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Discovering dominant dynamics for
nonlinear continuum robot control
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Continuum robots, which emulate biological organisms’ dexterity and flexibility, hold transformative
potential for terrestrial and extraterrestrial applications. While such capabilities present significant
modeling and control challenges, these robots’ highly dissipative nature allows their behavior to be
explained by low-dimensional, dominant dynamics. Despite extensive research to uncover these
dynamics, existing methodologies often fail to produce models that accurately capture them,
hindering precise control in diverse and safety-critical tasks. This work addresses this gap by
discovering these dynamics and leveraging them in a control methodology that substantially
outperforms existing methods. Our approach, grounded in Spectral Submanifold theory, enhances
accuracy up to sixfold and improves tracking performance by up to 150 times across a diverse set of
control tasks, achievingPareto dominance in precision and computational efficiency. These advances
enable the development of simple yet robustmodels suitable for real-time control, moving us closer to
deploying highly adaptive, efficient, and safe continuum robots.

In an era where the convergence of robotics and the natural world is set to
redefine the boundaries of exploration, interaction, and intervention, our
endeavor to engineer robots capable of navigating and manipulating their
environment with the grace of living organisms has never been more per-
tinent. At the forefront of this challenge is the field of continuum robotics,
which, by emulating the fluid movements of biological systems, presents
unprecedented opportunities for innovation across a broad range of
applications-from the unexplored depths of our oceans to the boundless
expanses of space.

Unlike their rigid counterparts, continuum robots are characterized by
their ability to assume an infinite range of shapes andmovementswithin the
bounds of their design. This unique characteristic affords them numerous
advantages over their rigid counterparts, namely dexterous manipulation
and locomotion, flexibility, and physical compliance. These advantages are
ideal in various applications spanning multiple disciplines, as shown in Fig.
1. For example, soft surgical robots provideunparalleledprecisionand safety
in navigating the complex and constrained environments of the human
body1. In deep-sea exploration, soft robotic fish exhibit pressure resilience
allowing scientists to push the boundaries of scientific discovery and explore
the deepest parts of our oceans2. Space satellites equipped with deformable
manipulators will allow for more precise space debris removal and satellite
servicing operations3,4, while continuum robots will enable us to explore
internal and enclosed dynamic terrain structures of scientific interest on
Mars andEnceladus5. In all these applications, the robotsmust operate safely
with precision under computational constraints.

The distinctive characteristics that grant continuum robots their
flexibility and dexterity also present significant challenges in their
modeling and control. Their compliance and intricate motion cap-
abilities lead to complex dynamics, driven by both geometric and
material nonlinearities6,7 as well as nonlinear resonances. Accurately
capturing these dynamics typically requires high-dimensional, non-
linear models which in turn poses computational challenges for real-
time control. Moreover, the inherent deformability of these robots
complicates the design of effective sensing systems to detect and
measure their dynamic behavior8. Despite these challenges, there is
hope to tractably model these systems for control. Continuum robots
are highly dissipative, thus despite their high dimensionality, their
high-frequency degrees of freedom rapidly synchronize with the
robots’ low-dimensional, persisting dynamics, i.edominant dynamics.
Additionally, by carefully choosing the robot’s sensor modality and
arrangement, one can uncover these dominant dynamics from
observed measurement transitions. The emergence of machine
learning (ML) carries the promise of unveiling these dynamics from
data at great fidelity.

This work addresses the task of achieving precise and safe control of
continuum robots under computational constraints. To this end, we seek
the following desiderata to learning dynamics for model-based control:
1. Faithful models: The algorithm should learn highly predictive models

that generalize across different operating regimes, enabling precise
control across a variety of tasks.
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2. Low model complexity: The model should be sufficiently low-
dimensional to enable real-time control in resource and compute-
constrained hardware.

3. Data efficiency: The learning algorithm should require a small, yet
sufficient sample size to extract a performantmodel, making it feasible
to train models with limited real-world data.

4. Sensor efficiency: To facilitate observability, the learning methodology
should be able to incorporate data fromasmany sensors as available on
the robot without increasing the model’s complexity.

5. Safety constraints: The control scheme should be able to handle state
and actuation constraints, allowing the system to operate in safety-
critical settings.

Existingmethodologies have yet to satisfy these desiderata, largely due
to their inability to discern the dominant dynamics governing continuum
robot behavior in a mathematically precise fashion. These methodologies
typically divide into two camps: those that learn a direct control policy and
those that create a surrogate model for control.

Model-free reinforcement learning (RL) is an approach where the
robot learns to make decisions by taking actions in its environment to
maximize some notion of cumulative reward. Since continuum robots have
intricate dynamics and are high-dimensional in nature, these approaches
have gained traction in the literature9 as they bypass the necessity to
explicitly model these complexities. Model-free RL has proven effective
across various robot designs and control tasks, ranging from real-time
control of dynamicmaneuvers10 to locomotion in soft roboticfish11. Despite
these successes, model-free RL lacks inherent safety guarantees during the
exploration phase in which agents may take unsafe actions while learning.
While some methods have been developed to address these safety
concerns12, they often increase the computational complexity and require
more conservative exploration strategies, which may limit generalizability
and data-efficiency. This limits the practicality of applying RL to continuum
robots operating in safety-critical environments.

As a result, much of the continuum robot literature leverages data-
driven methods to infer the dynamic models of continuum robots for
control. One strategy involves using data to find an optimal compression of
the robot’s finite-elementmodel to a lower-dimensional representation13–15.
However, this often results in reducedmodels that remain too large for real-
time MPC on embedded systems with longer prediction horizons and

higher control frequencies. This can make controllers less robust to model
mismatch and overly focused on short-term actions, leading the system into
states where it cannot effectively handle constraints. Furthermore, the
development of high-fidelity analytical governing equations for compres-
sion is a cumbersome and ad-hoc process. As an alternative to this hybrid
approach, learning the dynamics from time-series data of observed mea-
surements using neural networks (NN) has become popular16–19. Despite
their success in closed-loop control, these methods share the data ineffi-
ciency and generalization challenges seen in RL20. Another promising ave-
nue in data-driven control involves systems-theoretic approaches. These
leverage the Fundamental Lemma from behavioral systems theory to pre-
dict input-output trajectories directly from data while offering rigorous
guarantees on stability, robustness, and constraint satisfaction21,22. Such
approaches, however, typically require sufficiently richdataencoded in large
data matrices to ensure accurate predictions, which can render them
computationally intractable for real-time control23. Moreover, their effec-
tiveness has yet to be demonstrated on the complex, high-dimensional
dynamics of continuum robots.

Alternatively, data-driven modeling approaches grounded in Koop-
man operator theory24 have been demonstrated to achieve notable perfor-
mance on various soft robot applications25–27. Approaches like Dynamic
Mode Decomposition (DMD)28 and Extended DMD (EDMD)29 can be
interpreted as approximations to an infinite-dimensional operator that
linearly represents the system dynamics through observable functions in a
function space. These methods yield linear models conducive to fast and
efficient control design and boast greater data efficiency than NNs25.
However, a major pitfall with these linear procedures is their reliance on
finite-dimensional approximations to an inherently infinite-dimensional
operator. For thesemethods to generalize, the chosen observablesmust span
a finite-dimensional Koopman-invariant subspace, which occurs with
probability zero, even for generic observables30. While one might hope to
overcome this limitation by enlarging the dimension of observables, such
enlargements often require hundreds or thousands of dimensions. This can
lead to overfitting, where the model fits training data well but struggles to
generalize to unseen trajectories31–34. Furthermore, the dimensionality of
these linearmodels scales exponentiallywith the number of observables and
basis functions. These limitations are fundamentally at odds: increasing the
expressivity of the model to better capture the nonlinear dynamics leads to
an exponential increase in model dimension. Not only does this restrict
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Fig. 1 | Examples of continuum systems and invariant manifolds. a Phase portrait
and 1-dimensional invariant manifold of a damped pendulum. b Origami-inspired
artificial muscles as a deployable structure for on-orbit rendezvous operations.
(PNAS60). c Electrically-driven bionic trunk made out of shape memory alloy with
potential application tominimally invasive surgery (Wiley61). dA pressure-resilient,

soft robot fish that can operate in deep sea trenches. e Illustration of the eigenvalues
of the linear part of the high-dimensional system, with the dominant modes being
the eigenvalues closest to the imaginary axis. The SSM is parameterized by these slow
modes and carries the dominant dynamics of the system.
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robot design and sensing capabilities, it also fundamentally limits the
model’s accuracy because onboard compute constraints prevent the
deployment of such large models.

To overcome these challenges, we leverage Spectral Submanifold
Reduction (SSMR)35, an emerging modeling paradigm that was developed
less than a decade ago and only recently introduced to the field of ML36,37.
Originally conceived to model non-linearizable phenomena in engineering
applications38–40, SSMR’s application to control was recently established41–44

due to two key model features: high predictive capability and low dimen-
sionality. Spectral Submanifolds (SSMs) are attracting invariant manifolds
residing in the robots’ phase space and learning the internal dynamics of
these structures leads to faithful, low-dimensionalmodels because all nearby
trajectories converge to these dynamics exponentially fast. Consequently,
the low-dimensional dynamics onSSMsare thede factodominant dynamics
that can efficiently be leveraged for real-time control of the robot. SSMshave
also been shown to vary smoothly with respect to general control forces45,
which makes the inclusion of control in the SSM-reduced dynamics
possible.

In this work, we present amodel-based control methodology based on
SSMR which satisfy the aforementioned desiderata and advance earlier
results42,43 towards,
(a) making the procedure for learning dominant dynamics with arbitrary

observables more rigorous and practical,
(b) evaluating our proposed models on different robot morphologies in

both high-fidelity simulation and hardware platforms,
(c) aggregating these results to provide a novel methodology to address

control of continuum robots.

Our method consistently improves the state-of-the-art along multiple
dimensions including model accuracy by up to a factor of 6 and tracking
performance by up to a factor of 150. Furthermore, our methods exhibit
Pareto dominance with respect to baseline methods along both accuracy
and computational efficiency. These previously unattainable results high-
light the importance of inferring dominant dynamics for effective model-

based control. Critically, in contrast to other data-driven methods which fit
to individual trajectories, SSMR discovers robust (i.e structurally stable)
phase space structures, and uncovers their internal dynamics with high
accuracy. This advancement brings us closer to deploying highly adaptive,
efficient, and safe continuum robots across various application domains.

Results
In this section, we present our approach to modeling and controlling
nonlinear, continuum robots with limited training data and computational
resources. We first address the practical challenges of limited sensor mea-
surements and propose a solution that allows us to leverage the dominant
dynamics for control. We then conduct a thorough comparison with cur-
rent state-of-the-art methods, including a robustness study to assess the
generalization capability of each model to trajectories well outside the
training distribution.Our evaluation focuses on thepredictive accuracyover
a finite horizon as well as closed-loop performance, both with and without
constraints. We conduct a Pareto analysis to assess the tradeoff between
tracking error and solve time, evaluating the real-time feasiblity of
each model.

Our baselines include the trajectory piecewise linearization (TPWL)
model reduction approach13, DMD46, Koopman (often referring to
EDMD)26, and the recent Koopman static pregain method25. We learned
DMD and Koopman models using a modified version of 26 and TPWL
models using13. Since the performance ofDMDandKoopman is sensitive to
the user-specified regularization andmodel dimension, we learnedmultiple
models corresponding to different parameters. We then chose models that
achieved the best tracking performance on slow, i.e quasi-static control
tasks, while still being computationally tractable. In TPWL, the model
dimension is determined by the subspace to which we project the high-
dimensional finite-element model. We find the optimal dimension by
conducting singular value decomposition (SVD) on training trajectories
and retaining the singular values which explain over 99.99% of variance in
the dataset. The models deployed in simulation and hardware are outlined
in Table 1.

Table 1 | Model Parameters

Diamond Simulation (9768
dimensions)

Dimension # Training Data Type of Observables # Delays Degree Polynomial

SSMR 6 8692 (+40 IC) tip position 1 R(z): 2; br(z): 1

SSSR 6 8692 (+40 IC) tip position 1 R(z): 1; br(z): 1

DMD 11 8692 tip position & 4 inputs (not delayed) 1 1

Koopman/EDMD 66 8692 tip position & 4 inputs (delayed) 1 2

TPWL 42 4352 tip & four elbow positions N/A –

Trunk Simulation (4254 dimensions)

SSMR 6 4201 (+40 IC) tip position 1 R(z): 3; br(z): 1

SSSR 6 4201 (+40 IC) tip position 1 R(z): 1; br(z): 1

DMD 15 7111 tip position & 8 inputs (not delayed) 1 1

Koopman/EDMD 120 7111 tip position & 8 inputs (delayed) 1 2

TPWL 28 9711 tip position N/A –

Diamond Experiment (∞ dimensions)

SSMR 6 16,560 (+34 IC) tip position 1 R(z): 3; br(z): 1

SSSR 6 16,560 (+34 IC) tip position 1 R(z): 1; br(z): 1

Koopman/EDMD 66 34,098 tip position & 4 inputs (delayed) 1 2

Koopman LQR + Static Pregain 6 34,098 (+291 SP) tip position 1 1

TPWL 42 43,522 tip and elbow positions N/A –

We list themodel parameters of our approach and baselines for each continuum robot. In this work we consider amonomial basis for SSMR and Koopman/EDMD,while the TPWLmodel is extracted from
the finite-element simulation. For SSMR, R(z) is the autonomous part of the dominant dynamics while br(z) is the control-affine part. The amount of training data counts the number of controlled state
transitions,while those in parentheses either count the number of initial conditions (IC) for thedecay trajectories (SSMRandSSSR) or the number of setpoint (SP) states (DMDLQR+Pregain). The decaying
trajectories are sampled at 100 Hz. Our approach gives the lowest dimensional model across all robot morphologies. SSMR spectral submanifold reduction, SSSR spectral subspace reduction, DMD
dynamic mode decomposition, EDMD extended dynamic mode decomposition, TPWL trajectory piecewise linearization, LQR linear quadratic regulator.
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We validate our findings through high-fidelity finite-element simula-
tions on a diamond-shaped soft robot with 9768 dimensions and an
elephant-inspired trunk robot with 4254 dimensions47. These differing
robot morphologies are shown in Fig. 2a. Additionally, we conduct real-
world experiments on a physical realization of the diamond robot for both
unconstrained and constrained control tasks. The simulated and

experimental diamond robots are made of soft silicone and actuated by
motors which pull on cables attached to the robot’s four elbows. The
addition of cable tension controls the robot’s deformation, allowing it to
move continuously within its workspace. The trunk robot is also made of
soft silicone but is controlled by eight cables, four of which terminate at the
midpoint of its structure with the other four terminating at the endpoint.

Fig. 2 | Spectral Submanifold Reduction (SSMR) for Model Learning and Con-
trol. a Collect decaying and controlled trajectories of the continuum robot. The
decaying trajectories are truncated to remove initial transients, ensuring the data is
close to the slow, attracting SSM of preselected dimension. Critically, the decaying
trajectories will characterize the structure of the autonomous SSM while controlled
trajectories will calibrate the internal dynamics of this invariant manifold as it
smoothly deforms under control. b Use SSMLearn36 to extract the dominant

dynamics of the continuum robot on the autonomous SSM. Optionally, we can
reparameterize the SSM to obtain a model with observables more favorable for
control. Lastly, the calibration step learns the effect of control parallel to the
autonomous manifold. c The SSMR-based, control-oriented model is used in a
model predictive control scheme where planning and control is conducted in the
reduced coordinates that parameterize the SSM.

https://doi.org/10.1038/s44182-025-00021-8 Article

npj Robotics |             (2025) 3:5 4

www.nature.com/npjrobot


The robot is actuated by motors which pull on the cables, allowing it to
assume a variety of geometries to navigate its workspace.

Spectral Submanifold reduction for optimal control
To achieve precise, real-time control of nonlinear continuum robots, we
uncover their inherently low-dimensional dynamics on SSMs. These SSMs
are invariant manifolds that carry the robots’ dominant dynamics. Intui-
tively, there are two types of SSMs: autonomous SSMs, fixed at an equili-
brium of the uncontrolled system, and non-autonomous SSMs, which
evolve over time with the controlled system. Based on rigorous mathema-
tical results from45, we approximate the dominant dynamics associatedwith
the true, non-autonomous SSM by training on generic measurement data
takennear anautonomous SSM.While inpractice ourdatawill almost never
lie exactly on the primary SSM, it will lie with probability one on a nearby
invariant manifold (i.e secondary SSM), of which infinitely many exist and
whose Taylor expansion has the same leading order terms48. Subsequently,
we identify the impact of control on the SSM-reduced dynamics via cali-
bration. This procedure is summarized in Fig. 2.

First, we collect data tailored to approximate the autonomous SSM, as
shown in Fig. 2a. This approach requires two datasets: a collection of
decaying trajectories from different initial conditions and a collection of
controlled trajectories. The decaying trajectory data are collected through a
series of training experiments, performed by randomly applying constant
control inputs to the robot and then removing the control input to allow the
robot to decay to its rest state. The controlled trajectory datasets are collected
by applying a random sequence of smooth inputs to the robot in open-loop.
The training process is sample efficient requiring similar or less amount of
data to infer a performant model compared to data-efficient baselines, as
shown in Table 1.

Theobservablesweuse to infer the dominant dynamics of the robot are
time-delayed measurements of the x-y-z position of the tracking markers
placed on the end-effectors of each robot. In this way, we target the slowest
6D SSM of the system to capture the slowest oscillatory dynamics in the 3D
space. In general, the desired dimension of the SSM-basedmodel equals the
dimension of the slowest spectral subspace corresponding to the dominant
modes of the linearized system. We infer this dimension via an SVD of the
decaying trajectories dataset (i.e principal component analysis)36,49 by
retaining the top sixmodes which capturemore than 95%of the variance in
the data.We stress that although this procedure is presented for a specific set
of robots with measurements taken at their end-effectors, our approach
applies to generic control systems42,45.

Second, to extract dominant dynamics on the SSM, we must uncover
the SSM’s chart andparameterizationmap, alongwith its calibrated internal
dynamics, as shown in Fig. 2b. The chart map (i.e encoder) is inferred via
singular value decomposition on the training set of decaying trajectories.
The parameterizationmap (i.e decoder) and internal dynamics are fit using
a monomial basis and by minimizing reconstruction error and prediction,
respectively. Models with nonlinear (i.e 2nd order terms or higher) maps
and dynamics are referred to as SSMRmodels, while those with only linear
terms are referred to as Spectral Subspace Reduction (SSSR) models. In the
latter, rather than fit a manifold, we fit a linear subspace with linear internal

dynamics. Overall, we obtain a low-dimensional dynamics model and an
output map which relates the reduced coordinates to our desired
observables.

Finally, we design a Model Predictive Control (MPC) scheme (as
shown in Fig. 2c), which predicts the future states of the robot using our
SSMR-based model to optimize control actions in real-time, while con-
sidering safety constraints. In summary, our MPC scheme plans in a
drastically reduced space, then maps these predictions into our desired
measurements onwhichwe evaluate our cost function and state constraints.
The receding horizon nature of MPC provides closed-loop feedback that
robustly handles the uncertainties in our model. As the optimal control
problem is non-convex, we approximate it as a series of convex problems50

making it tractable by using reliable convex optimization solvers. Given that
the control scheme exploits the low-dimensionality of ourmodel, we benefit
from low computational overhead, which in turn enables real-time, safe
control.

Practical challenges with time delays
Numerous factors, including cost, power, and geometric constraints, may
limit the number of sensors we can place on our system. Despite these
limitations, time-delayed measurements allow us to uncover the dominant
dynamics from observed data. This is because with enough delays,
embedding theorems51,52 guarantee that we can detect the dominant
dynamics from measured transitions.

As the dimension of the SSM increases, the increased time delay
requirements imposed by these theorems result in filtering of non-auton-
omous, controlled behaviors. We refer to this filtering phenomenon due to
increased time delays as the “curse of delays."

Recall that SSMR projects the delayed observables onto the leading
singular vectors resulting from the SVD of the decaying trajectory dataset.
These leadingmodes can be interpreted as principal component trajectories
(PCT)53 which represent the dominant patterns of decay and capture the
most significant modes of change in the system’s dynamics over time. The
challenge is that for an increased number of delays, the decaying PCTs are
less capable of representing transient trajectories. This is because projection
to the PCTs effectively acts like a bandpass filter with respect to the fre-
quencies of the PCTs, with decreasing bandwidth as the delays increase.

To overcome these practical challenges, we can reparameterize the
time-delayed model to other observables (e.g. using fewer time delays) as
long as the dimension of the observables is at least the same as the SSM.
Section 4.3 gives more details on how to conduct such a procedure. To
evaluate this claim, we learn two SSMmodels: one purely parameterized by
nd ∈ {4, 10, 15, 20} delays and the other which reparameterizes the original
nd model to a single delay observable. We then pass the figure-eight tra-
jectory of the simulated diamond robot through the chart and para-
meterization maps of the two models at nd to evaluate its reconstruction
accuracy. Since this trajectory is sampled every 10ms, the delays correspond
to the past Td ∈ {40, 100, 150, 200} ms (simulation time) of end-effector
measurements.

Figure 3 shows that models featuring many time delays have low
reconstruction accuracy. As suggested, reparameterizing the model to a

Fig. 3 | Effect of time delay on non-autonomous
trajectories. a Percent reconstruction of controlled
trajectories of the diamond robot’s end-effector as a
function of the number of delays in the model. The
0.744762,0.317516,0.028023orange plot shows the
figure-eight’s reconstruction from a model with
increasing time delays without reparameterization.
The 0.054870,0.440281,0.010655green plot represents
reconstruction for a model that is reparameterized to
single time delay. b Qualitative depiction of the
reconstruction of the figure-eight trajectory along the
x-y plane for the original and reparameterizedmodels.
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single time delay results in almost constant reconstruction accuracy, despite
the base model being of higher nd delays. Interestingly, we observed that
both models exhibit good reconstruction accuracy for uncontrolled,
decaying trajectories. This suggests that increased delays act as a bandpass
filter with decreased passband about the frequencies of the principal modes
detected in the decaying trajectories. Thus, if the desired control trajectory
has a frequency different from the principal modes, increasing the number
of delays will filter out important transients that characterize this trajectory.
Thus, we adopt this reparameterization trick to construct SSMR and SSSR
models with a single time delay, thereby avoiding the curse of delays.

Simulation open-loop prediction accuracy
In this section, we compare the predictive accuracy of our SSMR model
against SSSR and established baselines in the literature. To conduct this
evaluation, we explore the actuation space of the robot using a randomly
sampled input sequencedifferent fromtheonesused to learnboth the SSMR
and baseline models. We record the resulting open-loop trajectory and
corresponding inputs, and at random, chose n = 500 points {p1, . . . , pn}
along this trajectory. Starting fromeachpoint pi as an initial state,we roll out

the system’s trajectory over the next five time steps using the respective
segment of the original input sequence.We quantify predictive accuracy by
calculating the RootMean Square Error (RMSE) between the predicted and
actual trajectories for each pi over a 50ms horizon. By replicating this finite-
horizon prediction process across all selected points, we achieve a com-
prehensive evaluation of our model’s accuracy throughout the robot’s
configuration space. To provide further context on the dynamics of the
trajectories, the average speed of the reference trajectory for the diamond
robot was 74.7 mm/s, while that of the trunk robot was 30.3 mm/s.

Figures 4, 5 show the simulation open-loop evaluations for the dia-
mond and trunk robot, respectively. SSMR models achieve excellent pre-
dictive performance for both robots. Intuitively, this means that we
approximate the 6D autonomous SSM well and that trajectories of the full
system indeed synchronize fast with our model, which approximates the
internal dynamics of the SSM. This results if the control minimally excites
the outer modes, or if the effect of outermodes are insignificant due to large
timescale difference between the dominant and off-manifold dynamics. In
both cases, the off-manifold transients only occur momentarily and the
dominant dynamics capture most of the robot’s behavior. In general, the

Fig. 4 | Model accuracy heat map of simulated diamond robot. Open-loop per-
formance of diamond robot models over a 50 ms horizon and evaluated across 500
different points along a given trajectory. The box spans the middle 50% of the data,
with whiskers extending to the smallest and largest values within 1.5 times the
interquartile range, and points outside the whiskers indicating outliers. The best

performing model is TPWL with an RMSE of 0.317 mm. SSMR and SSSR give
comparable performance at 0.492 mm and 0.457 mm, respectively. DMD and
Koopman/EDMD give the worst average RMSE at 3.104 mm and 2.962 mm,
respectively.

Fig. 5 | Model accuracy heat map of simulated trunk robot. Open-loop perfor-
mance of trunk robot models over a 50 ms horizon, evaluated across 500 different
points along a given trajectory. The box spans the middle 50% of the data, with
whiskers extending to the smallest and largest values within 1.5 times the inter-
quartile range, and points outside the whiskers indicating outliers. The best

performingmodel is SSMRwith an average RMSE of 0.54mm. TPWL comes next at
1.90 mm, while SSSR gives an average RMSE of 2.60 mm. DMD and Koopman/
EDMD give the worst performance at 4.24 mm and 3.68 mm average RMSE,
respectively.
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SSMR models’ prediction accuracy degrades as the end-effector moves
further from the robot’s uncontrolled, resting point. This is because our
model includes only a first-order correction to the uncontrolled dynamics.
To improve accuracy at positions further from the origin, we would need to
include higher-order corrections.

For the diamond robot, TPWL outperforms all other models in this
evaluation but degrades in accuracy for the trunk robot. This indicates that
the diamond robot’s behavior near this trajectory is close to linear. On the
other hand, Koopman/EDMD and DMD exhibit the worst performance
among allmodels. As expected, the Koopman/EDMDandDMDmodels in
Figs. 4 and 5 exhibit no clear pattern in model accuracy with respect to the
configuration of the robot. Since Koopman/EDMD and DMD will learn a
Koopman-invariant subspace with probability zero, the Koopman/EDMD
andDMDmodels overfit to their training data and do not generalizewell to
the evaluation dataset.

Interestingly, SSMR only slightly outperforms the SSSRmodels on the
diamond robot evaluations, indicating that the diamond robot’s behavior in
this open-loop trajectory is nearly linear.This canbe attributed to the robot’s
truss-like structure, where most of the motion occurs at virtual hinges,
leading to mostly linear behaviors. Furthermore, SSSR outperforms
Koopman/EDMD and DMD on both robots, highlighting that our model
discovery approach infers the underlying linear dynamics from data more
accurately than fundamentally linear methods which attempt to approx-
imate the Koopman operator. However, the SSSR model’s predictive

accuracy deteriorates quickly further away from the robot’s resting position
and, hence, performs worse overall than the SSMR models. This is clearly
visible for the simulated trunk robot whose end-effector wasmade to follow
trajectories further from its equilibrium position.

Simulated closed-loop trajectory-tracking performance
Wenow evaluate the closed-loop performance of themodels on a variety of
trajectory-tracking tasks. For these evaluations, the end-effectors of the
robots were commanded to trace out various dynamic trajectories with a
control frequency of 50 Hz and an MPC horizon of 100 ms. We evaluate
trajectory tracking accuracy using the Integrated Squared Error (ISE) which
sums the squares of the error over time. Like RMSE, it heavily penalizes
larger errors, but it does so over the integral of the control process. For the
diamond robot, we consider two 10 second long trajectories: a slow figure-
eight trajectory at an average speed of 4.5 mm/s and a fast figure-eight at an
average speed of 89.4 mm/s, both in the x-y plane. The results are shown in
Fig. 6. For the trunk robot,we commanded its tip to follow two10 second2D
trajectories in the x-y plane: one tracing the “ASL” symbol at an average
speed of 11.9 mm/s, and the other tracing a Pacman symbol at 4.6 mm/s.
The results for the trunk are shown in Fig. 7.

SSMR and SSSR consistently outperform the baselinemodels across all
control tasks for both robots. In the case of the diamond robot, both
methods effectively capture the dynamics of slow and fast trajectories, with
SSMR achieving the best closed-loop performance. The performance gap

Fig. 6 | Simulation closed-loop results for
diamond robot. a Closed-loop trajectory for the
slow figure-eight trajectory in the x-y plane with
b Relative tracking ISE of SSMR for the slow figure-
eight compared to the othermodels. SSMR and SSSR
perform similarly while Koopman/EDMDperforms
noticeably worse. DMD and TPWL perform sig-
nificantly worse than SSMR. c Closed-loop trajec-
tory for the fast figure-eight trajectory in the x-y
plane with d Relative tracking ISE of SSMR for the
fast figure-eight. This desired trajectory is far from
the training distribution and SSMR and SSSR are the
only models that remain robust to this out-of-
distribution task.

Fig. 7 | Simulation Closed-loop Results for
Trunk Robot. a Closed-loop trajectory for the slow
ASL trajectory in the x-y plane. b Relative tracking
ISE of SSMR compared to the other models for the
ASL trajectory. c Closed-loop trajectory for the slow
pacman trajectory in the x-y plane. d Relative
tracking ISE of SSMR for the pacman trajectory.
Overall, SSMR outperforms all other models with
respect to tracking performance. While SSSR still
outperforms all other baselines, it is performs sig-
nificantly worse than SSMR due to its inability to
capture the inherent geometric nonlinearities of
the robot.
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between SSMR and SSSR substantially widens for the fast figure-eight task,
likely due to near-resonant behavior increasing nonlinearity. For the trunk
robot, SSMR models surpass all other models, including SSSR, indicating
that the trunk robot’s significant geometric nonlinearities are better handled
by nonlinear models. The enhanced relative performance of SSMR over
SSSR across different robotmorphologies and control tasks underscores the
necessity for nonlinearmodels to improve performance in tasks that induce
nonlinear behaviors.

Our results underscore two additional observations, highlighting the
efficacy of our approach compared to the state-of-the-art. First, both
Koopman/EDMD and DMD perform reasonably for the slow figure-eight
but poorly on the fast counterpart, with Koopman/EDMD faring worse
than DMD by over a factor of 20. Second, SSSR significantly outperforms
both despite it extracting a simpler linear model. The former further sug-
gests that these methods overfit to the training data, which consists of
trajectories slower than the desired fast figure-eight trajectory. It is then
unsurprising that Koopman/EDMD performs the worst because it has
nonlinear featureswhich pickup quasi-randomvariations in the data rather
than learn the underlying dynamics. The latter, on the other hand, results
from the fact thatwe are explicitly targeting resilient structures in the robots’
phase space. This allows us to uncover even linear models which generalize
to control tasks well outside of its training distribution. This resilience stems
from the fact that SSMs and their associated spectral subspacespersist under
perturbation, e.g. due to actuation and noise35.

Trade-off between accuracy and computational complexity
To rigorously compare themodels,we evaluate their performance along two
dimensions: ISE and time to solve the optimal control problem. Figure 8
shows the Pareto log-plot comparing SSMR and SSSR against the baseline
methods for the simulated diamond and trunk robot. Each point represents
a time-discretized model in Δt = 0.02 s, which is commensurate with its
control period. Since each model’s dimension is fixed, the solve time to
control period ratio is the time to solve a single optimization problem
dividedby the time-discretization,Δt. Anymodel to the right of unit 1 on the
solve time to control ratio axis is not real-time capable. In addition to the
control tasks considered in Figs. 6, 7, we evaluate the tradeoff on an addi-
tional control task for each robot. For the diamond robot, we consider a fast
circle trajectory where the diamond’s end-effector is required to track a
circle in the y–zplane (e.g., see Fig. 10b). For the trunk robot,we consider the
task of tracking the Stanford symbol in the x–y plane (e.g. see Fig. 10c).

Overall, SSSR and SSMR demonstrate Pareto dominance across var-
ious robot morphologies. Both robots lie on the Pareto front, with SSMR
exhibiting the lowest tracking error. While DMD also lies on the Pareto
front, it has a higher ISE than both SSSR and SSMR. Koopman/EDMD and
TPWL are Pareto-dominated by DMD, SSSR, and SSMR, and none of the
TPWLmodels are real-time compatible. Although SSMR, SSSR, and DMD
lie on the Pareto curve, they do not perform equally well. Generally, we aim

for minimal error while maintaining real-time computation. Critically, Fig.
8 shows that with a slight increase in computation time (still real-time),
SSMR and SSSR achieve superior tracking performance with reasonable
qualitative behavior, as shown in Figs. 6, 7. We observe a similar tradeoff
between SSMR and SSSR for the trunk robot in Fig. 8b.

While SSMR and SSSR are both 6D, the jump in computationally
complexity for SSMR stems from the fact that the majority of the MPC
computation for the SSMRmodels results from computing the Jacobians at
each timestep in the MPC horizon. Fortunately, the computational com-
plexity of SSMR-basedMPCdoesnot scalewith the observables,whereas for
Koopman-based MPC this complexity scales exponentially. This is seen in
the trunk robot, where the number of states in the Koopman/EDMDmodel
ismore than 100 and theMPC solve time grows rapidly. TheTPWLmodels
are relatively high-dimensional for both robots, also leading to large solve
times. Thus, thehigh computational complexity of thesemodels result in the
loss of real-time control capability, as shown in Fig. 8.

Constrained control for simulated trunk
We now compare the closed-loop performance of each model on the trunk
robot in an obstacle avoidance setting to evaluate their ability to achieve
precise control while remain safe. Specifically, the trunk’s tip is made to
follow a 2D projection of the “ETH" symbol on the x–y plane with 20
circular obstacles at varying radii. The period of the trajectory is 10 seconds
and we evaluate each model’s closed-loop tracking performance over 100
randomly generated obstacles.We consider only the single time-delayed tip
positions for the SSMR model and seek to evaluate each model’s perfor-
mance based on their ability to track the trajectory (i.e low RMSE) while
minimizing the amount of constraint violations (i.e low violation ratio).
Should it violate the constraints, themethod shouldminimize the constraint
violation (i.e low max violation).

The results of this evaluation are shown in Fig. 9. The planning horizon
for all models is 60 ms, which is myopic and leads to abrupt changes in the
control strategy near the boundary of a constraint. Furthermore, the density
of obstacles results in narrow free space, which causes these abrupt changes
to happen frequently throughout the control task. These abrupt control
changes result in discontinuous behavior which poses a challenge for all
methods. For example, the Koopman/EDMD model fails to generalize to
these behaviors, leading to erratic and unsafe behavior. While SSSR out-
performs Koopman/EDMD, geometric nonlinearities induced by this tra-
jectory coupledwith the discontinuous behavior near constraint boundaries
drive the linear model out of its region of validity, leading to worse per-
formance than SSMR. Lastly, TPWL does slightly better than SSSR, likely
due to its piecewise linear models providing a degree of robustness at the
discontinuities.

Overall, the SSMR model effectively handles these abrupt behaviors
near the constraint allowing it to outperform all other models in terms of
tracking accuracy and safety. Recent results54 show that data-driven

(a) (b)

Fig. 8 | Pareto dominance Log-plot of simulated diamond and trunk robots.
Pareto fronts for minimizing absolute ISE and MPC solve time to control period
ratio for time-discretized models of Δt = 0.02 s. a Pareto Log-plot for models of the
simulated diamond robot for various control tasks. While SSMR, SSSR, and DMD

exhibit Pareto dominance, DMD has consistently higher ISE. b Pareto Log-plot for
models of the trunk robot for various control tasks. SSMR, SSSR, and DMD are
Pareto-dominant, with SSMR exhibiting the lowest ISE.
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approximation of a non-smooth SSM carrying the discontinuous trajectory
is justified as long as the discontinuity is moderate (i.e the two dynamical
systems on both sides of the discontinuity do not differ significantly).
Analogously, the SSMR procedure in Fig. 2 approximates the flow of the
system on a non-smooth SSM induced by the abrupt control inputs. These
results highlight that this smooth approximation is effective andusefulwhen
dealing with constraints, but compute constraints limit the planning
horizon.

Hardware Experimental Validation
We now evaluate each model’s closed-loop performance on a hardware
platform of the diamond robot. We expect that the hardware platform will
exhibit more nonlinearity than the simulation due to unmodeled boundary
conditions (e.g. imperfect fixation at the base, unmodeled friction at the
interface, etc), viscoelasticity, manufacturing imperfections, and actuator
hysteresis. Our experimental setup and the control tasks are shown in Fig.
10. In this evaluation, we run 10 closed-loop experiments across various
tasks including a 2Dfigure eight in the x-y plane, a 2D Stanford symbolwith
obstacles in the x-y plane, and a slow circle trajectory in the y-z plane. The
control frequencies for eachmodel were chosen for real-time control: 20Hz

for the SSMR and SSSRmodels, 10 Hz for the Koopman/EDMDmodel, 50
Hz for the DMD-based LQR model, and 2.5 Hz for the TPWL model.

For the unconstrained figure eight and circle control tasks, we baseline
against the Koopman static pregain method25, which is essentially DMD-
based LQR, augmented with a feedforward control term. This method
amounts to computing a linear inverse kinematic map which is used in a
feedforward fashion to track a desired trajectory. Intuitively, this feedfor-
ward term controls the robot close to the reference trajectory, while the
feedback term is used to correct small deviations from the trajectory.
Following25, we collect training data by commanding random step inputs
and partitioning them into dynamic and static components to learn the
DMD model and linear feedforward term, respectively. For TPWL, we
calibrate the dynamic response of the model from the finite-element
simulator to align it with our hardware platform.

The results for the unconstrained control tasks are reported in Fig. 11
while those of the constrained tasks are shown in Fig. 12. Overall, SSMR
outperforms all baseline models in terms of closed-loop tracking perfor-
mance and safety across all the control tasks. Furthermore, although SSSR is
a 6D linearmodel, it outperforms themore complexKoopman/EDMDand
TPWL baselines in terms of tracking performance across all tasks. Despite

Fig. 10 | Actuation, sensing, and control tasks of
hardware diamond robot. a Actuation and sensing
setup for control of the real-world diamond robot.
b Diamond robot and its three control tasks: (from
left to right) quasi-static figure eight in x–y, “Stan-
ford" symbol with obstacles, and quasi-static circle
in y–z.

Fig. 9 | Closed-loopObstacle Avoidance for Simulated Trunk Robot. a Trajectory
of most accurate tracking of “ETH" symbol among the 100 simulations for each
model. b Statistics for tracking performance (ISE). c Statistics for howoften the robot

violated constraints (violation ratio). d Statistics for howmuch the robot violated the
constraints (max violation). SSMR outperforms all models in terms of precision and
safety.
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the fact that we derive the TPWL model from a high-fidelity simulator
calibrated for the real robot, its performance still suffers due to the sim-to-
real gap. This highlights the appeal of data-driven methods due to their
flexibility in learning the dynamics of the actual system directly from real-
world data. Interestingly, while Koopman/EDMD is trained on data from
the real robot, its MPC variant performs worse than TPWL in tracking
performance for unconstrained tasks and comparably to TPWL for con-
strained tasks.This suggests that theKoopman/EDMDmodel overfits to the
training data and does not learn the underlying dynamics of the robot.

When we opt for an LQR controller and add the pregain term, DMD
outperformsTPWLbut falls short of our SSMRmodel’s performance.These
results reaffirm the efficacy of our approach to learning dominant dynamics
useful for real-time, predictive control.

Discussion
We have introduced SSMR, a data-driven methodology to model and
control continuum robots. We leverage the recently developed SSM theory
fromdynamical systems to infer low-dimensional, yet faithfulmodels of the

Fig. 11 | Closed-loopResults forDiamondRobotHardware Platform.Ten closed-
loop experiments were conducted for eachmodel. The bar plots and displayed values
represent the average ISE for each model while the error bars represent 95% con-
fidence intervals. The distribution of data points is shown to the left of each bar plot.
a Qualitative performance of each model on quasi-static figure eight task in x–y.

b ISE statistics of all models for figure eight trajectory. cQualitative performance of
each model on quasi-static circle task in y–z. d ISE statistics of all models for circle
trajectory. Bolded trajectory represents the trajectory with best tracking perfor-
mance. SSMR and SSSR outperform the baselines on both control tasks.

Fig. 12 | Closed-loop Obstacle Avoidance for Hardware Diamond Robot.
a Trajectory of most accurate tracking of “Stanford" symbol among the ten
experiments for each model. b Statistics for tracking performance (ISE). c Statistics
for how often the robot violated constraints (violation ratio). d Statistics of how

much the robot violated the constraints (max violation). The bar plots and displayed
values represent the average value of each metric while the error bars represent the
95% confidence interval. SSMR outperforms all models in terms of precision and
safety.
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robots’ dominant dynamics from numerical and experimental data. This
low-dimensionality affords computational efficiency, allowing us to design
an MPC scheme that provides closed-loop control in real-time while
enforcing safety constraints. Using a model learning algorithm that is the-
oretically justified, we obtainmodels that are simple yet generalizable across
robot morphologies and control tasks. Furthermore, our models are simple
(requiring only 6-dimensions and no more than third-order polynomials)
and do not require significant amounts of training data. Despite this sim-
plicity, we demonstrate that SSMR exceeds the performance of other
available data-driven modeling methods in prediction accuracy, trajectory
tracking, and safety.

Our zeroth-order approximation of the time-varying SSM amounts to
assuming that the desired trajectory of the robot remains close to the origin
andhence, canbemodeledby theSSMcomputedat the origin.Although the
trajectories considered in the previous sections are not particularly close to
the origin, this approximation still provides an SSM-reduced model that
outperforms other approacheswhen used inMPC.The robustness of SSMR
confirms that we should infer the dominant dynamics of System 1 by
learningpersistent attracting structures in thephase space rather thanmodel
inherently non-robust individual trajectories. While here we take a coarse
approximation to minimize computational complexity, an important next
step will be to efficiently compute the full SSM structure along the desired
orbit up to higher orders. This will be crucial to maintaining precision
during more dynamic tasks that involve larger control inputs.

Additionally, while SSMR scales independently of the number of
measurements andhence allows formore complex sensor arrangements, we
have simplified our study here by using only a single sensor to measure the
robot’s end-effector position. Since different sets of observables might fur-
ther improve the parameterization for the SSM, our futureworkwill explore
more complex sensor configurations. Another important direction for
futurework is addressing complex real-world dynamics, such asmechanical
instabilities (e.g. buckling) and significant discontinuities like contact or
fluid-structure interactions. Recent advances in SSM theory45 also apply to
systemswithfixed points of varying stability, offering a promising approach
to controlling structural buckling. To handle discontinuities, future work
can extend non-smooth SSMmodeling techniques from54 and55 to enhance
SSMR-basedmodels in contact-rich environments. These controllerswill be
particularly useful for applications such as soft robotic fish operating in
flow-disturbed environments, such as deep sea trenches (as depicted in Fig.
1d) where strong currents interact with complex geological structures.

Finally, we plan to compare our approach with methods based on first
principles, such as the Cosserat rod dynamics presented in56, to further
motivate the practical advantages of data-driven models.

SSMR’s flexibility coupled with its low computational cost and data
efficiency makes it a promising choice for safely deploying continuum
robots in high-stakes and resource-constrained environments. While the
present work focuses on applications to continuum robots, our approach is
independent of the specifics of the robots considered here and hence is
generally applicable across robotics. Thus, we believe that our approach has
the potential to enable safe and efficient control for emerging classes of
autonomous systems across a spectrum of operating environments.

Methods
Spectral Submanifold theory
SSMR: Spectral Submanifold Reduction. Inspired by recent advances
in nonlinear dynamics35,36,45,48, our work aims to identify the dominant
dynamics of continuum robots from data for efficient model-based
control. Throughout this work, we consider robots as control-affine,
dynamical systems of the form

_xðtÞ ¼ fðxðtÞÞ þ gðxðtÞÞuðtÞ;
yðtÞ ¼ hðxðtÞÞ; ð1Þ

where x 2 Rnf represents a state in the high-dimensional state space of the
robot, u 2 Rm is the control input, y 2 Ro are the observed states, and

Eq. (1) is locally asymptotically stable at x=0.Note that thefinite-dimensional
system in Eq. (1), can be seen as the result of a spatial discretization of the
underlying PDE which govern the robot’s continuum dynamics.

The success of data-driven modeling is typically attributed to the
manifold hypothesis: that data sets lie along a low-dimensional submani-
fold, allowing for their parsimonious representation. In the context of time
series, this submanifold is an attractor representing the set of states (or
points in thephase space) towardswhich a systemtends to evolve, regardless
of its initial conditions. In other words, if the manifold hypothesis holds, it
suggests that the dynamics of the data-generating process are confined to a
low-dimensional attractor. Thismeans that even though the time series data
exist in a high-dimensional space, the process’ behavior and evolution are
governed by a simpler, lower-dimensional structure. Recent results in
dynamical systems confirm the existence and uniqueness of these attracting
structures for dissipative systems, called Spectral Submanifolds (SSMs)35,
under a set of well-defined mathematical conditions that we now review.

Consider the linearized dynamics _x ¼ Ax with A: = Df(0) being the
Jacobian of f at x = 0 and one of its spectral subspaces,

E :¼ Ej1
� Ej2

� . . . Ejn
: ð2Þ

where Ejk
denotes the real eigenspace corresponding to an eigenvalue λjk of

A.LetΛEbe the setof eigenvalues related toE andΛout be the eigenvaluesnot
related toE. Ifmaxλ2Λout

ReðλÞ < minλ2ΛE
Re ðλÞ < 0, thenE is a slow spectral

subspace corresponding to then slowest decaymodes. Based on SSMtheory,
for u(t) = 0, the uncontrolled System 1 admits infinitely many invariant
manifolds of the same dimension as E35. Thesemanifolds are tangent to E at
the origin and attract all trajectories in the domain of attraction of x = 0 at
exponential rates faster than their internal decay rates. If there are no
resonances between eigenvalues in ΛE and Λout, then precisely one of those
invariant manifolds is as smooth as the original dynamical System 1. The
internal dynamics of this special invariant manifold serve as the de facto
reduced-order model with which nearby trajectories converge to exponen-
tially fast. This smoothest invariant manifold, denotedW0ðEÞ, is called the
(primary) SSM fixed to the origin of the uncontrolled system. The internal
dynamics is the observed dominant dynamics of System1 for u(t) = 0within
the domain of attraction of the origin. For typical continuum robots, the
entire range ofmovements and configurations they are designed to perform
falls within domain of attraction of W0ðEÞ. The autonomous SSM, which
represents the primary behavior of the uncontrolled system, effectively
describes the main dynamics observed across all the robot’s intended
operations.

When u(t)≠ 0, then recent results by45 guarantee the survival of a time-
dependent SSM, WuðtÞðE; tÞ, in the controlled system, as long as either
kgðxÞuðtÞk is a small perturbation to f(x) orkDtgðxÞuðtÞk is small relative to
d
dt fðxÞ

�� ��. The latter condition is arguably satisfied in our setting because the
intended trajectories result in control actions that donot vary faster than the
time scales of the robot’s internal structural vibrations. In this setting45, calls
WuðtÞðE; tÞ an adiabatic SSM, showing that it varies slowly along a unique
anchor trajectory that has the same stability type as the uncontrolled x = 0
fixed point of System 1. In our setting, this anchor trajectory is the desired
trajectory of the robot.

In the present study, we use the zeroth-order approximation
(WuðtÞðE; tÞ � W0ðEÞ), i.e we globally approximate the time-dependent
SSMwith the autonomous SSM anchored at the origin. To approximate the
actual dominant dynamics within WuðtÞðE; tÞ, we include the first-order
correction to the uncontrolled dynamics, which turns out to be simply the
projection of B(x)u(t) onto the spectral subspaceE along the direction of fast
eigenspaces outside E45. To avoid the costly identification of those fast
modes, here we simply take the projection onto E to be orthogonal, as is
generally assumedby the simplest variant of the SSMLearn algorithmweuse
here from36.

Data-driven computations of SSMs from experimental data were
recently developed and successfully applied to model complex, real-world
systems36,37. The practicality of these methods stem from Whitney’s
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embedding theorem51which guarantees that almost all smoothmaps, h, will
embed an n-dimensional SSM in an o-dimensional observable space if
o ≥ 2n+ 1. In case we do not have enough observables, Takens’ embedding
theorem52 asserts that delay-embeddings of smaller sets of measurements
allowone to reconstruct thedynamicson anSSM.As long as the observables
are generic49, this theorem guarantees that an n-dimensional attractor of
Equation (1) can be smoothly embedded in an observable space of
dimension o ≥ 2n+ 1. Intuitively, this means that as long as we choose our
sensor arrangement to sufficiently characterize the robots’ nmode shapes,
we detect its dominant dynamics from transitions in the observables. To do
this one can increase the number of sensors along the robot’s structure to
obtain finer measurements of its geometric configuration. As a simplifica-
tion,we onlymeasure the x, y, and zpositions of the end effectors in both the
diamond and trunk robots, as shown inFig. 2. This approach is sufficient for
the considered control tasks, hence, we relegate more complex sensor
arrangements to future work, as discussed in Section 3. We then take
appropriate time-delayed measurements of the end-effector to achieve the
dimensionality required by the Takens embedding theorem. For more
details on observables and their genericity, we refer the reader to49.

SSMR for control
Combining our discussion in Section 4.1 with the SSMLearn algorithm
of 36, dynamics in Eq. (1) of continuum robots by learning the dynamics on
the autonomous SSM anchored at the robot’s resting position. We then
calibrate a control vector field which aligns these reduced dynamics with
those on the time-varying SSM. Specifically, we aim to learn the para-
meterization map, w, and reduced dynamics, r, of the following form

y ¼ wðzÞ ¼ UnzþWz2:nw ;

_z ¼ rðz; uÞ ¼ Rz1:nr þ brðzÞu;
ð3Þ

where y denotes the observable vector in Eq. (1), z 2 Rn is the reduced
coordinate vector which parameterizes the SSM,W0ðEÞ, and zc:nw represent
monomials of z from order c to order nw. The coefficient matrices Un 2
Ro× n and W 2 Ro× q are the linear and nonlinear parts of the para-

meterization map, where q ¼ nþ nw
n

� �
� n, U>

n Un ¼ In× n, and

U>
n W ¼ 0. For the reduced dynamics, R 2 Rn × r is the coefficient of the

drift (i.e autonomous) term, while br : R
n ! Rn×m is the reduced state

control input matrix. This procedure is fully data-driven and conducted
with limited sensor measurements. Since the resulting model is low-
dimensional, we can formulate a receding-horizon optimal control problem
withinW0ðEÞ (as shown in Section 4.4) which can be solved in real-time.

Specifically, we tailor our sensor arrangement, data collection, and
learning algorithm to infer the unknown coefficients in Eq. (3). First, we
arrange sensors on the robot so that our observable measurements are
generic49 and produce feature-rich training data. Intuitively, genericity
suggests that choosing a comprehensive sensor arrangement capable of
detecting the robots’ primary modes which span its expected operating
configurations enables us to accurately model the SSM and its dynamics.

We then collect two training datasets: one consists of decaying tra-
jectories from a collection of initial conditions, denoted Y, and the other
consists of controlled trajectories, denotedYu. To learn an approximation of
the dominant dynamics, we follow a three-step process.
1. We conduct SVD on the decaying trajectory dataset, Y 2 Ro×N traj , to

approximate the tangent space of the SSM i.e

Y ¼ UΣV>; ð4Þ

whereNtraj represents the number of training trajectories andUn represents
the leadingn columnsofU,which are a goodestimate of the tangent spaceof
the n-dimensional SSM49.
2. To infer the unknown coefficients in the parameterization and

autonomous dynamics of the SSM inEq. (3), we solve the optimization

problems

W ¼ argmin
W

Y� UnZ�WZ2:nw
�� ��;

R ¼ argmin
R

_Z� RZ1:nr
�� ��; ð5Þ

where Z ¼ U>
n Y encodes the training decay data matrix into reduced

coordinates and the derivatives are comuted via numerical differentiation.
3. We approximate the dominant dynamics on the approximating SSM,

W0ðEÞ, via calibration that amends the autonomous SSM dynamics
learned from decaying trajectories with the time-varying SSM
dynamics of the controlled system. If br(z) is a smooth function of z,
then this calibration amounts to solving the optimization problem

ðB;BrÞ ¼ argmin
B;Br

_Zu � RZ1:nr
u � BU� BrZ

1:nu
u �c U

�� ��2
F
: ð6Þ

Here, X�c U :¼ X�;1 � U�;1; . . . ;X�;N � U�;N
� �

is the Kronecker product
applied columnwise, Zu ¼ U>

n Yu encodes the controlled training data
matrix into reduced coordinates, and the control vector field is given by

brðzÞðuÞ :¼ Buþ Br z1:nu � u
� �

: ð7Þ

Our SSMR algorithm operates under the assumption that the control
effort is sufficiently small, allowing the leading-order component tangential
to the SSM to serve as an adequate approximation. In practice, we observe
that the excitation of outer modes due to orthogonal control components
lead to fast transients back to the manifold. Thus, the effect of excited
external modes are short lived and our approximation is justified.

Reparameterizing the SSM for control
We avoid excessive time delays in the control loop by reparameterizing the
SSM with a different set of control observables, thereby mitigating the curse
of delays. At a high level, we detect the dominant dynamics from sufficiently
time-delayed decay data, then embed the SSM in our chosen control
observable space. In this section,we simplifynotationby reusing the variable
y to refer to our new control observable.

To detect the dominant dynamics, we first need to embed the SSM in
an appropriate observable space. By following Step 1 in Section 4.2, we
obtain a projectiononto the reduced coordinates, z,whichparameterizes the
SSMwithin the observable space. This allowsus to infer reduced coordinates
whose dynamics approximate the dominant dynamics. These reduced
coordinates are valid because the SSM is guaranteed to be embedded inRo

and SVD of the observables’ decaying trajectories in this space is a good
approximation of the SSM’s spectral subspace. To avoid the curse of delays,
we then reparameterize the SSM in the new observable space, by finding a
parameterization map, w : Rn ! Rp, and chart map, v : Rp ! Rn,
commensurate with our control observable, y 2 Rp,

z ¼ vðyÞ ¼ V>
n y

y ¼ wðzÞ ¼ VnzþWz2:nw ;
ð8Þ

such that v ∘w = In × n and p ≥ n. Since we have inferred valid reduced
coordinates, fitting a parameterization map of the SSM on an observable
space,Rp, of at least the samedimension as the SSM is theoretically justified.

Given the decay data matrix in reduced coordinates, Z obtained from
Step 1 in Section 4.2, we parameterize to the new observables by solving the
following optimization problem

Vn;W ¼ arg min
Vn ;W

Y� VnZ�WZ2:nw
�� ��;

subject to : V>
n Vn ¼ In× n;

V>
n W ¼ 0;

ð9Þ

where our chartmap is givenby z ¼ vðyÞ ¼ V>
n y.We then carryout Steps 2

and 3 in Section 4.2 to obtain our control-calibrated reduced dynamics,
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which we can then use for efficient control synthesis. To solve the
constrained optimization problem in Eq. (9), we restrict Vn to lie on the
Steifel manifold of orthonormal matrices57. We can then use existing
software packages58,59 to numerically solve for the unknown coefficients.

In this work, we adopt a simpler approach, bypassing the need to
formulate a manifold optimization problem. Let us denote �z 2 Rn as the
reduced coordinates inferred from decaying trajectories of the potentially
many time delayed measurements inRo.
1. We fit a parameterization map between our new control observable y

and �z by solving the following unconstrained problem

�Vn; �W ¼ arg min
�Vn ; �W

Y� �Vn
�Z� �W�Z2:nw

��� ���; ð10Þ

where Y is the decay datamatrix of the new control observables and �Z is the
reduced coordinate data matrix computed in Step 1 of Section 4.2.
2. SinceEq. (10) is unconstrained, �Vn need not be orthonormal. Thus, we

scale and rotate �Z to obtain the new reduced coordinatesZ ¼ V>
n
�Vn

�Z,
where the orthonormal matrix Vn 2 Rn× p is obtained by ortho-
normalizing �Vn via Gram-Schmidt and defines the chart map, v, in
Eq. (8).

3. This chart map allows us to define a graph-style parameterization
between the new reduced coordinates, z and the control observables, y,
satisfying the orthogonality constraints in Eq. (9). Specifically, we solve
another unconstrained optimization problem

Vn;W ¼ arg min
Vn ;W

Y� VnZ�WZ2:nw
�� ��; ð11Þ

where V>
n Vn ¼ In × n. The solved coefficients define the parameterization

map, w, in Eq. (8) between the reduced coordinates and our control
observable.

We complete the procedure by conducting Steps 2 and 3 in Section
4.2 to fit the calibrated reduced dynamics in the new reduced coordi-
nates, z. By using this reparameterization trick, we can approximate the
dominant dynamics while overcoming the curse of delays during
control operation.

SSMR-based model predictive control
Model predictive control (MPC) is a modern control strategy based on
optimization that has widespread applications in both industry and aca-
demic settings. Its core concept involves continuously solving finite-hor-
izon, open-loop control problems in real-time. Feedback is implicitly
generated through the application of the initial segment of the optimized
control sequence, followed by the repetition of the real-time optimization
process at subsequent time steps. The advantages of MPC are threefold: (1)
optimization of performance criteria; (2) handles state and input con-
straints; (3) applicable to general nonlinear systems.

MPC is amenable for precise, real-time control when the prediction
model is accurate and sufficiently low-dimensional. By approximating the
dominant dynamics of Eq. (1), SSMR generates faithful, low-dimensional
models that enable real-time MPC designs. To design the MPC, we dis-
cretize Eq. (3) in time and, with slight abuse of notation, formulate the
optimal control problem,

min
u0 ;...;uN�1

k yN � ŷNk2Qf

þ PN�1

k¼0
k yk � ŷkk2Qþ k ukk2R

	 


s:t: z0 ¼ vðy0Þ
zkþ1 ¼ rðzk; ukÞ; k 2 Z½0;N�1�;

yk ¼ wðzkÞ; k 2 Z½0;N�1�;

yk 2 Y; k 2 Z½1;N�;

uk 2 U; k 2 Z½0;N�1�;

ð12Þ

where ŷk is the reference state at time k,N 2 Z is the prediction horizon, Q,
Qf arepositive semi-definitematriceswhichrepresent theobserved state and
terminal costs, while R is a positive-definite matrix that penalizes control
input. The sets Y and U represent state and input constraints, respectively,
that are potentially non-convex.

Intuitively, our MPC makes predictions on the approximated, low-
dimensional SSM. Itfirst infers the reduced state, zk, from the observed state,
yk, at each time-step k via a state estimation step. Then, it predicts the
evolution of the system in the reduced space (i.e tangent space) over the next
N time-steps, and maps back to the approximate manifold to obtain the
observables’ evolution.While (12) is non-convex, we use sequential convex
programming (SCP) to transform the MPC into a sequence of quadratic
programs,which is solved iteratively until convergence.While SCPhas been
shown to be useful in for nonlinear MPC, the computational burden of
computing Jacobians at each solve step necessitates low-dimensional
models. Fortunately, the reduced states in SSMR are low-dimensional,
making (3) possible to solve in real-time. Our SSMR-basedMPC scheme is
outlined in Fig. 2c.

Data Availability
The datasets generated and/or analyzed during the current study have been
deposited in the Open Science Framework repository at https://doi.org/10.
17605/OSF.IO/AMFQ7.

Code availability
• All code for visualizing and reproducing the results presented here is
publicly available in the DominantDynamicsViz repository at https://
github.com/jjalora/DominantDynamicsViz. •All code for generatingSSMR
and SSSR models is publicly available in the SSMR-for-control
repository at https://github.com/jjalora/SSMR-for-control. • All code for
generating DMD, Koopman/EDMD, and Koopman static pregain models
is publicly available in the soft-robot-koopman repository at https://
github.com/jjalora/soft-robot-koopman. • All code for running the model
predictive controller and interfacing with the Simulation Open Framework
Architecture for soft robot simulation is publicly available in the soft-
robot-control repository at https://github.com/StanfordASL/soft-
robot-control.
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