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Globalizing manifold-based reduced models
for equations and data

Bálint Kaszás & George Haller

One of the very few mathematically rigorous nonlinear model reduction
methods is the restriction of a dynamical system to a low-dimensional, suffi-
ciently smooth, attracting invariant manifold. Such manifolds are usually
found using local polynomial approximations and, hence, are limited by the
unknown domains of convergence of their Taylor expansions. To address this
limitation, we extend local expansions for invariant manifolds via Padé
approximants, which re-express the Taylor expansions as rational functions
for broader utility. This approach significantly expands the range of applic-
ability of manifold-reduced models, enabling reduced modeling of global
phenomena, such as large-scale oscillations and chaotic attractors of finite
element models. We illustrate the power of globalized manifold-based model
reduction on several equation-driven and data-driven examples from solid
mechanics and fluid mechanics.

Reduced-order modeling is a widespread technique that seeks to
simplify high-dimensional nonlinear systems while retaining their
essential dynamical features. Among reduced-order modeling proce-
dures, manifold-based methods have been steadily gaining momen-
tum. This can be largely attributed to the prevalence of data-driven
approaches that successfully build on the fundamental manifold
hypothesis1–3 of machine learning.

Center manifold reduction4, geometric singular perturbation
theory5,6 and inertial manifold theory7,8 all rely on the existence of low-
dimensional attracting invariant manifolds in the phase space of a
dynamical system. These methods constitute mathematically rigorous
examples of nonlinear model reduction and yield truly predictive
models. However, for systems encountered in practice that are not
close to bifurcations, invariant manifolds can only be realistically
constructed when they emanate from a known robust stationary state,
such as a hyperbolic fixed point.

In those cases, seeking the invariant manifolds perturbatively and
expressing them as local Taylor expansions at the known stationary
state is justified. Traditionally, only stable and unstable manifolds, as
continuations of the stable andunstable subspaces of the linearization,
were approximated in this fashion4. The recent theory of spectral
submanifolds (SSMs) extends this approach to arbitrary non-resonant
spectral subspaces of the linearized system9. In particular, SSMs are
now known to exist as smooth continuations of stable subspaces (like-

mode SSMs) and of subspaces spanned by stable and unstable modes
(mixed-mode SSMs)10. This model reduction approach has been used
in a broad range of physical settings to deduce very low-dimensional,
mathematically justified polynomial models9,10.

SSM reduction has been successfully applied to obtain accurate
reduced models of nonlinear vibrations observed in high-dimensional
finite element models11,12 and experiments13,14, multistable fluid
flows15,16, chaotic systems17, fluid-structure interaction problems18,19

and control of soft robots20. In an equation-driven setting, SSM
reduction starts with the solution of an invariance equation through
local Taylor expansions11,21,22. Data-driven SSM reduction13 also uses
polynomial expansions to obtain an approximation for SSMs.

SSMs are ideal tools for model reduction because their existence,
uniqueness, and smoothness properties are precisely known. Specifi-
cally, if the governing equations are analytic, SSMs of attracting fixed
points are guaranteed to also possess convergent Taylor series near
the fixed point. However, the domain of convergence is generally
unknown.

This has been a general limitation of invariant manifold-based
reduction methods, restricting the range of applicability of the
resulting reduced-order model to an a priori unknown domain.
Importantly, the convergence-limiting singularity of the Taylor
expansion is not a physical singularity of the dynamical system, and
hence, invariant manifolds continue to exist even outside the domain
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of convergence of the Taylor expansions for those manifolds. There-
fore, the breakdown of convergence arises without any prior indica-
tion. Thismajor limitation of local approximationmethods of invariant
manifolds restricts the user to potentially small physical domains.

Here, we overcome this limitation by extending the local infor-
mation contained in the Taylor series to considerably larger domains
via the process generally known as analytic continuation23. Among
commonly used methods of analytic continuation, we focus on Padé
approximants24. Padé approximants are rational functions whose
Taylor expansion around a point coincides with that of the original
function up to a given order, but can represent the original function
more efficiently and globally.

Padé approximants have been used in theoretical physics and
applied mathematics for summing divergent series25 with applications
in cosmology26, quantum electrodynamics27, fluid dynamics28,29 and
solving the Helmholtz equation30. Closest in spirit to our present work
is the use of Padé approximants for center manifold reduction31,32. The
latter use is, however, restricted to equation-driven model reduction
near Hopf bifurcations.

In the context of SSM-reduced models, we must consider gen-
eralizations of Padé approximants to account for multivariate func-
tions describing the parametrization and the reduced dynamics. Since
two-dimensional non-resonant SSMs are typical in applications, we
focus on the bivariate and univariate cases.

In “Results”, wepresent our results onusing Padé approximants to
construct reduced models on global SSMs (gSSMs). We discuss four
examples, including the Kolmogorov flow33, a nonlinear von Kármán
beam inperiodic and chaotic regimes11,17, and adata-drivenmodel of an
inverted flag experiment18. Themathematical details of SSMs and Padé
approximants are discussed in “Methods”. The Supplementary Infor-
mation contains further applications and examples.

Results
Spectral submanifolds and Padé approximants
We consider an n − dimensional nonlinear dynamical system

_x=Ax+ f ðxÞ+ εfextðx, tÞ,
x 2 Rn, A 2 Rn×n, f 2 Oðjxj2Þ,
n≥ 1, 0 ≤ ε≪ 1

ð1Þ

where fext(x, t) = fext(x, t + T) represents time-periodic external forcing.
We assume that the nonlinearity f and the forcing fext(x, t) are also
analytic functions of x. We assume that, for ε =0, the fixed point x = 0
is hyperbolic and the spectrum ofA is non-resonant. The slow spectral
subspace is denoted E, and is defined as the d-dimensional real
subspace spanned by the eigenvectors of A associated to its d
eigenvalues closest to zero and hence is an attracting, slow invariant
manifold for the linearized dynamics.

We focus here on SSMs, which are the nonlinear continuations
of spectral subspaces under the addition of the nonlinear terms in (1).
Although there are multiple invariant manifolds tangent to the
spectral subspace E, there is a unique smoothest one, called the
primary spectral submanifold9 denoted WðEÞ. If the fixed point x = 0
is stable, thenWðEÞ is even known to be analytic. Due to the slowness
of the subspace E, the SSM, WðEÞ, is an attracting slow manifold for
the autonomous system (1). The members of the invariant manifold
family with reduced smoothness are called fractional (or secondary)
SSMs10. For completeness, the necessary assumptions for the exis-
tence and uniqueness of primary SSMs9,10,34 are recalled in “Spectral
submanifolds”.

In the autonomous limit with ε = 0, the d − dimensional (d ≤ n)
primary SSM, WðEÞ, can locally be represented as the image of a

parametrization W : U � Rd ! Rn, over some open set U � Rd as

WðEÞ= x =WðpÞ jp 2 U
� � � Rn: ð2Þ

The reduced dynamics _p=RðpÞ, with R : U ! Rd are conjugate
to (1), i.e., WðEÞ is invariant under the time evolution of (1) and
therefore satisfies the invariance equation

AWðpÞ+ f ðWðpÞÞ=DWðpÞ _p: ð3Þ

We refer to “Spectral submanifolds” for a discussion on SSMs of
the non-autonomous system with ε >0.

We solve Eq. (3) by representing the parametrization ofWðEÞ and
its reduced dynamics as a power series truncated to some orderN, i.e.,

WNðpÞ =
PN

jkj =0
Wkp

k,

RNðpÞ =
PN

jkj =0
Rkp

k:

ð4Þ

We define the multi-index k = (k1,…, kd) and ∣k∣ = k1 + k2 +… + kd,
so that pk =pk1

1 pk2
2 . . .pkd

d refers to a scalar monomial of the compo-
nents ofpwith total order ∣k∣. The coefficientsWk andRk are vectors in
Rn and Rd , respectively, for all k.

The coefficients Rk depend on the style of parametrization used.
In the graph-style parametrization, the reduced coordinates are
obtained as projections onto the spectral subspace E, while in the
normal form style parametrization, non-resonant terms are set to zero.
The difference between these two choices is explained in more detail
by, e.g., refs. 11,22,35.

Since the primary autonomous SSM is analytic, there is a domain
of convergence denoted as U0 � U � Cd , for which the N → ∞ limit
exists, i.e.,

lim
N!1

WNðpÞ=WðpÞ, 8p 2 U0: ð5Þ

For a system whose slowest mode is oscillatory and not in reso-
nance with higher modes, the optimal model reduction is achieved by
a two-dimensional SSM tangent to a single oscillatory eigenspace of
the autonomous problem. In that case, we can select p= ðp, �pÞT with
p 2 C. With the normal form style parametrization, the reduced
dynamics only contain near-resonant terms of the form pk + 1�pk and
pk�pk + 1, and it is conveniently expressed in polar coordinates11. We
introduce

p=ρeiθ, �p=ρe�iθ, ð6Þ

which allows us to write the SSM-reduced dynamics as

_ρ = κðρÞρ,
_θ = ωðρÞ: ð7Þ

The functions κ(ρ) and ω(ρ) represent the instantaneous depen-
dence of the damping rate on the amplitude and the frequency on the
amplitude, respectively. These functions are obtained from the coef-
ficients of the autonomous reduced dynamics, Rk. Their Taylor
expansions are of the form

κðρÞ=
X1
k =0

κkρ
2k , ωðρÞ=

X1
k =0

ωkρ
2k : ð8Þ

The software package SSMTool11,36 returns the Taylor coefficients
Wk, κk and ωk up to arbitrary orders. However, the expansions (8) only
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converge as long as the amplitude ρ corresponding to the physical
response of the system is inside the domain of convergence.

For the expansions in (8), the domain of convergence is the
interior of a disk of radius R, the radius of convergence. As a corollary
of the analyticity of holomorphic functions23, that disk contains the
nearest singularity of the complex extension of the function. This
result also generalizes to the multivariate setting, although defining
the domain of convergence is more complicated37. In addition, in
contrast to the scalar case, singularities of multivariate functions are
never isolated.

The a priori unknowndomain of convergence of their local Taylor
expansions represents a limitation of SSM-reduction approaches.
Although solutions of the invariance equation (21) for SSMs exist up to
any order N, their formal sumWN has little to do with the primary SSM
outside the domain of convergence U0, even if W is well-defined on
U\U0.

This fundamental limitation has forced most invariant manifold
studies to focus on deriving reduced-order models under small per-
turbations near a fixed point. This, however, impedes predicting the
system’s response to large perturbations or the discovery of steady
states far away from the known fixed points.

However, SSMs, as invariant manifolds, are known to extend
globally in the phase space, as long as the flow map of the dynamical
system (1) remains well-defined on them for all times. A straightfor-
ward extension of the locally known parametrization is to evolve a set
of initial conditions from inside the domain of convergence globally
under the flow map. This, however, assumes that the flow map of the
full high-dimensional system is known in detail, making the reduced-
order model redundant. This envisioned globalization is only partly
achievedby thedata-driven constructionof SSMs13, which starts froma
limited number of trajectories of (1) and finds the observed invariant
manifold using regression.

In this work, we propose a different approach to extend the range
of applicability of SSM-reducedmodels. As long as an analytic function
is known on some open domain, fundamental results in complex
analysis guarantee that this knowledge can be extended to the entire
domain of analyticity of the function, possibly using a different
representation of the function. Switching to such a representation,
other than the Taylor series (4), is known as analytic continuation23, a
powerful technique to globalize the maps W(p) and R(p).

Globalization of invariant manifolds via Padé approximation
A well-known method for analytic continuation is the Padé
approximation24, which has had numerous applications in theoretical
physics and engineering. To describe this procedure, we introduce a
multivariate rational function of the form, using the same notation as
in Eq. (4),

½N=M�ðzÞ=
PN

jkj=0 akz
k

PM
jkj =0 bkzk

, b0 = 1, z 2 R‘, ð9Þ

where the orders of the numerator and denominator are fixed con-
stants N,M. This formulation covers the cases of univariate (ℓ = 1) and
multivariate (ℓ ≥ 2) functions as well.

We represent solutions of the invariance equation (21) as rational
functions of the form (9), which is achieved by requiring that the
Taylor series of (9) matches that of the function to be approximated.
Rational functions of the form (9) have the advantage that they can
incorporate singularities that would otherwise limit the convergence
of Taylor series. Based on these observations, we seek to extend SSM-
reduced models using Padé approximants. We call the extended
representations of an SSM the gSSM.

Increasing the orders of the numerator and the denominator in
(9), one expects that the approximants provide better approximations
for the functions W(p), R(p), κ(ρ), and ω(ρ). In most practical

applications, diagonal approximants (i.e., those with numerators and
denominators of the sameorder) have proven to be themost effective.
Moreover, diagonal Padé approximants of a univariate function are
related to the continued-fraction representation of the function.

For meromorphic functions with an a priori unknown number of
poles, strict convergence is only guaranteed in measure by the theo-
rems of refs. 38 and 39. These theorems cover the case of diagonal
approximants and state that the sequence [M/M](z) converges to the
given function asM→ ∞ on bounded compact subsets ofC, except for
sets of measure zero. Similar theorems also exist for the multivariate
case40. These exceptional sets correspond to zero sets of the
denominator in (9).

Data-driven global reduced-order models
If the equations of motion of a dynamical system are known, we will
rely on the established theory of Padé approximants and invariant
manifolds and use highly optimized computational methods to solve
the invariance equation (21) and construct the gSSM-reduced models.

In many practical applications, however, the governing equations
are only partially known or completely unknown, and yet a predictive
reduced-order model is required. In such cases, we must rely directly
on data-driven methods to approximate the gSSMs. In particular, the
SSMLearn algorithm of ref. 13 works on observations of trajectories to
approximate the slow SSM WðEÞ locally.

A common use case is when a single scalar observation yðtÞ 2 R is
recorded. In that case, by the Takens embedding theorem41, a
d − dimensional attracting SSM can be embedded generically in the
space of delayed measurements,

yðtÞ= ðyðtÞ, yðt � τÞ, . . . , yðt � ðp� 1ÞτÞÞT , ð10Þ

for some time-lag τ as long as thenumberofdelaysp ismore than twice
the dimensionof the SSMd. The slowSSMcan then beparametrized as
a graph over its tangent space at the fixed point from which it
emanates. The reduced coordinates η on the SSM are obtained by
projecting the delay-embedded measurements onto that d − dimen-
sional tangent space, i.e., letting

η=VTy, ð11Þ

where the columns of V span the tangent space. The tangent space
can be efficiently approximated using the leading principal compo-
nents of the delay-embedded measurements after discarding initial
transients18,19.

The parametrization of the SSM is obtained by regression using
the observed trajectories and their reduced coordinates. The most
straightforward choice is a polynomial basis, which is justified by the
existence of a locally convergent Taylor expansion of the SSM and by
the universal approximation property of polynomials23.

Motivated by the success of Padé approximants in enhancing the
convergence properties of equation-driven models, we generalize the
regression step of the data-driven SSM-reduction to rational approx-
imants. Related approaches are rational interpolation and multi-point
Padé approximation. While the former requires the approximant to fit
the data exactly, the latter matches the asymptotic behavior of the
function at multiple expansion points.

Rational function regression42 seeks a rational approximant of the
form (9). In addition, we enforce that all components of the vector
function share the same denominator and that the denominator is
never zero on the training data. Having a common denominator for all
components of the vector function makes it simpler to avoid spurious
singularities. We elaborate on the steps of this regression task in
“Rational function regression”.
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Example 1: connecting orbit in Kolmogorov flow
Our first example is the 2D Kolmogorov flow, governed by the Navier-
Stokes equations in a periodic domain subject to spatially periodic
forcing. The flow domain is given by x, y ∈ [0, 2π] and the time evo-
lution of the vorticity ω(x, y) =∇ ×u is governed by the non-
dimensionalized equation

∂ω
∂t

= � ðu � ∇Þω+
1
Re

Δω� L cos Ly, ð12Þ

where L denotes the forcing wave number. This influences the size of
the large-scale flow structures, the bifurcations observed in (12) and
the properties of the turbulent dynamics at high Re43. The laminar
solution is a fixed point of (12) for all Reynolds numbers that can be
written as

ω0ðx, yÞ= � Re
L

cos Ly: ð13Þ

Following33, we set L = 4 and discretize the system using
576 = 24 × 24 Fourier modes. The numerical implementation is based
on ref. 44 and results in a systemof ODEs in the form (1) for the Fourier
amplitudes ω̂ðkx , kyÞ with n = 576. Further details on the implementa-
tion can be found in the Supplementary Information.

The laminar flowω0 is already unstable for lowReynolds numbers,
losing stability in a bifurcation around Re = 9.1. The state ω0 is con-
nected to two new stable fixed points ω1,2 by its 1D unstable manifold.
This unstable manifold coincides with the 1D slow SSMs of ω1,2,
forming two heteroclinic orbits.

We fix Re = 11 and consider the stable fixed point ω1. We compute
the parametrized slow SSM of ω1 as i.e., ω̂=WðξÞ. This computation is
carried out automatically by SSMTool, which returns the coefficients
of the Taylor expansion ofW(ξ) and the reduced dynamics on the SSM
as

ω̂ðkx , kyÞ=WðξÞ=
XN
k =0

Wkξ
k , ð14Þ

_ξ =RðξÞ=
XN
k =0

Rkξ
k
: ð15Þ

We visualize the connecting orbit, i.e., the 1D slow SSM in a 3D
slice of the 576-D phase space in Fig. 1a. The stable fixed pointsω1,2 are
markedwithblack andbluedots, and theunstablefixedpointω0 is red.
The heteroclinic orbit, which is obtained by direct numerical integra-
tion of (12) (black curve), is approximated by the Taylor expansion of
the SSM up to order-16. The domain of convergence is clearly limited,
and it does not contain the unstable fixed point.

To construct a globalized slow SSM, we compute the Padé
approximant of each component (Fourier mode) of the vector W(ξ).
Although, in principle, spurious poles could arise for each component
separately, we find that the diagonal approximants are well-behaved.
An alternative approach would be to construct the vector Padé
approximants45, that is, to find a common denominator for all com-
ponents of W(ξ)46.

The componentwise computed [5/5](ξ) Padé approximant
approximates the heteroclinic orbit connecting ω1 and ω0 remark-
ably well, as shown by the orange curves in Fig. 1a. We also observe
that the manifoldWðEÞ can only be represented as a graph over E for
this segment, since the derivative ∂

∂ξ WðξÞ diverges at a fold point near
ω0. The parametrization, therefore, cannot be continued to capture
ω2. Note, however, that the Taylor approximation diverges well
before encountering this unremovable singularity of the graph-style
parametrization.

To verify the validity of the reduced-order models, predictions
should be compared to trajectories of the full system. However, since
the fixed point is stable, a nearby initial condition will leave its neigh-
bourhood along the heteroclinic orbit only in backward time. There-
fore, we integrate the initial condition ξ(0) = 10−5, close to the stable
fixed point, backward under the SSM-reduced and the gSSM-reduced
dynamics.

Figure 1b shows the SSM-reduced trajectory, which exhibits finite-
time blowup and is only a reliable model near the stable fixed point. In
contrast, the gSSM-reduced trajectory converges to ω0 in backward
time and hence captures the global dynamics accurately.

Figure 1c shows the reduced dynamics _ξ on the SSM and the
gSSM. In addition to the trivial fixed point at ξ =0, the gSSM-reduced
model contains the unstable fixed point ω0, given by the intersection
with _ξ =0 andhenceprovides a robust reducedmodel of the system. In
contrast, based on the Taylor approximated SSM, the existence of an
unstable fixed point cannot be concluded.

Example 2: Von Kármán beam
We now consider the model of a nonlinear von Kármán beam with
clamped-free boundary conditions47, shown in Fig. 2a. The beam has
length L = 1m, height h = 1mm, width b = 0.1m, Young’s modulus
E = 70GPA, viscous damping rate α = 107Pa s and density 2700 kg/m3.
We use a finite element discretization with 10 elements, resulting in 30
degrees of freedom, with a phase space of dimension n = 60. The
discretization is implemented in the SSMTool36 repository.

Fig. 1 | Model reduction for the Kolmogorov flow. Heteroclinic orbits (black)
connect ω1,2 and ω0. a Projection of the phase space onto three dominant Fourier
modes (1, 4), (0, 4) and (2, 4). We show the slow SSMWðEÞ (black), which is tangent
to the spectral subspace E (gray), its order-16 Taylor expansion (red) near the fixed
point ω1, and the order [5/5] gSSM approximation (orange). The curves are also
projected onto the horizontal axes. The vorticity fields corresponding to the three
fixed points are shown in the insets. b A trajectory on the heteroclinic orbit
obtained by backwards integration and its SSM-reduced and gSSM-reduced
counterparts. c SSM-reduced and gSSM-reduced dynamics.
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We construct the slowest SSM of the undeformed configuration,
which is tangent to the spectral subspace corresponding to the
eigenvalues λ1,2 = −0.0019 ± 5.1681i. Due to the Taylor approximation,
the autonomous SSM can only capture the decaying oscillations of the
beam up to amplitudes of around 5mm, which is verified by backward
integration of the SSM-reduced and the fullmodels. This canbe seen in
Fig. 2b–c, which shows the autonomous trajectory exiting the domain
of convergence of the Taylor series. This is evident for the high-order
Taylor approximant, which exhibits finite-time blowup.

In contrast, the gSSM model, globalized using a [5/5] Padé
approximant for the reduced dynamics and a [5/4] approximant for
the parametrization, remains well-behaved for even larger amplitudes.
Due to spurious singularities in the parametrization, we chose the [5/4]
approximant instead of [5/5]. Since the convergence of Padé-
approximants is only guaranteed in measure, singularities coinciding
with zero sets of the denominator of (9) must be actively avoided
before deploying the reduced-order model, as we demonstrate in
the Supplementary Information.

The backbone curve, i.e., the instantaneous relationship between
the normal form amplitude ρ and the frequency, is given byω(ρ) in (7).
The Taylor expansion of ω(ρ) and its [5/5] Padé approximant are given
as

ω ρð Þ= 5:16 +9:3 � 104ρ2 � 4:5 � 109ρ4

+ 4:2 � 1014ρ6 +O ρ8� �
,

5=5
� �

ρð Þ= 5:16 + 106ρ2 + 3:7 � 1010ρ4

1 + 1:8 � 105ρ2 + 4:7 � ρ4
:

ð16Þ

The Taylor coefficients in (16) are growing rapidly, and the alter-
nating sign pattern of the coefficients suggests the convergence-
limiting singularity is along the imaginary axis. This can be inferred

using themethodof refs. 48,49,whichwe specialize to our examples in
the Supplementary Information.

When an external forcing εf ext cosðΩtÞ is applied to the beam
with a frequency Ω almost in resonance with the slowest eigen-
frequency Im(λ1,2), we can use the unforced SSM to make predictions
about the forced response. To leading order, the reduced dynamics of
the forced system are simply a perturbed version of those of the
unforced one (see “Spectral submanifolds”). Furthermore, the forced
response corresponds to the periodic orbits of the reduced model.
For 2D SSMs, these are directly given by the equation (26) in “Spectral
submanifolds”.

We compare the SSM-reduced forced response to the forced
response of the full system, obtained by direct numerical continuation
using COCO50. Predictions with a high-order Taylor approximation of
the SSM are shown in Fig. 2e. They accurately capture the forced
response for small forcing amplitudes up to ε =0.5, as initially reported
by ref. 11. For higher amplitudes, the Taylor approximated reduced
trajectory reaches its boundary of convergence, and themodel breaks
down. In contrast, the gSSM prediction using the [5/5] Padé approx-
imant remains accurate for larger amplitudes as well. Note that the
small errors in the peaks of the forced response curve are due to our
initial assumptionof a small forcing amplitude. Indeed, (26) technically
holds only for small ε.

Example 3: chaotic von Kármán beam
In our next example, we construct a 2D mixed-mode SSM to char-
acterize the chaotic behavior of a periodically forced buckled von
Kármán beam, shown in Fig. 3. We adopt the same finite element code
used in “Example 2: Von Kármán beam”, developed by ref. 11, with
pinned-pinned boundary conditions. To induce buckling, a compres-
sive force is applied at the rightmost element, equal to 145% of the
critical value fcrit = 1.5 kN. This gives rise to a pair of stable fixed points.

Fig. 2 | Model reduction of a von Kármán beam. a von Kármán beam with
clamped-free boundary conditions. b Trajectory of the unforced system (black) with
its order-16 SSM approximation (red) and gSSM-approximation (orange) with a [5/5]
and [5/4] Padé approximant. c, d Representation of the end point displacement qend

and the full-order trajectory shown in (b) with the SSM and gSSM-reduced trajec-
tories. e, f Forced response defined as the maximal end point displacement due to a
forcing amplitude ε=0.5, 1.7, 2.8. e Shows the SSM-prediction and (f) shows the gSSM
prediction. A supplementary animation showing the gSSM-prediction is also available.
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The same system, much closer to the critical point, was also analyzed
using a data-driven model by ref. 17.

The spectral subspace of the linear part associated with the
buckling instability is two-dimensional and has the corresponding
eigenvalues λ1 = 23.48 and λ2 = −23.48. The other modes are all stable
and correspond to oscillatory dynamics. This eigenvalue configuration
indicates a considerable departure fromcriticality and centermanifold
theory.

We use SSMTool to find an order-18 approximation of the 2D SSM
of the unforced beam and its reduced dynamics. Since the SSM is
tangent to a spectral subspace with real eigenvalues, we denote the
reduced coordinates as η= ðη1,η2Þ 2 R2. The reduced dynamics are
given by

_η1 = 23:48η1 � 2800η3
1 � 1760η3

2 � 7297η2
1η2

� 6268η1η
2
2 +Oðjηj4Þ,

_η2 = � 23:52η2 + 2790η
3
1 + 1760η

3
2 + 7297η

2
1η2

+ 6268η1η
2
2 +Oðjηj4Þ:

ð17Þ

Analysis of the reduced dynamics shows, however, that the fixed
points born due to the buckling instability lie outside the domain of
convergence. We show in Fig. 3b the time series of a trajectory initi-
alized on the unstable manifold of the fixed point. The SSM-reduced
trajectory based on Taylor expansion blows up once the reduced tra-
jectory exits the domain of convergence. In contrast, a comparable,
[6/6] Padé approximant and the gSSM-reduced trajectory correctly
capture the convergence to both of the buckled states.

This is even more apparent in Fig. 3c, d, showing the image of the
parametrization and the direction field of the reduced dynamics. The
SSM-reduced model in Fig. 3b predicts diverging, unphysical dis-
placements for the mid-point of the beam. The gSSM-model in Fig. 3c
correctly identifies all fixed points and the orbits connecting them.We
have, therefore, extended the SSM-reducedmodel obtained from local
information around the unstable fixed point to a globally valid one.

We now extend the autonomous gSSM model to account for
periodic forcing. A periodic force on the middle node of the beam, as
shown in Fig. 4a, can make the dynamics of the beam chaotic. This has
been observed and reported in the data-driven model of ref. 17, who
used simulation data of the full system. We now characterize the
chaotic behavior without relying on any full-order simulations.

To compare the full-order and the reduced-order dynamics, we
takeoneof the buckledfixedpoints as an initial condition and simulate
the beam under the influence of periodic forcing acting on the mid-

pointwithΩ = 25.3 rad/s and ∣εfext∣ = 21.1 N. Since this initial condition is
known to be on the SSM, we run the same trajectory with the reduced
dynamics after adding the leading-order contribution of the forcing as
in (23).

The full-order trajectory is shown in Fig. 4b. As expected from the
previous analysis and Fig. 3, the forced SSM-reduced model blows up
within a fraction of a second. In contrast, the globally valid gSSM
model exhibits sustained chaotic behavior, closely matching the full-
order trajectory for short times. Figure 4d–e shows that the chaotic
attractor appearing as a result of the periodic forcing extends way
outside the domain of convergence of the Taylor series of the SSM.

We also construct the Poincaré-map of the full model and the
gSSM model by sampling the trajectories at multiples of the driving
period T = 2π

Ω . Because the gSSM-model is a simple 2D ODE, we can
sample the Poincaré-map with a fine resolution to obtain the structure
in the reduced phase space shown in Fig. 4c. Overlaying the Poincaré-
map obtained from the full system, we see a close correspondence
with the predicted attractor.

In addition, we estimate the leading Lyapunov exponents based
on the exponential rate of divergence of initially close trajectories51 as
λgSSM = (3.0 ±0.02)1/s and λfull= (3.1 ± 0.05)1/s. The reducedmodel is in
close agreement with the full model, even though the forced dynamics
were approximated by simply projecting the forcing term onto the
tangent space of the SSM according to (23). Incorporating higher-
order corrections of the forced dynamics, as in (22), further improves
the model, leading to more accurate short-time predictions. We pre-
sent these comparisons, along with additional properties of the
chaotic gSSM model, in the Supplementary Information.

Example 4: data-driven model of an inverted flag experiment
We now consider, as a data-driven example, the dynamics of an
inverted flag, which is a flexible elastic sheet in the counterflow of a
water tunnel. This configuration has generated recent interest due to
its applications in energy harvesting52 and vegetation53. From a mod-
eling perspective, the inverted flag is a complicated fluid-structure
interaction problem that benefits from reduced-ordermodeling. Here,
we rely on experimental data obtained by ref. 18, whose experimental
configuration is shown in Fig. 5a–b. The elastic sheet is mounted in a
water tunnel and is recorded from below with a video camera. Using
classical imageprocessing tools, the deflectionof the tip of the flag y(t)
is recorded during the experiment.

The main parameters of the system are the bending stiffness KB

and the Reynolds number of the incoming flow, governed by themean
velocity U. By tracking the displacement of the tip of the flag, a data-

Fig. 3 | Reducedmodel of the buckled beam. a Sketch of the beam in the buckled
configuration, with no external forcing. b Trajectories in the unstable manifold of
the unstable fixed point (black). Their order-18 SSM-reduced (red) and order [6/6]
gSSM-reduced (orange) approximations are also shown. c, d The SSM and gSSM in

the physical spacewith the directionfieldof the reduceddynamics indicatedon the
surface of the manifold. The predicted trajectories connecting the unstable fixed
point to the stable fixed points are shown in black.
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driven SSM-reduced model was obtained18 for both the large-
amplitude periodic flapping regime and the chaotic flapping regime.
In these regimes, the undeflected state of the flag is an unstable fixed
point, which has a low-dimensional attracting mixed-mode SSM.

We focus here on the large-amplitude flapping regime with
KB =0.21 and Re= 6 × 104. The slow SSM is tangent to a spectral sub-
space associated with an unstable real eigenvalue and a stable real
eigenvalue, and is two-dimensional. In addition to the saddle-type
fixed point corresponding to the undeflected flag, the slow SSM con-
tains two additional fixed points, which correspond to the deflected,
but still stationary flag. The periodic flapping is a stable limit cycle
within this slow SSM.

We now construct a data-driven gSSM-reduced model based on
the tip-deflection data of ref. 18. A total of 16 trajectories are used for
training. To reconstruct the slow SSM, we embed the tip displacement
data y(t) trajectories using p = 25 time delays to form the observable
y 2 R25. As in ref. 18, we approximate the tangent space of the SSM at
the fixed point using the two leading principal components of the
delay-embedded trajectories. Sincewe use amoderate number of time
delays and a short delay time, a leading-order (linear) approximation
for the SSM suffices, i.e., we let

η1

η2

� 	
=η=VTy, y=Vη: ð18Þ

The reduced dynamics are now approximated using rational
functions, as detailed in “Rational function regression”, by solving the
minimization problem (44). We find that a [5/5] approximant gives the

optimal reconstruction error, as computed on a validation trajectory,
which was not used in the training. The resulting reduced vector field
and the predictions on test trajectories are shown in Fig. 5c–e. A
diagonal approximant also ensures that the reduced dynamics remain
well-behaved outside the domain of the training data. As opposed to
classical polynomial regression, the values of the approximants remain
bounded or only grow mildly for large ∣η∣.

To obtain a comparable test accuracy to that shown in Fig. 5d–e,
previously, an order-11 polynomial approximation was used for the
reduced dynamics. This required determining a total of 154 coeffi-
cients Rk. The data-driven rational approximation, on the other hand,
requires only 60 coefficients, which is a significant reduction, for the
cost of a slightly increased computational burden. In addition, the
rational approximants extrapolate to larger domains in a more
controlled way.

As we show in the Supplementary Information, preventing the
rational functions from becoming singular is essential for an accurate
approximation. Other availablemethods, such as the rational function
extension of the Sparse Identification of Nonlinear Dynamics (SINDy)
algorithm54,55 enforce no such constraints.

Discussion
We have presented a method to extend the range of validity of
invariant manifold-based reduced-order models by applying Padé
approximation, a classic analytic continuation technique. The Taylor
coefficients of the parametrization of the SSM and the reduced
dynamics were obtained with the robust numerical routines of
SSMTool. We then extend their range of validity globally to obtain

Fig. 4 | Chaotic response of the buckled beam. a Buckled von Kármán beamwith
periodic external forcing. b Time series of the reduced coordinate η1 on a chaotic
trajectoryof the full system (black). Also shown are the SSM-reduced forcedmodel,
which diverges immediately (red), and the gSSM-reduced trajectory (orange).

c Sampling of the Poincaré map of the gSSM-reduced model (orange) and the true
system (black). d, e The autonomous SSM and gSSM with the chaotic trajectory of
the full model. A supplementary animation comparing the SSM- and gSSM-
predictions is also available.
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the gSSM-reduced model, by applying Padé approximation to these
mappings that agree with the local Taylor expansions up to a
prescribed order.

We have demonstrated the method on high-dimensional exam-
ples of dynamical systems exhibiting global nonlinear behaviour, such
as transitions between steady states, large-amplitude oscillations, or
even chaotic behaviour. In all cases, gSSMmodels obtained with Padé
approximation significantly extend the domain of validity of the
reduced model, reaching well beyond the domain of convergence of
the classical Taylor series. We have also shown that the sign pattern of
the univariate Taylor coefficients can be used to infer the location of
the singularity.

To apply our approach, unexpected singularities in the approx-
imants must be checked, and the optimal approximant of the Padé
table must be determined according to the steps we have outlined in
“Padé approximants”. Luckily, the numerical effort required to com-
pute Padé approximants is negligible compared to the computation of
the original Taylor coefficients of the SSM and the reduced dynamics.
Therefore, even if no singularity-free Padé approximants can be found
up to a given order, the benefits of a gSSM model far outweigh the
costs of deriving it.

We have shown that a data-driven analog of Padé approxima-
tion, rational function regression, can be directly applied to experi-
mental data. Although rational function regression requires more
computational power than the standard polynomial approximation
implemented in SSMLearn, it can produce more accurate reduced
models with fewer unknown coefficients, resulting in ultimately
simpler models.

We have demonstrated the method on the inverted flag example
of ref. 18, where the rational approximants of the SSM and the reduced
dynamics were able to predict the coexisting deflected and unde-
flected fixed points and the stable limit cycle. As a main benefit, we
note that the data-driven approach does not suffer from the same
singularity issues as the equation-driven one.

As we have demonstrated, Padé approximants and their data-
driven extensions are particularly well-suited for approximating the
global reduced dynamics on invariant manifolds. In addition to being
able to represent more complex functions, they retain physical inter-
pretability. In contrast to modern machine learning methods, the
coefficients of the gSSM-reduced dynamics can be directly related to

the underlying physics of the system. Specifically, the coefficients of
the rational function can be interpreted as nonlinear frequencies or
damping rates, as we have shown in “Example 2: Von Kármán beam”.

Finally, we note that although we have focused here on SSM-
reduced models, the globalization method applies to other perturba-
tive methods for dynamical systems, such as Poincaré-Lindstedt
series56, geometric singular perturbation theory5,6, or model reduc-
tion based on local linearization results57.

Methods
Spectral submanifolds
Let us assume that x = 0 is a hyperbolic fixed point of the system (1)
with ε = 0 and λ1, . . . , λn 2 C are the eigenvalues of A with the corre-
sponding eigenvectors denoted e1, . . . , en 2 Cn. We assume that a
spectral gap condition holds for some d < n, i.e.,

Re λn ≤ . . . ≤Re λd+ 1 <Re λd ≤ . . . ≤Re λ1: ð19Þ

Let us denote the d–dimensional slow spectral subspaceofA asE,
which is defined as the span of the real and imaginary parts of the
eigenvectors corresponding to the d eigenvalues closest to zero. If the
nonresonance condition

λk≠
Pn
j = 1

mjλj , k = 1, . . . ,n,

mj 2 N,
Pn
j = 1

mj > 1,
ð20Þ

holds, a family of SSMs exists tangent to E, as discussed in refs. 9,10.
The primary SSM is the unique, smoothest member of the family of
d − dimensional invariant manifolds tangent to E at the origin and is
denoted as WðEÞ9,10.

SSMs also exist for the non-autonomous system, i.e., for ε >0. In
that case, SSMs are slow invariant manifolds attached to an anchor
trajectory34. For simplicity, we focus here on the case of periodic for-
cing with a single harmonic, where the anchor trajectory is a periodic
orbit, and the original formulation of ref. 11 applies. Denoting the
parametrization of the slow SSM asWε(p,Φ), whereΦ is the phase of

Fig. 5 | Reducedmodel of the inverted flag experiment. a Experimental setup of
the inverted flag and snapshot of the experiment (b), courtesy of Giovanni Berti.
The geometric parameters areH = 150mm, L = 150mm,U = 1m/s.cPhaseportrait of
the gSSM-reduced dynamics of the inverted flag obtained from the [5/5](η)
approximation. The unstable fixed points are marked with colored dots. Blue

curves denote the stable manifold of the undeflected state, which connects to the
two coexisting deflected fixed points. The red curve denotes the unstablemanifold
of the saddle, which wraps around the stable limit cycle. d, e Predictions of the
reduced model on test trajectories. The black curve is the true trajectory, and the
dotted orange curve is the gSSM prediction.
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the periodic forcing, the invariance equation reads as

AWεðp,ΦÞ+ f ðWεðp,ΦÞÞ+ εfext cosΦ
=DWεðp,ΦÞ _p+DΦWε

_Φ,
ð21Þ

where _Φ=Ω is the forcing frequency. The reduced dynamics is deno-
ted as _p=Rεðp,ΦÞ.

Due to the guaranteed smoothness of primary SSMs, the invar-
iance equation can be solved using a Taylor expansion in p and a
Fourier expansion inΦ. The coefficients are thenobtainedby imposing
the invariance equation order-by-order in the reduced coordinates. As
shown by refs. 58–60, to first order in ε and to order-N̂ in the reduced
coordinates, the resulting expression is

Rεðp,ΦÞ=RðpÞ+ ε
XN̂
jkj=0

SkðΦÞpk +Oðε2Þ, ð22Þ

where the coefficientsSk(Φ) can alsobe Fourier-expanded.Accounting
for the phase-dependence of the nonautonomous coefficients in the
reduced dynamics increases the accuracy of the reduced models for
higher forcing amplitudes, at the cost of computing the coefficients
Sk(Φ) for each forcing frequency of interest. These computations are
already implemented in SSMTool60.

However, the phase-dependence of the parametrization and the
reduced dynamics are often only small effects. It is, therefore, com-
mon to keep only the leading-order phase-dependent term in the
reduced dynamics, resulting in

RεðpÞ=RðpÞ+ εV*f ext cosðΩtÞ, ð23Þ

where the operator V* projects onto the tangent space and can be
computed using the left eigenvectors of A. Specifically, for a non-
resonant two-dimensional SSM, we have

_ρ = κðρÞρ+ εf sinψ ð24Þ

_ψ=ωðρÞ �Ω+ εf
1
ρ
cosψ, ð25Þ

where we have introduced the phase lag ψ = θ − Ωt, and the forcing
amplitude f is the projection of the external forcing amplitude11.

The forced response of the system is then obtained by seeking
fixed points of the reduced dynamics, which are given by the solutions
of the equation _ρ = _ψ=0. The amplitude ρ* of the response satisfies the
implicit equation11

Ω� ωðρ*Þ
� �2 � ε2f 2

ρ2
*

+ κðρ*Þ2 =0: ð26Þ

Padé approximants
We now seek to improve the convergence properties of Taylor series
approximations by summing the series outside the domain of con-
vergence. One of themost popularmethods of analytic continuation is
Padé approximation, which is often used to sum divergent perturba-
tive series. Padé approximation is primarily carried out on functions of
a single complex variable, andhence it is directly applicable to 1D SSMs
and to the functions κ(ρ) and ω(ρ).

Consider the function

f ðzÞ : C ! C, ð27Þ

which could represent the parametrization of an invariant manifold,
the reduced dynamics or κ(ρ) and ω(ρ) in (26). Let us denote its Taylor

series representation around z =0 as

f ðzÞ=
X1
k =0

ckz
k : ð28Þ

The Padé approximant of type (N, M) is defined as the rational
function

½N=M�ðzÞ=
PN

k =0 akz
kPM

k =0 bkzk
, ð29Þ

where a0 = f(0) and b0 can be chosen as b0 = 1 without loss of gen-
erality. The Padé approximant is the best rational approximation of f
around 024 in the sense that its Taylor expansion around 0 is the same
as that of f up to order N +M, i.e.,

f ðzÞ
XM
k =0

bkz
k �

XN
k =0

akz
k =O zN +M + 1� �

: ð30Þ

Therefore, the coefficients bk and ak can be determined by
requiring

X1
k =0

ckz
k
XM
m=0

bmz
m =

XN
k =0

akz
k ð31Þ

for orders up to N + M in z. This results in the linear equations for the
coefficients ak, bk,

ak =
Xk
m=0

ck�mbm, k =0, 1, . . . ,N +M: ð32Þ

We follow the robust approach of ref. 61, who first solve the
homogeneous equations

Xk
m=0

ck�mbm =0, k =N + 1, . . . ,N +M, ð33Þ

with the convention of bj = 0 for j <0 or j >M. Using the singular value
decomposition (SVD) of the Toeplitz matrix with elements [ck−m], the
coefficients bk can be computed. The remaining unknown coefficients
ak are then given as

ak =
Xk
m=0

ck�mbm, k =0, 1, . . . ,N: ð34Þ

This method is robust against numerical errors in the Taylor coeffi-
cients. In addition, many of the spurious poles of the approximant are
removed, although not all of them62.

To apply Padé approximation to higher-dimensional SSMs, we
need to generalize the method to multivariate power series. The
multivariate generalization is not as straightforward as the univariate
case, but multiple definitions exist. The most commonly used are
Chisholm approximants63 and the homogeneous approximants24,40,64.
Let us consider the multivariate function

f : Cd ! C: ð35Þ

given as a convergent Taylor series

f ðzÞ=
X1
jkj=0

ckz
k: ð36Þ

We adopt the homogeneous approximants (9), as defined ori-
ginally by refs. 40,64 and require that the Taylor expansion of [N/M](z)
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around z =0 coincides with that of f(z) up to order N + M, as

f zð Þ
XM
jkj=0

bkz
k �

XN
jkj =0

akz
k =O zN +M + 1� �

ð37Þ

Xjkj
jℓj =0

ck�ℓbℓ =ak for jkj=0, 1, . . . ,N +M: ð38Þ

Since two-dimensional, oscillatory SSMs are the relevant objects
for most systems, we consider the bivariate case as an illustration, i.e.,
with z= ðz1, z2ÞT , where the coefficients are indexed on a lattice LN1 ,N2

defined as LN1 ,N2
= fði, jÞ 2 N2 : N1 ≤ i+ j ≤N2g � N2.

The conditions (38) become

Xα
k =0

Xk
‘=0

cβ�‘,α�k�β+ ‘b‘, k�‘ =aβ,α�β, ð39Þ

for ðα,βÞ 2 L0,N and

Xα
k =0

Xk
‘=0

cβ�‘,α�k�β+ ‘b‘, k�‘ =0, ð40Þ

for ðα,βÞ 2 LN,N +M . Note, however, that the total number of unknowns
and equations in (39) and (40) arenot equal. Therefore, we seek a least-
squares solution to (40)65.

To summarize, gSSM-reduction consists of the following steps to
compute the [N/M] Padé approximants of the parametrization and the
reduced dynamics of a slow SSM.

1. Compute the Taylor series expansionof the SSMup toorderN+M
using either the normal form style parametrization or the graph-
style parametrization. This returns W(p), ω(ρ) and κ(ρ).

2. Solve the homogeneous linear equations (40) and (33) for the
coefficients of the denominators of the parametrization and of ω
and κ using the robust SVD-based method61.

3. Check the zero sets of the denominator functions. If they contain
points in the region of interest near the origin, adjust the ordersN
and M. We found that diagonal and near diagonal [N ± 2/N ± 2]
approximants tend to work the best.

4. Compute the coefficients of the numerators of the parametriza-
tion and of ω and κ by evaluating (39) and (34).

Although Padé approximation is a well-researched topic, con-
vergence results are generally limited. For meromorphic functions f(z)
with a finite number of poles at z1,…, zk, the theorem of de Montessus
de Ballore66 guarantees the convergence of the approximants

½M=k�ðzÞ asM ! 1 ð41Þ

globally. A stronger result is available for Stieltjes functions, i.e., for
functions of the form

f ðzÞ=
Z 1

0

dμðtÞ
1 + zt

, ð42Þ

for some positive measure μ. In this case, the Padé approximants
converge to f(z) for all z outside the negative real axis24.

In the Supplementary Information, we discuss the Stiltjes-type
center manifold of Euler’s system9,67–69, which, although non-analytic,
can be described globally using Padé approximants.

Rational function regression
Let us denote the function to be approximated as f : Rd ! R‘. This
could represent f =W with ℓ = n or f =R with ℓ = d. We assume that the
value of f, denoted ζi = f(ηi), is known at points ηi,…, ηK in the domain
of interest. We then approximate f as

f ðηÞ � ½N=M�ðηÞ=
PN

jkj=0 akη
k

PM
jkj =0 bkηk

, ð43Þ

wherewe have chosen a common denominator with coefficients bk for
all components of f, similarly to vector Padé approximants45,46. To
avoid introducing singularities for the approximants, we require that
the denominator is non-zero at all points ηi. This is equivalent to
requiring that the denominator is strictly positive.

The coefficients are determined by minimizing the error

Er =
XK
i= 1

ζ i �
PN

jkj=0 akη
k
iPM

jkj =0 bkη
k
i













2

, such that ð44Þ

XM
jkj=0

bkη
k
i ≥ δ for i= 1, . . . ,K , ð45Þ

for some small δ >0. The constrained minimization problem is solved
by gradient-based optimization methods70. The initial guess for the
coefficients is obtained by solving the linearized problem, minimizing

XK
i = 1

XM
jkj =0

bkη
k
i

0
@

1
Aζ i �

XN
jkj =0

akη
k
i















2

, ð46Þ

subject to the same positivity constraint. This is a linear least-squares
problem, which can be solved efficiently using the method of ref. 42,
based on robust Padé approximation61.

Data availability
The data discussed in the manuscript is available publicly in the
globalized-SSM repository at https://github.com/haller-group/
globalized-SSM.

Code availability
The code for the numerical implementation of themethods is available
publicly in the globalized-SSM repository at https://github.com/
haller-group/globalized-SSM.
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