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A B S T R A C T

Recent work has identified objective (frame-indifferent) material barriers that inhibit the transport of
dynamically active vectorial quantities (such as linear momentum, angular momentum and vorticity) in Navier–
Stokes flows. In magnetohydrodynamics (MHD), a similar setting arises: the magnetic field vector impacts
the evolution of the velocity field through the Lorentz force and hence is a dynamically active vector field.
Here, we extend the theory of active material barriers from Navier–Stokes flows to MHD flows in order to
locate frame-indifferent barriers that minimize the diffusive magnetic flux in turbulent two-dimensional and
three-dimensional MHD flows. From this approach we obtain an algorithm for the automated extraction of
such barriers from MHD turbulence data. Our findings suggest that the identified barriers inhibit magnetic
diffusion, separate electric current sheets and organize the transport of the magnetic energy.
1. Introduction

The motion of Lagrangian fluid particles in magnetohydrodynamic
(MHD) flows inherently depends on the topology of the magnetic field
lines, i.e., smooth curves tangent to the magnetic field, through the
Lorentz force. In an ideal medium with no magnetic diffusion, magnetic
field lines evolve as regular material curves: they are advected by
the fluid velocity as if they were frozen to the MHD flow. Contrar-
ily, in the presence of magnetic diffusion (finite resistivity), strong
gradients in the magnetic field typically give rise to experimentally
observable current filaments or sheets, i.e., thin regions with high
current density [1–3]. Induced by the diffusion of the magnetic vector
field, these sheets have far-reaching consequences on the transport of
fluid particles as well as on the topology of the magnetic field lines [4–
6]. Understanding the fundamental processes involved in the magnetic
diffusion is crucial in describing the material transport in MHD flows.
Moreover, spatial structures arising in intermittent turbulence influence
the dissipation, heating, transport and acceleration of charged particles
both in laboratory and astrophysical plasmas [7].

Existing magnetic coherent structure diagnostics in MHD flows rely
on individual snapshots of the magnetic field [8,9]. Such an Eulerian
description, however, fails to highlight important transport barriers
that are active over a longer time interval. So far, a Lagrangian analysis
in MHD flows has purely been limited to computing advective La-
grangian Coherent Structures (LCSs) [10–13]. These govern primarily
the transport and mixing of Lagrangian fluid particles [14]. In ideal
MHD flows (with zero viscosity 𝜈 and resistivity 𝜇), magnetic field lines
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evolve as material vectors and hence are indeed tied to advective LCSs.
However, in MHD flows with non-zero magnetic diffusion, the magnetic
field vectors no longer evolve as regular material vectors, i.e., their
tangent vectors do not satisfy the equations of variations

𝝃̇(𝑡) = [∇𝒗 (𝒙(𝑡), 𝑡)] 𝝃(𝑡), 𝒙 ∈ R3, 𝑡 ∈ R, (1)

where 𝝃 is a material vector attached to the trajectory 𝒙 (𝑡) generated
by the velocity field 𝒗(𝒙, 𝑡). Advective LCSs, therefore, are generally
insufficient for describing the diffusive transport of the magnetic field
vector. Furthermore, LCS detection tools have frequently been em-
ployed to visualize invariant manifolds of the instantaneous magnetic
field [9,15,16]. Specifically, [11,17] obtained coherent magnetic vor-
tices that bundle together magnetic field lines as tubular level sets
of the integrated averaged current density (IACD). Transport barriers
obtained in this fashion are, however, not material in unsteady flows.

Here we seek active barriers to the diffusive transport of the mag-
netic field that have an observable impact on the fluid. These barriers
are, therefore, physical features that are intrinsic to the MHD fluid. As
such, they need to be indifferent to the choice of the frame of Ref. [18],
so that two observers that are related to each other via non-relativistic,
Euclidian frame changes of the type

𝒙(𝑡) = 𝐐(𝑡)𝒚(𝑡) +𝒃(𝑡), 𝐐(𝑡) ∈ 𝑆 𝑂(3), 𝒃(𝑡) ∈ R3, 𝐐𝑇 (𝑡)𝐐(𝑡) = 𝐈3×3, (2)

identify the exact same material barriers. Here 𝒃(𝑡) is a time-dependent
translation and 𝐐(𝑡) is a time-dependent rotation matrix. Objectivity
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is, therefore, a minimal self-consistency requirement for experimen-
tally reproducible coherent structure diagnostics both in MHD and

avier–Stokes flows.
The present work builds upon the recent theory developed in [19]

hich seeks frame-indifferent (objective) material barriers to the trans-
port of active vectorial quantities in 2D and 3D Navier–Stokes flows.
Examples of such active vector fields in fluids include the vorticity and
he linear momentum. Specifically, barriers to the diffusive transport

of linear momentum, give rise to observable coherent structures in
wall-bounded turbulence [20] and Rayleigh–Bénard flows [21].

For MHD flows, the magnetic field qualifies as a dynamically active
ector since it contributes to the linear momentum equation through
he Lorentz force. In our work, we seek frame-indifferent material
arriers to the diffusive transport of the magnetic field. These objec-

tive transport barriers are special material surfaces across which the
magnetic diffusion vanishes pointwise.

Our formulation allows for both compressible and incompressible
MHD flows, however, we primarily focus on the case of incompressible
MHD flows. It is important to note, that incompressible MHD describes
a plasma with infinite sound speed and, consequently, an infinite
plasma beta

(

𝛽 ∼ 𝑣2𝑠
𝑣2𝑎

)

, where 𝑣𝑠 is the speed of sound and 𝑣𝑎 is the
lfvén speed. Although incompressible MHD is merely a simplified
odel of plasma dynamics, it has several applications in both labora-

ory and space plasmas. For instance, in the solar corona, despite the
ow plasma beta, the mean magnetic field is significantly larger than its
luctuations, causing the plasma to behave similarly to incompressible

MHD [22]. Moreover, incompressible MHD can also effectively describe
he turbulence cascade of the solar wind [23]. The expanding solar
ind is indeed often found to be in a weakly-compressible state [24]
ith finite plasma beta 𝛽 ∼ 1

2 . Finally, incompressible MHD can account
for the emergence of coherent structures in the heliosphere such as
magnetic flux tubes and electric current sheets [7].

The outline of this paper is as follows. In Section 2, we first
introduce our set-up and notation. We then discuss advective transport
barriers and review relevant aspects of LCSs. Subsequently, we derive
Eulerian and Lagrangian barriers to the diffusive transport of the mag-
netic field. In Section 3, we compute such active magnetic field barriers
or 2D and 3D homogeneous isotropic turbulence data as streamcurves
f a particular vector field. We offer a systematic comparison between
agnetic barriers, linear momentum barriers and advective LCSs in
HD flows.

2. Methods

We consider a 3D electrically conducting fluid with velocity field
(𝒙, 𝑡) and magnetic field 𝐁(𝒙, 𝑡) known at spatial locations 𝒙 ∈ 𝑈 ∈
3 in a bounded invariant set 𝑈 at times 𝑡 ∈ [𝑡0, 𝑡1]. In the non-

elativistic (low-frequency) regime, the forced MHD fluid satisfies the
et of visco-resistive MHD equations [25,26]
𝐷
𝐷 𝑡𝒗(𝒙, 𝑡) = −∇𝑝(𝒙, 𝑡) + 𝜈 𝛥𝒗(𝒙, 𝑡) + 𝐟𝐿 (𝒙, 𝑡) + 𝐟𝑒𝑥𝑡(𝒙, 𝑡), (3)
𝐷
𝐷 𝑡𝐁(𝒙, 𝑡) = [𝛁𝒗(𝒙, 𝑡)]𝐁(𝒙, 𝑡) − [∇ ⋅ 𝒗 (𝒙, 𝑡)]𝐁 (𝒙, 𝑡) + 𝜂 𝛥𝐁(𝒙, 𝑡), (4)

∇ ⋅ 𝐁(𝒙, 𝑡) = 0, 𝒙 ∈ 𝑈 ⊂ R3, 𝑡 ∈ [𝑡0, 𝑡1] ⊂ R, (5)

where 𝑝 is the total pressure field, 𝐟𝐿 is the Lorentz force, 𝐟𝑒𝑥𝑡 is an
xternal force, and 𝜈 and 𝜂 respectively denote the kinematic viscosity
nd the magnetic diffusivity of the fluid. In our notation, 𝐷

𝐷 𝑡𝐁 (𝒙, 𝑡) =
𝜕
𝜕 𝑡𝐁 (𝒙, 𝑡)+ [∇𝐁 (𝒙, 𝑡)] 𝒗 (𝒙, 𝑡) denotes the material derivative of the mag-
netic field along fluid trajectories. The diffusive term originates from

hm’s constitutive material law

𝐄 (𝒙, 𝑡) + 𝒗 (𝒙, 𝑡) × 𝐁 (𝒙, 𝑡) = 𝜂𝒋 (𝒙, 𝑡) , (6)

where 𝐄 (𝒙, 𝑡) is the electric field and
11

𝒋 (𝒙, 𝑡) = ∇ × 𝐁 (𝒙, 𝑡) (7)
is the electric current density vector. The Lorentz force

𝐟𝐿 (𝒙, 𝑡) = (∇ × 𝐁(𝒙, 𝑡)) × 𝐁(𝒙, 𝑡) (8)

couples the magnetic field to the equations of motion of the fluid
article. The magnetic field vector appears on the right hand side of
he linear momentum Eq. (3) and actively controls the dynamics of the

velocity field.
Lagrangian particle trajectories generated by the velocity field 𝒗 are

solutions of the differential equation

𝒙̇(𝑡) = 𝒗(𝒙, 𝑡). (9)

We denote the time-𝑡 position of a trajectory starting from 𝒙0 at time
𝑡0 by

𝒙(𝑡; 𝑡0,𝒙0) ∶= 𝐅𝑡𝑡0 (𝒙0), (10)

where 𝐅𝑡𝑡0 is the flow map induced by 𝒗(𝒙, 𝑡). A material surface (𝑡) ⊂
𝑈 is a time dependent codimension-one manifold transported by the
low map from its initial position 0 ∶= (𝑡0) as

(𝑡) = 𝐅𝑡𝑡0
(

0
)

. (11)

The material surface is uniquely determined by its unit normal vector
𝒏 ∶= 𝒏(𝒙, 𝑡) at each point 𝒙 at time 𝑡.

2.1. Advective barriers

Advective barriers are passive material surfaces, whose evolution
does not directly change the dynamics of the velocity field. Defin-
ing material barriers to advective transport is challenging because
all material surfaces (𝑡) perfectly inhibit the transport of passive
tracers. In contrast, LCSs are distinguished material surfaces that act
as centerpieces to the material deformation and thereby maintain co-
herence over a sustained time interval [𝑡0, 𝑡1] (see [27]). Hyperbolic
LCSs are locally the most repelling or attracting codimension-one ma-
terial surfaces over a finite time interval. Attracting and repelling LCSs
mimic unstable and stable invariant manifolds in autonomous dynam-
cal systems, whereas Elliptic LCSs are closed and shear-maximizing
aterial surfaces analogous to KAM-tori [28]. Repelling, attracting and

elliptic LCSs converge to classic stable, unstable and elliptic (KAM-
ori) invariant manifolds if such manifolds exist in the infinite time
imit [14,27].

The right Cauchy–Green strain tensor associated with the flow map
𝑡1
𝑡0

(

𝒙0
)

is defined as [29]

𝐂𝑡1𝑡0
(

𝒙0
)

=
[

∇𝐅𝑡1𝑡0
(

𝒙0
)

]𝑇
∇𝐅𝑡1𝑡0

(

𝒙0
)

. (12)

This symmetric and positive definite tensor encodes the Lagrangian
eformation in the fluid over the finite time interval

[

𝑡0, 𝑡1
]

at 𝒙0. To
visualize hyperbolic LCSs from trajectories generated from a 3D vector
field 𝒗 (𝒙, 𝑡) over a finite time window [𝑡0, 𝑡1], we define the finite time
Lyapunov exponent

FTLE𝑡1𝑡0
(

𝒙0
)

= 1
2|𝑡1 − 𝑡0|

log
(

𝜆𝑚𝑎𝑥
(

𝐂𝑡1𝑡0
(

𝒙0
)

))

, (13)

where 𝜆𝑚𝑎𝑥
(

𝐂𝑡1𝑡0
(

𝒙0
)

)

is the largest eigenvalue of 𝐂𝑡1𝑡0
(

𝒙0
)

. The FTLE𝑡1𝑡0
field is an objective Lagrangian diagnostic that measures locally the
largest material stretching rate in the flow. Ridges of the FTLE𝑡1𝑡0 field
obtained from a forward trajectory integration (𝑡1 − 𝑡0 > 0) mark initial
positions of repelling LCSs (generalized stable manifolds) at time 𝑡0.
Similarly, ridges of the backwards FTLE𝑡1𝑡0 field (𝑡1 − 𝑡0 < 0) denote
initial positions of attracting LCSs (generalized unstable manifolds) at
time 𝑡0.

In order to detect elliptic LCSs, we employ the Lagrangian-averaged
vorticity deviation (LAVD), by [30] defined over the finite time interval
𝑡0, 𝑡1

]

as

LAVD𝑡1
(

𝒙0
)

=
𝑡1
|

|

|

𝝎
(

𝐅𝑠
(

𝒙0
)

, 𝑠
)

− 𝝎̂ (𝑠)
|

|

|

𝑑 𝑠, (14)
𝑡0 ∫𝑡0 |

𝑡0
|
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where 𝝎 denotes the vorticity and the overhat indicates spatial aver-
aging over a fixed flow domain 𝑈 . The LAVD depends on the choice
of the domain over which the spatial averaging is performed. Once
𝑈 is fixed, the LAVD is objective, i.e. frame-invariant with respect to
rame changes of the type (2). For our computations, the domain is
et to be the full computational domain as also done in [21]. In 2D,
lliptic LCSs at time 𝑡0 correspond to the outermost convex level sets
f the LAVD𝑡1𝑡0

(

𝒙0
)

field surrounding a unique local maximum. This
efinition can also be extended to 3D flows, where elliptic LCSs are
dentified as toroidal iso-surfaces of the LAVD𝑡1𝑡0

(

𝒙0
)

field surrounding
 codimension-two ridge [31].

2.2. Active magnetic barriers

The magnetic flux through a control surface (𝑡) is commonly
efined as the surface integral of the normal component of the magnetic
ield 𝐁 over that surface [25,26]

Flux𝐁((𝑡)) = ∫(𝑡)
𝐁(𝒙(𝑡), 𝑡) ⋅ 𝒏(𝒙, 𝑡) 𝑑 𝐴, (15)

where 𝒏(𝒙, 𝑡) is the normal vector to the surface (𝑡). The definition
of magnetic flux given in formula (15), however, suffers from multiple
limitations for the purposes of defining an objective intrinsic diffusive
lux through a co-moving material surface over the time-interval [𝑡0, 𝑡1].
irst of all, 𝐹 𝑙 𝑢𝑥𝐁 measures the net number of magnetic field lines
rossing (𝑡), as opposed to the rate at which magnetic field is trans-

ported through (𝑡). Secondly, 𝐹 𝑙 𝑢𝑥𝐁 is an instantaneous quantity, and
herefore fails to quantify the overall transport of the magnetic field
cross a material surface (𝑡) over the time-interval

[

𝑡0, 𝑡1
]

. Finally,
he flux (i.e. the transport rate) of a physical quantity through a surface

should have the units of that quantity divided by time and multiplied
by the surface area. This is not the case for the existing magnetic flux
definition from formula (15), because Flux𝐁 has the units of 𝐁 times the
surface area.

To resolve these ambiguities, we introduce the diffusive flux of
he magnetic field vector through a material surface (𝑡) over the

time-interval
[

𝑡0, 𝑡1
]

following the approach by [19]. Specifically, the
transport equation for the magnetic field vector (4) can be expressed
in terms of its diffusive and non-diffusive components
𝐷
𝐷 𝑡𝐁(𝒙, 𝑡) = 𝐛𝑛𝑜𝑛−𝑑 𝑖𝑓 (𝒙, 𝑡) + 𝐛𝑑 𝑖𝑓 (𝒙, 𝑡), (16)

with 𝐛𝑑 𝑖𝑓 (𝒙, 𝑡) = 𝜂 𝛥𝐁(𝒙, 𝑡)
nd 𝐛𝑛𝑜𝑛−𝑑 𝑖𝑓 (𝒙, 𝑡) = [𝛁𝒗(𝒙, 𝑡)]𝐁(𝒙, 𝑡) − [∇ ⋅ 𝒗 (𝒙, 𝑡)]𝐁 (𝒙, 𝑡).

Following the active barrier theory from [19], we now introduce the
nstantaneous (Eulerian) diffusive flux of the magnetic field through a
aterial surface (𝑡) as

𝛷((𝑡)) = ∫(𝑡)

[ 𝐷
𝐷 𝑡𝐁(𝒙, 𝑡) ⋅ 𝒏(𝒙, 𝑡)

]

𝑑 𝑖𝑓 𝑑 𝐴 (17)

= ∫(𝑡)
𝐛𝑑 𝑖𝑓 (𝒙, 𝑡) ⋅ 𝒏(𝒙, 𝑡) 𝑑 𝐴

Physically, 𝛷 quantifies the time-normalized transport of the magnetic
ield across a material surface (𝑡) due to diffusion. Note that fluid
rajectories do not even need to physically cross the surface (𝑡) to
nduce a diffusive magnetic flux. Compared to the classic magnetic flux
 𝑙 𝑢𝑥𝐁 (see formula (15)), the newly introduced diffusive magnetic flux
𝛷 has the physical units expected for the flux of the magnetic field
ector: It is given by the units of the magnetic field multiplied by area
nd divided by time.

Eventhough 𝐹 𝑙 𝑢𝑥𝐁 fails to satisfy the physical requirements of a
lux, we remain consistent with the cited references in the MHD lit-
rature and denote 𝐹 𝑙 𝑢𝑥𝐁 as the magnetic flux and 𝛷 as the diffusive
agnetic flux. Alternatively, for incompressible flows, we can obtain 𝛷

32,33]:
12

y taking the material derivative of 𝐹 𝑙 𝑢𝑥𝐁 [
𝐷
𝐷 𝑡 𝐹 𝑙 𝑢𝑥𝐁 ((𝑡)) = ∫(𝑡)

( 𝜕
𝜕 𝑡𝐁 (𝒙, 𝑡) + (∇ ⋅ 𝐁 (𝒙, 𝑡)) 𝒗 (𝒙, 𝑡)

)

𝒏 (𝒙, 𝑡) 𝑑 𝐴

− ∫𝜕(𝑡)
(𝒗 (𝒙, 𝑡) × 𝐁 (𝒙, 𝑡))𝓵 (𝒙, 𝑡) 𝑑 𝑠 (18)

= ∫(𝑡)

( 𝜕
𝜕 𝑡𝐁 (𝒙, 𝑡) − ∇ × (𝒗 (𝒙, 𝑡) × 𝐁 (𝒙, 𝑡))

)

⋅ 𝒏 (𝒙, 𝑡) 𝑑 𝐴 (19)

= ∫(𝑡)

( 𝜕
𝜕 𝑡𝐁 (𝒙, 𝑡) + [∇𝐁 (𝒙, 𝑡)] 𝒗 (𝒙, 𝑡) − [∇𝒗 (𝒙, 𝑡)]𝐁 (𝒙, 𝑡)

)

⋅

𝒏 (𝒙, 𝑡) 𝑑 𝐴 (20)

= ∫(𝑡)

( 𝐷
𝐷 𝑡𝐁 (𝒙, 𝑡) − [∇𝒗 (𝒙, 𝑡)]𝐁 (𝒙, 𝑡)

)

⋅ 𝒏 (𝒙, 𝑡) 𝑑 𝐴 (21)

= 𝜂 ∫(𝑡)
𝛥𝐁 (𝒙, 𝑡) ⋅ 𝒏 (𝒙, 𝑡) 𝑑 𝐴 (22)

= 𝛷 ((𝑡)) , (23)

where 𝓵 (𝒙, 𝑡) 𝑑 𝑠 is the vector element of the closed curve 𝜕(𝑡). From
formula (23), we see that the rate-of-change of 𝐹 𝑙 𝑢𝑥𝐁 coincides with the
iffusive magnetic flux 𝛷. This implies that for a given material surface

(𝑡), any change in 𝐹 𝑙 𝑢𝑥𝐁 can only occur due to diffusive processes.
ccording to Alfvén’s Theorem [34], in ideal MHD fluid (𝜂 = 0), the
agnetic flux 𝐹 𝑙 𝑢𝑥𝐁 is conserved along any arbitrary material surface
(𝑡):

𝐷
𝐷 𝑡 𝐹 𝑙 𝑢𝑥𝐁((𝑡)) = 0. (24)

However, in non-ideal MHD flows (𝜂 > 0), 𝐹 𝑙 𝑢𝑥𝐁 is conserved only for
a specific set of (𝑡), where the diffusive magnetic flux 𝛷 vanishes.

In order to obtain the average diffusive Lagrangian magnetic flux,
we integrate the Eulerian flux 𝛷((𝑡)) from formula (17) along trajec-
tories defining the evolving material surface (𝑡), which yields

𝛹 𝑡1𝑡0 ((𝑡)) = 1
𝑡1 − 𝑡0 ∫

𝑡1

𝑡0
𝛷((𝑡)) 𝑑 𝑡 (25)

= 1
𝑡1 − 𝑡0 ∫

𝑡1

𝑡0
∫(𝑡)

𝒃𝑑 𝑖𝑓 (𝒙, 𝑡) ⋅ 𝒏(𝒙, 𝑡) 𝑑 𝐴𝑑 𝑡. (26)

Under non-relativistic Euclidian frame changes of the form (2), the
agnetic field vector is a frame-indifferent vector field, because it

transforms as an objective vector [35]

𝐁̃ (𝒚, 𝑡) = 𝐐𝑇 (𝑡)𝐁 (𝒙, 𝑡) . (27)

Since the rotation matrix 𝐐(𝑡) has no spatial dependence, it remains
unaffected by spatial differentiation and the Laplacian of 𝐁 is also
guaranteed to transform properly 𝛥𝐁̃ (𝒚, 𝑡) = 𝐐𝑇 (𝑡)𝛥𝐁 (𝒙, 𝑡). Under an
observer change of the form (2), the transformation formula

𝒏̃(𝒚, 𝑡) = 𝐐𝑇 (𝑡)𝒏(𝒙, 𝑡)
for the unit normal vector 𝒏 implies that both the Eulerian and the
Lagrangian diffusive transport of the magnetic field vector are objective
because

𝛷̃(̃(𝑡)) = ∫̃(𝑡)
𝒃̃𝑑 𝑖𝑓 (𝒚, 𝑡) ⋅ 𝒏̃(𝒚, 𝑡) 𝑑𝐴̃

= ∫(𝑡)

(

𝐐𝑇 (𝑡)𝒃𝑑 𝑖𝑓 (𝒙, 𝑡)
)

⋅
(

𝐐𝑇 (𝑡)𝒏(𝒙, 𝑡)) 𝑑 𝐴

= ∫(𝑡)
𝒃𝑑 𝑖𝑓 (𝒙, 𝑡) ⋅ 𝒏(𝒙, 𝑡) 𝑑 𝐴

= 𝛷((𝑡)), (28)

and similarly

𝛹̃ 𝑡1𝑡0 (̃(𝑡)) = 𝛹 𝑡1𝑡0 ((𝑡)). (29)

Thanks to its inherent frame-indifference, the Eulerian and Lagrangian
active magnetic barriers can be thought of as intrinsic physical prop-
erties of the surface and flow. Indeed, they are specifically tied to the
fluid and do not depend on the reference frame of the observer.

Using the surface-element deformation formula [36]
(

𝑡
) [

𝑡
]−𝑇
𝒏(𝒙, 𝑡)𝑑 𝐴 = det 𝛁𝐅𝑡0 (𝒙0) 𝛁𝐅𝑡0 (𝒙0) 𝒏(𝒙0) 𝑑 𝐴0, (30)
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we can parametrize the functional 𝛹 𝑡𝑡0 over its initial material surface
0 as

𝛹 𝑡1
𝑡0
(0) = 1

𝑡1 − 𝑡0 ∫

𝑡1

𝑡0
∫0

𝒃𝑑 𝑖𝑓 (𝐅𝑡𝑡0
(

𝒙0
)

, 𝑡) ⋅ det
(

𝛁𝐅𝑡𝑡0 (𝒙0)
) [

𝛁𝐅𝑡𝑡0 (𝒙0)
]−𝑇

𝒏(𝒙0) 𝑑 𝐴0𝑑 𝑡

= ∫0

1
𝑡1 − 𝑡0 ∫

𝑡1

𝑡0
det

(

𝛁𝐅𝑡𝑡0 (𝒙0)
) [

𝛁𝐅𝑡𝑡0 (𝒙0)
]−1

𝒃𝑑 𝑖𝑓 (𝐅𝑡𝑡0
(

𝒙0
)

, 𝑡)𝑑 𝑡 ⋅ 𝒏(𝒙0) 𝑑 𝐴0

= ∫0

𝒃
𝑡1
𝑡0 ,𝑑 𝑖𝑓 (𝒙0) ⋅ 𝒏(𝒙0) 𝑑 𝐴0, (31)

with

𝒃
𝑡1
𝑡0 ,𝑑 𝑖𝑓 (𝒙0) =

1
𝑡1 − 𝑡0 ∫

𝑡1

𝑡0
det

(

𝛁𝐅𝑡𝑡0 (𝒙0)
) [

𝛁𝐅𝑡𝑡0 (𝒙0)
]−1

𝒃𝑑 𝑖𝑓 (𝐅𝑡𝑡0
(

𝒙0
)

, 𝑡) 𝑑 𝑡.

(32)

Later positions of 0 can be obtained through material advection (see
elationship (11)). To keep our notation simple, we denote the temporal

average of a Lagrangian vector field 𝒘(𝒙0, 𝑡) as

𝒘(𝒙0) = 1
𝑡1 − 𝑡0 ∫

𝑡1

𝑡0
𝒘(𝒙0, 𝑡) 𝑑 𝑡. (33)

We also introduce
(

𝐅𝑡𝑡0
)∗

𝒖(𝒙0) as the pullback operator [37] of an
ulerian vector field 𝒖(𝒙, 𝑡) under the flow map 𝐅𝑡𝑡0 to the initial
onfiguration at 𝑡0
(

𝐅𝑡𝑡0
)∗

[

𝒖(𝒙0)
]

=
[

∇𝐅𝑡𝑡0
]−1

𝒖(𝐅𝑡𝑡0 (𝒙0), 𝑡). (34)

Using the notation (33)–(34), we obtain the simplified expression

𝒃
𝑡1
𝑡0 ,𝑑 𝑖𝑓 (𝒙0) = det

(

∇𝐅𝑡𝑡0 (𝒙0)
) (

𝐅𝑡𝑡0
)∗

[

𝒃𝑑 𝑖𝑓
(

𝒙0
)]

. (35)

Note that taking the infinitesimal limit 𝑡1 → 𝑡0 = 𝑡 of Eq. (35) yields

lim
1→𝑡0=𝑡

𝒃
𝑡1
𝑡0 ,𝑑 𝑖𝑓 (𝒙0) = 𝒃𝑑 𝑖𝑓 (𝒙, 𝑡) , (36)

because lim𝑡1→𝑡0=𝑡 ∇𝐅
𝑡1
𝑡0
(𝒙0) = 𝐈 and lim𝑡1→𝑡0=𝑡 𝐅

𝑡1
𝑡0

(

𝒙0
)

∶= 𝒙(𝑡).
We seek active Lagrangian barriers to the magnetic vector field

s material surfaces 0 along which the integrand in the transport
functional 𝛹 𝑡1𝑡0 vanishes pointwise. This occurs if 0 is everywhere
tangent to 𝒃

𝑡1
𝑡0 ,𝑑 𝑖𝑓 (𝒙0). These material surfaces necessarily coincide with

treamsurfaces (i.e., codimension-one invariant manifolds) of the au-
onomous vector field 𝒃

𝑡1
𝑡0 ,𝑑 𝑖𝑓 (𝒙0). We parametrize the streamlines 𝒙0 of

𝒃
𝑡1
𝑡0 ,𝑑 𝑖𝑓

(

𝒙0
)

with 𝑠 ∈ R, i.e., they satisfy the differential equation

𝒙′0(𝑠) = 𝒃
𝑡1
𝑡0 ,𝑑 𝑖𝑓

(

𝒙0(𝑠)
)

, (37)

where prime denotes differentiation with respect to 𝑠. By taking the
limit 𝑡1 → 𝑡0 = 𝑡 in formula (25), we obtain the diffusive Eulerian

agnetic flux

lim
1→𝑡0=𝑡

𝛹 𝑡1𝑡0 ((𝑡)) = 1
𝑡1 − 𝑡0 ∫

𝑡1

𝑡0
𝛷((𝑡))𝑑 𝑡 (38)

= 𝛷((𝑡)),

whereby temporally averaging 𝛷 in the infinitesimal limit 𝑡1 → 𝑡0 = 𝑡
quals to evaluating 𝛷 at time 𝑡. Therefore, material surfaces (𝑡)
inimizing 𝛷 coincide with streamsurfaces 𝒙 of 𝒃𝑑 𝑖𝑓 (𝒙, 𝑡)

𝒙′(𝑠) = 𝒃𝑑 𝑖𝑓 (𝒙(𝑠), 𝑡). (39)

Using the formulas (37)–(39), leads us to formulating the following
definition.

Definition 1. For electrically conducting fluid flows, exact Eulerian
nd Lagrangian barriers to the diffusive (resistive) transport of the
13
magnetic field are invariant manifolds of
𝒙′(𝑠) = 𝜂 𝛥𝐁(𝒙(𝑠), 𝑡), (40)

′
0(𝑠) = 𝜂det

(

∇𝐅𝑡𝑡0 (𝒙0)
) (

𝐅𝑡𝑡0
)∗

[

𝛥𝐁(𝒙0(𝑠))
]

. (41)

The barrier fields (40)–(41) define a 3D, autonomous (or steady)
dynamical system that remain valid also for spatially and temporally
dependent magnetic diffusivity. We can parametrize the trajectories
generated by the barrier fields (40)–(41) with respect to the rescaled
barrier time 𝜏

𝜏(𝑠) = ∫

𝑠

0
𝜂(𝑥(𝑠̃), ̃𝑠)𝑑 ̃𝑠. (42)

An analogous statement also holds for the trajectories satisfying the
ctive Lagrangian barrier field (41). This implies that the topology of

the barrier fields (40)–(41) is not affected by temporally and spatially
dependent magnetic diffusivity.

Note that even the Lagrangian barrier field (41) is a steady vector
field once we fix the initial

(

𝑡0
)

and final
(

𝑡1
)

time. All the relevant
information about the time evolution of 𝒗(𝒙, 𝑡) and 𝐁(𝒙, 𝑡) over the time
interval [𝑡0, 𝑡1] is encoded in the pullback and the temporal averaging
operations. The instantaneous version (40) only contains the physical
time 𝑡 as a single parameter. The active magnetic barrier Eqs. (40)–(41)
are valid also for compressible fluids. For the particular case of incom-
pressible MHD flows, both the Eulerian and Lagrangian barrier fields
(40)–(41) are divergence free vector fields because 𝐁 is divergence free
due to Gauss’ law for magnetism. In contrast, in compressible flows, the
agrangian barrier Eq. (41) is generally not divergence free, because it

depends on det (∇𝐅𝑡𝑡0 (𝒙0)) [19]. Note, however, that the Eulerian barrier
q. (40) remains divergence free also for compressible MHD flows,
ecause it does not directly depend on the velocity field or the flow
ap, but only on the magnetic field.

By construction, all of the trajectories of the barrier fields (40)–(41)
are exact barriers to the Eulerian (or Lagrangian) diffusive magnetic
flux. Certain transport barriers, however, stand out because of their
unique topology (e.g. they are closed and convex), while others because
of their strength (e.g. they inhibit large fluxes). To obtain a direct

easure of the local strength of an active barrier, we introduce the
eometric flux density

𝑔
(

𝒙0;𝒇 ,𝒏
)

= |

|

|

𝒇
(

𝒙0
)

⋅ 𝒏
(

𝒙0
)

|

|

|

, (43)

as defined by [38]. Here, 𝒇 is a general active barrier field. For
example, when treating instantaneous active magnetic barriers, we set

𝒇 = 𝜂 𝛥𝐁, (44)

whereas when computing Lagrangian active magnetic barriers, we set

𝒇 = 𝜂det
(

∇𝐅𝑡𝑡0 (𝒙0)
) (

𝐅𝑡𝑡0
)∗

[

𝛥𝐁(𝒙0(𝑠))
]

. (45)

In analogy with the Diffusion Barrier Strength (DBS) defined in [39,
40], the local strength of an active barrier field 𝒇 is given by the Active
Barrier Strength

ABS
(

𝒙0;𝒇
)

= |

|

|

𝒇
(

𝒙0
)

|

|

|

. (46)

This follows from the fact that the geometric flux density 𝑔
(

𝒙0;𝒇 ,𝒏
)

will change the most under a small change in the relative position of the
ectors 𝒇

(

𝒙0
)

and 𝒏
(

𝒙0
)

at locations where |

|

|

𝒇
(

𝒙0
)

|

|

|

is the largest. As a
result, the ABS provides an objective and robust scalar diagnostic field
that highlights the most influential active transport barriers. Analogous
to ridges of the DBS field that highlight the most influential diffusive
transport minimizers in the flow, we can detect exceptionally strong
active barriers as codimension-one ridges of the ABS field [39,40].

Note, however, that ridges of the ABS field only serve as approxi-
mate barriers to the diffusive transport of the magnetic field. In 2D, we
can exactly compute the most influential active barriers as streamlines
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of 𝒇 passing through local maxima of the ABS field. Since we expect
the most influential barriers to be characterized by high ABS values,

e launch trajectories from local maxima of the ABS and stop the
trajectory integration once the ABS falls below a predefined threshold
𝜀ABS. The identified barriers are robust because local maxima and
idges of a scalar field are topologically robust features [41], i.e., they
ersist with respect to small volume-preserving perturbations to the

underlying field. Additionally, to filter out small scale barriers linked
to noise, we discard trajectory segments shorter than 𝓁𝑚𝑖𝑛. For the same
reason, we only retain trajectory segments whose minimal distance to
nearby barriers exceeds d𝑚𝑖𝑛. Both 𝓁𝑚𝑖𝑛 and d𝑚𝑖𝑛 typically depend on
the turbulent length scale of the MHD flow. The exact computational
details are provided in the Algorithm 1.
Algorithm 1 Strongest active barriers from barrier field 𝒇 in 2D.

Input: 2D active barrier field 𝒇 (𝒙) over a regular meshgrid 𝒙 ∈ 𝑈 .
Output: Strongest active barriers blocking the transport of 𝒇 (𝒙).

1: Compute Active Barrier Strength

ABS (𝒙;𝒇 ) = |𝒇 (𝒙)| . (47)

2: Compute the set 𝑙 𝑜𝑐 ,𝑚𝑎𝑥 of local maxima of ABS (𝒙;𝒇 ) and sort them
in descending order.

3: Compute the strongest active barriers as trajectories of 𝒇 passing
through local maxima in the set 𝑙 𝑜𝑐 ,𝑚𝑎𝑥.

4: Retain trajectory segments satisfying the following conditions:
a: The arclength exceeds 𝓁𝑚𝑖𝑛.
b: The pointwise ABS is larger than 𝜀ABS.
c: The minimal distance to the nearest active barrier is larger then
d𝑚𝑖𝑛.

In 2D flows, the active magnetic barriers identified by Algorithm
1 are obtained as streamlines of the appropriate barrier field 𝒇 and
re, therefore, exact barriers according to Definition 1. Contrarily,
n 3D flows, 2D invariant manifolds of 𝒇 can only be determined
pproximately. To obtain active transport magnetic barriers, we first
valuate the ABS field over a cross-section of the selected domain.
ach individual ridge of the ABS field corresponds to a smooth curve
hat forms a set of initial conditions for which we compute streamlines
f 𝒇 . Analogously to the 2D case, we only retain trajectory segments
hose pointwise ABS is greater than 𝜀ABS. For each ridge, we obtain
 distinguished active transport barrier by fitting a surface through the
et of streamlines. These barriers act as 2D surfaces that locally divide
he domain into two regions that exchange minimal amounts of 𝒇 .
Algorithm 2 Strongest active barriers from barrier field 𝒇 in 3D.

Input: 3D active barrier field 𝒇 (𝒙) over a regular meshgrid 𝒙 ∈ 𝑈 .
Output: Strongest active barriers blocking the transport of 𝒇 (𝒙).

1: Compute Active Barrier Strength

ABS (𝒙;𝒇 ) = |𝒇 (𝒙)| . (48)

over a 2D cross-section of the 3D domain.
2: Compute ridges of ABS (𝒙;𝒇 ) using Lindeberg’s ridge extraction

algorithm [42]. Each ridge corresponds to a smooth curve.
3: Compute streamlines of 𝒇 for each smooth curve (=ridge). Only

retain trajectory segments satisfying the following conditions:
a: The arclength does not exceed 𝓁𝑚𝑎𝑥.
b: The pointwise ABS is larger than 𝜀ABS.

4: The streamlines launched from each ridge form a point cloud. Fit
a polynomial surface of degree d through the point cloud using
regression. The obtained surface acts as an approximate barrier
blocking the transport of 𝒇 .
14
2.2.1. Two-dimensional incompressible MHD fluids
In volume-preserving (incompressible) MHD fluids we have

det
(

𝛁𝐅𝑡𝑡0 (𝒙0)
)

= 1 (49)

We can therefore rewrite the Lagrangian barrier Eq. (41) as

𝒙′0(𝑠) = 𝜂
(

𝐅𝑡𝑡0
)∗

[

𝛥𝐁(𝒙0(𝑠))
]

. (50)

In 2D incompressible MHD flows, we can derive analytical expressions
for the barrier equations from Definition 1. The visco-resistive MHD
Eqs. (3)–(4) then reduce to a pair of advection-diffusion equations
𝜕
𝜕 𝑡 𝜔 (𝒙, 𝑡) + 𝒗 (𝒙, 𝑡) ∇𝜔 (𝒙, 𝑡) = 𝜈 𝛥𝜔 (𝒙, 𝑡) + 𝐁 (𝒙, 𝑡) ∇𝑗 (𝒙, 𝑡) , (51)
𝜕
𝜕 𝑡 𝑎 (𝒙, 𝑡) + 𝒗 (𝒙, 𝑡) ∇𝑎 (𝒙, 𝑡) = 𝜂 𝛥𝑎 (𝒙, 𝑡) , (52)

where 𝑎(𝒙, 𝑡) is the magnetic scalar potential. The vorticity and the
electric current density are both scalars and given by

𝜔(𝒙, 𝑡) = −𝛥𝜓 (𝒙, 𝑡)
and

𝑗(𝒙, 𝑡) = −𝛥𝑎 (𝒙, 𝑡) .
The streamfunction 𝜓 (𝒙, 𝑡) and the scalar magnetic potential 𝑎 (𝒙, 𝑡)
then act as time-dependent Hamiltonians to the velocity and magnetic
ield

𝒗 (𝒙, 𝑡) = −𝐉∇𝜓 (𝒙, 𝑡) , (53)

(𝒙, 𝑡) = −𝐉∇𝑎 (𝒙, 𝑡) , (54)

with 𝐉 =
(

0 −1
1 0

)

and the incompressibility of the magnetic field

implies

𝛥𝐁 (𝒙, 𝑡) = 𝐉𝛁𝑗𝑧 (𝒙, 𝑡) . (55)

With this notation, we obtain the following results on active magnetic
barriers in incompressible 2D MHD flows.

Theorem 1. For incompressible, electrically conducting 2D fluid flows,
xact Eulerian and Lagrangian barriers to the diffusive (resistive) transport
f magnetic field are invariant manifolds of
𝒙′(𝑠) = 𝜂𝐉𝛁𝑗𝑧(𝒙(𝑠), 𝑡), (56)

𝒙′0(𝑠) = 𝜂𝐉𝛁0𝑗𝑧
(

𝒙0(𝑠)
)

, (57)

where 𝑗𝑧
(

𝒙0
)

denotes the temporal average over the time-interval [𝑡0, 𝑡1
]

of
he electric current density along a fluid trajectory 𝒙

(

𝑡; 𝑡0,𝒙0
)

∶= 𝐅𝑡𝑡0
(

𝒙0
)

.

The Eulerian barrier Eq. (56) directly follows from formula (55).
he derivation of the Lagrangian active magnetic barrier Eq. (57) is

outlined in Appendix. The scalar functions 𝑗𝑧
(

𝒙0
)

and 𝑗𝑧
(

𝒙0, 𝑡
)

act as
amiltonians to the Lagrangian and Eulerian active magnetic barrier
qs. (56)–(57).

2.3. Active linear momentum barriers

Active barriers to the diffusive transport of linear momentum (𝜌𝒗)
n Navier–Stokes flows arise due to viscous/diffusive forces in the
low [19]. Here 𝜌 is the constant density of the fluid and is universally
et to 1. We can obtain momentum barriers for MHD flows by following
he same principles. Specifically, as in our treatment of the active
agnetic barriers, we decompose the right hand side of the linear

momentum equation in MHD flows (see (3)) into diffusive (viscous)
nd non-diffusive (non-viscous) components. Here, the only diffusive
orce in the MHD momentum equation is given by 𝜈 𝛥𝒗 and we obtain
or 3D MHD flows the exact same momentum barrier fields as for 3D
avier–Stokes flows:

𝒙′(𝑠) = 𝜈 𝛥𝒗(𝒙(𝑠), 𝑡), (58)
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𝒙′0(𝑠) = 𝜈det
(

∇𝐅𝑡𝑡0 (𝒙0)
) (

𝐅𝑡𝑡0
)∗

[

𝛥𝒗(𝒙0(𝑠))
]

. (59)

In 2D MHD flows the linear momentum barrier fields are Hamiltonian
and simplify to
𝒙′(𝑠) = 𝜈𝐉𝛁𝜔(𝒙(𝑠), 𝑡), (60)
′
0(𝑠) = 𝜈𝐉𝛁0𝜔

(

𝒙0(𝑠)
)

, (61)

where 𝜔
(

𝒙0
)

denotes the temporal average over the time-interval
[

𝑡0, 𝑡1
]

of the vorticity along a fluid trajectory 𝒙
(

𝑡; 𝑡0,𝒙0
)

∶= 𝐅𝑡𝑡0
(

𝒙0
)

.
Note that for the momentum barriers, the vorticity 𝜔 plays the same
role as the electric current density 𝑗𝑧 in the active magnetic barrier
Eqs. (56)–(57). For a detailed derivation of the 2D and 3D linear
momentum barriers we refer to the original work by [19].

3. Results

We now illustrate the numerical implementation of our results on
igh resolution 2D and 3D MHD turbulence simulations. The codes and
he snapshots of the datasets are available in the GitHub repository of

Encinas Bartos.

3.1. Two-dimensional MHD turbulence

The velocity field 𝒗 (𝒙, 𝑡) and the magnetic scalar potential 𝑎(𝒙, 𝑡) are
obtained by solving the set of 2D incompressible MHD Eqs. (51)–(52)
n a periodic domain [𝑥, 𝑦] ∈ [0, 2𝜋]2 [43]. We compute the nonlinear
erms using a pseudo-spectral technique, applying a 2/3 dealiasing

rule. Time integration is achieved through a classical second order
Runge–Kutta method with a meshgrid resolution of 𝑁 = 2048 points.

he spatial gradients are obtained through spectral differentiation. As
 post-processing step, we apply a gaussian filter of size 𝜎 = 3 to
he Eulerian and Lagrangian barrier fields. The kinematic viscosity 𝜈

and the magnetic diffusivity 𝜂 are both set to 4 ⋅ 10−4. The numerical
simulation spans a temporal domain of [0, 3.6] and we record snapshots
every 𝛥𝑡 = 0.1. In total we have 37 snapshots that resolve the decaying
2D MHD turbulence simulation at high fidelity. We impose large scale
random initial conditions, for both magnetic and velocity fields, in or-
der to initiate a turbulent cascade and we randomly populate the modes
3 ≤ 𝑘 ≤ 7. Our initial conditions mimic a large-to-small scale turbulence
cascade, as observed in the solar wind, where energy is injected at the
outer scales and cascades down to the smaller scales [23]. Heliospheric
lasmas indeed exhibit finite correlation lengths [44] and large-scale

random fluctuations [45]. Such properties are well described by MHD
simulations that are initiated with low-wavenumber, random initial
conditions [46]. Fig. 1 shows the Kolmogorov and Taylor length scales
of the magnetic and velocity field as a function of time.

In the following, we compare active magnetic, momentum and ad-
ective transport barriers at different times of the 2D MHD turbulence
imulation. We first compute Eulerian barriers at time 𝑡 = 2.0 and then

extract Lagrangian barriers over time-interval 𝑡0 = 1.0 and 𝑡1 = 3.0.

3.1.1. Eulerian barriers
For the instantaneous magnetic and momentum barrier calculations,

we use snapshots of the vorticity and electric current density field
at fully developed turbulence at time 𝑡 = 2.0 (see Fig. 2). In 2D
ncompressible MHD flows, both the magnetic and momentum barrier
ields are Hamiltonian. Every level set of the electric current density 𝑗𝑧
panel b) is an exact barrier to the diffusive magnetic flux. Similarly,
evel sets of the vorticity 𝜔 (panel e) qualify as perfect barriers to the
iffusive momentum transport. Out of the infinitely many candidate
urves, we seek the most influential momentum and magnetic barriers
ver the doubly periodic domain [0, 2𝜋]2 (see Fig. 2). We systematically
xtract these barriers by following the procedure outlined in Algorithm

1. For this purpose, we first compute the ABS field associated to the
instantaneous magnetic and momentum barrier fields (see panels a,d).
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We then launch streamlines of the corresponding barrier field from
ocal maxima of the ABS field to obtain exact active transport barriers.

Here, we set 𝜀ABS to be equal to the spatial average of the ABS in
the selected domain. Additionally, the minimum barrier length is set
to 𝓁𝑚𝑖𝑛 = 𝜆𝑖𝑇 and the minimal distance between two influential active
barriers is d𝑚𝑖𝑛 = 𝜆𝑖𝐾 . For momentum barriers (white curves in Fig. 1)
we use the maximum kinematic length scales (𝑖 = 𝑣), whereas for
the magnetic barriers (black curves in Fig. 1) we use the maximum

agnetic length scales (𝑖 = 𝑏).
In panel (c), we have included a snapshot of the magnetic potential

𝑎 (𝒙, 𝑡), which is a frequently used coherent structure diagnostic in
MHD flows [43,47]. Level sets of 𝑎 (𝒙, 𝑡) correspond to magnetic field
lines and are highlighted as gray dashed contours. The scalar magnetic
potential shows an elliptic island that is surrounded by a complex
pattern of active magnetic barriers. Specifically, these barriers separate
elongated strips of intense electric current density, that are visible as
ridges and trenches of 𝑗𝑧 (𝒙, 𝑡) [6,8,48]. These elongated peaks and
troughs in the electric current density field manifest as electric current
sheets, which play an important role in magnetic reconnection—a
process where magnetic energy is converted to the kinetic and thermal
energy of the particles [4,49]. We observe a similar pattern in the
orticity field, where vorticity filaments are separated by momentum

barriers (see white curves in Fig. 2).
Fig. 3 focuses on adjacent electric current sheets in the region

[1.8, 2.1] × [3.5, 3.8]. We first emphasize that the active barriers closely
lign with ridges of the underlying ABS field, as already suggested in
ection 2.2. The principal electric current sheets are clearly visible as

trenches and ridges of 𝑗𝑧 (𝒙, 𝑡) which are surrounded by a set of active
agnetic barriers (black curves). Active magnetic barriers provide a

lear demarcation of electric current sheets, suggesting no diffusive
ransport of the magnetic field between adjacent current sheets. In-
tead, dissipation of the magnetic field is constrained to occur along
he active magnetic barriers, as these barriers are defined as curves
angential to the diffusive term in the magnetic transport Eq. (4).
espite providing critical information about underlying magnetic co-
erent structures, active magnetic barriers remain generally hidden in

magnetic potential plots.

3.1.2. Lagrangian barriers
For the Lagrangian barrier calculations, we first compute the La-

grangian averages 𝑗𝑧
(

𝒙0
)

and 𝜔
(

𝒙0
)

along fluid trajectories using all
the available snapshots between 𝑡0 = 1.0 and 𝑡1 = 3.0 over the domain
1, 4] × [3, 6]. Based on that, we compute expressions for the active
arrier fields from (57) and (61). To visualize advective LCSs at time
𝑡 = 1.0, we plot the FTLE𝑡1𝑡0 and LAVD𝑡1𝑡0 fields over the initial conditions
𝒙0. We recall that ridges of the FTLE𝑡1𝑡0 field mark initial positions of the

ost repelling material lines (repelling LCS), whereas convex level sets
f LAVD𝑡1𝑡0 surrounding an isolated local maximum indicate rotationally
oherent structures (elliptic LCS).

Fig. 4 shows the ABS field computed for the Lagrangian magnetic
and momentum barrier fields from (57)–(61) (see panels a, b). We
then extract exact active material barriers by following the procedure
outlined in Algorithm 1. For the active Lagrangian magnetic barrier
alculations we set 𝓁𝑚𝑖𝑛 = 𝜆𝑏𝑇 and d𝑚𝑖𝑛 = 𝜆𝑏𝐾 , whereas for the momentum

barriers we use the corresponding kinematic length scales. Here, the
lack curves mark active magnetic material barriers, whereas the white
urves indicate momentum blocking material barriers. Similarly to the
ase of the Eulerian barriers, ridges of the ABS field closely align
ith exact active transport barriers in our Lagrangian computations

see Fig. 4). Active magnetic barriers (black curves in Fig. 4) mark
harp edges in the Lagrangian-averaged electric current density field
𝑗(𝒙0), thereby separating the domain into areas with minimal time-
averaged magnetic diffusion. Likewise, momentum barriers occur at
sharp edges of the Lagrangian-averaged vorticity field 𝜔(𝒙0). Note
hat, the Hamiltonians 𝑗(𝒙 ) and 𝜔(𝒙 ) resemble features found in the
0 0
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Fig. 1. Characteristic length scales for the 2D MHD turbulent numerical simulation over time. (a) Magnetic (𝜆𝑏𝑇 ) and kinematic (𝜆𝑣𝑇 ) Taylor length scales. (b) Magnetic (𝜆𝑏𝐾 ) and
kinematic (𝜆𝑣𝐾 ) Kolmogorov length scales.

Fig. 2. Comparison of instantaneous active magnetic (a, b) and momentum (d, e) barriers (f) over the doubly periodic domain [0, 2𝜋]2 of our 2D MHD turbulence example at time
𝑡 = 2.0. Panel (c) displays the magnetic scalar potential 𝑎(𝒙, 𝑡), with the dashed contours marking its level sets. The solid black and white curves respectively indicate the strongest
active magnetic and momentum barriers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison of active magnetic barriers (a) with the electric current density (b) and magnetic scalar potential (c) over the domain [1.8, 2.1] × [3.5, 3.8].
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Fig. 4. Comparison of Lagrangian active magnetic (a, b) and momentum (d, e) barriers with classic LCS diagnostics such as the FTLE𝑡1𝑡0 (c) and LAVD𝑡1
𝑡0

(f) for our 2D MHD
turbulence example over the time interval 𝑡0 = 1.0 and 𝑡1 = 3.0.
FTLE𝑡1𝑡0 and LAVD𝑡1𝑡0 fields. This is to be expected because level sets of
Lagrangian-averaged scalar fields occasionally relate to advective LCSs,
that are obtained from purely kinematic computations [50,51].

Next, we compute LAVD-based vortex boundaries as outermost
closed and convex level sets surrounding a unique local maximum of
LAVD𝑡1𝑡0 [30]. In practice, we relax the strict convexity requirement in
order to allow for small initial filamentations that arise due to the finite
grid of the numerical computations. The convexity deficiency is defined
as

𝑐𝑑 =
|

|

𝐴 − 𝐴𝑐 𝑜𝑛𝑣𝑒𝑥||
𝐴

, (62)

where 𝐴 is the area of the closed contour and 𝐴𝑐 𝑜𝑛𝑣𝑒𝑥 is the area of
its convex hull. We only retain large-scale vortices whose perimeter
is greater than 𝜋 𝜆𝑣𝑇 and whose convexity deficiency is less than 10−6.
In 2D incompressible MHD flows the Lagrangian active barrier fields
are governed by the appropriate Hamiltonian function . Therefore,
we can extract elliptic active barriers as outermost convex level sets
of  surrounding a unique local maximum of || [19]. For active
Lagrangian magnetic barriers we set  = 𝑗(𝒙0), whereas for the
momentum barriers we set  = 𝜔(𝒙0). The elliptic barriers computed
from the underlying scalar field are shown as red curves in Fig. 4. The
momentum and LAVD-based vortices are practically indistinguishable,
whereas 𝑗𝑧

(

𝒙0
)

shows the existence of a magnetic vortex pair (see panel
b).

We now examine the temporal evolution of the magnetic vortex pair
(depicted by red curves in the left column of Fig. 5) and illustrate its
impact on the magnetic energy landscape within the time span [1.0, 3.0].
Additionally, we overlay the advected momentum-based vortex (repre-
sented by the black curve in the right column of Fig. 5) on top of the
normalized linear momentum field. The Lagrangian vortices are, there-
fore, material structures as they are advected by the underlying velocity
field. Notably, we observe that both active barriers exhibit no signs of
filamentation throughout the entire duration. This is consistent with
our earlier expectation for elliptic coherent structures. Furthermore, the
active magnetic barriers keep enclosing regions of low magnetic field
intensity throughout the extraction period. Similarly, active barriers
consistently encapsulate small values of the linear momentum norm.
17
Fig. 5 also shows the instantaneous active barrier fields along the
respective active magnetic and momentum barriers. Note that the
extracted Lagrangian barriers closely align with the underlying instan-
taneous active barrier fields for most of the time. Nonetheless, there
are some notable exceptions, indicating that Lagrangian barriers do not
exactly minimize the instantaneous diffusive transport of the magnetic
field or momentum at every time instance. Instead, active material
barriers minimize the underlying diffusive transport of the magnetic
field or momentum in a time-averaged sense.

3.2. Three-dimensional MHD turbulence

In the following, we use forced MHD turbulence data from the
Johns Hopkins Turbulence Database (JHTDB) [52–55]. The data was
generated by a direct numerical simulation of the 3D incompressible
MHD equations, in a cubic domain of size 2𝜋 with periodic boundary
conditions and resolution 10243. The kinematic viscosity 𝜈 and mag-
netic diffusivity 𝜂 are both equal to 1.1 ⋅ 10−4 and the kinematic and
magnetic Kolmogorov length scales are respectively 𝜆𝑣𝐾 = 3.3 ⋅ 10−3 and
𝜆𝑏𝐾 = 2.8 ⋅ 10−3. The flow is forced at large scales in the 𝑥 − 𝑦 plane by
a steady Taylor–Green body force

𝒇 = 𝑓0
[

sin(𝑘𝑓𝑥) cos(𝑘𝑓 𝑦) cos(𝑘𝑓 𝑧)𝒆𝑥 − cos(𝑘𝑓𝑥) sin(𝑘𝑓 𝑦) cos(𝑘𝑓 𝑧)𝒆𝑦
]

,

(63)

with 𝑘𝑓 = 2.
In Fig. 6 we compare the ABS field for the magnetic (panel a) and

momentum (panel c) barrier fields with the electric current density
(panel b) and the normed vorticity (panel d) over the domain (𝑥, 𝑦, 𝑧) ∈
[2, 4] × [2, 4] × [2, 3]. The zoomed inset in Fig. 6a shows two prominent
ridges (black curves) of the ABS (𝒙; 𝜂 𝛥𝐁) that delineate the boundary of
an electric current sheet (see zoomed inset in panel b). Similarly, ridges
of the ABS (𝒙; 𝜈 𝛥𝒗) (red curves) wrap around vorticity filaments also in
3D (see zoomed inset in panel d).

Next, we focus on the region 𝑥, 𝑦 ∈ [2.2, 2.6] × [2.9, 3.3] in the
𝑧 = 3 plane which is shown in the zoomed inset of Fig. 6 and
extract instantaneous active magnetic and momentum barriers using
the Algorithm 2. We approximate Eulerian active magnetic barriers,
by fitting polynomial surfaces of degree d = 3 to streamlines of
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Fig. 5. Evolution of active material elliptic barriers to the diffusive transport of the magnetic field (red curve in left column) and linear momentum (black curve in right column).
The active vortices are superimposed on the distribution of the norm of the magnetic field (i.e. square-root of the magnetic energy) and linear momentum (normalized by 𝜌). The
vector fields in the left and right column respectively indicate the instantaneous active magnetic and momentum barrier fields at time 𝑡. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
(40) launched from ridges (black curves) of ABS (𝒙; 𝜂 𝛥𝐁). Here, we
set 𝜀ABS to be equal to the spatial average of ABS in the selected
domain and the maximum arclength 𝓁𝑚𝑎𝑥 of the streamline is chosen
to be 100𝜆𝑏𝐾 . For the momentum blocking barriers we follow a similar
reasoning and replace the magnetic with the momentum quantities.
Fig. 7a displays two active magnetic barriers (black surfaces) that trace
out the boundary of an electric current sheet. Similarly, the red surface
in Fig. 7b corresponds to an approximate momentum-barrier separating
two vorticity filaments.

To test the transport blocking ability of the identified surface with
respect to the underlying barrier field, we compute the pointwise nor-
malized flux by taking the inner product between the normal vector 𝒏 of
the surface and the corresponding normalized active barrier field. If the
surfaces computed according to Algorithm 2 were exact streamcurves
of the barrier equation, then their normals would be pointwise perpen-
dicular to the underlying barrier field. The inset in panel (a) displays
the probability distribution of the normed inner product between 𝒏 and
the unit vector of 𝛥𝐁 over both active magnetic barriers. Similarly, the
inset of panel (b) shows the probability distribution of the pointwise
tangency between the active momentum barrier field and the corre-
sponding momentum blocking surface (red). Both distributions show a
prominent peak at 0. This suggests that barriers obtained according to
Algorithm 2 are close approximations to perfect active barriers.

4. Conclusion

Appropriately modifying the recent active barrier theory of [19] for
Navier–Stokes flows, we have identified active magnetic barriers as ma-
terial surfaces that minimize the diffusive magnetic flux in 2D and 3D
18
MHD turbulence. These distinguished coherent structure boundaries,
locally partition the domain into two regions with minimal diffusion
of the magnetic field. We have also compared active magnetic barriers
with linear momentum barriers and advective LCSs. Our analysis shows
that active magnetic barriers provide objective barriers that inhibit
magnetic diffusion. We have also devised an algorithm to extract the
most influential active magnetic barriers in both 2D and 3D MHD flows.

In 2D incompressible MHD, active magnetic barriers can directly be
obtained as level curves of appropriate Hamiltonians that are a function
of the electric current density. This stems from the fact that the equa-
tions governing these barriers form autonomous, planar Hamiltonian
systems. Of the infinitely many barrier candidates, we have computed
the most influential barriers as distinguished streamline segments of
the appropriate active barrier field. These segments are launched from
local maxima of the ABS field (see Algorithm 1).

A physical take-away message from our 2D MHD turbulence ex-
ample is that the strongest Eulerian active magnetic barriers separate
electric current sheets and hence induce zero magnetic diffusion across
them. Instead, the diffusion of the magnetic field occurs along the
active magnetic transport barriers we have identified. Secondly, we
have computed active magnetic vortices as parametric curves from
specific level sets of the Hamiltonian. As expected, the identified active
magnetic vortices minimize the diffusive transport of the magnetic field
and maintain coherence, i.e., they do not filament. Additionally, active
Lagrangian magnetic vortices consistently encapsulate areas of low
magnetic energy. Overall, our numerical computations show that active
magnetic barriers generally differ from advective and linear momentum
barriers.
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Fig. 6. Comparison of Eulerian active magnetic and momentum barriers in the 3D MHD turbulence simulation from Johns Hopkins Turbulence Database (JHTDB) with the
normed electric current density and the vorticity. The black and red curves are respectively the ridges of the magnetic and momentum-based ABS fields on the 𝑧 = 3 plane. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Active magnetic (a) and momentum (b) barriers in the zoomed inset from Fig. 6 identified using Algorithm 2 plotted on top of the normed electric current density (a)
and vorticity (b). The insets show the probability distribution of the normed inner product between the normal vector of the surface and the underlying barrier fields.



European Journal of Mechanics / B Fluids 112 (2025) 10–21A. Encinas-Bartos et al.

n

M
v
W

c
i

S

s

t

w

B

We have similarly obtained active magnetic barriers in 3D MHD
turbulence over a 2D cross-section of the flow. Note, however, that in
3D the active barrier fields are no longer Hamiltonian and hence the
electric current density does not directly appear in the active magnetic
barrier equations. Interestingly, our numerical results on the Johns
Hopkins MHD Turbulence Dataset suggest that the most influential
active magnetic barriers in 3D arise at the interface between adjacent
current sheets. Analogously to the case of the 2D MHD turbulence, this
implies vanishing magnetic diffusion across nearby current sheets.

The objective active magnetic barriers described here are intrinsic
physical features of the fluid and contribute to the understanding
and identification of various turbulent flow structures in MHD flows.
The identified barriers directly depend on flow parameters such as
the magnetic diffusivity, kinematic viscosity and plasma beta. Future
work should explore the emergence of objective magnetic coherent
structures as a function of these parameters. Moreover, research should
investigate Lagrangian magnetic, momentum and advective transport
barriers in solar plasmas, thereby expanding on the studies from [56,
57]. Additionally, we plan to relate the identified active magnetic
barriers to dissipation of electromagnetic energy [58–60] and thermal
coherent structures [61–63] within the solar atmosphere.
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Appendix. Proof of Theorem 1

We recall that for 2D incompressible MHD flows, the magnetic field
atisfies

𝐁 (𝒙, 𝑡) = −𝐉∇𝑎 (𝒙, 𝑡) , (A.1)

with 𝐉 =
(

0 −1
1 0

)

. The scalar magnetic potential 𝑎 (𝒙, 𝑡) satisfies

he advection diffusion Eq. (52) and its solution along fluid trajectories
𝐅𝑡1𝑡0

(

𝒙0
)

is given by

𝑎
(

𝐅𝑡1𝑡0
(

𝒙0
)

, 𝑡
)

− 𝑎(𝒙0) = 𝜂 ∫

𝑡1

𝑡0
𝛥𝑎

(

𝐅𝑡𝑡0
(

𝒙0
)

, 𝑡
)

𝑑 𝑡

= −𝜂 ∫
𝑡1

𝑡0
𝑗𝑧
(

𝐅𝑡𝑡0
(

𝒙0
)

, 𝑡
)

𝑑 𝑡

= −𝜂 (𝑡1 − 𝑡0
)

𝑗𝑧
(

𝒙0, 𝑡
)

, (A.2)

where we have used the property 𝑗𝑧 (𝒙, 𝑡) = −𝛥𝑎 (𝒙, 𝑡) and the temporal
averaging operator (see formula (33)). With the notation

𝐁𝑡1𝑡0
(

𝒙0
)

∶= 𝐁
(

𝐅𝑡1𝑡0
(

𝒙0
)

, 𝑡
)

,𝐁0
(

𝒙0
)

∶= 𝐁
(

𝒙0, 𝑡0
)

(A.3)
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the integral form of the magnetic transport Eq. (4) is

𝐁𝑡1𝑡0
(

𝒙0
)

= ∇𝐅𝑡1𝑡0
(

𝒙0
)

𝐁0
(

𝒙0
)

+ 𝜂 ∫

𝑡1

𝑡0
∇𝐅𝑡1𝑡

(

𝐅𝑡𝑡0
(

𝒙0
)

)

𝛥𝐁
(

𝐅𝑡𝑡0
(

𝒙0
)

, 𝑡
)

𝑑 𝑡

= ∇𝐅𝑡1𝑡0
(

𝒙0
)

𝐁0
(

𝒙0
)

+ 𝜂 ∫

𝑡1

𝑡0
∇𝐅𝑡1𝑡

(

𝐅𝑡𝑡0
(

𝒙0
)

)

∇𝐅𝑡𝑡0
(

𝒙0
)

[

∇𝐅𝑡𝑡0
(

𝒙0
)

]−1
𝛥𝐁

(

𝐅𝑡𝑡0
(

𝒙0
)

, 𝑡
)

𝑑 𝑡

= ∇𝐅𝑡1𝑡0
(

𝒙0
)

𝐁0
(

𝒙0
)

+ 𝜂∇𝐅𝑡1𝑡0
(

𝒙0
)

∫

𝑡1

𝑡0

[

∇𝐅𝑡𝑡0
(

𝒙0
)

]−1
𝛥𝐁

(

𝐅𝑡𝑡0
(

𝒙0
)

, 𝑡
)

𝑑 𝑡

= ∇𝐅𝑡1𝑡0
(

𝒙0
)

[

𝐁0
(

𝒙0
)

+ 𝜂 ∫

𝑡1

𝑡0

[

∇𝐅𝑡𝑡0
(

𝒙0
)

]−1
𝛥𝐁

(

𝐅𝑡𝑡0
(

𝒙0
)

, 𝑡
)

𝑑 𝑡
]

= ∇𝐅𝑡1𝑡0
(

𝒙0
)

[

𝐁0
(

𝒙0
)

+ 𝜂
(

𝑡1 − 𝑡0
)

(

𝐅𝑡𝑡0
)∗
𝛥𝐁

(

𝒙0
)

]

= ∇𝐅𝑡1𝑡0
(

𝒙0
)

[

𝐁0
(

𝒙0
)

+
(

𝑡1 − 𝑡0
)

𝐛
𝑡1
𝑡0 ,𝑑 𝑖𝑓

(

𝒙0
)

]

, (A.4)

where we used the property ∇𝐅𝑡1𝑡0
(

𝒙0
)

= ∇𝐅𝑡1𝑡
(

𝐅𝑡𝑡0
(

𝒙0
)

)

∇𝐅𝑡𝑡0
(

𝒙0
)

. By
rearranging Eq. (A.4), we then obtain

1
𝑡1 − 𝑡0

[(

𝐅𝑡1𝑡0
)∗

𝐁0(𝒙0) − 𝐁0(𝒙0)
]

= 𝒃
𝑡1
𝑡0 ,𝑑 𝑖𝑓

(

𝒙0
)

. (A.5)

Inserting formula (A.1) into (A.5) yields
1

𝑡1 − 𝑡0

[(

𝐅𝑡1𝑡0
)∗

𝐁0(𝒙0) − 𝐁0(𝒙0)
]

= −1
𝑡1 − 𝑡0

[(

𝐅𝑡1𝑡0
)∗

𝐉∇𝑎(𝒙0) − 𝐉∇𝑎0(𝒙0)
]

= −1
𝑡1 − 𝑡0

[

[

∇𝐅𝑡1𝑡0 (𝒙0)
]−1

𝐉∇𝑎
(

𝐅𝑡1𝑡0
(

𝒙0
)

, 𝑡
)

− 𝐉∇0𝑎(𝒙0)
]

, (A.6)

where 𝑎
(

𝒙0
)

∶= 𝑎
(

𝒙0, 𝑡0
)

. Using now the chain rule for ∇𝑎
(

𝐅𝑡1𝑡0
(

𝒙0
)

, 𝑡
)

,
e can write

[

∇𝐅𝑡1𝑡0 (𝒙0)
]−1

𝐉∇𝑎
(

𝐅𝑡1𝑡0
(

𝒙0
)

, 𝑡
)

=
[

∇𝐅𝑡1𝑡0 (𝒙0)
]−1

𝐉
[

∇𝐅𝑡1𝑡0 (𝒙0)
]−𝑇

∇0𝑎
(

𝐅𝑡1𝑡0
(

𝒙0
)

, 𝑡
)

= 𝐉∇0𝑎
(

𝐅𝑡1𝑡0
(

𝒙0
)

, 𝑡
)

, (A.7)

where we have used the fact that in 2D incompressible flows
(

𝑎 𝑏
𝑐 𝑑

) (
0 −1
1 0

) (
𝑎 𝑐
𝑏 𝑑

)

=
(

0 𝑏𝑐 − 𝑎𝑑
𝑎𝑑 − 𝑏𝑐 0

)

=
(

0 −1
1 0

)

, (A.8)

where
[

∇𝐅𝑡1𝑡0 (𝒙0)
]−1

=
(

𝑎 𝑏
𝑐 𝑑

)

and det
(

[

∇𝐅𝑡1𝑡0 (𝒙0)
]−1

)

= 𝑎𝑑−𝑏𝑐 = 1.

y combining the relationships (A.6)–(A.7) we then obtain
1

𝑡1 − 𝑡0

[(

𝐅𝑡1𝑡0
)∗

𝐁0(𝒙0) − 𝐁0(𝒙0)
]

= −1
𝑡1 − 𝑡0

[

𝐉∇0𝑎
(

𝐅𝑡1𝑡0
(

𝒙0
)

, 𝑡
)

− 𝐉∇0𝑎(𝒙0)
]

= −𝐉∇0

[

𝑎
(

𝐅𝑡1𝑡0
(

𝒙0
)

, 𝑡
)

− 𝑎(𝒙0)
]

. (A.9)

Finally, combining Eq. (A.2) with Eqs. (A.5) and (A.9) yields

𝒃
𝑡1
𝑡0 ,𝑑 𝑖𝑓 (𝒙0) = 𝜂𝐉𝛁0𝑗𝑧

(

𝒙0, 𝑡
)

. (A.10)

We then obtain the Eulerian counterpart by taking the infinitesimal
limit of Eq. (A.10)

𝒃𝑑 𝑖𝑓 (𝒙, 𝑡) = lim
𝑡1→𝑡0=𝑡

𝒃
𝑡1
𝑡0 ,𝑑 𝑖𝑓 (𝒙0) = 𝜂𝐉𝛁𝑗𝑧 (𝒙, 𝑡) . (A.11)

This concludes the proof.

Data availability

I have shared the link to my github repository containing the data
and the numerical codes.
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