B1+ p2)01 + f262
_— 1 . . .
Fr == =80, — g6
2 20, 201 — P26

The dissipative generalized forces can then be added
to the Euler-Lagrange equation (C3) to obtain

d /0 d
—<—L,:>——£=F,~, fori=1,2. (€7)
dr \ 9¢; 9gi

Solving (C7) arrives at a modified version of (C4)
and (C5)

.. 1 . .
0 = e [... + 2B ((B1 + )01 — B262)
+C cos (0 — 62) (B261 — B262) ]
= f3(61, 62,61, 62, ), (C8)
| . X
b= = [... — 24 (B261 — Babh)

—C cos (01 — 62) ((B1 + B2)61 — :3292)]
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= f4(61, 02,61, 62, ), (C9)

where p is a vector collecting all system parameters.
These are the equations of motion for a double pen-
dulum with modeled joint dissipation. Although the
damping model linearly depends on angular velocities,
the dissipation is nonlinear due to geometric nonlinear-
ities.

Appendix D SSM-reduced model for the inverted
flag

£ = —2.3256) + 0.3512¢5 + 1.132¢5
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— 8.837£,60 + 0.1211£,6] + 4.119,£5
+0.2219¢7 — 0.502&78, — 1.61962¢7
+0.541962€3 + 31046285 + 0.7389£2¢5
— L.701£7£5 — 0.6087&] + 0.6853&;
+0.3954£ 3, — 3.6458362 + 0.1459£ &3
2215836 — 0.37876385 + 0.678367£0
— 0.5395} + 3.495 16, + 1.664& )67
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— 1.724&3 — 16.85 + 1.803&9
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a Prediction Error
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Fig.9 Error Analysis of Reduced-Model Prediction of Inverted
Flag Dynamics—a Absolute error of model prediction (c.f.
Fig.4c). b Phase error of model prediction measured by win-
dowed cross-correlation, where the coefficient peak across time
is plotted in red. The width of sliding window is selected to be one
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Appendix E Phase error quantification for
inverted flag model

We quantify the phase error of our reduced-model pre-
dictions for the inverted flag with the windowed cross-
correlation [90], which computes cross-correlation of

Phase Error
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period of oscillation (& 5.6 seconds determined from spectro-
gram similar to the one shown in Fig. 6¢). The cross-correlation
coefficient is normalized in each time slice. (Color figure online)

successive segments (or windows) of two signals. A
conventional cross-correlation is recovered when the
window size is set to the length of the input signals.
The windowed cross-correlation captures the temporal
variations in the strength and direction of associations
between two time series. In an oscillatory system, such
as the inverted flag, we could interpret the variations in
the correlation between the test trajectories and model
predictions as the phase error.

We plot the absolute error of model prediction (from
Fig.4c) and the phase error in Fig. 9. We find the phase
error of model predictions across all four test trajecto-
ries remain within 0.3 s delay, which corresponds to
~ 5% of oscillating period and less than 1% when aver-
aged across prediction time. We observe that there is a
correspondence between localized regions of relatively
high absolute prediction error and the phase error, such
as at the beginning and end of the bottom test trajec-
tory, which suggests that the main prediction error is
associated with phase error rather than amplitude.
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Table 1 Summary of Video Details and Settings for Benchmark

Dataset Resolution Frames Angle Sweep? [min, max, Search Region® (multiples
step] (degrees) of template dimensions)

Double pendulum 1080x 680 (grayscale) 12854 —15,15,5 1

Inverted flag 680x350 (grayscale) 1570 —15,15,5 1

Liquid sloshing 1532x 1124 (grayscale) 2373 —15,15,5 1

Aerodynamic flutter 697x891 (RGB) 239 —30, 30,5 2

Wheel shimmy 136x208 (RGB) 16655 0,0,0 1

4 Applicable to the proposed TM tracker only
b Applied to all trackers

Table 2 Summary of Process Time of Proposed Template Matching (TM) Tracker with CSR-DCF and MOSSE Tracker

Dataset Proposed TM tracker

process time (seconds)

CSR-DCEF tracker process
time (seconds)

MOSSE tracker process
time (seconds)

Double pendulum 720.8
Inverted flag 79.5
Liquid sloshing 189.7
Aerodynamic flutter 49.1
Wheel shimmy 185.2

676.5 476.1
74.6 51.6
154.8 151.1
16.4 4.2
502.9 310.8

Frame 24

Frame 837

Fig. 10 Qualitative Comparison of Proposed Template Match-
ing (TM) Tracker with CSR-DCF and MOSSE Tracker—This
figure illustrates the qualitative performance comparison in an
inverted flag experiment video. The proposed TM tracker, along
with two advanced correlation filter-based trackers (CSR-DCF
[46] and MOSSE [44]), were initialized using an identical tem-
plate in frame 24, followed by tracking the same video sequence.

Appendix F Comparison with other correlation
filter-based trackers

‘We compare the processing time of the proposed track-
ing method with two state-of-the-art trackers, CSR-
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Frame 1479 Frame 1515

The center of the bounding box corresponds to the tracked point.
Five frames showcase the drift issues common in traditional
trackers. The first row (in red) are results from the CSR-DCF
tracker. The second row (in magenta) are from the MOSSE
tracker. The bottom row (in green) are from our proposed TM
tracker. (Color figure online)

DCF [46] and MOSSE [44], by applying all three track-
ing algorithms to a sample video from each of the five
real-life examples presented in this paper. The hard-
ware used for the benchmark is a 6-core AMD Ryzen™
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Fig. 11 Comparison of a b

Wheel Shimmy Angle 20 20

Extracted from Video with —Encoder Reading
Encoder Readings—a Limit 10 10 + Video-Extracted Data
cycle trajectory used for

reducgd modfel training. b > 0 > 0

Decaying trajectory used for

reduced model training. The

angle extracted from the -10 -10r
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sub-figures is plotted with '200 1 2 3 4 '200 1 2 3

the encoder readings
(black). (Color figure
online)

53600 CPU with 3.6GHz base clock speed which Max
Boosts (similar to Intel’s Turbo Boost) up to 4.2GHz.

The details of the videos and the settings used for the
benchmark are summarized in Table 1 and the results
are summarized in Table 2. In each video, we ini-
tialize all three trackers with the same template with
bounding box centers corresponding to the point we
want to track, such as the tip of the inverted flag, and
allow each tracker to iterate through the entire video
sequence. As expected, our proposed TM algorithm is
generally slower than the other two for cases where we
employ an angle sweep in the template matching pro-
cess. When angle sweeping is disabled, such as for the
wheel shimmy video example, we find our TM tracker
to be faster than the CSR-DCF and the MOSSE tracker.

We note that the results presented in Table 2 only
illustrate the computational efficiency of the algorithms
and not the tracking accuracies, as all videos are of real
experiments and ground truth does not exist. Although
both the CSR-DCF and MOSSE could track the ini-
tialized template through the entire video sequences
(except in the liquid sloshing example where both
failed), both trackers suffered from drifting issues. We
illustrate this problem in Fig. 10 qualitatively, where
we provide tracking results of a liquid sloshing video
at three selected frames (frame 837, 1479, and 1515)
with identical template initialized at frame 24 for all
trackers. Using the template center point as the refer-
ence point for a qualitative evaluation of tracking accu-
racy, we find our tracking algorithm to be accurate and
not exhibiting any drifting issues as observed by the
application of the other two methods.

Time |s]

Time [s]

Appendix G Video tracking error quantification

As avalidation of our template matching tracking algo-
rithm, we compare the angle extracted from the wheel
shimmy experiment video with the encoder readings
(see Fig. 7a for test rig setup). Figure 11a plots the limit
cycle and Fig. 11b plots the decaying trajectories used
for training the two SSM-based reduced models (one
with video data and another with encoder data). Based
on the encoder angle readings as the reference, the data
extracted with our proposed TM tracker has a trajec-
tory error (measured in CNMTE metric) of 1.1% for
the limit cycle trajectory and 1.5% for the decaying
trajectory.
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