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Approximate streamsurfaces of a three-dimensional
velocity field have recently been constructed as
isosurfaces of the closest first integral of the velocity
field. Such approximate streamsurfaces enable
effective and efficient visualization of vortical
regions in three-dimensional flows. Here we propose
a variational construction of these approximate
streamsurfaces to remove the limitation of Fourier
series representation of the first integral in earlier
work. Specifically, we use finite-element methods to
solve a partial differential equation that describes the
best approximate first integral for a given velocity
field. We use several examples to demonstrate the
power of our approach for three-dimensional flows
in domains with arbitrary geometries and boundary
conditions. These include generalized axisymmetric
flows in the domains of a sphere (spherical vortex),
a cylinder (cylindrical vortex) and a hollow cylinder
(Taylor–Couette flow) as benchmark studies for
various computational domains, non-integrable
periodic flows (ABC and Euler flows) and Rayleigh–
Bénard convection flows. We also illustrate the use of
the variational construction in extracting momentum
barriers in Rayleigh–Bénard convection.

1. Introduction
Streamlines provide a powerful tool for the visualization
of two-dimensional flows but have limited usefulness
for three-dimensional flows [1]. Indeed, a streamline

2024 The Author(s) Published by the Royal Society. All rights reserved.
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passes through every point of a flow and hence one needs to select a few illustrative streamlines
to provide an efficient visualization [2,3].

As an alternative, streamsurfaces are well-known techniques for the visualization of three-
dimensional flows. As in the case of streamlines, one has to find a select set of special
streamsurfaces that efficiently convey information about the range of different fluid behaviours in
the flow domain. This is not an easy task, given that infinitely many streamsurfaces pass through
each point of the flow domain.

Hultquist [4] proposed an advancing front method to construct streamsurfaces. With a
properly chosen curve, this is discretized with a set of particles and then advanced downstream.
In particular, the spacing between particles at the front and the number of these particles are
adaptively changed such that the distance between two adjacent particles is kept the same. This
method highly depends on the initial curve and requires a careful implementation [1].

The stream function φ of any two-dimensional, incompressible flow is guaranteed to exist
and can be used to visualize the streamlines for the two-dimensional flow because the contour
lines of this function φ are the streamlines. Motivated by this observation, van Wijk [1] seeks
a scalar function f such that f (x) = C represents a one-parameter family of streamsurfaces for a
given three-dimensional flow under the variations in C. To solve for the function f , a convection
equation is used and then simulated with prescribed values of f at boundaries [1]. This simulation
is performed until a steady state is reached. A similar approach is proposed to define vortex
surfaces where the local vorticity vector is tangent at every point on such a surface [5]. Similarly,
one can simulate the convection equation to solve for the scalar function f whose contour plots
give the vortex surfaces [6,7].

The aforementioned simulations of the convection equation depend on the choice of the
initial distribution of f , which is not trivial. In addition, long-time simulations are needed to
obtain converged solutions [6]. Therefore, simulating the associated convection equation remains
challenging and computationally expensive.

By definition, the scalar function f is a first integral for three-dimensional steady flows or
unsteady flows that are instantaneously frozen. However, an exact first integral does not exist for
generic three-dimensional flows. Some exceptions include the Bernoulli function, which gives a
non-degenerate first integral for steady Euler flows that do not satisfy the Beltrami property [8].
Analytic first integrals were also constructed for incompressible flows with a volume-preserving
symmetry group [9] and for highly symmetric flows [10].

Although for a typical three-dimensional flow, exact first integrals do not exist, approximate
first integrals can be found in vortical regions of the flow. As argued by Katsanoulis et al. [11],
vortical regions contain either two-dimensional tubes or tori and form Cantor sets in the three-
dimensional phase space [12]. Motivated by the fact that Hamiltonian systems become integrable
when restricted to those Cantor sets [13], we seek smooth functions that act as approximate first
integrals over the Cantor family of tori but not in the gaps between them.

A level surface of a first integral, f = C, is also an invariant manifold. Such manifolds have
been broadly used to illustrate local velocity geometry near stationary points [14]. However, these
invariant manifolds generally stretch and fold globally, which makes them unsuitable for global
flow visualization. Exceptions to this general rule are invariant manifolds that are level surfaces
of a smooth function.

Motivated by the above observations, Katsanoulis et al. [11] seek influential streamsurfaces
as level sets of approximate first integrals. In particular, they constructed a scalar function f to
minimize |∇f · v| at a collection of grid points [11]. Here v can be a general vector field related to
the fluid motion, such as the velocity, vorticity or even a barrier field used for detecting barriers
to material transport [15]. These barrier fields have been introduced to define material sets that
prohibit the transport of active quantities in a frame-indifferent way. For example, the method
was used to extract objective momentum barriers as invariant manifolds of the barrier vector
fields defined in [15,16].

Katsanoulis et al. [11] use a Fourier series to represent the unknown scalar function f . This
approach works well for spatially periodic flows but has limitations for generic flows that are

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 M

ar
ch

 2
02

4 



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230951

..........................................................

not periodic in all three directions. Although such spatially aperiodic flows have also been
successfully treated via a proper choice of smaller subdomains, the selection of such subdomains
is problem-dependent and hence requires careful implementation.

To extend the approximate first integral approach of Katsanoulis et al. [11] to generic three-
dimensional flows, here we develop a variational construction of approximate first integrals for
three-dimensional velocity fields given by either analytic expressions or datasets. This variational
approach works for arbitrary geometries and boundary conditions of the computational domain.
The approximate first integrals here are obtained as eigenfunctions of a set of linear partial
differential equations (PDEs) obtained as the Euler–Lagrange equations of the variational
principle of minimizing |∇f · v|. We use finite-element methods to discretize the PDEs and then
solve for the eigenvectors corresponding to the smallest eigenvalues. These eigenvectors provide
the approximate first integrals of the three-dimensional flow.

The remainder of this paper is organized as follows. We start with a formulation of an
optimization problem whose solution gives the approximate first integrals. We derive the first-
order necessary conditions of the optimization problem in §2, which are the aforementioned
PDEs. Then we establish the weak form of the PDEs in §3, which leads to an eigenvalue problem.
In §4, we discuss the relation between the solutions of this eigenvalue problem and the minimum
solution of the optimization problem. The solution of the weak form via finite-element methods
is then discussed in §5, followed by benchmark studies on three-dimensional flow in domains
with arbitrary geometries in §6. We further consider periodic flows in §7 and non-periodic
Rayleigh–Bénard convection flows in §8 to illustrate the broad applicability of our method.

2. Formulation
Consider a vector field u :Ω → R

3 defined over a spatial domain Ω ⊂ R
3. We define the function

space of admissible first integrals as

H=
{

H ∈ H1(Ω),
∫
Ω

H2 dV = 1
}

(2.1)

and consider the optimization problem

H∗ = argmin
H∈H

∫
Ω

||∇H · u||2 dV. (2.2)

We have introduced the normalization constraint ||H||L2 = 1 to exclude the multitude of trivial
solutions H = C. Indeed, these are minimal solutions for any constant C. With the imposed
constraint, the only constant solution remains H = 1/

√
Vol(Ω), where Vol(Ω) = ∫

Ω dV.
We introduce a Lagrange multiplier to enforce the constraint and define the Lagrangian as

L(H) =
∫
Ω

||∇H · u||2 dV − λ

(∫
Ω

H2 dV − 1
)

, (2.3)

where λ is a Lagrange-multiplier. To express the Lagrangian in terms of the components of u
and ∇H, we make use of the implied summation over repeated indices. The components of the
gradient vector are denoted as (∇H)i = ∂iH, which allows us to write the Lagrangian as

L(H) =
∫
Ω

(∂iHui)
2 dV − λ

(∫
Ω

H2 dV − 1
)

. (2.4)

Note that the variation of the first term in (2.4) is

δ

(∫
Ω

(∂iHui)
2 dV

)
= 2

∫
∂Ω

∂iHuiujnjδH dS − 2
∫
Ω

∂j(∂iHuiuj)δH dV. (2.5)

Since the variation of the second term in (2.4) is simply 2λH, we obtain the following first-order
necessary conditions for the minimum solution:

∂j(∂iHuiuj) = −λH, on Ω (2.6)
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and

∂iHuiujnjδH = (∇H · u)(u · n)δH = 0, on ∂Ω , and
∫
Ω

H2 dV = 1. (2.7)

This system of equations defines an eigenvalue problem. Let ∂Ω = ∂ΩH ∪ ∂ΩF with ∂ΩH ∩ ∂ΩF =
∅, where ∂ΩH denotes the part of the boundary where H is prescribed. So the boundary conditions
can be further specified as

H(x) = 0, ∀x ∈ ∂ΩH and (∇H · u)(u · n) = 0, ∀x ∈ ∂ΩF. (2.8)

We have assumed homogeneous boundary conditions for x ∈ ∂ΩH without loss of generality, since
we can add an arbitrary constant to the minimum solution and such an updated solution is still
a minimum solution. Note that whenever ∂ΩH �= ∅ the constant solution H = 1/

√
Vol(Ω) is no

longer a solution to the minimization problem, since it cannot satisfy the homogeneous boundary
condition.

3. Weak form
We select the trial function space Htrial for solving the eigenvalue problem (2.6) and (2.7) as

Htrial = {H ∈ H1(Ω), H(x) = 0, ∀x ∈ ∂ΩH}. (3.1)

We also introduce the test function space that is the same as the trial function space. To obtain
the weak form of the PDE (2.6), we multiply both sides of the equation by h ∈Htrial and perform
integration over the domain Ω to obtain

∫
Ω

∂j(∂iHuiuj)h dV = −λ
∫
Ω

Hh dV. (3.2)

For the left-hand side, we have
∫
Ω

∂j(∂iHuiuj)h dV =
∫
Ω

∂j(∂iHuiujh) dV −
∫
Ω

∂iHuiuj∂jh dV

=
∫
∂Ω

∂iHuiujhnj dS −
∫
Ω

∂iHuiuj∂jh dV

=
∫
∂Ω

(∇H · u)(u · n)h dS −
∫
Ω

(∇H · u)(∇h · u) dV

= −
∫
Ω

(∇H · u)(∇h · u) dV := −a(H, h), (3.3)

where we have used the facts that h(x) = 0 for x ∈ΩH and (∇H · u)(u · n) = 0 for x ∈ΩF. So the
weak form is obtained as follows:

a(H, h) = λ〈H, h〉, (3.4)

where 〈H, h〉 = ∫
Ω Hh dV.

4. Eigensolutions and minimum solution
Any discretization of the eigenvalue problem (2.6) and (2.7) has a set of eigensolutions {(Hi, λi)}
that satisfies

a(Hi, h) = λi〈Hi, h〉. (4.1)

Although we expect that the same holds true for the partial differential equations (2.6) and (2.7),
this would require further analysis to establish, which we do not carry out in this paper. Since
a(·, ·) is a symmetric bi-linear operator (namely, a(H, h) = a(h, H)), the following hold:
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— The eigenvalue λi is real and hence Hi is also a real-valued function. To see that, we note
that a(H̄i, h) = λ̄i〈H̄i, h〉. It follows that

a(Hi, H̄i) = λi〈Hi, H̄i〉 and a(H̄i, Hi) = λ̄i〈H̄i, Hi〉. (4.2)

Since a(Hi, H̄i) = a(H̄i, Hi) and 〈Hi, H̄i〉 = 〈H̄i, Hi〉, we have λi = λ̄i and hence λi is real.
— The eigenvalues are all non-negative, λi ≥ 0. This follows from the fact that a(·, ·) is a

positive semi-definite operator, since

a(H, H) =
∫
Ω

|∇H · u|2 dV ≥ 0. (4.3)

As a result, we can arrange these eigenvalues as 0 ≤ λ1 ≤ λ2 ≤ · · · .
— The eigenfunctions are orthogonal to each other, i.e. 〈Hi, Hj〉 = 0 if λi �= λj. Likewise, we

have a(Hi, Hj) = 0 if λi �= λj.

We now introduce a Rayleigh quotient

R(h) = a(h, h), with 〈h, h〉 = 1. (4.4)

After the orthonormalization of {Hi}, we have 〈Hi, Hj〉 = δij. If we let h = ∑
i ciHi, then 〈h, h〉 = 1

implies that
∑

i c2
i = 1. Then the Rayleigh quotient becomes

R(h) = a

⎛
⎝∑

i

ciHi,
∑

j

cjHj

⎞
⎠ =

∑
i

c2
i a(Hi, Hi) =

∑
i

λic
2
i ≥ λ1. (4.5)

The minimum is achieved when h = H1. Similarly, if we restrict c1 = · · · ci−1 = 0, we have

R(h) ≥ λi. (4.6)

In the case thatΩH = ∅, the constant H = 1/Vol(Ω) is a minimal solution, therefore we have λ1 = 0.
However, this trivial solution is not the first integral we seek. Thus, we should restrict c1 = 0 and
look for H2. The eigenvalue λ2 characterizes the minimal value of the objective functional. Note
that the second eigenvalue λ2 is well-defined for any discretization of the eigenvalue problem.
In addition, as argued by Katsanoulis et al. [11], an approximate first integral exists in vortical
regions of the flow. Since the eigenfunction H2 approximates this first integral, we expect that the
original partial differential equations also have a well-defined second-largest eigenvalue λ2.

5. Finite-element implementation in FEniCS
We use FEniCS [17,18] to solve the eigenvalue problem described in §2. FEniCS is an open source
package for finite-element analysis. The main steps of using FEniCS to solve the eigenvalue
problem are as follows:

— Specify the domain Ω and create a mesh to discretize the domain. Users can use built-in
functions of FEniCS to generate a mesh or load mesh files generated by other packages
into FEniCS. We use a tetrahedron mesh throughout this study.

— Specify test and trial function spaces shown in (3.1). In particular, elements along with
boundary conditions need to be specified to define the spaces. Here we use Lagrange
elements of interpolation order r in our computations. We choose r = 2 unless otherwise
stated.

— Specify A and B in a generalized eigenvalue problem Av = λBv. Here A and B are
matrices from a(H, h) and 〈H, h〉, as seen in the weak form (3.4). Since both A and B are
symmetric, this problem is a generalized Hermitian eigenvalue problem.

— Call SLEPcEigenSolver of FEniCS to solve for the eigenvalue problem.
SLEPcEigenSolver is a wrapper for the SLEPc eigenvalue solver [19]. It should be
pointed out that we do not need to solve for all eigenvalues, only for a small subset of
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them that are closest to zero. A spectral transform (shift-and-invert) is used to enhance
the convergence of computing these target eigenvalues [19]. A parameter called spectral
shift needs to be specified in the transform. This parameter should be close to the target
eigenvalues. We set this parameter to be a negative number of small norm.

6. Benchmark studies: generalized axisymmetric flows
In this section, we construct representative streamsurfaces for generalized axisymmetric flows of
the form

ṙ = ur(r, z), θ̇ = uθ (r, z) and ż = uz(r, z), (r, θ , z) ∈Ω . (6.1)

Such flows are generalized axisymmetric because we also allow for a non-zero angular velocity
component. In classic axisymmetric flow, by contrast, we have uθ = 0. We will consider a sphere, a
cylinder and a hollow cylinder for the domain Ω to demonstrate the use of our methodology. By
contrast, the Fourier representation used in [11] would not be able to handle these geometries.

We can find an exact first integral for any generalized axisymmetric flow as follows. For a given
generalized axisymmetric flow, we have the corresponding restricted axisymmetric flow with the
same ur and uz but zero angular velocity. The Stokes stream function ψ(r, z) for the restricted
axisymmetric flow is then an exact first integral. To see this, we recall that

uz = 1
r
∂ψ

∂r
and ur = −1

r
∂ψ

∂z
. (6.2)

We then have

dψ
dt

= ∇ψ · u = ∂ψ

∂z
ż + ∂ψ

∂r
ṙ = ∂ψ

∂z
uz + ∂ψ

∂r
ur ≡ 0. (6.3)

Thus, ψ(r, z) is an exact first integral, independently of the angular velocity uθ .
We note that the generalized axisymmetric flow with (uz, ur) induced by the Stokes stream

function ψ(r, z) satisfies the continuity equation automatically by construction:

∇ · u = 1
r
∂(rur)
∂r

+ 1
r
∂uθ
∂θ

+ ∂uz

∂z
= 1

r
∂(rur)
∂r

+ ∂uz

∂z
≡ 0. (6.4)

Since the existence of ψ is guaranteed, we can solve for ψ(r, z) analytically provided that we have
analytical expressions for ur(r, z) and uz(r, z).

In our implementation in FEniCS, we consistently use a Cartesian coordinate system for
computations. So we need to transform the velocity field (6.1) to Cartesian coordinates. We have

ux = d(r cos θ )
dt

= ṙ cos θ − r sin θ θ̇ = ur cos θ − r sin θuθ = urx√
x2 + y2

− yuθ , (6.5)

uy = d(r sin θ )
dt

= ṙ sin θ + r cos θ θ̇ = ur sin θ + r cos θuθ = ury√
x2 + y2

+ xuθ (6.6)

and uz = uz(r, z). (6.7)

As we do not impose any Dirichlet boundary conditions for the generalized flow, we have
ΩH = ∅. Following the discussion in §4, we seek the eigenvector H2 that corresponds to the second
smallest eigenvalue λ2. Since the existence of a non-trivial first integral is guaranteed for the
generalized axisymmetric flow, we expect that the eigenvalue λ2 is numerically close to zero.
In particular, λ2 → 0 as the resolution of the mesh increases.

The first integral H2 will generically not be equal to ψ because c1H2 + c2 is also a stationary
solution to the optimization problem for all constants c1 and c2. However, we expect that there
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(a) (c)(b)

Figure 1. Meshes used in the computation of the benchmark generalized axisymmetric flows in the domain of a sphere
(a), a cylinder (b) and a hollow cylinder (c).

exist constants c1 and c2 such that

ψ ≈ c1H2 + c2 =: Ĥ2. (6.8)

For the purpose of validation, we will use the least-squares method to fit these two coefficients
with ψ and H2 evaluated at a collection of grid points. We expect the coefficient of determination
for the linear regression to be close to one, i.e. R2 ≈ 1.

(a) Spherical vortex
Let us now consider the domain Ω = {(x, y, z) : x2 + y2 + z2 ≤ 1} and

ṙ = rz, ż = 1 − 2r2 − z2 and θ̇ = 2c
(r2 + ε)

, (6.9)

where c is an arbitrary constant. The flow above is a superposition of the well-known Hill’s
spherical vortex with a line vortex on the z axis, which induces a swirl velocity θ̇ [9]. We have
added ε to avoid singularity of the swirl velocity on the z-axis. In Cartesian coordinates, we have

ux = xz − 2cy
x2 + y2 + ε

, uy = yz + 2cx
x2 + y2 + ε

and uz = 1 − 2(x2 + y2) − z2. (6.10)

The Stokes stream function for this generalized axisymmetric flow is given by

ψ(r, z) = 0.5r2(1 − z2 − r2). (6.11)

In the following computations, we take c = 0.1 and ε = 0.1. As mentioned earlier, we use a
tetrahedron mesh to discretize the sphere, as shown in figure 1a. We use quadratic Lagrange
elements to interpolate the unknown function H. As predicted, we obtain λ1 = 0 with a constant
eigenvector. As shown in figure 2a, λ2 indeed converges to zero when the number of elements is
increased, indicating that the flow admits a non-trivial first integral.

As an illustration of the obtained non-trivial first integral, we plot Ĥ2 at the cross sections x = 0
and z = 0 in figure 3. Here we present the results for Ĥ2 defined in (6.8) instead of H2 to compare
against the Stokes stream function (6.11). Specifically, we first obtain H2 discretized with 62 105
elements (see the third circle in figure 2a), and then fit a linear function following (6.8). Indeed, the
linear relationship holds because the linear regression returns R2 = 0.9976. As shown in figure 3,
our numerical results match the reference solution given by (6.11) well.

We infer from figure 3 that the flow has a family of vortex rings. To illustrate this, we plot the
isosurfaces for Ĥ2 = 0.08 and Ĥ2 = 0.12 in figure 4, from which we see torus-shaped isosurfaces.
Given these surfaces are streamsurfaces, they should be invariant under the flow. To validate the
invariance of these isosurfaces, we launch streamlines of the flow. In particular, we take a point
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Figure 2. Second smallest eigenvalues as functions of the number of elements used in the discretization of the generalized
axisymmetric flows: spherical vortex (a), cylindrical vortex (b) and Taylor–Couette flow (c).
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Figure 3. Contour plots of Ĥ2 for the spherical vortex obtained from finite-element methods with 62 105 elements (a,c) andψ
in (6.11) (b,d), at cross section x = 0 (a,b) and z = 0 (c,d). Here, the solutions from the finite-element computation are denoted
by FEM, and that of analytical expressions are denoted by reference.
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Figure 4. Contour plots of isosurfaces for Ĥ2 of the spherical vortex obtained from finite-element methods with 62 105
elements. Here we have Ĥ2 = 0.08 (a) and Ĥ2 = 0.12 (b). The black lines are streamlines from forward simulations with initial
points on the isosurfaces.

on each of these isosurfaces as the initial condition and integrate the flow forward in time. The
generated trajectories indeed stay on the isosurfaces, which again validates our results.

(b) Cylindrical vortex
Next, we consider the cylindrical domain Ω = {(x, y, z) : x2 + y2 ≤ 1, −0.4 ≤ z ≤ 0.4} and the flow

ṙ = 4rz, ż = 1 − 2r2 − 4z2 and θ̇ =ω, (6.12)

where ω denotes a rigid body angular velocity. This flow is a superposition of a cylindrical vortex
with a rigid body rotation. In Cartesian coordinates, we have

ux = 4xz − yω, uy = 4yz + xω and uz = 1 − 2(x2 + y2) − 4z2. (6.13)

The Stokes stream function for this generalized axisymmetric flow is

ψ(r, z) = 0.5r2(1 − r2 − 4z2). (6.14)

One can easily check that the function above indeed induces the ṙ and ż in (6.12) (cf. (6.2)).
In the following computations, we take ω= 1. We use a tetrahedron mesh to discretize the

cylinder, as shown in figure 1b. We use quadratic Lagrange elements to interpolate the unknown
function H. We again obtain λ1 = 0 with a constant eigenvector. As shown in figure 2b, λ2
converges to zero when the number of elements is increased, indicating that the flow indeed
admits a non-trivial first integral.

As an illustration of the non-trivial first integral obtained in this fashion, we plot Ĥ2 at
the cross sections x = 0 and z = 0 in figure 5. Similarly, we obtain Ĥ2 from H2 via a linear
fit shown in (6.8). Here H2 is discretized with 30 888 elements. The linear fitting returns R2 =
0.9920. As shown in figure 5, our numerical results closely match the reference solution given
by (6.14).

We see from figure 5 that the flow has a family of vortex rings, but now these vortex rings
are constrained into the cylinder instead of a sphere. We plot the isosurfaces for Ĥ2 = 0.05 and
Ĥ2 = 0.13 in figure 6, from which we see torus-shaped isosurfaces. We again launch streamlines of
the flow to validate the invariance of these isosurfaces. We take a point on each of these isosurfaces
as the initial condition and integrate them forward in time. The generated trajectories indeed stay
close to the isosurfaces, as shown in figure 6. This again serves as a validation of the results from
our finite-element calculations.
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Figure 5. Contour plots of Ĥ2 for the cylindrical vortex obtained from finite-element methods with 30 888 elements
(a,c) andψ in (6.14) (b,d), at cross section x = 0 (a,b) and z = 0 (c,d). Here, the solutions from finite-element computation
are denoted by FEM, and that of analytical expressions are denoted by reference.
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Figure 6. Contour plots of isosurfaces for Ĥ2 of the cylindrical vortex obtained from finite-element methods with 30 888
elements. Here we have Ĥ2 = 0.05 (a) and Ĥ2 = 0.13 (b). The black lines are streamlines from forward simulations with initial
points on the isosurfaces.

(c) Taylor–Couette flow
We now consider a Taylor–Couette flow of a viscous fluid between two rotating cylinders. Linear
stability theory successfully explains many of the flow transitions in this standard geometry [20].
For low Reynolds numbers, the flow is fully laminar and has a closed form analytic expression.

Let us consider the domain Ω = {(x, y, z) : 1 ≤ x2 + y2 ≤ 4, 0 ≤ z ≤ π}, which describes the
volume between two concentric cylinders with height π and radii rin = 1, rout = 2, respectively.
We consider the case of a stationary outer wall and a steadily rotating inner wall. The steady
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Figure 7. Contour plots of the velocity field of Taylor–Couette flow at the cross section y = 0.

solutions and their stability are determined by the Reynolds number defined as Re =Ωinrinδ/ν,
where the radial velocity of the inner wall is Ωin, the radius of the inner cylinder is rin, the
distance between the concentric cylinders is δ = rout − rin and the kinematic viscosity is ν. For
low Reynolds numbers, the steady flow that develops is steady and purely azimuthal. Using the
distance, r, from the centre line of the cylinders, the angle θ and the vertical coordinate z, the
velocity field in cylindrical coordinates reads as u(r, θ , z) = (ur, uθ , uz)(r, θ , z). The base flow, which
is stable for low Reynolds numbers, is called Couette flow [21] and has the form

uθ (r) = −Ωin
r2

in

r2
out − r2

in
r +Ωin

r2
outr

2
in

r2
out − r2

in

1
r

and ur = uz = 0. (6.15)

For larger Reynolds numbers, the Couette flow loses its stability and the newly obtained
stable flow exhibits the well-known Taylor vortices. This flow now has non-trivial radial and
axial velocities but it is still axisymmetric, that is, we have ur(r, z), uθ (r, z) and uz(r, z), as in all the
examples shown above.

This generalized axisymmetric flow is already more complicated than the previous two, as
there are no analytical solutions to the Stokes stream function. As a result, we do not have
analytical expressions for the velocity field in this case.

We compute this steady flow field with periodic boundary conditions for the axial direction, as
it is often done in the literature [22]. This allows for a pseudo-spectral discretization via a Fourier
decomposition in the z-direction and a Chebyshev decomposition in the r-direction. We use the
open-source package Dedalus [23] to solve the discretized initial value problem at Re = 100.
Contours of the three components of the steady flow that develops can be seen in figure 7.

For the calculation of our approximate first integral, we restrict the domain to z ∈ [0.5, 2]
because of the periodic pattern along the z-direction, as shown in figure 7. We use a tetrahedron
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Figure 8. Contour plots of H2 of Taylor–Couette flow obtained from finite-element methods with 52 495 elements at cross
section x = 0 (a) and z = 0.5 (b).
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Figure 9. Contour plots of isosurfaces for |H2| of the Taylor–Couette flow obtained from finite-element methods with 52 495
elements. Herewe have |H2| = 0.2 (a) and |H2| = 0.5 (b). The black lines are streamlines from forward simulationswith initial
points on the isosurfaces.

mesh to discretize the hollow cylinder, as shown in figure 1c. We again use quadratic Lagrange
elements to interpolate the unknown function H. From figure 2c, we observe the monotonic decay
of λ2 with increasing number of elements. Such a decay indicates that the numerical solutions
converge to the first integral we seek.

As we do not have analytical expressions for the Stokes stream function here, we simply plot
H2 instead of its linear transformation Ĥ2. The contour plots of the cross sections of H2 obtained
with 52 495 elements are shown in figure 8.

We infer from figure 8 that there are two families of vortex rings in the restricted domain, one
with H2 > 0 and one with H2 < 0. This is consistent with the observation of Taylor vortices in
experimental [20] and numerical studies [24]. We plot the isosurfaces for |H2| = 0.2 and |H2| = 0.5.
For each case, we indeed have two vortex rings, as shown in figure 9. We launch a few streamlines
with initial conditions on these surfaces. These streamlines stay close to the corresponding
isosurfaces, as illustrated in figure 9.

7. Periodic flows
In this section, we consider periodic flows in the domain Ω = [0, 2π ] × [0, 2π ] × [0, 2π ].
Specifically, we will consider both the Arnold–Beltrami–Childress (ABC) [25] flow and the Euler
flow [26]. The velocity field of these flows is periodic in all three directions. We note that
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periodic flows have been treated in [11], where the approximate first integral is represented by
Fourier series. In the previous section, we have demonstrated the power of our finite-element
computations for flows in spherical and cylindrical domains that cannot be treated via the Fourier
representation. Here we illustrate that the finite-element approach can also be applied to periodic
flows. Thus our finite-element implementation provides a unified treatment for both periodic and
aperiodic flows. In addition, thanks to the sparsity of finite-element methods, our finite-element
implementation outperforms the Fourier series schemes in [11], as we illustrate in appendix A.

For the periodic flows above, the trial function space (see (3.1)) is

Htrial = {H ∈ H1(Ω), H|x=0 = H|x=2π , H|y=0 = H|y=2π , H|z=0 = H|z=2π}, (7.1)

where H|xi=a denotes the evaluation of H on the plane xi = a. It follows that (3.3) still holds because
both H, h and u are periodic and

n|x=0 = −n|x=2π , n|y=0 = −n|y=2π and n|z=0 = −n|z=2π . (7.2)

Indeed, the integral over the boundary of Ω vanishes (see (3.3)) because of the opposite
orientation of the normal vectors on opposite faces of the cube. Therefore, the weak form (3.4)
still holds and the discussions in §4 are still true.

Here we use BoxMesh in FEniCS to generate a mesh for Ω . Given the number of cells
(Nx, Ny, Nz) in each direction, the total number of tetrahedrons is 6NxNyNz and the total number
of vertices is (Nx + 1)(Ny + 1)(Nz + 1). In the following computations, we simply set Nx = Ny =
Nz = N for the cubic domain. Since ΩH = ∅, we again have λ1 = 0 with constant eigenvector, so
we look for (λ2, H2).

(a) ABC flow
Consider the classic ABC flow

ux = A sin z + C cos y, uy = B sin x + A cos z and uz = C sin y + B cos x. (7.3)

We choose A = √
3, B = √

2 and C = 1, for which the ABC flow is known to be non-integrable, i.e.
there is no non-trivial exact first integral for this flow in that case [11,25].

We take N = {5, 10, 20, 25, 29} and perform the computations with refined meshes. In figure 10a,
we observe the monotonic decay of λ2 as a power-law with respect to the numbers of elements.
While we have observed the same decay in the previous results for the generalized axisymmetric
flows, the ABC flow does not admit an exact first integral. To gain a better understanding of the
behaviour of λ2, we plot the contours of H2 for N = 20 and N = 25 (see the third and fourth points
in figure 10a) at cross sections x = 0, y = 0 and z = 0 in figure 11. By comparing subplots in the
upper and lower panels, we find that both primary and secondary vortical regions are captured
with N = 20. Here we call a vortical region ‘primary’ if the corresponding outermost vortex tube
is of large cross-sectional area (cf. the lower-left panel of figure 12 and figure 13a). By contrast, we
call it a secondary vortex region if the cross section of the corresponding outermost vortex tube is
relatively small (cf. the upper-middle panel of figure 12 and figure 13b).

By contrast, when we increase N to 25, the secondary vortex structures disappear and the
variation of H2 is aggregated around the primary vortex regions. In other words, H2 barely
changes outside the primary vortical regions (see the lower panels in figure 11). So we have
∇H ≈ 0 outside the primary vortical regions while H converges to a first integral inside the
primary vortical regions. This explains the monotonic decay of λ2 as N increases.

As a brief summary, if we only want to extract primary vortex structures, a higher fidelity
discretization is helpful. On the other hand, if we also want to extract secondary vortex
structures where ∇H is of small magnitude, we should instead use a relative invariance measure
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Figure 10. Second smallest eigenvalues and mean invariance errors as a function of the number of elements to discretize the
periodic flows: ABC flow (a) and Euler flow (b).
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Figure 11. Contour plots of H2 of the ABC flow at cross sections x = 0 (left column), y = 0 (middle column) and z = 0
(right column). Here the upper and lower rows correspond to the results with N = 20 (48 000 elements) and N = 25 (93 750
elements).

√∫
Ω ((∇H · u)2/(|∇H|2|u|2)) dV. As a variant of the above measure, we consider the mean

invariance of the entire solution as an error measure [11] by defining

Em = 1
m

m∑
i=1

|∇Hi · ui|
|∇Hi| · |ui|

, (7.4)

where the summation takes place over all grid points. Here and in the example below, we take
101 grid points in each direction so that m = 1013. We also plot Em as a function of the number
of elements in figure 10a, from which we see that Em for N = 20 is the smallest among all the five
cases. We attribute the observed non-monotonic decay of Em for the ABC flow to its definition
(7.4). In particular, Em is a relative invariance measure. As shown in figure 11, H2 becomes nearly
constant when N is increased from 20 to 25 in the secondary vortex regions. Therefore, |∇H2| ≈
0 in these regions, and then the relative error measure Em is increased instead of decreased as
N is increased from 20 to 25. This explains the observed non-monotonic decay of Em. In short,
increasing the mesh fidelity will yield smaller absolute invariance error in terms of λ2 but may
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Figure 13. Contour plots of isosurfaces for H2 of the ABC flow obtained from finite-element methods with N = 20 (48 000
elements). The isosurfaces in (a) and (b) panels correspond to the outermost layer of the primary and secondary vortical regions
of the upper-middle panel of figure 12. Here the black dots denote simulated trajectories.

produce larger relative invariance error Em because it tends to flatten H2 in secondary vortex
regions. Therefore, one should use Em as an error measure to choose the proper discretization in
order to obtain both primary and secondary vortex structures.

Motivated by (7.4), we introduce a filter to efficiently extract approximate streamsurfaces in
vortical regions. In particular, we extract some level surfaces of H to represent the approximate
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streamsurfaces. To identify whether a level surface of H is an approximate streamsurface in
vortical regions, we introduce the surface-averaged invariance error [11]

EA = 1
p

p∑
i=1

|∇Hi · ui|
|∇Hi| · |ui|

, (7.5)

where p is the number of points on the surface of the level set. These points are determined by
surface meshing algorithms embedded in commonly used routines, e.g. isosurface in MATLAB

and PYTHON.
The isosurfaces of H2 with various thresholds for EA and different discretizations are shown in

figure 12. By comparing the upper panels and corresponding lower panels (especially the first two
columns), we see that the results for N = 20 extract both primary and secondary vortical regions
while that for N = 25 only extract the primary vortical regions. This observation is consistent with
the one we made from figure 11. From the upper panels, we also see that secondary vortical
regions are filtered out when we decrease the threshold for EA. This indicates that one can use a
lower threshold to extract primary vortical regions that are robust with respect to the change of
mesh fidelities.

We conclude this example by validating some of the approximate streamsurfaces we have
obtained. In figure 12, we see that there are primary and secondary vortex regions. We take
the outermost layers of these two regions to perform the validation. As shown in figure 13, the
streamlines obtained from forward simulation stay close to the approximate streamsurfaces. The
little patches in figure 13a are results of the periodic boundary conditions.

Such vortical structures are also commonly identified using the Q-criterion [27] or the λ2
criterion [28]. These criteria are based on decomposing the velocity gradient ∇u as the sum of the
rate-of-strain tensor (S) and the spin tensor (W). The functions Q and λ2 are then introduced as
heuristic measures of the strength of vortical features. Domains where Q< 0 or, respectively, λ2 <

0 are then identified with regions of vortical behaviour. A streamsurface bounding the vortical
region could thus be associated to the isosurface Q = 0 or λ2 = 0. However, these surfaces are
generally not invariant manifolds of the flow and hence do not correspond to material behaviour,
even in steady flows. By contrast, the streamsurfaces obtained as isosurfaces of the approximate
first integral are by construction approximately invariant manifolds of the flow. We also note that
it is common to show different, non-zero Q- and λ2-isosurfaces for flow visualization. However,
as Katsanoulis et al. [11] show, the topology of the isosurfaces is sensitive to the choice of the
isovalue. In addition, they found that expected vortical structures of the ABC flow (figure 13)
could not be revealed by the λ2-isosurfaces.

(b) Euler flow
Consider the Euler flow

ux = 4
√

2

3
√

3

(
sin

(
x − 5π

6

)
cos

(
y − π

6

)
sin(z) − cos

(
z − 5π

6

)
sin

(
x − π

6

)
sin(y)

)
,

uy = 4
√

2

3
√

3

(
sin

(
y − 5π

6

)
cos

(
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6

)
sin(x) − cos

(
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(
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)
sin(z)

)

and uz = 4
√
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3
√

3

(
sin

(
z − 5π

6

)
cos

(
x − π

6

)
sin(y) − cos

(
y − 5π

6

)
sin

(
z − π

6

)
sin(x)

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.6)

which is also non-integrable [11,26]. We take N = {10, 20, 25, 29, 35} and perform the computations
with refined meshes. Within each cell, we use quadratic Lagrange polynomials to approximate H.
In figure 10b, we observe the monotonic decay of λ2 as well as the mean invariance error Em with
increasing numbers of elements. This decay indicates that more accurate results are obtained with
increasing N.

The contour plots of H2 obtained with N = 25 and N = 35 (quadratic interpolation) at the cross
section y = 0 are presented in figure 14a,b. We infer from these two plots that there are eight
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Figure 14. Contour plots of H2 of Euler flow at cross section y = 0. Here H2 is obtained with various discretizations. HereO(2)
andO(3) represent quadratic and cubic interpolations for H within each cell, respectively. The number of degrees of freedom
(DOF) for these four cases are 125 297 (a), 343 417 (b), 216 357 (c) and 422 322 (d).

primary vortical regions. No secondary vortical regions are observed in these two panels, which
explains the monotonic decay of Em in figure 10b.

To extract the approximate streamsurfaces of the eight vortex structures, we again apply the
EA-based (see (7.5)) filter. The isosurfaces of H2 obtained with N = 35 (quadratic interpolation)
under various thresholds for the filter are shown in figure 15. For EA ≤ 0.05, these isosurfaces
densely fill the cube. By contrast, for EA ≤ 0.01, we clearly see the eight vortex tubes from the
filtered isosurfaces in figure 15b. These tubes are entangled with each other, as shown in panel
(c) of the figure. In panel (c), we also present the results from forward simulations with initial
conditions on the selected approximate streamsurfaces. The trajectories obtained from forward
simulation stay close to the approximate streamsurfaces, which illustrates the power of our
method.

Based on a reference solution obtained from the Poincaré map [11], we know that the system
also has some delicate vortical regions between the primary vortical regions. Our method is able
to extract even these vortex structures by increasing the interpolation order to cubic. Indeed, as
shown in figure 14c,d, delicate vortical regions are revealed and some of these small scale vortex
structures are pointed out by the black arrows. These structures become more clear when we
increase N from 20 to 25. Note that the numbers of DOF for the upper-right panel is more than
that of the lower-left panel. This indicates that we may use higher-order interpolations to better
extract delicate vortical regions.
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Figure 15. Isosurfaces of H2 for the Euler flow with various filter thresholds: EA ≤ 0.05 (a) and EA ≤ 0.01 (b). Panel (c) gives
the innermost layers of the eight vortex tubes in (b), along with some simulated trajectories (black dots).
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Figure 16. A schematic plot of RBC.

8. Rayleigh–Bénard convection
In this section, we consider Rayleigh–Bénard convection (RBC) in the domain Ω = [0, lx] ×
[0, ly] × [0, lz]. This domain is constrained by a hot plate at the bottom (y = 0) and a cold plate at the
top (y = ly), as illustrated in figure 16. In particular, the temperatures at the hot and cold plates are
274.15 K and 273.15 K, respectively. This temperature difference provides the driving force for the
convection. In addition, periodic boundary conditions are imposed along the x- and z-directions.
This flow is fully controlled by two dimensionless parameters. The first is the Prandtl number
Pr, which describes the fluid properties as the ratio of the viscosity and the thermal diffusivity.
The other parameter is the Rayleigh number Ra characterizing the strength of the thermal driving.
Here we fix Pr = 0.71 (air at room temperature) but vary Ra to extract approximate streamsurfaces
for RBC with various dynamical behaviours.

We use the computational library OpenLB [29] to simulate the RBC. OpenLB is an open-source
package that provides a flexible framework for lattice Boltzmann simulations. Let the resolution
of the model be N, the number of grids of the discrete model is (N + 3) × (2N + 3) × (N + 3). More
details about the simulations can be found in the rayleighBenard3d example of OpenLB.

Given that there are two walls where u = 0, we impose H = 0 on the two walls. Accordingly,
the trial function space (cf. (3.1)) is updated as

Htrial = {H ∈ H1(Ω), H|x=0 = H|x=lx , H|y=0 = H|y=ly = 0, H|z=0 = H|z=lz}. (8.1)

One can easily see that (3.3) still holds with this trial function space. Consequently, the weak form
(3.4) still holds and the discussions in §4 are still true.
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Figure 17. Isosurfaces of the velocity components of the steady state of the RBC flow with lx = 0.2 m, ly = lz = 0.1 m and
Ra= 5 × 104. The (a), (b) and (c) panels give the results for ux , uy and uz , respectively.

We again use BoxMesh in FEniCS to generate a mesh for Ω . Given the number of cells
(Nx, Ny, Nz) in each direction, the total number of tetrahedrons is 6NxNyNz and the total number
of vertices is (Nx + 1)(Ny + 1)(Nz + 1). Since ΩH �= ∅, we have λ1 �= 0 and look for (λ1, H1).

(a) Quasi-two-dimensional flow
Let lx = 0.2 m, ly = lz = 0.1 m and Ra = 5 × 104, in which case the flow converges to a steady
velocity field with two large-scale rolls. This motion is quasi-two-dimensional as |uz| is much
smaller than |ux| and |uy|, and (ux, uy) barely change along the z-direction, as shown in figure 17.
Therefore, we expect that the flow is close to integrable, and our approach is able to extract the
approximate first integral.

With Nx = 50 and Ny = Nz = 25 and quadratic interpolation, we obtain λ1 = 5.9 × 10−7 along
with a mean invariance error of Em = 0.02. The isosurfaces of the corresponding H1 are presented
in figure 18. Indeed, the two primary rolls are revealed from the isosurfaces of H1 and these
isosurfaces barely change along the z-direction. To validate these results, we present the contour
plot of H1 at cross section z = 0 along with the streamlines of the velocity field (ux, uy) at the cross
section in the right panel, from which we see that the streamlines match well with the contour
plot.

(b) Unsteady three-dimensional flow
Next we still take lx = 0.2 m, ly = lz = 0.1 m but increase the Rayleigh number to Ra = 1 × 105. In
this case, the flow converges to a limit cycle, and hence the velocity field is unsteady but periodic.
We take a snapshot of the velocity field and perform the computation of the approximate first
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Figure 18. (a) Isosurfaces of H1 for the RBC at Ra= 5 × 104 obtained from finite-element method with N = 25. (b) Contour
plot of H1 at cross section z = 0, along with streamlines of (ux , uy) at the cross section.
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Figure 19. Isosurfaces of velocity components of a snapshot (t = 614.519 s) of the RBC flow with lx = 0.2 m, ly = lz = 0.1 m
and Ra= 1 × 105. The (a), (b) and (c) panels show ux , uy and uz , respectively.

integrals. The flow of this snapshot is three-dimensional, as suggested by the plots of isosurfaces
of its three velocity components shown in figure 19.

With Nx = 60 and Ny = Nz = 30 and quadratic interpolation, we obtain λ1 = 5.1 × 10−6 along
with a mean invariance error of Em = 0.024. The isosurfaces of the corresponding H1 with a
filter EA ≤ 0.005 are presented in figure 20a. A major vortex tube is observed for x ≥ 0.1, while
a small vortex tube exists for x ≤ 0.1. We expect from figure 19 that there should also be a
comparable vortex tube for x ≤ 0.1 to the major one within x ≥ 0.1. Indeed, the isosurfaces of
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Figure 20. Isosurfaces of H1 (a) and H2 (b) for a snapshot of the RBC at Ra= 1 × 105 obtained from finite-element methods
with Nx = 60 and Ny = Nz = 30. Here we set a filter threshold EA = 0.005.

H2 reveal the major vortex for x ≤ 0.1, as shown in figure 20b. Here we have λ2 = 6.9 × 10−6,
which is comparable to λ1. Therefore, one may also check whether higher-order modes extract
different structures than the first mode, provided that the eigenvalues of the higher-order modes
are comparable to those of the first mode.

Now we launch streamlines to validate the obtained results. We take 10 random points on the
outermost layer of each major vortex tube in figure 20 as initial conditions for forward simulation.
Note that the extraction of the approximate first integral is an inherently Eulerian procedure.
By performing the computation on a single snapshot of an unsteady flow we essentially freeze
time. So, for validation, we also freeze time when we perform the time integration. As seen in
figure 21a, b, these pseudo-streamlines (streamlines of the frozen flow) stay close to the extracted
approximate streamsurfaces. We also launch streamlines for the unsteady flow field with the
same initial conditions. As shown in figure 21c, d, the streamlines stay around the approximate
streamsurfaces, which indicates that the unsteady flow field indeed admits two vortex tubes.
This also indicates that the approximate stream surfaces obtained from the single snapshot of the
velocity field are close to the real, time-dependent Eulerian vortex tubes.

We conclude this section with a fully three-dimensional unsteady flow in a cubic domain,
where we extract vortex rings. Now we take lx = ly = lz = 0.1 and Ra = 1 × 105. This flow also
converges to a limit cycle in steady state. We take a snapshot of the flow field and extract
approximate first integrals. The contour plots of velocity components for this snapshot are shown
in figure 22, which show that it is indeed a three-dimensional flow.

With Nx = 60, Ny = Nz = 30 and quadratic Lagrange elements, we obtain λ1 = 3.9 × 10−5 along
with mean invariance error Em = 0.03. By decreasing the filter threshold EA, we are able to extract
two vortex rings, as shown in figure 23c. These vortex rings are different from the vortex tubes
that we extracted before.

Repeating the procedure used to produce figure 21, we obtain results shown in figure 24.
The obtained pseudo-streamlines stay close to the extracted approximate streamsurfaces, and
the streamlines of the unsteady flow field also stay around the approximate streamsurfaces,
indicating the persistence of the vortex rings.

(c) Momentum transport barriers
Recently, Haller et al. [15] formalized the notion of a barrier to the transport of active vectorial
quantities, such as the linear momentum or vorticity. For example, barriers to the transport
of linear momentum can be understood as surfaces that have a net-zero transport of linear
momentum through them. In [15], it is shown that such barriers are best defined as structurally
stable invariant manifolds of an associated barrier-equation derived from the Navier–Stokes
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Figure 21. Outermost isosurfaces of the two major vortex tubes in figure 20, along with streamlines of 10 randomly selected
points in each of the surface. Trajectories from the forward simulations of the frozen vector field are plotted with black lines and
shown in (a) and (b). By contrast, the blue lines in (c) and (d) denote streamlines of the unsteady flow started from the same
initial points. Here the forward simulation time is 20 s since |u| ∼O(0.01) m s−1.

equations. It is also important to note that [15] defines transport barriers as material structures,
which need to satisfy the requirement of objectivity (also known as frame-indifference) [30].
The objective structures extracted from the barrier-equation have also been compared with other
Lagrangian and Eulerian coherent structures in [16,31]. For a recent review, we refer to [32]. We
recall that instantaneous momentum transport barriers of a velocity field u(x, t) at time t can be
identified as streamsurfaces of the barrier equation

x′(s) =
u(x(s), t), (8.2)

where s denotes a parameterization of streamlines forming the streamsurfaces. We will apply our
FEM-based approach to the extract approximate streamsurfaces of the barrier field.

The flow near the top and bottom plates is contained in thin boundary layers. As a result

u within the boundary layers has a much larger magnitude than outside the boundary layers.
Consequently, the solution H will also exhibit boundary layers: H is nearly constant outside the
boundary layers given 
u is negligible, while ∇H is orthogonal to 
u inside the boundary
layers. We are mainly interested in vortical structures outside the boundary layers because
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Figure 22. Isosurfaces of the velocity components of a snapshot (t = 619.515 s) of the RBC flow with lx = ly = lz = 0.1 and
Ra= 1 × 105. The (a), (b) and (c) panels show ux , uy and uz , respectively.

those boundary layers are very thin. To extract vortical structures outside boundary layers, we
normalize the active velocity field as [16]

x′(s) = 
u(x(s), t)
|
u(x(s), t)| . (8.3)

(i) Quasi-two-dimensional flow

We first consider the steady quasi-two-dimensional flow discussed in §a. We compute the
Laplacian 
u at grid points using second-order finite difference [33]. With Nx = 60, Ny = Nz = 30
and quadratic interpolation, we obtain λ1 = 0.3420 and λ2 = 0.5806. With the filter (7.5) applied,
we obtain the isosurfaces for H1 in figure 25 (the first two rows), from which we see that the
extracted barriers consist of a tube in the right half (x ≥ 0.1) of the domain. We expect that there is
another tube in the left half (x ≤ 0.1) of the domain. Indeed, the isosurfaces for H2 reveal the other
tube, as shown in the last two rows in figure 25.

Next we launch streamlines on the outermost layers of the two tubes in the last column of
figure 25. When the integration time is not too long, the obtained trajectories stay close to the
extracted approximate streamsurfaces, as seen in the left column of figure 26. However, given
the streamsurfaces are not necessarily attracting, these trajectories may drift far away from the
surfaces for longer time integration, as seen in the second and third columns of figure 26, where
panels in the third column are the projections of panels in the middle column onto the (x, y)
plane. We note that the drifted flow is nearly contained in the extracted barriers. Interestingly,
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Figure 23. Isosurfaces of H1 for the RBC flow in a cube with various filter thresholds: EA ≤ 0.05 (a), EA ≤ 0.02 (b) and
EA ≤ 0.01 (c).

the two panels in the third column are similar to the two projected plots in the middle column of
figure 25. This again validates the obtained results. To further identify structures of the simulated
trajectories, we present the intersection points of these trajectories along with a Poincaré
section y = 0.05. As seen in the last column, there exists invariant tori inside the vortex tube
for x ≤ 0.1.

(ii) Three-dimensional flow

Now we extract momentum barriers of the flow snapshot shown in figure 20. This is a snapshot
of an unsteady three-dimensional flow. With Nx = 60, Ny = Nz = 30, we obtain λ1 = λ2 = λ3 = 1
and λ4 = 19.2. The first three modes correspond to boundary layer modes, while the last one
gives structures outside the boundary layer. As an illustration of the boundary layer modes,
we present the contour plot of H1 at the cross section z = 0 in figure 27a. We see from the left
panel that H1 is barely changing outside the boundary layers. By contrast, the contour plot of
H4 at z = 0 in the right panel of the figure reveals structures outside the boundary layers. So, we
should look for H4. Note that λ4 is large, which indicates that the barrier field does not admit any
globally defined first integral. However, we can still apply the filter (7.5) to extract approximate
streamsurfaces.

Isosurfaces of H4 with different filter thresholds are plotted in figure 28. By decreasing the
threshold properly, we are able to extract two disconnected tubes shown in the right panel of the
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Figure 24. Outermost isosurfaces of the two major vortex rings in figure 23, along with streamlines of 10 randomly selected
points in each surface. Trajectories of the forward simulations of the frozen vector field are plotted in black lines and shown in
panel (a). The blue lines in panel (b) denote streamlines of the unsteady flow started from the same initial points. Here the
forward simulation time is 20 s, since |u| ∼O(0.01) m s−1.

figure. To validate the obtained approximate streamsurfaces, we launch streamlines started from
five randomly selected points on the outermost layers of each of the two tubes in the right panel
of figure 28. Here we set the integration time to be 0.1 s given that the velocity magnitude is of
order 1 while the characteristic length scale for the tubes is of order 0.1 m. As seen in figure 29,
the trajectories from numerical integration stay close to the extracted streamsurfaces.

9. Conclusion
We have established a variational method for the construction of tubular and toroidal
streamsurfaces for three-dimensional flow visualization. This method is an extension of the
Fourier series expansion proposed in [11] from spatially periodic domains to general spatial
domains. We have formulated an optimization problem seeking the closest first integrals. The
isosurfaces of these closest first integrals give approximate streamsurfaces in vortical regions
of three-dimensional flows. We have derived the first-order necessary conditions to the optimal
solution that gave rise to an eigenvalue problem of a set of linear partial differential equations. We
have used finite-element methods to solve the eigenvalue problem. Although we did not carry out
a formal analysis of the spectrum of the partial differential equations, numerical evidence based
on the discretized problem suggests that the eigenvalue problem we have posed is well defined.

We have demonstrated the effectiveness of the proposed variational construction through
a suite of examples. We started from simple benchmark studies including spherical and
cylindrical vortex flows as well as Taylor–Couette flow to illustrate that the finite-element based
implementation can handle flows in domains with arbitrary geometries. We have also applied
the method to periodic flows such as ABC flows and Euler flows to show that this method also
works well for periodic flows. Finally, we have considered Rayleigh–Bénard convection flows to
demonstrate the effectiveness of the proposed method for more complicated flows.

We have used regular mesh grids in the computations of this study. It is instructive to
implement an adaptive mesh to enhance the performance of our variational construction. In
particular, we can use the distribution of invariance error to conduct the adaptive change of
the mesh. This adaptation could play an important role in extracting tubular and toroidal
streamsurfaces in complicated three-dimensional flows, especially for turbulent flows.

We have implemented our variational construction using FEniCS. However, the variational
method proposed here is generic and can be implemented in other finite-element packages
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Figure 25. Barriers to momentum transport in the RBC flow at Ra= 5 × 104 shown as isosurfaces of the approximate first
integral. Here the results are based on various filter thresholds applied to H1 (the first two rows) and H2 (the last two rows).
The panels in the second/fourth row are the projection of the panels in the first/third row onto (x, y) plane.

or more specialized codes. In particular, advanced eigensolvers that support high-performance
computing can be used to speed up the computation of eigensolutions.
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Appendix A
We compare the performance of our finite-element implementation against the Fourier series
approach [11] for the two periodic flows in §7. We use the error metric Em defined in (7.4) to
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Figure 26. Outermost isosurfaces of the twomajor vortex tubes in figure 20b, along with streamlines of four selected points in
each of the surfaces. Trajectories from the forward simulations of active vector field are plotted in black lines. The integration
time for the first and second columns is 2 s and 50 s. The third column gives the projection of the panels in the middle plane
onto (x, y) plane, while the last column gives the intersection points of the simulated trajectories with the Poincaré section
y = 0.05 m.
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Figure 27. Contour plots of (a) H1 and (b) H4 of the active vector field of a snapshot of the RBC flowwith Ra= 1 × 105 at cross
section z = 0 (see figure 19 for the snapshot).
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Figure 28. Isosurfaces of H4 for the active vector field of a snapshot of the RBC flow with Ra= 1 × 105 (see figure 27b) with
various filter thresholds: EA ≤ 0.07 (left panels), EA ≤ 0.065 (middle panels) and EA ≤ 0.062 (right panels). The lower panels
are the projections of the upper panels onto (x, y) plane.
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Figure 29. Outermost isosurfaces of the two tubes in the right panel of figure 28, along with streamlines initialized from five
randomly selected points on the surfaces.
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Figure 30. Mean invariance error Em as a function of the number of entries (dNDOF for the finite-element method andmNmode
for the Fourier series scheme) for ABC flow (a) and Euler flow (b) in §7. Here the legends ‘Fourier-100’ and ‘Fourier-50’ represent
m= 1003 andm= 503, respectively.

make comparisons. This metric Em gives the averaged normalized invariance error evaluated at
a collection of grid points.

We recall that our finite-element implementation seeks the leading eigenvalue of a generalized
eigenvalue problem. As seen in §5, the matrices A and B of the generalized eigenvalue problem
are of size NDOF × NDOF, where NDOF denotes the number of degrees-of-freedom (DOF) of the
finite-element discretization. In the Fourier approach [11], one seeks the leading singular value of
a matrix C ∈ C

m×Nmode . Here, Nmode is the number of Fourier modes and m is the number of grid
points.

We infer from the size and sparsity of the matrices A, B, C that the Fourier approach requires
much more memory than that of our finite-element implementation. Indeed, the number of non-
zero entries of the matrices A and B is dNDOF because the two matrices are sparse. Here d is
the bandwidth of the two matrices. We found that d ≈ 29 when we use Lagrange elements of
interpolation order two. On the contrary, the number of entries in the full matrix C is mNmode.
In [11], m = 1003 was used and hence Nmode often was restricted to be less than 104. Indeed, we
found that for Nmode = 1.7 × 104, the memory required to compute the leading singular value has
exceeded 200 GB. Since m = 1003 � d ≈ 29, the finite-element method requires much less memory
than the Fourier approach for the same degree of fidelity, i.e. when Nmode = NDOF.

We plot the metric Em against the number of non-zero entries, that is, dNDOF or mNmode,
to compare the performance of the two schemes. Indeed, the computational cost of leading
eigenvalues or singular values is also directly related to these numbers of entries. As shown in
figure 30, in order to achieve the same level of error metric Em, the number of entries needed for
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the finite-element method is much smaller than for the Fourier approach in both two periodic
flows. In addition, the finite-element method can achieve smaller errors with an increasing
number of entries. Therefore, the finite-element implementation shows better scaling. We have
performed Fourier-based computations with both m = 1003 and m = 503, since decreasing the
number of gridpoints allows us to use a Fourier series with higher number of modes. However,
we have found that increasing the number of gridpoints, m, is more beneficial in terms of the error
metric Em.
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