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ABSTRACT

We present a data-driven and interpretable approach for reducing the dimensionality of chaotic systems using spectral submanifolds (SSMs).
Emanating from fixed points or periodic orbits, these SSMs are low-dimensional inertial manifolds containing the chaotic attractor of the
underlying high-dimensional system. The reduced dynamics on the SSMs turn out to predict chaotic dynamics accurately over a few Lya-
punov times and also reproduce long-term statistical features, such as the largest Lyapunov exponents and probability distributions, of the
chaotic attractor. We illustrate this methodology on numerical data sets including delay-embedded Lorenz and Rössler attractors, a nine-
dimensional Lorenz model, a periodically forced Duffing oscillator chain, and the Kuramoto–Sivashinsky equation. We also demonstrate the
predictive power of our approach by constructing an SSM-reduced model from unforced trajectories of a buckling beam and then predicting
its periodically forced chaotic response without using data from the forced beam.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0179741

In high-dimensional systems, inertial manifolds containing the
low-dimensional chaotic attractor play a significant role in
understanding and predicting chaotic behaviors. Such low-
dimensional, attracting inertial manifolds contain the essential
dynamics of the system and, therefore, offer a tool for model
reduction. We construct such inertial manifolds as spectral sub-
manifolds (SSMs) emanating from an unstable steady state and
develop SSM-reduced models on them. SSM-reduced models of
chaotic systems give accurate short-term predictions and simul-
taneously reproduce long-term statistical properties. We fur-
ther demonstrate the predictability of such SSM-reduced models
on several numerical data sets including the delay-embedded
Lorenz and Rössler attractors, forced Duffing oscillator chain,
the Kuramoto–Sivashinsky equation, and a periodically forced
buckling beam.

I. INTRODUCTION

Chaos is ubiquitous in a variety of systems, varying from
the double pendulum to turbulent flows.1–3 Most of these chaotic

systems are high-dimensional but their chaotic dynamics take place
in low-dimensional attractors. The dynamics within these strange
attractors provides an ideal reduced model for the full system, as
long as appropriate localized coordinates can be constructed along
the attractor. This typically requires the construction of a smooth,
low-dimensional manifold into which the attractor is properly
embedded.

Based on Whitney’s4 and Takens’s5 embedding theorems, sev-
eral algorithms have been developed for attractor reconstruction
and for learning appropriate coordinates near those attractors from
delay-embedded data.6–8 In general, a higher embedding dimension
preserves more information at the cost of increasing system dimen-
sionality. To infer the optimal embedding dimension and delay
embedding time lag, using average mutual information (AMI)9 and
the false nearest neighbor (FNN) method10 has become a standard
practice. For high-dimensional time series, the dimensionality of the
measurements is typically higher than that of the intrinsic system
dynamics, requiring dimensional reduction for system identification
and modeling.

For this purpose, it is customary to first perform model
reduction and then fit a low-dimensional chaotic model in the
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reduced space. Frequently used linear model reduction tech-
niques, such as the principal component analysis (PCA)11 or the
dynamic mode decomposition (DMD) and its variants,12 cannot
capture intrinsically non-linearizable phenomena such as chaos. To
counter this limitation, several nonlinear model reduction tech-
niques have been developed, including kernel PCA and local lin-
ear embedding.13,14 Other popular methods for data-driven model
reduction include autoencoders, deep learning, and neural net-
works. These methods aim to extract hidden information with mul-
tiple levels of representation from nonlinear and complex dynam-
ical systems. Various algorithms for black-box models have been
developed, compared, and applied in various fields, including fluid
dynamics and neural science.15,16

To improve the physical interpretability of models produced by
these approaches, previous studies have utilized manifold learning17

or the concept of inertial manifolds.18 Inertial manifolds are smooth,
finite-dimensional invariant manifolds that contain the global
attractor and attract all solutions exponentially. In principle, there-
fore, inertial manifolds are the perfect tool for reducing complex
systems. To utilize this tool, a recent method has been devel-
oped involving training neural networks to learn an atlas of low-
dimensional inertial manifolds in high-dimensional spatiotemporal
chaotic systems,19,20 which show significant promise.

Subsequent to model reduction, modeling chaos in the reduced
coordinates is a further challenge. Such reduced models can be clas-
sified into local models and global models.21,22 Local models focus on
capturing the dynamics within a small region of the state space for
short-term prediction. An example of local chaos modeling is the k-
th nearest neighbor (kNN) method,23 which only relies on neighbor-
ing trajectory information to make forecasts. Although this method
is inherently discrete and contains a large number of parameters, it
has been proven to be practically useful when a significant amount of
data is available.21 In contrast, global models aim to capture the over-
all behavior across the whole phase space. Popular global modeling
techniques include neural ODEs24 and recurrent neural networks,
such as long short-term memory networks (LSTM).25,26 While these
neural network models can make forecasts over short Lyapunov
times and reproduce statistical properties of the system, they often
require a large time domain for training data, extensive parameter
tuning, and trial-and-error model selection.

A data-driven modeling alternative that offers simplicity and
interpretability is the Sparse Identification of Nonlinear Dynami-
cal Systems (SINDy) approach, which applies sparse regression to
fit the right-hand side of a system of ODEs to the time-history
of select observables that are assumed to form a closed, reduced
dynamical system.27 While this methodology has been successful in
several settings,28,29 its results are dependent on the choice of the
selected function library, require an a priori knowledge of a reduced
observable set, and suffer from sensitivity to noise. For increased
interpretability, recent developments combine DMD or SINDy with
physical principles.30,31

In this work, we introduce a data-driven model reduction
method for chaotic dynamics using spectral submanifolds. A spec-
tral submanifold (SSM) is the smoothest nonlinear continuation of
a non-resonant spectral subspace of the linear part of a system at
a stationary state.32 This stationary state can be a fixed point, peri-
odic orbit, or quasiperiodic orbit. SSM-based model reduction has

so far been used in the data-driven modeling of non-linearizable and
deterministic dynamics in mechanical systems.33 SSM-reduction has
also been successfully combined with model-predictive control of
soft robots34,35 and augmented with a multivariate delay-embedding
technique.36 In recent work, the mathematical theory behind SSM-
reduction has been extended to fractional and mixed-mode SSMs,37

with the latter type of SSM also containing unstable modes in
addition to the slowest stable modes.

This paper aims to further extend data-driven SSM-reduction
to chaotic systems. Given an observable space that has a dimen-
sion higher than the Lyapunov dimension of the strange attractor,
we seek to reconstruct a mixed-mode SSM that contains the chaotic
attractor. Such an SSM then constitutes an explicitly constructed,
very low-dimensional inertial manifold that is anchored to a station-
ary state. We illustrate examples that mixed-mode, SSM-reduced
models of chaotic systems give accurate short-term predictions
while they simultaneously reproduce long-term statistical proper-
ties, such as the Lyapunov exponent and probability distribution
density.

II. CHAOTIC ATTRACTORS ON SPECTRAL

SUBMANIFOLDS

A. Spectral submanifold theory

We consider a dynamical system of the form

ẋ = F(x) = A x + f(x), x ∈ R
n, A ∈ R

n×n, f = O(|x|2) ∈ C
∞.
(1)

We assume that A ∈ R
n×n is diagonalizable and x = 0 is a hyper-

bolic fixed point, i.e.,

0 /∈ Re
[

spect(A )
]

, (2)

where spect(A ) = {λ1, λ2, . . . , λn} denotes the spectrum of the lin-
ear part of the dynamics at the origin. We further assume the
following non-resonance conditions within spect(A ):

λj 6=
n

∑

k=1

mkλk, mk ∈ N,

n
∑

k=1

mk ≥ 2, j = 1, . . . , n. (3)

We then select a d-dimensional spectral subspace E ⊂ R
n that

is the direct sum of a family of real eigenspaces of A . Without loss of
generality, we assume that the spectrum of A within E, spect(A |E),
contains p purely real eigenvalues and q pairs of complex conjugate
eigenvalues, where p + 2q = d. After a linear change of coordinates,
the linear part of the system (1) within the spectral subspace E
can be assumed diagonal. We denote the coordinates along the real
eigenvectors by u ∈ R

p and their corresponding Jordan block by

A = diag[λ1, . . . , λp] ∈ R
p×p. (4)

Similarly, we denote the coordinates along the complex conjugate q
pairs of eigenvectors by z ∈ C

q, and their real Jordan block by

Bi =
(

αi ωi

−ωi αi

)

∈ R
2×2, i = 1, . . . , q. (5)

We finally assume that the rest of the spectrum of A out-
side spect(A |E) comprises r purely real eigenvalues and s pairs of
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complex conjugate eigenvalues that correspond to the coordinates

v ∈ R
r, w ∈ C

s, (6)

respectively, within our final set of coordinates (u, z, v, w).
Spectral submanifolds (SSMs) are invariant manifolds W (E)

that serve as nonlinear continuations of a (p + 2q)-dimensional
spectral subspace

E = {(u, z, v, w) : v = 0, w = 0} (7)

of the linearized dynamics at a fixed point. When the linear part
of system (1) is asymptotically stable and the non-resonance con-
ditions (3) hold, then there is a unique, primary W (E) that is as
smooth as the full system.32,38 Recent work by Haller et al.37 extended
this result to general hyperbolic fixed points with general (like-mode
or mixed-mode) spectral subspaces. (Like-mode spectral subspaces
contain only eigenspaces of the same stability type, in contrast to
their mixed-mode counterparts.) In this paper, we focus only on
the unique, C ∞-smooth primary SSMs, W (E), that are tangent to
mixed-mode spectral subspaces E of hyperbolic fixed points.

By the existence theory of such primary SSMs,37 for any posi-
tive integer K ≥ 2, there exists a unique set of coefficients stored
in a matrix G such that in the (u, z, v, w) coordinates introduced
above, the SSM, W (E), tangent to a spectral subspace E can locally
be written near x = 0 as a C ∞ graph over the (u, z) variables

(v, w)T = G (u, z) = G · (u, z, z)1:K + O
(

|(u, z)|K
)

,

(8)

G = [G1, G2, . . . , GK ] ∈ C
(n−d)×

∑

K

k=1
dk , Gk ∈ C

(n−d)×dk .

Here, the superscript (·)l:r denotes a vector of all monomials
of the variables listed in (·) from order l to order r and dk is the
total number of d-variate monomials composed of those variables
at order k. For instance, if p = 2, q = 0 in Eqs. (4) and (5), and the
polynomial order we select to approximate the SSM is K = 3, then
we have (u, z, z) = [u1, u2]

T, d2 = 3 and d3 = 4, generating the set of
monomials

(u, z, z)2:3 =
[

u2
1, u1u2, u

2
2, u

3
1, u

2
1u2, u1u

2
2, u

3
2

]T
, (9)

and the coefficient matrix G2:3 ∈ R
(n−2)×(3+4) is real.

The reduced dynamics on the SSM, W (E), are given by

(

u̇
ż

)

=











A 0 0 0
0 B1 0 0

0 0
. . . 0

0 0 0 Bq











(

u
z

)

+ f u,z(u, z, G (u, z)), (10)

where f u,z denotes the (u, z) coordinate component of f =
(

f u,z,

f v, fw
)

.
The open source MATLAB software SSMTool39 can compute a

Taylor series approximation of the SSM, W (E), up to any required
order when system (1) is explicitly known. When system (1) is only
known from data, then the open source SSMLearn38 algorithm can
approximate W (E) purely from observed trajectories.

B. SSM reconstruction via delay embedding

In practice, physical systems in which all state variables can
be simultaneously monitored are rare. This necessitates the use
of invariant manifold reconstruction methods relying only on a
limited number of observables. Specifically, using the Takens delay-
embedding theorem,5,40 it is possible to embed an invariant manifold
of dimension d in the space of 2d + 1 (or higher) time-shifted sam-
ples of a single, generic scalar observable. Recently, Ref. 36 discussed
the use of delay embedding to recover specifically SSMs and their
tangent spaces in such observable spaces.

To recall this methodology, we let W be a d-dimensional
spectral submanifold of (1) and denote the reduced dynamics on
W by η̇ = R(η), η ∈ R

d, which generates the reduced flow map
Rt : η0 7→ η(t, η0). Then, there exists a smooth SSM parametriza-
tion M : R

d 7→ R
n, such that the reduced flow map Rt is conjugate

to the restriction of the full flow map Ft : R
n 7→ R

n of system (1) to
W ⊂ R

n,

Ft ◦ M = M ◦ Rt. (11)

We then consider time-resolved, scalar-valued observations
s(t) = ζ(x(t)) of system (1) from a generic observable ζ : R

n 7→ R.
We define a delay coordinate map with m delays: 9 : R

n 7→ R
m

by stacking m subsequent entries of the time series s(t), sampled
uniformly in time with sampling time Ts, in a vector

y(t) = 9(x(t)) = [s(t), s(t + Ts), . . . , s(t + (m − 1)Ts)]
T ∈ R

m.
(12)

The map 9 is thus a mapping from the phase space of
system (1) to the delay-embedded space R

m. Let F9 : R
m 7→ R

m be
the flow map induced by the flow of system (1) on this delay embed-
ding space. By construction, if the observation map ζ maps 0 to 0,
the x = 0 equilibrium point of system (1) is mapped into a fixed
point y = 0, i.e., F9(0) = 0. According to the Takens embedding
theorem,5,40 for a generic observable function ζ and under certain
nondegeneracy conditions on the sampling time Ts, if m > 2d, then
the delay coordinate map 9 restricted to W provides an embedding

of W into R
m. As a consequence, W̃ = 9(W ) is diffeomorphic to

the manifold W .
The delay-embedded dynamics F9 on W̃ and the reduced

dynamics restricted to the invariant manifold W are conjugate, i.e.,

F9 ◦ 9 = 9 ◦ Ft|W , (13)

which provides the theoretical basis for identifying an SSM attached
to the y = 0 origin of the m-dimensional delay-embedding space.

For dynamical systems with (generally non-smooth) global
attractors, inertial manifolds have been defined as finite-
dimensional, forward-invariant manifolds that are at least Lipschitz
and contain the global attractor.18,41 Therefore, attracting SSMs with
an attractor in their reduced dynamics function as inertial mani-
folds, at least locally near a stationary state. If the attractor within the
SSM is globally unique, then an SSM is, in fact, an inertial manifold.
Unlike general inertial manifolds, however, SSMs can be precisely
located and computed up to arbitrary order of accuracy, which
makes them the perfect tools for a mathematically precise reduction
of high-dimensional systems to very low-dimensional models.
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In order to contain the attractor, the dimension of the SSM
should be larger than the Hausdorff dimension of the attractor.42

In a data-driven setting with no prior information on the attractor
dimension, the necessary embedding dimension is often estimated
via the false nearest neighbors (FNN) method.1,43 This method is
based on the idea that if the embedding dimension is too low,
neighboring points in the embedding space may appear closer than
they actually are, leading to false neighbors. Specifically, the FNN
algorithm examines data points in the delay-embedding space and
checks if they are indeed close to each other in all directions.
The percentage of the false nearest neighbors goes down when the
embedding dimension is increased. When the percentage becomes
lower than a predefined value, the data disentangle in the embedding
space, thus giving a correct approximation for the attractor dimen-
sion. The SSMs we construct will have a dimension of d that is at
least as large as the estimate obtained from the FNN algorithm.

III. LEARNING SPECTRAL SUBMANIFOLDS FROM DATA

According to the SSM theory discussed in Sec. II A, the pri-
mary SSM, W (E), tangent to the spectral subspace E at the origin,
can locally be written as a polynomial expansion over E. The open
source MATLAB and Python implementations of SSMLearn44 com-
pute the SSM parametrization and its reduced dynamics purely from
observed data.33,38 In this section, we discuss the computation of the
SSM-reduced dynamics and predictions from such reduced models
of the full system dynamics.

A. Data-driven SSM-based dimensionality reduction

To provide a clearer explanation, in this section, we only con-
sider q = 0, i.e., the chosen spectral subspace E only contains p real
eigenvalues. Our procedure, however, extends directly to spectral
subspaces with complex eigenvalues, such as those arising in Ref. 37.
The applications of numerical datasets in Sec. IV contain examples
with general choices of spectral subspaces, i.e., with both q = 0 and
q 6= 0.

Let the coordinate y ∈ R
ρ denote data obtained from system

(1) either via direct observations or delay-embedding (see Sec. II B).
Also, let η ∈ R

d denote coordinates along the corresponding spec-
tral subspace E of D9(E), respectively. As a graph over this spectral
subspace, the embedded SSM can be approximated by a polyno-
mial expansion. According to the C ∞ version of the SSM theory
outlined in Sec. II A, for any positive integer order K ≥ 2, the
coefficients of this polynomial expansion are unique. We, there-
fore, seek a parametrization M : R

d 7→ R
ρ of the embedded SSM,

W̃ (E) ⊂ R
ρ , as a K -th order polynomial in the form

M(η) = Vη1:K = V1η + V2:K η2:K ,
(14)

V = [V1, V2, . . . , VK ] ∈ R
ρ×

∑

K

k=1
dk , Vk ∈ R

ρ×dk ,

with the reduced coordinates η = VT
1 y, where the matrix V1 ∈ R

ρ×d

has orthonormal columns that span the tangent space of the mani-

fold W̃ (E) ⊂ R
ρ at y = 0.

To find the constant in the above parametrization from data,
we use SSMLearn to solve the constrained minimization problem

V∗ =
[

V∗
1 , V∗

2:K

]

= arg min
V1 ,V2:K

∑

j

∥

∥

∥
yj − V1V

T
1 yj − V2:K η2:K

∥

∥

∥
,

(15)

VT
1 V1 = I, VT

1 V2:K = 0,

where the last constraint represents a basic nonlinear extension of
the principal component analysis.

To quantify the accuracy of this SSM approximation, we define
the invariance error as follows. From a specific observation yi 6= 0,
we compute the corresponding reduced coordinate ηi = VT

1 yi as the
projection of yi onto the tangent space V1. By lifting ηi to the full
embedding space via the manifold parametrization (14) and com-
paring it with the original data point yi, we obtain a measurement
of the manifold fitting accuracy for a given choice of the approxima-
tion order K . For a total of P observations, we denote the lifted data
points by M(η) = M(VT

1 yi) and define the normalized invariance
error as

Invariance Error =
1

||y||
1

P

P
∑

i=1

||yi − M(VT
1 yi)||, ||y|| = max

i
||yi||.

(16)

A larger manifold parametrization order K will generally decrease
the invariance error, but excessively large K values will lead to
overfitting. In the examples from this paper, K is often chosen at
the local minimum of the invariance error. The value of the invari-
ance error depends on specific problems but keeping it below 0.5%
suffices in our experience.

B. Prediction from SSM-reduced order models

We obtain a model from the reduced dynamics on the SSM by
fitting the right-hand side of an ODE to the numerically determined,
SSM-reduced vector field in the reduced coordinates. In this paper,
we employ two alternative approximations for the reduced dynamics
models: a polynomial fit and a nearest neighbor interpolation.

In our first prediction method, we approximate the reduced
dynamics in the form

η̇ = R1η + R2:K η2:K , (17)

where the coefficient matrix R = [R1, R2:K ] ∈ R
d×

∑

K

k=1
dk is obtained

via regression as

R∗ = arg min
R

∑

j

||η̇j − Rη1:K
j ||. (18)

We then diagonalize the linear part of the reduced dynamics
(17) by a linear transformation ξ = W−1η, where ξ ∈ R

d denotes
modal coordinates and W ∈ R

d×d is the matrix of the eigenvectors
of R1. In those new coordinates, the ODE (17) becomes

ξ̇ = 3ξ + N2:K ξ 2:K , (19)

where 3 ∈ R
d×d is a diagonal matrix containing the eigenvalues of

R∗, and N2:K ∈ R
d×

∑

K

k=2
dk is the coefficient matrix of nonlinear

monomials of ξ from order 2 to K . The coefficient matrix N2:K
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can be specified via a recursive sequence of normal form transforma-
tions that preserve the dynamics, as explained in Ref. 38. Here, we do
not perform this step because subsequent normal form transforma-
tions are generally defined on increasingly smaller neighborhoods of
y = 0. This would limit our ability to capture larger-sized attractors
on the SSM.

A global polynomial representation of the reduced dynamics
may require very high-order polynomials, and yet fail to reproduce
the chaotic dynamics.21 Also, the lack of training data outside of the
attractor may lead to limited data structures in monomial spaces,
which makes it difficult to fit a globally stable polynomial model to
vector fields with chaotic trajectories. As an alternative, for compli-
cated strange attractors, we turn to the simplest and earliest method
of local forecasting:45,46 we fit maps locally to data points, and then
use the resulting collection of local polynomials to form a global
model.

This idea brings us to our second prediction method, the
local k-th nearest neighbor (kNN) approach. The kNN prediction
method23,47 identifies the k nearest neighbors in the training data
set and then, by using various interpolation or regression methods,
makes local predictions based on those neighbors.48 This method is
suitable for predicting highly nonlinear or even chaotic behavior.49

In this paper, for a prediction based at a point η, we first search for
its k-th nearest neighbor ηj, j = 1, . . . , k in the training data set that
minimizes the Euclidean norm ‖η − ηj‖2. We then use a zeroth-
order linear fit to give the prediction η∗ at the next time step, i.e.,
define the weight wj as

wj =
‖η − ηj‖2

∑k
j=1 ‖η − ηj‖2

(20)

and take the weighted sum

η∗ =
k

∑

j=1

wj‖η − ηj‖2. (21)

Although the kNN method, like other local chaos prediction
methods, has the limitation of discontinuities, large numbers of
adjustable parameters, and the ability to predict only within the
training data range, as long as the training data is sufficiently dense
on the attractor, the method still has good predictive power.

In this paper, we only use polynomial regression and the kNN
method to fit the reduced dynamics. After obtaining the data sets
in reduced coordinates, however, it is also possible to combine
SSM-based model reduction with other forecasting techniques. We
discuss this further in the Conclusions.

C. Reconstruction criteria

For non-chaotic dynamics, the prediction errors from SSM-
reduced models are quantified by the normalized mean-trajectory-
error (NMTE),38 which is the normalized difference between the
test trajectory and the predicted trajectory. Chaotic dynamics, how-
ever, have sensitive dependence on initial conditions, which implies
that the predictions for individual trajectories will invariably fail
for longer times. Indeed, even a well-constructed reduced model
can only be expected to capture statistical measures of the chaotic
dynamics in long-term predictions. Accordingly, in this paper, we

will evaluate the ability of SSM-reduced models to reproduce both
the Lyapunov exponent and the probability density distribution of
the attractors.

First, we consider the Lyapunov characteristic exponents,50,51

the most often used indicators of chaotic flows. Let x(t; x0) denote a
trajectory of system (1) starting from the initial condition x0 at t = 0.
An initial perturbation ε(0) = ε0 to x0 will evolve along x(t; x0) as
εt = 8(t; x0)ε0, where 8(t; x0) is the fundamental matrix solution
of the linearized system (1) along the trajectory x(t; x0). The maxi-
mal exponential rate of expansion along x(t; x0) is then the maximal
Lyapunov exponent (MLE)

λmax(x0) = lim
t→∞

1

2t
log λmax

[

8T(t; x0)8(t; x0)
]

, (22)

if the limit exists.
As the maximum rate of separation of nearby trajectories,

λmax(x0) defines a local measure of predictability for a dynami-
cal system. The Lyapunov exponents are independent of the initial
condition x0 and depend only on the trajectory x(t; x0). If x(t; x0)

is contained in a chaotic (or strange) attractor, then λmax(x0) is
constant for almost all trajectories along the attractor.52

One way to approximate λmax(x0) is to compute the expo-
nent of the rate at which trajectories from nearby initial conditions
diverge from the trajectory x(t; x0), i.e., calculate

λ(t; x0, ε0) = log
|x(t; x0 + ε0) − x(t; x0)|

|ε0|
(23)

for a randomly chosen initial perturbation ε0 to x0 and for large
enough times t. For a chaotic system, λ(t; x0, ε0) is approximately
a linear function of time.53 When a good linear fit to λ(t; x0, ε0) is
not possible, the system is generally not chaotic.54 While λ(t; x0, ε0)/t
depends on the initial condition x0 and the perturbation ε0, this ratio
will converge to λmax(x0) for generic choices of x0 and ε0.52 Based on
this observation, we randomly pick two nearby initial conditions on
chaotic attractors and use a linear fit to their temporal separation
rate to estimate the Lyapunov exponent λmax of the attractor.

A related measure of predictability is the Lyapunov time,
defined as the reciprocal of λmax of the attractor,55 i.e.,

Lyapunov Time =
1

λmax

. (24)

This quantity gives the characteristic time scale of chaotic dynamics.
We call a prediction a short-time prediction if it is carried out over
times that are low-order multiples of the Lyapunov time.

Along with the Lyapunov exponent, the probability density56,57

is also an invariant property of attractors and hence is often
used for comparisons between the original and modeled chaotic
attractors.58,59 If a chaotic attractor contains the orbit x(t), its proba-
bility measure σ is defined as the asymptotic average of Dirac deltas
along x(t),60 i.e.,

σ = lim
T→∞

1

T

∫ T

0

δx(t)dt, (25)

where the integral of δx(t) over the entire trajectory is equal to one.
On a chaotic attractor, the invariant measure σ is indepen-

dent of the initial conditions. To approximate the probability density
of the chaotic attractors, we will take a sampling time that is long
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enough for σ to converge. Along each axis of the system, we can
either count the number of data points between intervals and plot
the histogram or estimate the probability distribution σ based on
a normal kernel function.22 In our examples, we will compare the
probability density of the original data points with those of the
predictions made by SSM-reduced model using the same kernel
function. The closeness of the two plots indicates how statistically
accurate our long-term SSM-based predictions are.

In summary, we will test SSM-based prediction quality for short
times via trajectory error calculations and for long times via Lya-
punov exponent and probability density distribution calculations.

IV. APPLICATIONS TO CHAOTIC SYSTEMS

In this section, we perform SSM-based model reduction on four
numerical data sets containing chaotic attractors.

In our first two examples, we observe only a scalar time series
and delay-embed an SSM containing the attractor. In our subse-
quent examples, we assume that all phase space variables can be fully
observed. For the first delay-embedded Lorenz attractor, we use a
global polynomial representation for the reduced dynamics. For the
other examples, we adopt the kNN nearest neighbor approach.

For autonomous ODE examples, the SSM-reduction outlined
in Sec. II A will be directly applicable. We also explore one non-
autonomous (time-periodic) ODE example in Sec. IV C, where we
will carry out the discrete version of the same procedure for the
Poincaré map of the system. Specifically, we perform model reduc-
tion on the Poincaré map, identifying an SSM emanating from its
unstable fixed point.

We further include the example of the delay-embedded Rössler
attractor in Sec. IV D, in which the SSM is attached to the unstable
subspace corresponding to a complex conjugate pair of eigenval-
ues. The applications of SSM-based model reduction range from
classic chaotic attractors to low-dimensional attractors in high-
dimensional systems, such as the Kuramoto–Sivashinski equation in
Sec. IV E and the finite element beam model in Sec. IV F.

A. Delay-embedded Lorenz attractor

As our first example, we consider the Lorenz model61

ẋ = σ(y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz,

(26)

with the classic parameter values σ = 10, ρ = 28, and β = 8/3. This
system has an unstable fixed point at (x, y, z) = 0 and hence falls in
the setting of this paper. We will only use a single scalar signal in our
analysis and hence our methodology is fully unaware of the dimen-
sion and form of the ODE (26). As an SSM containing a chaotic
attractor must be at least three-dimensional, Takens’s theorem guar-
antees success (with probability one) in embedding the SSM in an
at least seven-dimensional space. We then seek to reconstruct the
Lorenz attractor within the 3D SSM.

To compare the SSM-reduced model results with the broadly
used SINDy algorithm mentioned in the Introduction, we will adopt
the same setting as in the MATLAB code given by Brunton et al.27

Accordingly, we will observe only the x coordinate of system (26) to
generate a scalar observable time series. We generate two trajectories
(one for training and the other for testing) over the interval (0, 100)
with a time step of 0.001. The test data starts with the classic initial
condition (−8, 8, 27)T, while the initial condition of the training data
is slightly separated (−8, 8, 27 + ε)T, where ε = 10−9. After truncat-
ing the data over the first short period of the time interval (0, 1),
each of these two individual trajectories lies on the low-dimensional
attractor of system (26).

We use FNN to estimate the dimension d of the SSM that pre-
vails in the data. The different choices of model reduction parame-
ters and corresponding manifold fitting results are shown in Table I.
The high FNN percentage, 31.4%, in the first row of Table I indi-
cates that the SSM containing the strange attractor has a dimension
higher than two. This prompts us to select the SSM dimension as
d = 3, Based on the Takens embedding theorem, a 3D SSM can
generically be delay-embedded in a ρ = 2 × d + 1 = 7 dimensional
space. Table I shows the accuracy of SSM reconstruction in this
setting under different polynomial approximation orders for the
3D SSM.

In delayed coordinates, the origin is a fixed point corre-
sponding to the origin of system (26). We therefore seek a 3D
SSM attached to the origin in the seven-dimensional embedding
space and determine the reduced dynamics on that SSM. By com-
puting the normalized invariance error defined in Eq. (16) and
identifying its minimum, we choose the order K = 3 for the
polynomial expansion for the SSM. We find that the 3D reduced
dynamics on the SSM does admit a chaotic attractor, as shown
in Fig. 1.

In the modal coordinates (19) that diagonalize the linear part
of the SSM-reduced dynamics, we obtain the polynomial reduced-
order model on the 3D SSM in the form

u̇ = −11.0194u − 0.0001u2 − 0.0005uv − 0.0025uw − 0.0005v2 + 0.0026w2 + 0.0317u3 + 0.0622u2v − 0.0011u2w

+ 0.0421uv2 + 0.0102uvw − 0.0143uw2 + 0.0058v3 + 0.0235v2w − 0.0349vw2 + 0.0108w3,

v̇ = −2.3859v + 0.0036uw + 0.0002v2 + 0.0006vw − 0.0025w2 − 0.0273u3 − 0.0550u2v − 0.0001u2w − 0.0391uv2 − 0.0096uvw

+ 0.0117uw2 − 0.0059v3 − 0.0231v2w + 0.0357vw2 − 0.0131w3, (27)

ẇ = +9.3871w − 0.0001u2 − 0.0004uv + 0.0032uw + 0.0009vw − 0.0016w2 − 0.0144u3 − 0.0303u2v − 0.0001u2w − 0.0233uv2

− 0.0054uvw + 0.0058uw2 − 0.0041v3 − 0.0147v2w + 0.0246vw2 − 0.0112w3.
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TABLE I. Different choices of SSM dimension, false nearest neighbor percentage

(FNN), order of manifold parametrization, and the corresponding invariance error. Due

to the high FNN percentage for d= 2, we did not compute an SSM approximation for

that case.

SSM dimension (d) 2 3 3 3
FNN percentage 31.4% 0.0% 0.0% 0.0%
Delay embedding dimension (ρ) 5 7 7 7
Manifold expansion order (K ) . . . 2 3 4
Invariance Error . . . 3.85% 1.25% 1.45%

One might wonder what we have achieved here, given that sys-
tem (27) is substantially more complicated than the original system
(26) and has the same dimension as that system. One should not
forget, however, that the input to our procedure was a single scalar
observable and we used no information about the dimension or the
form of the Lorenz system (26). The procedure we follow here is
the same for any system that is only known from a scalar observable.
This procedure will generally yield a smooth manifold, the SSM, that
contains the attractor of the system.

With the SSM-reduced model, we can now make predictions
for test trajectories not used in constructing this model, and com-
pare it with predictions obtained from the SINDy algorithm. From
the same training data, SINDy27 constructs a Hankel matrix by stack-
ing 10 delayed time series as rows, and uses singular value decom-
position (SVD) to select the first three dominant modes in these
time-delay coordinates. Each column of the data is then trained
with a different sparsification parameter (λSINDy = 0.01, 0.2, 2) to fit
a third-order polynomial right-hand side of an ODE to the data.

Figure 2 shows the comparison of both short- and long-term
predictions from SINDy and SSM reduction. Both methods are able

FIG. 1. Reconstruction and prediction results of Lorenz attractor in 3D.
The inertial manifold is reconstructed by observing only x coordinate as a scalar
time serie, delay embedded into 7D, and performing model reduction to 3D.
Dynamics on SSM is represented by a fifth-order polynomial.

to forecast for short times but our approach shows a more accurate
result [Figs. 2(a) and 2(b)]. We then perform a Lyapunov analysis by
plotting the separation of two trajectories against time in a log plot
in Fig. 2(c). The predictions given by SSMLEARN admit a clear linear
fit which indicates our model is chaotic, while the trajectories recon-
structed by SINDy are not chaotic. Indeed, as noted in Sec. 4.5 in the
Appendix of Ref. 27, although the skeleton of the Lorenz attractor is
captured by SINDy, the attractor is reconstructed as a non-chaotic,
quasi-periodic orbit. In contrast, the Lyapunov exponent from the
SSM-based model (27) is 0.89, which is very close to the real value of
0.90 computed directly from the Lorenz system (26).

B. A nine-dimensional Lorenz model

We consider a 3D viscous fluid layer that is uniformly heated
from below, and let t and r be the time and space variables. The
density field ρ(r, t) describes the mass distribution of the fluid, and
the physical state is determined by the pressure p(r, t), the temper-
ature T(r, t), and the velocity field v(r, t). The dynamic behavior is
governed by three nonlinear PDEs, namely, the equation of con-
tinuity, the Navier–Stokes equation, and the equation of thermal
conductivity

∂v

∂t
+ (v · ∇)v =

ρ

ρ0

g −
1

ρ0

∇p + ν∇2v, div v = 0,

∂T

∂t
+ (v · ∇)T = χ∇2T,

(28)

where g = (0, 0, −g) denotes the vector of gravity, ρ0 is the stan-
dard density, ν is the kinematic viscosity, and χ is the thermal
conductivity.

Lorenz applied a double Fourier expansion in deriving his
3D governing equation (26) in Ref. 61. Reference 62 applied a
similar approach but extended the double Fourier expansion to
triple expansion. After truncation and selection of the leading-
order-terms in the expansion, Ref. 62 obtains the nine-dimensional
ODE

Ċ1 = −σb1C1 − C2C4 + b4C
2
4 + b3C3C5 − σb2C7,

Ċ2 = −σC2 + C1C4 − C2C5 + C4C5 −
σ

2
C9,

Ċ3 = −σb1C3 + C2C4 − b4C
2
2 − b3C1C5 + σb2C8,

Ċ4 = −σC4 + C2C3 − C2C5 + C4C5 +
σ

2
C9,

Ċ5 = −σb5C5 +
1

2
C2

2 −
1

2
C2

4,

Ċ6 = −b6C6 + C2C9 − C4C9,

Ċ7 = −b1C7 − rC1 + 2C5C8 − C4C9,

Ċ8 = −b1C8 + rC3 − 2C5C7 + C2C9,

Ċ9 = −C9 − rC2 + rC4 − 2C2C6 + 2C4C6 + C4C7 − C2C8,

(29)

where σ is the Prandtl number, r is the Rayleigh number, and the
constant parameters bi represent a measure of the geometry of the
square cell.
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FIG. 2. Time series forecasting results for delay-embedded Lorenz attractor, and its reconstructed Lyapunov exponent. Subplots (a) and (b) show more accurate predictions
from SSM-reduction than from SINDy over approximately 2.97 Lyapunov times (NMTE less than 0.1). Subplot (c) plots the separation of nearby trajectories against time.
The red prediction made by the SINDy model has the maximal Lyapunov exponent 0.23 compared with the real MLE 0.90 of system (26). A blue linear fit to the SSM prediction
confirms that trajectories separate exponentially, and the system is chaotic with the maximal Lyapunov exponent 0.89. At the same time, the red prediction made by SINDy
suggests that the system is not chaotic.

Depending on r and σ , the dynamics can be stationary, peri-
odic, chaotic, or hyperchaotic, with the latter referring to the case
wherein multiple positive Lyapunov exponents exist. For certain
parameters, four symmetric low-dimensional chaotic attractors are
observed in system (29). From Ref. 62, we choose the system param-
eters as

σ =
1

2
, r = 14.2, a =

1

2
,

b1 =
4(1 + a2)

1 + 2a2
, b2 =

1 + 2a2

2(1 + a2)
, b3 =

2(1 − a2)

1 + a2
, (30)

b4 =
a2

1 + a2
, b5 =

8a2

1 + 2a2
, b6 =

4

1 + 2a2
.

The origin is a fixed point of system (29) with the eigenval-
ues listed in Table II. As in our previous example, no information
about these eigenvalues will be used in our data-driven SSM reduc-
tion; we only list these eigenvalues for reference. Note that the 1:1
resonances between λ2 and λ3 and between λ8 and λ9 do not violate
the non-resonance condition (3). There is also a 5th-order resonance
between λ4, λ5, and λ6, which violate Eq. (3). However, as earlier
work on SSMs shows,32,38 a polynomial expansion for an SSM, W (E),
can still be computed as long as the linearized spectrum within E
does not contain λ4, λ5, and λ6. We will choose E in this fashion.

As in the 3D Lorenz example, we observe only the C1 coor-
dinate of system (29) as a scalar time series and delay-embed the
signal. We generate two random initial conditions (one for train-
ing and the other for testing) within the unit sphere of the origin in
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TABLE II. Eigenvalues of the 9D Lorenz attarctor.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

1.9263 −0.2741 −0.2741 −0.5000 −0.6667 −2.6667 −3.4263 −4.7259 −4.7259

the 9D phase space and observe the first coordinate C1. We then
select and truncate the trajectories to make them lie close to one
of the four symmetric strange attractors. Assuming no knowledge
of the original system or the dimension of the chaotic attractor, we
again use FNN to estimate the dimension d of the SSM and pick
d = 3 according to the false neighbor percentage in Table III. By the
Takens embedding theorem, we delay-embed this 3D SSM into a
ρ = 2 × d + 1 = 7 dimensional space. The training and testing tra-
jectories in this seven-dimensional delay-embedded space are shown
in Fig. 3.

Using SSMLearn, we approximate a 3D SSM attached to the
origin of the 7D delay-embedded space. We minimize the invari-
ance error over different choices of SSM dimension and polynomial
approximation orders. As shown in Table III, these considera-
tions lead us to construct a 3D SSM via a sixth-order polynomial
expansion. This construct produces an invariance error of order
0.05%, which is low enough to guarantee high accuracy for our
SSM-reduced model.

In the reduced coordinates, we find that a polynomial repre-
sentation of the SSM-reduced dynamics fails to capture the complex
dynamics with sufficient accuracy. Instead, we turn to the k-th near-
est neighbor method discussed in Sec. III B. The number of neigh-
bors in kNN algorithm is often chosen to be larger than the data
dimension.23 Here, we select k = 4 and perform the kNN method
on a training set containing 1.5 × 106 data points. Note here that the
training data for SSM fitting (105 points) is in general much less than
the number of points required for reduced dynamics fitting. This is
because the kNN prediction algorithm requires data to fully cover

FIG. 3. The chaotic attractor of the 9D Lorenz model (29) in the 7D delay-
embedded space, projected onto the coordinates y1, y3, and y7.

the attractor in its phase space. Figure 4(a) shows the prediction
results from this nearest neighbor method. Since chaotic dynamics
have sensitive dependence on initial conditions, the forecast is only
accurate for 5.94 Lyapunov times.

We attempted to perform the SINDy algorithm on the same
training data to identify a seven-dimensional SINDy model and
compare it to SSM-reduced model prediction results. We tested sev-
eral combinations of different model orders (from two to six) and
sparsity parameters (λSINDy = 0.0001 to 0.1). We also tried to follow
the SINDy tutorial for63 to tune the hyperparameter λSINDy by mini-
mizing RMSE of predicted trajectories for different choices of λSINDy.
However, the resulting SINDy models do not contain a global attrac-
tor in general, and their solutions tend to blow up after some time of
integration. As an example, Fig. 4 shows results from a third-order
SINDy model with λSINDy = 0.001. One could also try to set different
sparsity parameters for each coordinate, as for the delay-embedded
Lorenz example in Ref. 27, but we did not pursue that exploration
here.

To test the statistical properties of the SSM-reduced model, we
further compute the NMTE and Lyapunov exponent of 200 pieces
of the test trajectory whose initial conditions are not contained in
the training data. After adding a small perturbation, we plot the
deviation of the original and the predicted model trajectory against
time on a log scale. For 200 trajectories of the original system (29),
this analysis yields the Lyapunov exponent 0.032 as the mean of the
observed separation exponents. Remarkably, this exponent is closely
approximated by the value 0.033 yielded by our SSM-reduced model
in Fig. 5(b).

C. Duffing oscillator chain

We now consider the classic forced-damped Duffing
oscillator64 given by

ẍ + δẋ + αx + βx3 = γ cos ωt, (31)

where δ, α, β , and γ are the coefficients for damping, linear stiffness,
nonlinear stiffness, and forcing amplitude, respectively. We use this
nonlinear oscillator as the third element in an otherwise linear chain
of oscillators, as shown in Fig. 6. We denote the displacement of the
i-th degree of freedom by the coordinate xi. We then apply periodic
forcing along x3 as illustrated in Fig. 6.

We choose the third mass as m3 = 1 kg and the remain-
ing mass as m1 = m2 = m4 = 0.1 kg each; the third linear damp-
ing coefficient attached to the ground is c3 = 0.1 N s/m; the other
damping coefficients are c1 = c2 = c3 = c4 = 0.75 N·s/m. The lin-
ear spring stiffness is k = 1 N/m and the third nonlinear spring
has the force relation F3(x3) = k3x3 + βx3

3, where k3 = 3 N/m and
β = −0.25 N/m3. The periodic forcing that acts on the Duffing
oscillator has an amplitude of 2.25 N and a frequency of 2 rad/s. The
resulting equations of motion is given by a system of second-order
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TABLE III. Different choices of SSM dimension, false nearest neighbor percentage (FNN), order of manifold parametrization, and the corresponding invariance error of the

delay-embedded 9D Lorenz model. Due to the high FNN percentage for d= 2, we did not compute an SSM approximation for that case.

SSM dimension (d) 2 3 3 3 3 3 3
FNN percentage 41.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Delay embedding dimension (ρ) 5 7 7 7 7 7 7
Manifold expansion order (K ) . . . 2 3 4 5 6 7
Invariance Error . . . 2.24% 0.59% 0.22% 0.09% 0.05% 0.04%

FIG. 4. Trajectory prediction in the time domain [plot (a)] and in the delay-embedding space [plot (b)] from the reduced models for an initial condition not contained in the
training data. The length of the SSM prediction (blue) interval is approximately 5.94 Lyapunov times, while the SINDy model (red) fails for trajectory integration at around 1.82
Lyapunov times. We obtain the prediction of the SSM-reduced model by making predictions on 3D reduced coordinates using the kNN method, then projecting the trajectory
back in 7D delay-embedded space. The training set contains 1.5 × 106 points.

FIG. 5. Trajectory prediction error (a) and the Lyapunov exponent analysis (b) on test data of the 3D SSM-reduced model. We compute the time average of the NMTE and
the nearby trajectory separation rate over 200 test trajectories but only plot 20 of them in this figure. The average trajectory separation rate of system (29) is 0.032, which is
closely approximated by the mean Lyapunov exponent 0.033 computed from subplot (b) of the SSM-reduced model.
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FIG. 6. Forced harmonic oscillator chain with a single Duffing oscillator added.
We apply periodic forcing to this Duffing oscillator.

ODEs of the form

0.1ẍ1 + 0.75ẋ1 + 2x1 − x2 = 0,

0.1ẍ2 + 0.75ẋ2 − x1 + 2x2 − x3 = 0,
(32)

ẍ3 + 0.1ẋ3 − x2 − x3 − x4 + 0.25x3
3 = 2.25 cos 2t,

0.1ẍ4 + 0.75ẋ4 − x3 + 3x4 = 0.

When written in first-order form, these equations define an
eight-dimensional, non-autonomous dynamical system. For the
autonomous part of the dynamics, the origin is an unstable fixed
point. This unstable equilibrium has eight eigenvalues, as listed in
Table IV. Again, these are listed only for reference and will not be
used in our SSM construction.

When we add the periodic forcing term to the autonomous
part of the equation, the unstable fixed point at the origin bifur-
cates into an unstable periodic orbit. As long as the amplitude of the
time-dependent term in system (32) is moderate, the correspond-
ing T = π-periodic Poincaré map will also have an unstable fixed
point. This hyperbolic fixed point is the anchor point for our SSM
computation. Our strategy will be to locate an SSM for this map
that contains an observed chaotic attractor of the system. As in our
previous examples, this SSM will act as an inertial manifold whose
restricted dynamics provide a reduced model for the dynamics on
and near the attractor. The corresponding geometry is illustrated in
Fig. 7.

For the eight-dimensional chaotic system (32), we consider all
eight degrees of freedom as observables. We select seven initial con-
ditions (six for training and one for testing) randomly within the
unit sphere around the origin and generate the corresponding tra-
jectories for 105 times the forcing period. We track the evolution
of the origin under increasing forcing amplitude into a hyperbolic
periodic orbit using the numerical continuation package COCO.65 In
Fig. 8(a), we plot the coordinates x3 and ẋ3 for the original continu-
ous dynamics in blue, and the unstable periodic orbit computed by
COCO in red. When we pass to the Poincaré map, the continuous
orbits become discrete dots in the Poincaré section as in Fig. 8(b).

FIG. 7. SSM construction for the Poincarémap of system (32) in the phase space.

Based on the theory of mixed-mode SSMs,37
SSMLearn computes

a polynomial expansion for an SSM attached to the hyperbolic fixed
point [red dot in Fig. 8(b)]. Note that our construct relies on the exis-
tence of the hyperbolic fixed point, which we compute using COCO
from system (32). However, even when the exact location of this
anchor point is not known, SSMLearn can still provide an approx-
imation for the SSM automatically by regressing a manifold (with
the addition of constant terms in its parameterization) to the avail-
able data. The location of the fixed point itself will then follow as a
prediction from the SSM-reduced dynamics.

As in the previous examples, we use the invariance error as a
criterion for determining the correct SSM dimension. Table V shows
different invariance errors obtained for different choices of SSM
dimension and expansion order. Based on these results, we choose a
3D SSM construction via a seventh-order polynomial expansion.

After obtaining reduced coordinates on the 3D SSM, we again
use the kNN algorithm discussed in Sec. III B to reconstruct the
chaotic attractor of the system on this SSM. We set k = 6 and use
a training set with the total size of 6 × 105 points. The prediction
is generated by the 3D reduced model, then lifted to the eight-
dimensional state space via the SSM parametrization. In Fig. 9, we
visualize the test data (red) and its prediction (blue) by showing
them in various combinations of three of the eight coordinates.
From Fig. 9, we see that the red dots and the blue dots coin-
cide in the 8D state space, and the shape of the chaotic attractor
is accurately reconstructed. To verify the accurate reproduction of
long-term statistical features of the SSM-reduced model, we further
plot the probability distribution of the original and the reconstructed
dynamics in all of the coordinates separately. From Fig. 10, the sta-
tistical properties of the reduced-order model are very close to those
of the original attractor.

We also attempted to apply the map version of SINDy66 to
the same eight-dimensional training data (six trajectories) for maps.
However, after testing different combinations of various values

TABLE IV. Eigenvalues of the autonomous part of the Duffing oscillator chain.

λ1 λ2 λ3,4 λ5,6 λ7,8

1.2204 −5.8047 −1.5713 ± 0.6269i −3.6865 ± 4.0004i −3.7500 ± 3.9922i
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FIG. 8. (a) Chaotic trajectories (blue) and a saddle-type periodic orbit of system (32) projected onto the (x3, ẋ3) plane. (b) The same trajectories and periodic orbits as they
appear as a fixed point and a trajectory on the attractor of the Poincaré map, projected again to the (x3, ẋ3) plane.

TABLE V. Different choices of SSM dimension, manifold expansion order and the corresponding invariance error for the oscillator chain (32).

SSM dimension (d) 2D SSM 3D SSM

SSM expansion orders (K ) 3 5 7 3 5 7
Invariance error 8.26% 4.24% 1.89% 0.061% 0.005% 0.0001%

FIG. 9. Predictions for the strange attractor of the forced Duffing oscillator chain in the eighth-dimensional full state space, using the kNN prediction method on a
three-dimensional SSM. Here k = 6 and the training set contains 6 × 105 points.
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FIG. 10. Probability distribution for the chaotic attractor of the full system (32) (red) and for the attractor of the 3D, SSM-reduced model in various sets of coordinates (blue).

of polynomial order (from three to six) and sparsity parameter
(λSINDy = 0.001 to 0.05), we failed to identify a feasible model using
SINDy and the prediction results invariably blew up after some
time. This is likely due to the high complexity of the Poincaré map
dynamics.

D. Delay-embedded Rössler attractor

In our previous examples, we considered mixed-mode SSMs
tangent to spectral subspaces with only real eigenvalues [i.e.,
q = 0 in Eq. (5)]. Here, we turn to an example of an SSM tangent
to an eigenspace with complex conjugate eigenvalues, the Rössler
attractor system67

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c).

(33)

This system has two unstable fixed points at
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One of these fixed points lies in the center of the Rössler attrac-
tor loop and the other one lies relatively far from the attractor. We
choose the classical parameter values a = b = 0.2, c = 5.7 and focus
on the unstable equilibrium (x0, y0, z0) = (0.007, −0.035, 0.035)
located in the center. We build the mixed-mode SSM attached to
this fixed point that has one real eigenvalue −5.687 and a complex
conjugate pair 0.097 ± 0.995i.

As in the delay-embedded Lorenz attractor example in
Sec. IV A, we observe only the x coordinate of system (33) to gen-
erate scalar observable time series. Then, using the information of
the fixed point x0, we shift the origin of the system to this unsta-
ble fixed point. The training and test data are generated separately
by the initial conditions (1, 1, 1) and (1, 1, 2) over the time inter-
val (0, 7 000) with a time step of 0.01. After the first (0, 20) time
interval, both the training and test trajectories lie very close to the
Rössler attractor. Following the same procedure as in Sec. IV A, we
use FNN to estimate the SSM dimension d and pick the manifold
expansion order according to the invariance error. We select the
SSM attached to the unstable fixed point to be d = 3 dimensional,
the delay-embedding dimension to be ρ = 7, and the polynomial
expansion order to be K = 4. Namely, we delay-embed the scalar
observable in 7D and use SSMLearn to perform model reduc-
tion onto a 3D reduced space. The shape of the chaotic attractor in
three-dimensional reduced coordinates is shown in Fig. 11(a).

In the reduced coordinates, we use the kNN method to make
forecasts for the test trajectory. We select k = 4 and perform the
kNN prediction method on a training set containing 7 × 105 data
points. From Fig. 11, the prediction stays accurate for around 3.3
Lyapunov times of system (33), and the reconstructed maximum
Lyapunov exponent 0.0946 is close to the actual MLE of the system
0.0938.

As in the other examples, we also tried to apply SINDy to the
same seven-dimensional training data. We tested different combi-
nations of SINDy parameters (polynomial order ranging from three
to five, and the sparsity parameter λSINDy ranging from 0.001 to 0.1)
but failed to identify a feasible model. The prediction results gener-
ated by these SINDy models generally blew up, i.e., the models do
not contain a stable attractor. This may be because the dynamics in
these delay-embedded coordinates do not have a sparse polynomial
form in general.
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FIG. 11. The delay-embedded Rössler attractor in reduced coordinates and prediction from the SSM-reduced model. Subplot (a) shows the training and test data in three-
dimensional reduced coordinates. Subplots (b) and (c) show the time series forecasting results and the reconstructed Lyapunov exponent. The prediction remains accurate
for about 3.3 Lyapunov times. The blue linear fit of the reduced-order model in the subplot (c) gives the maximal Lyapunov exponent 0.0946, which is near 0.0938, the actual
MLE of system (33).

E. Kuramoto–Sivashinsky equation

To test SSM-based model reduction in higher-dimensional
chaotic systems, we consider the Kuramoto–Sivashinsky (KS)
equation.68,69 This equation is often used as a simplified model to
study spatiotemporal chaos and pattern formation in fluid dynam-
ics, particularly in the context of understanding turbulence. Its
dynamics in one spatial dimension is given by the PDE

ut +
1

2
(u2)x + uxx + uxxxx = 0, x ∈

[

−
L

2
,
L

2

]

, (34)

where x is the spatial coordinate and t ≥ 0 is the time. Equation (34)
describes the time evolution of the velocity u = u(x, t) on a peri-
odic domain u(x, t) = u(x + L, t) with length L. When the velocity
is 0 everywhere on x, i.e., u(x) ≡ 0, the system has an unstable fixed
point from which SSMs originate.

To generate a data set for the discovery of SSMs, we adapt the
MATLAB code from Ref. 68, which uses a spectral solver for numeri-
cal solutions of the Kuramoto–Sivashinsky equation. We consider
the system size L = 22, for which a truncation of the number of
Fourier modes to the range 16 ≤ N ≤ 128 yields accurate solutions
for this system size,69 therefore, we pick N = 64. We discretize L into
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FIG. 12. Manifold fitting error for different SSM dimensions, as functions of
the SSM fitting order. From this figure, we fit a d = 8 dimensional SSM with a
K = 3rd order expansion to the 1024-dimensional input data, which gives an
invariance error 0.35% for the test set.

1024 segments, generate trajectories with the time step 0.25, and dis-
card the first 100 time units to get trajectories close to the attractor.
The training set which is generated for the time length 1.25 × 105

contains approximately 5 × 105 data points. In this example, we only
test the short-term predictability of the SSM-reduced model and
therefore generate a short test set for a 100 time interval.

For SSMLearn, computing the parametrization of an SSM
requires solving the implicit minimization in Eq. (15), which can be
computationally demanding for high-dimensional systems. There-
fore, we turn to the fastSSM algorithm,70 which significantly
reduces the computational cost when the observable space dimen-
sion is high. The fastSSM algorithm calculates the tangent space
of the SSM by singular value decomposition and the manifold
parametrization via explicit polynomial regression. As a result, the
computational cost scales linearly with the input data dimension.
We refer to Ref. 70 for a detailed discussion.

To estimate the SSM dimension from data, we plot the man-
ifold fitting error as a function of the SSM dimension and SSM
polynomial expansion order as shown in Fig. 12. When we increase
the SSM dimension to eight, there is a significant drop in manifold
fitting error. This indicates the chaotic attractor of the system can
be captured by an inertial manifold with a dimensionality of at least
eight. Therefore, we fit an eight-dimensional SSM with a third order
polynomial expansion to the 1024-dimensional trajectory data. The
invariance error of the manifold fitting is 0.35% for the test data. The
estimated dimension d = 8 agrees with the estimations in Refs. 71
and 69 and other model reduction results on inertial manifolds.24,72

After obtaining the data in 8D reduced coordinates, we per-
form the kNN algorithm with k = 9 to make forecasts for the test
trajectory. The forecasting quality and the validity range of each
prediction depend on the amount of training data used and the indi-
vidual initial condition of the test trajectory. We only illustrate one

FIG. 13. Test trajectory and its prediction by the SSM-reduced model with system
size L = 22. The top two plots are the velocity u = u(x, t) and its prediction
ũ = ũ(x, t) for the time interval (0, 90). The SSM prediction resembles the real
chaotic flow pattern but gradually diverges from it. The bottom two plots show the
pointwise prediction error and the time evolution of the normalized trajectory error.

of the SSM prediction results in Fig. 13. In general, the normal-
ized trajectory errors reach 0.5 between 10 and 60 time intervals.
A detailed analysis of Lyapunov exponents and average predictabil-
ity for this infinite-dimensional example is beyond the scope of the
present paper.

F. Periodically forced finite-element beam

In our final and most complex example, we use data-driven
model reduction to a mixed-mode SSM to identify a low-order
model for the chaotic attractor of a periodically forced buckling
beam. The nonlinear finite-element model we use for a von Kár-
mán beam is a second-order approximation of the kinematics of a
beam, taking into account the deformation of the cross-section for
both bending and stretching. We specifically adopt here the finite-
element MATLAB code developed in Ref. 73 and the same buckling
beam setting as in Ref. 37. The boundary condition of the beam is

FIG. 14. Dynamic buckling of a pinned–pinned von Kármán beam, with the
subsequent addition of a time-periodic vertical load at its midpoint.
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TABLE VI. Physical parameters for the von Kármán beam.

Symbol Meaning Value [Unit]

t Time . . . [s]
L Length of the beam 2 [m]
h Height of the beam 1 × 10−2 [m]
b Width of the beam 5 × 10−2 [m]
A Width of the beam 5 × 10−4 [m2]
E Young’s modulus 190 × 109 [Pa]
κ Viscous damping rate of material 7 × 106 [Pa·s]
ρ Density 7850 [kg/m3]

set as pinned–pinned, as shown in Fig. 14, and an axial compressive
force is applied to the right node.

The finite-element model of the von Kármán beam consists of
13 nodes, each with three degrees of freedom (DOFs): axial direc-
tion, transverse direction, and rotation. Under the above boundary
conditions, the beam model has 12 elements and 36 degrees of free-
dom. With the displacement and velocity of each DOF counted, the
full model is a 72-dimensional dynamical system in its phase space.
We adopt the physical parameters listed in Table VI from Ref. 73.

Euler’s critical load for buckling is given by Pn = n2π2EI
l 2 . For the

first buckling mode n = 1, the critical buckling force is

Fbuckling =
π 2EI

l 2
=

π 2Ebh3

12l 2
. (35)

For the buckling force value F = 1.1Fbuckling, the system has
three fixed points: one unstable fixed point corresponding to purely
axial displacement and two stable fixed points corresponding to the
upper and lower buckled states. The first 10 eigenvalues of the unsta-
ble fixed points are listed in Table VII. Therefore, each unstable
steady state has one pair of real eigenvalues 11.06 and −11.10, the
other pairs correspond to stable spirals. The positive real eigenvalue
11.06 has the physical meaning of the beam leaving the unstable
fixed point and approaching the upper or lower buckled states,
and the negative real eigenvalue −11.10 corresponds to a trajec-
tory settling down at the unstable state. The other complex pairs
of eigenvalues represent the dynamics of higher modes. According
to the mixed-mode SSM theory,37 there exists a two-dimensional
SSM tangent to the spectral subspaces corresponding to the two real
eigenvalues. As in our earlier examples, these eigenvalues will not be
used in our SSM construction.

We generate four training trajectories from the autonomous
beam model (without the vertical forcing shown in Fig. 14) for
the non-dimensionalized time interval (0, 7.89), which covers 150
times the oscillating period of the slowest mode. Each trajectory con-
tains 1.5 × 104 points. The initial conditions are generated either by
adding a small perturbation to the unstable stationary state, or by

FIG. 15. Non-chaotic training trajectories of the buckling beam model on a 2D,
autonomous SSM.

applying a large transverse force (104 N) at the middle node. After
applying this force, the beam is further down than the lower buckled
state and will first oscillate around the two stable fixed points with
a large amplitude, then converge to one of them. The higher modes
corresponding to the complex eigenvalue pairs die out, and the tra-
jectories converge to a 2D mixed-mode SSM, which we locate from
the training trajectories using SSMLearn. Converged portions of
two training trajectories and the SSM are shown in Fig. 15. Based
on invariance error and NMTE for non-chaotic test data (one tra-
jectory) in Table VIII, we construct a seventh-order SSM expansion
and a 9th-order polynomial representation of the reduced dynamics
in SSMLearn.

Next, we apply transverse periodic forcing on the middle node
of the beam, as shown in Fig. 14, which makes the beam oscillate
chaotically. For moderate forcing amplitudes, the autonomous SSM,
W (E), is known to persist in the form of a nearby, time-periodic
SSM, W (E, t).37 The leading-order forced dynamics on W (E, t) can
be obtained by simply adding to the reduced dynamics of W (E), the
projection of the time-periodic forcing on E.37 This fact enables one
to make predictions for the forced response based solely on a model
trained on unforced data.

This procedure is implemented in SSMLearn
38,44 and will be

discussed here. The periodic forcing in Fig. 14 has the amplitude
F0 = 3.4 N and the frequency � = 15.4 rad/s. We then generate the
chaotic response of the buckling beam to this periodic force, and
this one chaotic trajectory as the test data for our reduced-order
modeling. Figure 16 shows this test trajectory lies entirely on the

TABLE VII. First 10 eigenvalues of the buckled von Kármán beam for reference.

λ1 λ2 λ3,4 λ5,6 λ7,8 λ9,10

11.06 −11.10 −0.36 ± 119.36i −1.83 ± 295.56i −5.80 ± 541.50i −14.19 ± 858.19i
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TABLE VIII. Different choices of SSM expansion order and their corresponding invariance error for non-chaotic test data of the buckling beam. After selecting the manifold

expansion order to be K = 7, we choose the SSM-model polynomial order to be ninth according to their NMTE.

Manifold expansion order (K ) 3 4 5 6 7
Invariance error 0.10% 0.10% 0.14% 0.14% 0.097%
Reduced model order (SSM expansion order K = 7) 7 8 9 10 11
NMTE for non-chaotic test data 0.24% 0.24% 0.12% 0.12% 0.16%

FIG. 16. (a) Chaotic response of the beam under periodic vertical forcing in the full phase space. This chaotic trajectory lies on the 2D SSM that we computed earlier from
the non-chaotic data. (b) Chaotic trajectories of one testing data in two-dimensional reduced coordinates.

FIG. 17. (a) Prediction for a chaotic beam trajectory from an SSM-reduced model trained on unforced, non-chaotic data, then appended with the leading-order forcing term.
The prediction lasts for about 3.31 Lyapunov time. (b) Separation of nearby trajectories against time. The original 72-dimensional system (red) and the reduced two-dimensional
model (blue) exhibit nearly equal Lyapunov exponents (1.742 and 1.732).
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2D SSM and can be projected onto the two-dimensional reduced
coordinates.

Specifically, up to leading order, the forced, SSM-reduced
model on 2D SSM, W (E, t), is in the form37

η̇ = R(η) +
(

A cos �t sin φ

A cos �t cos φ

)

. (36)

After calibrating the forcing amplitude A and forcing phase φ

to a single forced trajectory (see Ref. 38 for details), we find that
the SSM-reduced model computed from the autonomous system
is indeed able to forecast the chaotic forced response, as shown in
Fig. 17. The Lyapunov exponent of the reconstructed system 1.732
is very close to its counterpart 1.742 calculated for the full, 72-
dimensional system. Thus, the statistical properties of the chaotic
attractor are successfully predicted by an SSM-reduced model in this
example too.

Even though a short-term prediction shown in Fig. 17(a)
quickly loses its accuracy, one should not forget: This prediction
by the 2D, SSM-reduced model is made entirely based on unforced,
non-chaotic trajectories and yet it does approximate both the geom-
etry and the long-term statistics (as described by the maximal Lya-
punov exponent) with notable accuracy for the chaotic attractor of
the full, 72-dimensional system. This shows the high physical inter-
pretability of SSM-reduced models, which other data-driven model
reduction techniques generally do not provide. For instance, the
SINDy algorithm we used in some of our previous examples was not
realistic to run on this high-dimensional example and the algorithm
would not be equipped to make forced predictions from unforced
training data.

V. CONCLUSIONS

Using the recent theory of mixed-mode spectral submanifolds,37

we have developed a methodology to derive SSM-reduced models
for dynamical systems with chaotic attractors. Specifically, we com-
bined the SSMLearn algorithm with the method of nearest neighbors
to obtain an accurate enough representation of the SSM-reduced
dynamics on large enough domains that capture the attractors of the
system. In order to contain the chaotic attractor and the dominant
behavior of the underlying system, the SSM must have a dimen-
sion higher than the attractor dimension. In a strictly data-driven
setting, the SSM dimension can be approximated using the false
nearest neighbor method, then further determined by computing
the invariance error.

This methodology is generally applicable to systems in which
an inertial manifold containing the chaotic attractor is, in fact, an
SSM emanating from an unstable steady state. In the examples
treated here, that steady state was either a fixed point or a peri-
odic orbit. Building the inertial manifold specifically as a spectral
submanifold enables us to construct mathematically justified, low-
dimensional models for the dynamics on and near the attractors.
The models are either explicit polynomial ODEs or ODEs with
right-hand sides interpolated using nearest neighbor points on the
SSM. The core part of our approach is the open-source SSMLearn
algorithm,44 a general MATLAB (Python) package for SSM-based

model reduction. We additionally deploy the false nearest neigh-
bor (FNN) algorithm74 to identify the optimal SSM dimension from
data. For SSM-based dimension reduction, no information about the
time derivative data is required, and the amount of data needed is
relatively low.

We have applied two methods to model the reduced dynamics:
a global polynomial fit and the kNN method. Both methods have
limitations. The global polynomial fit requires computing the time
derivatives of the trajectories and can become unstable for complex
systems. The kNN method only uses local information to make pre-
dictions and therefore requires a large amount of data that densely
covers the whole attractor. To counter these challenges, it is possible
to combine SSM-model reduction with other prediction methods,
provide the weighting functions,75,76 use other function bases such
as radial basis functions,77 or employ machine learning and deep
learning methods78,79 such as neural ODEs.24

Our SSM-based attractor models have yielded accurate local
predictions over short Lyapunov times and also reproduced closely
the statistical and ergodic properties of chaotic attractors over longer
times. Examples supporting these conclusions included the clas-
sic Lorenz and Rössler system, the extended 9D Lorenz model, a
forced oscillator chain, the Kuramoto–Sivashinsky equation, and a
periodically forced buckling beam.

We also compare our approach with the data-driven nonlinear
modeling method SINDy.27 While the advantages of SINDy include
simplicity, ease of implementation, and versatility, the method scales
unfavorably with the input data dimension, and depends on the
choice of the function library and the coordinates, as discussed in
Sec. IV D. In efforts to address these challenges, SINDy has also been
combined with various coordinate-identifying methods and model
reduction techniques, such as learning appropriate observables in
an assumed latent space. For SSM-based model reductions, the exis-
tence of such low-dimensional invariant manifolds is theoretically
justified in the presence of a hyperbolic steady state. The require-
ment of such a steady state is a limitation of our method, but in our
view, it is necessary for the localization of invariant manifolds from
data to be on firm theoretical ground.

Importantly, since SSM-reduced models are fully dynamics-
based, they can predict forced chaotic responses based solely on
the knowledge of unforced (non-chaotic) trajectory data as demon-
strated by our forced buckling beam example. We are unaware
of any other data-driven model reduction approach that has this
capacity.

Future applications of our methodology will include other PDE
models, such as the 2D Kolmogorov flow,80,81 which also has finite-
dimensional attractors and coexisting unstable steady states. Further
extensions of mixed-mode SSM theory to more general anchoring
steady states (such as invariant tori and other bounded invariant
sets) are needed for the present methodology to become applica-
ble to inertial manifolds that emanate from invariant sets other than
fixed points or periodic orbits.
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