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Abstract— Modeling and control of high-dimensional, nonlin-
ear robotic systems remains a challenging task. While various
model- and learning-based approaches have been proposed to
address these challenges, they broadly lack generalizability to
different control tasks and rarely preserve the structure of
the dynamics. In this work, we propose a new, data-driven
approach for extracting control-oriented, low-dimensional mod-
els from data using Spectral Submanifold Reduction (SSMR).
In contrast to other data-driven methods which fit dynami-
cal models to training trajectories, we identify the dynamics
on generic, low-dimensional attractors embedded in the full
phase space of the robotic system. This allows us to obtain
computationally-tractable models for control which preserve
the system’s dominant dynamics and better track trajectories
radically different from the training data. We demonstrate the
superior performance and generalizability of SSMR in dynamic
trajectory tracking tasks vis-á-vis the state of the art, including
Koopman operator-based approaches.

I. INTRODUCTION

High-dimensional robotic systems promise to revolutionize
the field of robotics due to the versatility brought forth
by their large number of degrees of freedom (DOF). For
example, continuum soft robots can exhibit embodied intel-
ligence [1] in which they conform to surfaces and objects
while maintaining a level of physical robustness unavailable
to their more rigid counterparts. This level of compliance
and elasticity make them well-suited to operate in delicate,
geometrically constrained environments, which enable them
to play crucial roles in settings where safe human-robot
interaction is paramount.

Unfortunately, these advantages pose significant practical
challenges for the modeling and control of these robots.
This is due to the inherent nonlinearities and high DOF
required to accurately capture the structural deformations that
realize these compliant behaviors. While several model- and
learning-based approaches have been proposed in literature
to address some of these challenges, these methods suffer
from their inability to tractably bridge the gap between
having accurate, but low-dimensional models. This accuracy–
dimensionality tradeoff results in methods that sacrifice
predictive accuracy and structure preservation for a drastic
decrease in dimensionality or vice versa.
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Fig. 1. The SSM is a low-dimensional invariant manifold in the robot’s
phase space which exponentially attracts full state trajectories, causing them
to synchronize with the persistent dynamics on the SSM. These structures can
capture highly nonlinear behaviors far away from the fixed point and can be
approximated arbitrarily-well without increasing the dimension of the SSM.

Motivated by recent developments in Spectral Submanifold
(SSM) theory [2] and its successful application to data-
driven predictions of nonlinearizable phenomena [3], we
propose a new data-driven Spectral Submanifold Reduction
(SSMR) framework for learning low-dimensional, faithful
dynamics of high-dimensional robots on SSMs. SSMs, as
summarized in Figure 1, are low-dimensional, attracting in-
variant manifolds which capture highly nonlinear phenomena
of high-dimensional systems. By learning the dynamics on
these generic structures, we extract low-dimensional, control-
oriented models that preserve the dominant physics of the
system. This allows SSMR to overcome common drawbacks
associated with data-driven approaches such as lack of gen-
eralizability, high-data requirement, and sensitivity to noise.

Statement of Contributions: (i) We present SSMR, the
first data-driven approach for learning the dynamics of high-
dimensional robots on SSMs for control. We extend recent
work on SSMLearn [4] by providing the additional innovation
of disambiguating the effect of control from the underlying
dynamics on the SSM. This allows us to extract highly-
accurate models for control in an equation-free manner.

(ii) We extend previous work on SSM-based control [5]
to general control tasks by implementing a SSMR model
predictive control (MPC) scheme and validating it on sim-
ulations of a high-dimensional soft robot. We show that
SSMR outperforms the state-of-the-art methods in both tra-
jectory tracking performance and computational efficiency,
highlighting a key feature of SSMR: it neither compromises
accuracy nor computational tractability.
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Related Work: To address this issue, a body of work
which involve linear [6]–[8] and nonlinear [9]–[11] tech-
niques, seek to compress the governing equation of high-
fidelity computational models using projection-based model
reduction. This results in low-dimensional control surrogates
suitable for online computation. A common limitation of
these projection-based techniques is that the accuracy of the
low-dimensional surrogate depends on the choice and size
of the subspace, which can grow rapidly for only incre-
mental improvement in accuracy. Additionally, since these
approaches require knowledge of the governing equations,
their application to real-world robots remain challenging.
Indeed, the process of extracting accurate models from finite
element code is an encumbering and code-intrusive process.

To overcome these challenges, there has been increasing
interest in using machine learning techniques to construct
data-driven models of high-dimensional robots. Much of the
literature in this direction is focused on using different neural
network (NN) architectures with varying levels of inductive
bias, for learning approximations of these high-dimensional
dynamics from observed transitions [12]–[14].

Another popular approach is the Koopman operator, which
seeks to find a finite-dimensional approximation of an
infinite-dimensional linear operator. Since observed dynam-
ics under the Koopman operator are linear, the approach
lends itself to established linear control techniques and has
found success in the real-time control of soft robots [15],
[16]. While conceptually appealing, most physical systems
do not admit exact finite-dimensional, linear representa-
tions [17]. The approach also suffers from the accuracy–
dimensionality tradeoff since, in theory, more accurate Koop-
man models require increased number of a-priori chosen
observable functions.

A common drawback with current data-driven approaches
is that they typically result in models that rarely preserve
all, if any, of the inherent structure of the dynamics (e.g.,
structural modes, passivity, etc). This results in models that
do not generalize well to control tasks which involve trajecto-
ries outside the training set. By explicitly targeting rigorous
and generic structures in the high-dimensional robot’s phase
space, we are able to extract reduced-order models which
overcome these issues.

Organization: We begin in Section II by detailing the
class of high-dimensional systems we consider and posing
the associated nonlinear optimal control problem. In Section
III, we summarize relevant results from SSM theory and out-
line the data-driven procedure for learning control dynamics
on SSMs. We then discuss our proposed control procedure
in Section IV and present simulation results in Section V.

II. Problem Formulation
A. High-Dimensional Optimal Control Problem

We consider control-linear mechanical systems with N ∈
N DOF. These systems encompass a wide range of robots
such as manipulators, drones, and highly-articulated robots.
In the continuum limit (i.e., N → ∞), these systems can
also converge to the exact model of control-linear soft robots
[18]. Such systems can be written in first-order form with state

vector x 𝑓 (𝑡) ∈ R𝑛 𝑓 (where 𝑓 denotes full state, as opposed to
the reduced state x introduced in Section III-B) as

¤x 𝑓 (𝑡) = Ax 𝑓 (𝑡) + fnl (x 𝑓 (𝑡)) + 𝜖Bu(𝑡), (1)
where 𝑛 𝑓 = 2N since the states represent the position and
velocity of each node, A ∈ R𝑛 𝑓 ×𝑛 𝑓 is assumed to be Hurwitz
(i.e., the origin is an asymptotically stable fixed point for 𝜖 = 0)
and B ∈ R𝑛 𝑓 ×𝑚 represents the linear control matrix. The
nonlinear term fnl : R𝑛 𝑓 → R𝑛 𝑓 belongs to the class of analytic
functions and satisfies fnl (0) = 0, 𝜕fnl (0)/𝜕x 𝑓 = 0, while the
parameter 0 < 𝜖 ≪ 1 introduces our assumption that the
magnitude of the control inputs should be moderate compared
to the autonomous dynamics. In this work, we consider
control tasks near the vicinity of the robot’s equilibrium point
(e.g., a highly-articulated manipulator arm conducting pick
and place tasks in a constrained workspace). Thus, if the
desired trajectories are reasonable, this assumption is typically
satisfied. Derivation of Equation (1) from a second-order
mechanical system can be found in Appendix A [19].

We now pose the problem of controlling Equation (1) to
follow arbitrary and dynamic trajectories in the vicinity of
the origin. Consider the following continuous-time, optimal
control problem (OCP) with quadratic cost and polytopic
constraints in states and control:

minimize
u( ·)

𝛿z(𝑡 𝑓 )
2

Qf
+
∫ 𝑡 𝑓

𝑡0

(
∥𝛿z(𝑡)∥2

Q + ∥u(𝑡)∥2
R

)
𝑑𝑡,

subject to x 𝑓 (0) = g(z(0)),
¤x 𝑓 (𝑡) = Ax 𝑓 (𝑡) + fnl (x 𝑓 (𝑡)) + 𝜖Bu(𝑡),
y(𝑡) = h(x 𝑓 (𝑡)), z(𝑡) = Cy(𝑡),
u ∈ U , z ∈ Z .

(2)

Here, 𝛿z(𝑡) = z(𝑡) − z̄(𝑡) is the tracking difference between
the performance variable, z(𝑡) ∈ R𝑜 and the desired trajectory
z̄(𝑡) ∈ R𝑜. The observed state is denoted as y(𝑡) ∈ R𝑝 and
[𝑡0, 𝑡 𝑓 ] represents the time horizon. Q,Qf ∈ R𝑜×𝑜 are positive
semi-definite matrices which represent the stage and terminal
costs, respectively, over the performance variables, while R
is a positive-definite matrix representing the cost on controls.
The functions g : R𝑜 → R𝑛 𝑓 and h : R𝑛 𝑓 → R𝑝 map the
performance variable to the full state and the full state to the
observed state, respectively, while C ∈ R𝑜×𝑝 is a selection
matrix of states that we observe. Lastly, the constraint sets are
defined as U := {u(𝑡) ∈ R𝑚 : Muu(𝑡) ≤ bu} and Z := {z ∈
R𝑜 : Mzz(𝑡) ≤ bz} with Mu ∈ R𝑛𝑢×𝑚 and Mz ∈ R𝑛𝑧×𝑜, where
𝑛𝑢 and 𝑛𝑧 represent the number of constraints in the inputs and
the observed states, respectively.

For high-dimensional dynamical systems, i.e., 𝑛 𝑓 ≫ 1,
Equation (1) becomes a bottleneck and it is intractable to
solve the OCP (2) in an online fashion. Recent advancements
in nonlinear dynamics [2] show that the autonomous part of
(1) lie on uniquely-smooth manifolds embedded in the phase
space of the robot. These manifolds contain low-dimensional
dynamics which we leverage to approximately solve OCP (2).

III. Data-Driven Modeling of
Low-dimensional Dynamics

In this section, we describe our data-driven SSMR proce-
dure to construct controlled, predictive models of soft robots
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Fig. 2. Three-step procedure to learn control-oriented dynamics on the SSM. Step 1 depicts the data collection procedure whereby we displace the robot across
various parts of its workspace and collect decaying trajectories. We then form our training data by truncating the dataset to approximate trajectories that near
the manifold. Step 2 computes the SSM parameterization and autonomous dynamics while Step 3 regresses the control matrix which best explains how the
autonomous SSM is translated under the influence of control. The “Diamond” soft robot is shown in its various displaced configurations on the far left.

from data. Our approach entails learning low-dimensional
models directly as the reduced dynamics on attracting, low-
dimensional invariant manifolds that generically exist in
dissipative physical systems characterized by (1).

A. SSMs in a Nutshell
We define an 𝑛-dimensional spectral subspace𝐸 as the direct

sum of an arbitrary collection of 𝑛 eigenspaces of A,
𝐸 := 𝐸 𝑗1 ⊕ 𝐸 𝑗2 ⊕ ... ⊕ 𝐸 𝑗𝑛 ,

where 𝐸 𝑗𝑘 denotes the real eigenspace corresponding to an
eigenvalue _ 𝑗𝑘 of A. Let Λ𝐸 be the set of eigenvalues
related to 𝐸 and Λout be that of eigenvalues not related to
𝐸 . If min_∈Λ𝐸

Re(_) > max_∈Λout Re(_), then 𝐸 represents
the slowest spectral subspace of order 𝑛. Intuitively, the
slowest spectral subspace corresponds to the dominant modes
representing the persisting dynamics of the robot and can be
extracted via modal analysis or principal component analysis
(PCA).

Let us first assume that 𝜖 = 0. For purely linear systems with-
out external forcing (i.e., the linearization of Equation (1)), any
trajectories that start in 𝐸 will remain in 𝐸 , by the Spectral
Mapping Theorem. When nonlinearities are introduced, super-
position is lost and the autonomous part of Equation (1) is no
longer invariant on 𝐸 . The autonomous SSM corresponding
to 𝐸 , W (𝐸), is the smoothest 𝑛-dimensional manifold in the
robot’s phase space which nonlinearly extends the invariance
of 𝐸 , i.e., for the autonomous part of Equation (1)

x 𝑓

aut (0) ∈ W (𝐸) =⇒ x 𝑓

aut (𝑡) ∈ W (𝐸), ∀𝑡 ∈ R, (3)
where ¤x 𝑓

aut (𝑡) = Ax 𝑓

aut (𝑡) + fnl (x 𝑓

aut (𝑡)) and x 𝑓

aut ∈ R𝑛 𝑓 . Given
the smoothness of the SSM, the parameterization of W (𝐸)
and the corresponding reduced dynamics can be represented
by polynomial maps [20], as detailed in Section III-B.

Low-dimensional slow SSMs corresponding to slow spec-
tral subspaces are ideal candidates for model reduction as
nearby full system trajectories become exponentially attracted
towards these manifolds and synchronize with the slow
dynamics. Figure 1 gives a visual depiction of this property as
well as the relationship between 𝐸 and W (𝐸). For a detailed
definition of SSMs, see Appendix B [19].

For small 𝜖 , the SSM W (𝐸) is still relevant for control.
From a theoretical point of view, results on the existence of

non-autonomous SSMs subject to quasi-periodic forcing were
established in [2]. Since quasi-periodic signals over a finite
time interval are dense in the space of continuous signals over
the same interval, we can interpret the trajectory of the system
under control input as lying approximately on a time-varying,
invariant manifold that is 𝜖-perturbed from W (𝐸).
B. Reduced-order Models on SSMs

In general, since we seldom have access to the full state x 𝑓 ,
we must construct the SSM and the reduced dynamics of our
system in the space of observed states such that 𝑝 ≥ 2𝑛 + 1
either by Whitney or Takens embedding theorems [3]. In case y
does not satisfy this condition, we use time-delay embeddings
of y, whereby our new observed measurements include current
and past measurements of y, in order to embed W (𝐸) in a
space with sufficient dimension.

To describe the geometry of W (𝐸), we seek a pair w(x),
v(y) of smooth, invertible functions where y = w(x) uniquely
maps the reduced state on the SSM to the observed state and
x = v(y) maps the observed state to the reduced coordinates,
where x ∈ R𝑛 is the reduced state. By definition of the
invariance and tangency properties of the SSM, the two maps
that parameterize W (𝐸) must satisfy the invertibility relations
[2], y = (w ◦ v) (y) and x = (v ◦ w) (x) such that

x = v(y) := V⊤y,
y = w(x) := W0x + Wx2:𝑛𝑤 ,

(4)

where x2:𝑛𝑤 is the family of all monomials from order 2 to 𝑛𝑤 ,
and 𝑛𝑤 is the desired order of the Taylor series expansion for
approximating the SSM. Also, the columns of V ∈ R𝑛 𝑓 ×𝑛 span
the spectral subspace of 𝐸 and W0,W represent coefficient
matrices of the SSM parameterization. In addition, the reduced
dynamics on W (𝐸) are represented by

¤xaut = raut (x) := R0x + Rx2:𝑛𝑟 , (5)
where raut : R𝑛 → R𝑛 is the autonomous reduced dynamics
on the SSM; R0 and R represent the corresponding coefficient
matrices. Since W (𝐸) is locally a graph over the spectral
subspace 𝐸 [3], we can identify the full state trajectory of
System (1) on W (𝐸) described by Equation (5). Figure 1
gives an intuitive depiction of this concept.

We seek to learn the SSM-reduced dynamics for control and
construct mappings that describe the trajectory of our observed
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states on SSMs. Our three-step SSMR procedure involves: (1)
collecting trajectories at or near the SSM. (2) learning the
SSM geometry and the reduced dynamics in Equation (5),
followed by (3) learning a linear control matrix that describes
the effect of the controls in the reduced coordinates. Figure 2
summarizes the complete data-driven SSMR approach.
C. Learning Autonomous Dynamics on SSMs

To learn the geometry and reduced dynamics on the SSM,
the training data should involve only trajectories that are near
the SSM. Decaying trajectories converge exponentially-fast
onto the SSM even when far away from the equilibrium point.
Thus, we obtain training data snapshots by displacing the robot
along various directions in its workspace, then collect the
observed state trajectory as it decays to its equilibrium position.
In other words, we form an augmented matrix of 𝑀𝑦 (pos-
sibly time-delayed) decay datasets Yraw =

[
Y1, . . . ,Y𝑀𝑦

]
,

as shown in Figure 2 (left). We remove initial transients
converging to the SSM in our datasets Yraw by truncating
the first few states in the decay trajectories [4] and forming the
dataset, Y .

To start, we first compute V by finding the 𝑛 dominant modes
of Equation (1). To do this we carry out principle component
analysis on the trajectory dataset Y and pick the 𝑛 leading
directions that capture a majority of the variance in the data.
Indeed, for systems that do not feature strong nonlinearities,
PCA is able to obtain a close estimate for the spectral subspace
𝐸 to which the SSM is tangent [21].

Once we project Y onto the reduced coordinate such that
X = V⊤Y , we can then learn the parameterization of W (𝐸)
(i.e., learn the map w) by finding W and W0 via polynomial
regression

(W∗
0,W

∗) = arg min
W0 ,W

Y − W0X − WX 2:𝑛𝑤
2
𝐹
. (6)

In a similar fashion, we can compute the polynomial form
of the reduced dynamics in Equation (9) by finding the
coefficients R0 and R via the regression

(R∗
0,R

∗) = arg min
R0 ,R

 ¤X − R0X − RX 2:𝑛𝑟
2
𝐹
, (7)

The time derivative in Equation (7) can be computed using
standard finite difference schemes if the sampling time of
X is much smaller than the Nyquist sampling time of the
fastest mode in the SSM dynamics. Otherwise, we can also
compute a discrete-time alternative to Equation (9) using a
similar procedure through simple shifting operations on the
dataset as in [22].

The procedure outlined above is suitable for both numerical
and experimental data. For the former, we can choose y(𝑡) =
x 𝑓 (𝑡) and let the dataset Y consist of full state information
during decay. We implement this procedure using a modified
version of SSMLearn 1 [3].
D. Learning the Control Matrix

Keeping in mind our moderate control assumption, we
assume 𝜖 = 1, without loss of generality, for the rest of
the exposition. Once the reduced autonomous dynamics on
W (𝐸) is known, we seek to learn the contribution of control

1https://github.com/StanfordASL/SSMR-for-control

in the reduced coordinates. Our goal is to find the best
linear control matrix B𝑟 ∈ R𝑛×𝑚 which best explains the
difference between the controlled dynamics and our model
of the autonomous dynamics. We explore the actuation space
of the robot by randomly sampling a sequence of inputs, U, and
recording the corresponding (possibly time-delayed) observed
state trajectory Y𝑢, as depicted in Figure 2 (right).

We then project the observed states down to the reduced
coordinates and form the reduced state matrix Xu = V⊤Yu.
Additionally, we evaluate our model of the autonomous
dynamics and form the matrix ¤Xaut = raut (Xu). Learning the
(continuous-time) control matrix from data amounts to solving
the minimization problem

B∗
𝑟 = arg min

B𝑟

 ¤Xu − ¤Xaut − B𝑟U
2
𝐹
, (8)

where ¤Xu is computed by finite differencing Xu. Our learned,
low-dimensional control dynamics is thus,

¤x = r(x, u) := R0x + Rx2:𝑛𝑟 + B𝑟u. (9)
In general, the introduction of control causes W (𝐸) to

lose its invariance. Intuitively, though, we expect that the
trajectories will remain within a small neighborhood of W (𝐸)
since the effect of our control input is moderate compared to
the system dynamics. Thus, we interpret this step as regressing
a linear matrix that optimally translates the autonomous SSM
under control inputs to be as close as possible to off-SSM
trajectories.

IV. SSM-based Nonlinear MPC
A. Reduced Order Optimal Control Problem

Learning the parameterization of W (𝐸) enables us to learn
the intrinsic physics of our system, leading to low-dimensional
and accurate reduced models with 𝑛 ≪ 𝑛 𝑓 . This allows us to
approximate the OCP in (2) by posing an optimization problem
with respect to the dynamics on the SSM as follows

minimize
u( ·)

𝛿z(𝑡 𝑓 )
2

Q 𝑓
+

𝑁−1∑︁
𝑘=1

(
∥𝛿z(𝑡)∥2

Q + ∥u(𝑡)∥2
R

)
subject to x(0) = V⊤ (y(0) − yeq),

x(𝑡) = r(x(𝑡)) + B𝑟u(𝑡),
z(𝑡) = Cw(x(𝑡)) + zeq,

z(𝑡) ∈ Z , u(𝑡) ∈ U ,

(10)

where zeq ∈ R𝑜 and yeq ∈ R𝑝 are the performance and
observed states at equilibrium. To solve the approximate OCP
(10) numerically, we discretize the continuous-time system and
use Sequential Convex Programming (SCP) to transform (10)
into a sequence of quadratic programs. If 𝑛 is small enough,
we can compute the solution to the resulting approximate OCP
in real-time. We implement our SSMR-based controller on top
of the open-source soft robot control library2 presented in [9].
See Appendix C [19] for more details on the SCP setup.

V. Simulation Results
A. Simulation

We now compare our proposed SSMR method against
the Trajectory Piecewise-Linear (TPWL) approach [9] and

2https://github.com/StanfordASL/soft-robot-control
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Fig. 3. Simulation results of tracking performance for tasks (1), (2), and (3) from left to right, respectively, with horizon length of 𝑁 = 3. The parameters used
were tuned for each method to yield the best, real-time performance across all tasks. The TPWL trajectory is shown in green, the Koopman trajectory in orange,
and the SSMR in blue. The dotted black line represents the reference trajectory while the red line represent constraints. The quasi-static circle (task 2) MSEs
(in mm2) are 𝑒TPWL = 3.35, 𝑒koop = 0.91, and 𝑒SSM = 0.53. The near-resonance circle (task 3) MSEs are 𝑒TPWL = 21.75, 𝑒koop = 133.6, and 𝑒SSM = 1.87.

Fig. 4. Time-series simulation results of tracking performance for the quasi-
static Figure Eight (task 1). The controller parameters for each approach are
set similarly to those reported in Figure 3. The MSE (in mm2) for the TPWL,
Koopman, and SSMR approaches are 𝑒TPWL = 0.22, 𝑒koop = 0.38, and
𝑒SSM = 0.13.

Koopman operator-based control approach [15] in simulations
of the elastomer “Diamond” robot (shown in Figure 2),
as detailed in [9] and [23]. We show that our approach
outperforms these baselines while mitigating their drawbacks,
namely lack of generalization, lack of robustness to noise, and
computational intractability.

We carry out simulations using the finite-element based
SOFA framework [25]; the Diamond robot mesh we used for
simulation can be found in the SoftRobots plugin [26]. The
parameters of our Diamond robot mirror those reported for a
hardware replica in [23], where 𝐸 = 175 MPa is the Young’s
modulus, a = 0.45 is the Poisson ratio, and 𝛼 = 2.5, 𝛽 = 0.01
represent the usual parameters for Rayleigh damping i.e., 𝐶 =

𝛼M+ 𝛽K. Additionally, 𝑁𝑟 ≤ 𝑁 represents the rollout horizon
of the optimal solution, u∗, to OCP (10) while the controller
sampling time is𝑇𝑐 = 𝑁𝑟𝑑𝑡, where 𝑑𝑡 is the time-discretization
of the dynamics.

In this work, we consider control tasks in which the end
effector of the robot is made to follow various trajectories.

Thus, the performance variable z = [𝑥ee, 𝑦ee, 𝑧ee]⊤ denotes
the position of the top of the robot in its workspace. We also
introduce additive Gaussian measurement noise to simulate
real-world conditions. We consider three control tasks which
include following (1) a figure eight in the x–y plane subject to
constraints, (2) a circle in the y–z plane, and (3) the same circle
but near resonance with the dominant mode of the system.

Since we are in a simulation environment, we collect full
state information as training data i.e., the 𝑖-th dataset is
Y𝑖 = [x 𝑓

1 , x
𝑓

2 , . . . x
𝑓

𝑀
]⊤. We obtain this data by displacing

the robot along 44 different points in its workspace and
observe the decaying trajectory state transitions sampled at
𝑇𝑠 = 1 ms. This is consistent with the highest frequency
mode in the SSM which has a period of roughly 330 ms.
After conducting PCA on our training data, we found that
the 3 leading configuration modes (6 modes in phase space)
captured more than 95% of the variance in our dataset. Hence,
we learn a cubic order, 6-D autonomous SSM parametrization
described in (6) and its continuous-time, reduced dynamics
(9) using the procedure in Section III. Lastly, we learn the
control matrix by randomly sampling controls and then collect
the resulting state transitions sampled at 10 ms.

Table I reports the mean-squared error tracking performance
and average cumulative time to solve the QP for all trajectories
at various controller parameters and time discretization of
Equation (9). To enable real-time control, we seek control
parameters such that the controller sampling time is at least
an order of magnitude less than the solve time. Figures 3 and
4 depict simulation results for trajectories (1), (2), and (3) for
controller parameters chosen to maximize performance while
enabling real-time control.

These results show that our SSMR-based MPC scheme
outperforms the TPWL and the Koopman approach in
tracking performance across all trajectories considered, for
small enough time discretization. Thus, our approach exhibits
superior generalizability to control tasks as shown in the
above figures and tables. Due to the low dimensionality of
our learned model, we can solve the SCP iterations quickly
and the computational burden grows modestly as the MPC
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TABLE I. The table on the left shows mean squared error (𝑚𝑚2) for all considered trajectories while the right shows average cumulative QP solve times (in
milliseconds) for the SCP algorithm. The Koopman model consists of polynomials up to order 2 over z = [𝑥ee, 𝑦ee, 𝑧ee ]⊤ with a single time delay

(𝑑koop = 66). We train separate, discrete-time Koopman models corresponding to the various time-discretizations, 𝑑𝑡 . The TPWL model parameters are set
similarly to the ones reported in [23] (𝑑TPWL = 42). We learn a single, continuous-time SSM model of cubic order and although it is low-dimensional

(𝑑SSM = 6), it outperforms the other approaches in both tracking performance (at low enough time-discretization) and solve time. The QP is solved using
Gurobi [24] on a 1.6 GHz Intel Core i5 processor with 8 GB of RAM.

Figure Eight Circle Near-Resonance Circle

𝑑𝑡 (ms) 10 20 50 100

N
=

3 SSMR (Ours) 0.131 0.123 0.227 0.718
TPWL 0.166 0.149 0.164 0.191

Koopman EDMD 1.053 1.230 0.500 0.725

N
=

5 SSMR (Ours) 0.153 0.136 0.205 0.757
TPWL 0.160 0.155 0.160 0.196

Koopman EDMD 1.540 1.286 0.515 0.679

10 20 50 100

0.481 0.342 1.353 4.480
3.996 3.033 3.197 3.216
2.985 1.806 0.914 2.060

0.466 0.348 1.287 4.561
3.350 3.278 3.265 3.254
2.919 1.632 0.895 2.119

10 20 50

0.893 1.861 32.87
4.077 3.789 4.472
1.864 6.707 135.3

0.810 1.816 33.43
3.698 3.900 4.585
1.818 7.149 133.6

Average Solve Times (ms)

10 20 50 100

0.85 0.97 0.97 0.92
25.31 26.19 27.75 31.32
6.08 6.10 5.95 5.92

1.55 1.49 1.62 1.26
52.20 51.23 55.51 58.52
15.81 16.18 18.01 19.65

horizon increases. As shown in Table I, the solve times for
our approach are magnitudes lower than for the TPWL and
Koopman-based methods, giving us more freedom to choose
the controller parameters to enable real-time control. Observed
deterioration of performance as 𝑑𝑡 increases in Table I is
likely due to numerical errors introduced by coarser time-
discretization of the dynamics since we learn a continuous-
time model of Equation (9).

B. Discussion
Additionally, the SSMR approach offers several practical

advantages over the alternatives. First, our SSM-based model
exhibits good closed-loop performance at longer horizons and
does not suffer from numerical conditioning issues that plague
the Koopman approach. We found that at horizons 𝑁 ≥ 10,
the Koopman QPs were no longer solvable, which is likely due
to ill-condition of the Koopman matrices. It is well-known
that approximation of the Koopman operator is numerically
challenging when many observables are considered [27]. Since
we explicitly reason about the dynamics of the system in the
learning process, we find that SSMR yields radically low-
dimensional and thus, numerically well-behaved, models.

Second, our approach involves only two parameters: the
order approximation and dimension of the manifold. Of these
two, the dimension of the SSM is a property of the system
dynamics, which can be inferred via a frequency analysis
of the available data. The polynomial order of the SSM
approximation controls the accuracy and the trade-off between
generalization and overfitting. Given the limited amount of
training data, we found that exceeding a third-order polynomial
approximation led to overfitting. With more data, one can
systematically increase the polynomial order to achieve higher
accuracy. The primary drawback is computation of the jaco-
bian in OCP (10), whose time-complexity grows exponentially
with respect to 𝑛 as a function of the polynomial order.

The size of the Koopman model grows rapidly with the num-
ber of observed states while the dimension of the projection
basis for TPWL needs to be fairly large for acceptable closed-
loop performance. In contrast, since off-manifold dynamics
are sufficiently approximated by those on the SSM for closed-
loop control, we can learn models of minimal size and
tune the SSM order iteratively to increase model fidelity,
as needed. This has considerable practical advantage over

learning-based approaches where it is well-known that closed-
loop performance is highly sensitive to choice of dictionary
features, size, and regularization.

VI. Conclusion and Future Work
In this work, we proposed a new data-driven approach

for constructing control-oriented, reduced models of soft
robots on spectral submanifolds. Using our approach, we can
construct faithful, predictive, low-dimensional models which
can be effectively used for real-time optimal control. We
demonstrated that our SSM-based MPC scheme outperforms
the state of the art significantly in both tracking error and
computation time. The success of SSMLearn [4] in the
experimental domain hints at the prospects of our SSMR
approach for application to real world robots. Bolstered by
promising results in a high-fidelity, finite-element simulation
environment, we plan to validate the data-driven SSMR
approach on our hardware platform detailed in [23].

While these results are promising, there are many open
problems. For example, although the setting we consider
involves tasks around an equilibrium point (e.g., manipulation
tasks in a constrained workspace), many high-dimensional
systems are not fixed to a point and can freely navigate
their environment. Extending our SSMR framework to handle
these settings would generalize our approach to a broader
class of systems. Also, since most robotic systems have
configuration-dependent actuation constraints, we plan to
extend our approach to learning dynamics with state-affine
control. Lastly, we plan to estimate errors arising from SSM
approximation a-priori and derive error bounds for constraint-
tightening control schemes in an MPC framework.
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