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ABSTRACT

We extend the theory of spectral submanifolds (SSMs) to general non-autonomous dynamical systems that are either weakly forced or slowly
varying. Examples of such systems arise in structural dynamics, fluid–structure interactions, and control problems. The time-dependent SSMs
we construct under these assumptions are normally hyperbolic and hence will persist for larger forcing and faster time dependence that are
beyond the reach of our precise existence theory. For this reason, we also derive formal asymptotic expansions that, under explicitly verifi-
able nonresonance conditions, approximate SSMs and their aperiodic anchor trajectories accurately for stronger, faster, or even temporally
discontinuous forcing. Reducing the dynamical system to these persisting SSMs provides a mathematically justified model- reduction tech-
nique for non-autonomous physical systems whose time dependence is moderate either in magnitude or speed. We illustrate the existence,
persistence, and computation of temporally aperiodic SSMs in mechanical examples under chaotic forcing.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0187080

Reduced models for complex physical systems are of growing
interest in various areas of applied science and engineering.
Mathematically justifiable reduction approaches, such as spec-
tral submanifold (or SSM) reduction, seek to identify the internal
dynamics on lower-dimensional, attracting invariant sets in the
phase space of the system. These reduced dynamics then become
viable reduced models for general trajectories that approach the
invariant set and synchronize with its inner motions. SSM reduc-
tion also allows for periodic or quasiperiodic time dependence in
the full system but has been inapplicable to systems with more
general time dependence, such as impulsive, chaotic, or discon-
tinuous forcing. This has hindered applications of SSM reduction
to a number of problems in structural dynamics. Here, we remove
this limitation by extending SSM theory of temporally aperiodic
dynamical systems. We obtain exact results for cases of smooth
small or smooth slow forcing, but find that our formulas for SSM-
reduced dynamics extend to larger and faster forcing in physical
examples, including even discontinuous chaotic forcing.

I. INTRODUCTION

In its simplest form, a spectral submanifold (SSM) of an
autonomous dynamical system is an invariant manifold W(E) that

is tangent to a spectral subspace E of the linearized system at a
fixed point (Haller and Ponsioen1). Classic examples of spectral sub-
manifolds are the stable, unstable, and center manifolds tangent to
spectral subspaces in which the linearized spectrum has eigenval-
ues with purely negative, positive, and zero real parts, respectively.
The stable and unstable manifolds are well known to be unique
and as smooth as the dynamical system, while center manifolds are
non-unique and not all of them are guaranteed to be as smooth
as the dynamical system (Guckenheimer and Holmes2 and Hirsch
et al.3). Near fixed points that only have eigenvalues with nega-
tive and zero real parts, center manifolds attract all trajectories, and
hence the dynamics restricted to it provides a mathematically exact
reduced-order model for the full system (Carr4 and Roberts5).

Dissipative physical systems, however, generically have hyper-
bolic equilibria and hence admit no center manifolds. Instead, near
their stable equilibria, such systems tend to have a set of fastest-
decaying modes that die out quickly, leaving a set of slower decaying
modes to govern the longer-term dynamics. Slow manifolds (i.e.,
SSMs constructed over such slower decaying modes) then replace
center manifolds as targets for mathematically justified model
reduction. Such slow SSMs were first targeted via Taylor expansions
as nonlinear normal modes (NNMs) by Shaw and Pierre.6 These
insightful calculations were then extended by the same authors to
periodically and quasi-periodically forced mechanical systems to
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approximate forced mechanical response in a number of settings
(see, e.g., the reviews by Kerschen et al.,7 Mikhlin and Avramov,8

Touzé et al.,9 and Mikhlin and Avramov10).
Later mathematical analysis of general SSMs yielded precise

existence, uniqueness, and smoothness results for these manifolds.
Specifically, if the spectral subspace E comprises either only decay-
ing modes or only growing modes (i.e., E is a like-mode spectral
subspace) with no integer resonance relationships to the modes out-
side of E, then the slow SSM family W(E) has a unique, primary
member, W∞(E), that is as smooth as the full dynamical system
(Cabré et al.11 and Haller and Ponsioen1). The remaining secondary
(or fractional) members of the SSM family have reduced but pre-
cisely known order of differentiability that depends on the ratio of
linearized decay rates outside E to those inside E (Haller et al.12).
If we further disallow any integer resonance in the full linearized
spectrum, then primary and fractional SSMs also exist when E is
of mixed-mode type, i.e., spanned by a combination of stable and
unstable linear modes (Haller et al.12).

All these results also hold for discrete autonomous dynamical
systems, and hence SSM results also cover time-periodic continuous
dynamical systems when applied to their Poincaré maps. Based on
this fact, numerical implementations of time-periodic SSM calcula-
tions for periodically forced finite-element structures have appeared
in Ponsioen et al.,13–15 Jain and Haller,16 and Vizzaccaro.17 An open
source, equation-driven MATLAB toolbox (SSMTool) with a grow-
ing collection of worked problems is also available for mechanical
systems with general nonlinearities (Jain et al.18). Data-driven con-
struction of time-periodic SSMs have been developed and applied
to numerical and experimental data by Cenedese et al.,19,20 Kaszás
et al.21 and Axås et al.,22 with open-source MATLAB implementa-
tions (SSMLearn and fastSSM) available from Cenedese et al.23

Outside autonomous and time-periodic non-autonomous sys-
tems, the existence of like-mode SSMs has only been treated under
small, time-quasiperiodic perturbations of autonomous dynami-
cal systems (Haro and de la Llave,24 Haller and Ponsioen,1 Opreni
et al.,25 and Thurner et al.,26). In such systems, the role of hyperbolic
fixed points as anchor points for SSMs is taken over by invariant tori
whose dimension is equal to the number of rationally independent
frequencies present in the forcing. An SSM in such a case perturbs
from the direct product of an unperturbed invariant torus with an
underlying spectral subspace E. Such SSMs have been shown to exist
for like-mode spectral subspaces E under small quasi-periodic per-
turbations, provided that the real part of the linearized spectrum
within E has no integer relationships with the real part of the spec-
trum outside E (Haro and de la Llave,24 Haro et al.,27 and Haller and
Ponsioen1).

Related work by Fontich et al.28 covers the persistence and
smoothness of primary SSMs emanating from an arbitrary attract-
ing orbit of an autonomous dynamical system. While all non-
autonomous systems become autonomous when their phase space
is extended with the time variable, this theory does not apply under
such an extension. The reason is that all attracting orbits lose hyper-
bolicity in the extended phase space due to the presence of the
neutrally stable time direction.

In summary, while available SSM results have proven highly
effective in equation-driven and data-driven reduced-order model-
ing of autonomous, time-periodic, and time-quasiperiodic systems,

they offer no theoretical basis or computational scheme for physical
systems with general aperiodic time-dependence. Yet the aperiodic
setting is clearly of importance in a number of problems, including
turbulent fluid–structure interactions, civil engineering structures
subject to benchmark aperiodic forcing (such as those mimicking
earthquakes) and control of robot motion.

In this paper, we extend available SSMs results to systems
with general time dependence. While several powerful linearization
results imply the existence of invariant manifolds for such non-
autonomous dynamical systems, these results guarantee either no
smoothness for SSM-type invariant manifolds (see, e.g., Palmer29)
or rely on conditions involving the Lyapunov spectra, Sacker–Sell
spectra, or dichotomy spectra of some associated non-autonomous
linear systems of ODEs (see, e.g., Yomdin,30 Pötzsche,31 and Cuong
et al.32). The latter types of conditions are intuitively clear but not
readily verifiable, especially not in a data-driven setting. Here, our
objective is to conclude the existence of time-aperiodic SSMs under
directly computable conditions that also lead to explicitly com-
putable SSM-reduced models in equation-driven and data-driven
applications.

To this end, we consider two settings that arise frequently in
practice: weak and additive non-autonomous time dependence and
slowly varying (or adiabatic) time dependence. The first setting of
weak non-autonomous external forcing is common in structural
vibrations, wherein a structure’s steady-state response is of inter-
est under various moderate loading scenarios. So far, related studies
have been restricted to temporally periodic or quasiperiodic forcing
(see, e.g., Ponsioen et al.,13–15 Li et al.,33,34 Jain and Haller,16 Vizza-
ccaro et al.,35 and Opreni et al.,25), because the existence and exact
form of a steady state and its associated SSM have been unknown
for more general forcing profiles. The second setting of slow time
dependence arises, for instance, in control applications wherein
the intended motion of a structure is generally much slower than
the characteristic time scales of its internal vibrations. In those
applications, the lack of an adiabatic SSM theory has so far con-
fined model-reduction studies to small-amplitude trajectories along
which a single, autonomous SSM computed at a nearby fixed point
was used for modeling purposes (Alora et al.36,37).

In both of these non-autonomous settings, we use, modify,
or extend prior invariant manifold results and techniques to con-
clude the existence of weakly aperiodic or adiabatic SSMs in the
limit of small enough or slow enough time dependence, respectively.
We then derive explicit recursive formulas for the arising non-
autonomous SSMs and the aperiodic anchor trajectories to which
they are attached. These formulas also cover and extend temporally
periodic and aperiodic SSM computations to arbitrarily high order
of accuracy. Using simple mechanical examples subjected to chaotic
excitation, we illustrate that the new asymptotic formulas yield
accurate reduced-order models even for larger and faster forcing.

II. NON-AUTONOMOUS SSMs UNDER WEAK FORCING

A. Setup

Consider a non-autonomous dynamical system of the form

ẋ = Ax + f0(x) + f1(x, t), x ∈ R
n, A ∈ R

n×n,
(1)

f0 ∈ Cr(U), f0(x) = o (|x|)
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for some integer r ≥ 0 and with
∥

∥f1
∥

∥

U
= sup

(x,t)∈U×R

∣

∣f1(x, t)
∣

∣ < ∞ (2)

on a compact neighborhood U ⊂ R
n. We consider system (1), a

perturbation of the autonomous system,

ẋ = Ax + f0(x), (3)

that has a fixed point at x = 0 by our assumptions on f0(x). Both
A and f0(x) may additionally depend on parameters, which we will
suppress here for notational simplicity but will point out in the state-
ment of our main results. Note that the time-dependent term f1(x, t)
is also allowed to depend on the phase space variable x. Conse-
quently, in addition to describing purely time-dependent external
forcing, f1(x, t) can also capture what is commonly called parametric
forcing in the structural vibration literature, i.e., time-dependence in
the internal structure of the system.

We assume that the origin is a hyperbolic fixed point of (3), i.e.,
all eigenvalues in the spectrum of A,

spect (A) = {λ1, . . . , λn} , (4)

listed in the order

Reλn ≤ Reλn−1 ≤ . . . ≤ Reλ2 ≤ Reλ1 (5)

satisfy

Reλj 6= 0, j = 1, . . . , n. (6)

For simplicity of exposition, we assume that A is semisimple and
hence has n eigenvectors e1, . . . , en ∈ C

n corresponding to the eigen-
values listed in (4). The kth eigenspace Ek of A is then the linear span
of the real and imaginary parts of the eigenvectors corresponding to
the eigenvalue λk, i.e.,

Ek = span
Aej=λkej

{

Re ej, Im ej

}

.

Note that any such eigenspace in an invariant subspace under the
dynamics of the linearized ODE,

ẋ = Ax. (7)

A spectral subspace E is the direct sum of a selected group of `

eigenspaces, i.e.,

E = Ej1 ⊕ . . . ⊕ Ej` . (8)

Two important spectral subspaces are the stable subspace Es and the
unstable subspace Eu, defined as

Es = ⊕
Reλj<0

Ej, Eu = ⊕
Reλj>0

Ej, Es ⊕ Eu = R
n. (9)

At least one of Es and Eu is nonempty due to the hyperbolicity
assumption (6). As a consequence of this assumption, there exist also
constants K, κ > 0 such that

∥

∥eAt|Es

∥

∥ ≤ K e−κt,
∥

∥e−At|Eu

∥

∥ ≤ K e−κt, t ≥ 0. (10)

This property of A is usually referred to as exponential dichotomy.
For κ , we can select any positive number satisfying

0 < κ < min
1≤j≤n

∣

∣Reλj

∣

∣ .

In contrasts, the choice of K depends on the eigenvector geometry of
A. Specifically, if A is a normal operator and hence has an orthogonal
eigenbasis, we can select K = 1.

B. Existence and computation of a non-autonomous

anchor trajectory

We first state general results on the fate of the x = 0 fixed
point under the non-autonomous forcing term f1(x, t). Specifically,
we give conditions under which this fixed point perturbs for moder-
ately large

∣

∣f1(x, t)
∣

∣ into a unique nearby hyperbolic trajectory x∗(t)
of (1). This distinguished trajectory remains uniformly bounded for
all times and has the same stability type as the x = 0 fixed point of
system (3).

Theorem 1 (Existence of anchor trajectory for non-au-
tonomous SSMs). Assume that in a ball Bδ ⊂ U of radius δ > 0
around x = 0, the functions f0 and f1 are of class C0 and admit
Lipschitz constants L0(δ) and L1(δ), respectively, in x for all t ∈ R.
Assume further that the conditions

∣

∣f1(x, t)
∣

∣ ≤
κδ

2K
−
∣

∣f0(x)
∣

∣ , L1(δ) ≤
κ

4K
− L0(δ), x ∈ Bδ , t ∈ R

(11)

are satisfied with constants K, κ > 0 satisfying (10). Then, the follow-
ing hold

(i) System (1) has a unique, uniformly bounded trajectory x∗(t) that
remains is Bδ for all t ∈ R and has the same stability type as the
x = 0 fixed point of system (3).

(ii) The trajectory x∗(t) is as smooth in any parameter as system (1).

Proof. See Appendix A 1. �

By statement (i) of Theorem 1, the anchor trajectory x∗(t) takes
over the role of the x = 0 equilibrium of the unperturbed system (3)
in the forced system (1): they are both unique uniformly bounded
solutions in the ball Bδ for their respective systems. Note that if f0
and f1 are C1 in x, then the Lipschitz constants in the inequalities
(11) can be chosen as

L0(δ) = max
x∈Bδ

∣

∣Dxf0(x)
∣

∣ , L1(δ) = max
x∈Bδ ,t∈R

∣

∣Dxf1(x, t)
∣

∣ .

A unique hyperbolic anchor trajectory x∗(t) may well exist even if
the strict bounds listed in (11) are not satisfied. For this reason, in
the following theorem, we will simply assume that such a trajectory
x∗(t) exists as a perturbation of the x = 0 fixed point and provide
a recursively implementable, formal approximation for x∗(t) up to
any desired order. These formulas will only assume the uniform-in-
time boundedness of f1 and its derivatives with respect to x at x = 0,
without assuming the specific bounds on f1 listed in Theorem 1. In
particular, the non-autonomous term f1 does not even have to be
continuous in time for these formulas to be well-defined. This will
enable predictions for anchor trajectories their SSMs in physical sys-
tems even under temporally discontinuous forcing terms or under
specific realizations of bounded random forcing.
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To state our recursively computable formulas for x∗(t) in our
upcoming Theorem 2, we will use a matrix T ∈ R

n×n whose columns
comprise the real and imaginary parts of the eigenvectors of A. We
order these columns in a way that T block-diagonalizes A into a
stable block As and unstable block Au,

T−1AT =

(

As 0
0 Au

)

, spect (As) = spect (A|Es) ,

(12)
spect (Au) = spect (A|Eu) .

For later purposes, we also define the time-dependent matrix G(t)
∈ R

n×n as

G(t) =























T

(

eAst 0
0 0

)

T−1, t ≥ 0,

T

(

0 0
0 −eAut

)

T−1, t < 0.

(13)

Notice that if x = 0 is either asymptotically stable (Eu = {0} and
As = T−1AT) or repelling (Es = {0} and Au = T−1AT), then formula

(13) simplifies to

G(t) =

{

eAt, t ≥ 0,
0, t < 0,

or G(t) =

{

0, t ≥ 0,
−eAt, t < 0,

respectively. Using these quantities, we obtain the following approx-
imation result for the anchor trajectory x∗(t).

Theorem 2 (Computation of anchor trajectory for non-au-
tonomous SSMs). Assume that a unique, uniformly bounded tra-
jectory x∗(t) ⊂ U of (1) exists in a compact neighborhood U ⊂ R

n of
x = 0, with x∗(t) perturbing from x = 0 under the forcing term f1(x, t)
that satisfies (2). Assume further that f1 has r ≥ 1 continuous deriva-
tives with respect to x at x = 0 that are uniformly bounded in t within
U. Then, for any positive integer N ≤ r, a formal expansion for x∗(t)
exists in the form

x∗(t) =

N
∑

ν=1

xν(t) + o
(

∥

∥f1
∥

∥

N

U

)

, (14)

where xν(t) =
(

x1
ν(t), . . . , xn

ν(t)
)

= O
(
∥

∥f1
∥

∥

ν

U

)

and

xν(t) =
∑

1≤|γ |≤ν

ν
∑

s=1

∑

ps(ν,γ )

∫ ∞

−∞

G(t − τ)







∂ |γ |f0 (0)

∂x
γ1
1 · · · ∂x

γn
n

s
∏

j=1

∏n
i=1

[

xi
`j
(τ )
]kji

∏n
i=1 kji!






dτ

+
∑

1≤|γ |≤ν−1

ν−1
∑

s=1

∑

ps(ν−1,γ )

∫ ∞

−∞

G(t − τ)







∂ |γ |f1 (0, τ)

∂x
γ1
1 · · · ∂x

γn
n

s
∏

j=1

∏n
i=1

[

xi
`j
(τ )
]kji

∏n
i=1 kji!






dτ , ν ≥ 1. (15)

Here, kji is the ith component of the integer vector kj ∈ N
n − {0}

appearing in the index set,

ps (ν, γ ) =

{

(k1, . . . , ks, `1, . . . , `s) : ki ∈ N
n − {0} , `i ∈ N,

0 < `1 < · · · < `s,
s
∑

i=1

ki = γ ,
s
∑

i=1

|ki| `i = ν

}

.

Proof. See Appendix A 2. �

As an example of the approximation provided by Theorem 2
for x∗(t), we evaluate formula (15) up to second order (N = 2) for
the case wherein the x = 0 fixed point is attracting (Eu = ∅) for
f1 (x, τ) ≡ 0. In that case, we obtain

x∗(t) = x1(t) + x2(t) + o
(

∥

∥f1
∥

∥

2

U

)

,

x1(t) =

∫ t

−∞

eA(t−τ)f1(0, τ) dτ , (16)

x2(t) =

∫ t

−∞

eA(t−τ)

[

1

2
∂2

x f0(0) ⊗ x1(τ ) ⊗ x1(τ ) + ∂xf1(0, τ)x1(τ )

]

dτ ,

where ∂2
x f0(0) is a three-tensor and ⊗ refers to the tensor product.

Remark 1 (Applicability to temporally discontinuous forc-
ing). The asymptotic approximation (15) only requires f1 and its
x-derivatives at x = 0 to be uniformly bounded in t, as we noted
earlier. No derivatives of f1(x, t) are required to exist with respect
to t, and hence temporally discontinuous forcing is also covered by
these formal expansions, as we will also see on a specific example
with discontinuous chaotic forcing in Sec. IV A 1.

Remark 2 (Simplification for state-independent forcing).
In applications to structural vibrations, the non-autonomous forc-
ing term in system (1) often arises from external forcing that does
not depend on x, i.e., f1(x, t) ≡ f1(t). In that case, the second term in
formula (15) is identically zero and the summands in the first term
are well defined as long as f0(x) and its derivatives are bounded at
x = 0.

C. Existence and computation of non-autonomous

SSMs

We first recall available SSM results for the autonomous sys-
tem (3). Let E be a spectral subspace, as defined in Eq. (8). Following
the terminology of Haller et al.,12 we call E a like-mode spectral sub-
spaceif the sign of Reλj is the same for all λj ∈ spect (A|E). Otherwise,
we call E a mixed-mode spectral subspace.
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FIG. 1. Left: the geometry of the autonomous SSM W∞ (E) in the extended
phase space of the (x, t) variables. Shown is the primary (smoothest SSM) tan-
gent to the spectral subspace E at the fixed point at x = 0. Also shown is a
fast SSM (blue), defined as the spectral submanifold that is tangent to the direct
sum of the eigenspaces outside E. Right: the anchor trajectory x∗(t) and the
time-dependent SSMW (E, t) in the full, non-autonomous system.

We call a like-mode spectral subspace E externally nonreso-
nant if

λj 6=
∑

λk∈spect(A|E)

mkλk, λj ∈ spect (A) − spect (A|E) , (17)

for any choice of mk ∈ N with
∑n

k=1 mk ≥ 2 and for any choice of
λj. It turns out that if the condition (17) is satisfied for mk coef-
ficients up to order

∑n
k=1 mk = σ (E), where σ (E) is the spectral

quotient defined by Haller and Ponsioen,1 and then the same con-
dition will also be satisfied for all choices of mk with

∑n
k=1 mk ≥ 2

(Cabré et al.11).
If E is an externally nonresonant, like-mode subspace, then E

has a unique, smoothest nonlinear continuation in the form of a
primary spectral submanifold (or primary SSM), denoted W∞ (E)

∈ C∞. This was deduced by Haller and Ponsioen1 in this context
from the more abstract, general results of Cabré et al.11 The primary
SSM W∞ (E) is an invariant manifold of system (3) that is tangent
to E at the origin and has the same dimension as E, as shown in Fig. 1
for f1(x, t) ≡ 0 in the extended phase space.

In general, an infinite family, W (E), of SSMs exists for sys-
tem (3) with the same properties, but W∞ (E) is the unique
smoothest among them: the other manifolds in W (E) are no more
than σ (E)-times differentiable (see Haller et al.12). A computa-
tional algorithm for W∞ (E) was developed by Ponsioen et al.,13

then extended to general, finite-element-grade problems in second-
order ODE form by Jain and Haller.16 The latest version of the latter
algorithm with further extensions is available in the open-source
MATLAB live script package SSMTool (see Jain et al.18).

If the spectrum of A is fully nonresonant, i.e.,

λj 6=

n
∑

k=1

mkλk, mk ∈ N,
n
∑

k=1

mk ≥ 2, j = 1, . . . , n, (18)

then an invariant manifold family W (E) tangent to E at x = 0 exists
for any choice of E, whether or not E is of like-mode or mixed-mode
type. While W (E) may contain just a single manifold [e.g., when
E is the stable subspace, Es or the unstable subspace, Eu, defined
in (9)], there will be infinitely many members in W (E) for more
general choices of E. In the latter case, generic members of W (E)

are secondary (or fractional) SSMs, which have a finite order of dif-
ferentiability consistent with their fractional-powered polynomial
representations derived explicitly by Haller et al.12

Note that the nonresonance conditions (17)–(18) are less
restrictive than what is customary in the nonlinear vibration lit-
erature. Indeed, conditions (17)–(18) are only violated if both the
real and the complex parts of the eigenvalues satisfy simultaneously
exactly the same resonance relationship. Also note that 1:1 reso-
nances involving eigenvalues with nonzero real parts do not violate
(17)–(18). We will, however, only allow a 1:1 resonance within E to
guarantee the normal hyperbolicity of E for the existence of W (E).
(More specifically, a 1:1 resonance between the spectrum of A within
E and outside E would render our upcoming assumption (19) to fail
for any ρ > 1.) If a 1:1 resonance arises in a given application, one
can simply enlarge E to include all resonant modes. This, in turn,
removes any issue with the 1:1 resonance.

We now turn to the existence of non-autonomous SSMs ema-
nating from the uniformly bounded hyperbolic trajectory x∗(t),
whose existence and approximation were discussed in Theorems
1 and 2. We will focus on slow SSMs (also called pseudo-unstable
manifolds), which are continuations of d-dimensional, ρ-normally
attracting (like-mode or mixed-mode) spectral subspaces E of lin-
earized system (7), i.e., can be written as

E = E1 ⊕ . . . ⊕ Ek, dim E = d ≥ 1,
Reλk

Reλk+1
≤

1

ρ
, (19)

for some integer ρ > 1. Therefore, E is spanned by the k modal sub-
spaces carrying the slowest decaying solution families of system (7),
including possibly some families that do not even decay but grow.
If such unstable modal subspaces are present in the direct sum (19),
then E is a mixed-mode spectral subspace which we seek to continue
into a mixed-mode non-autonomous SSM in system (1). If, in con-
trast, only stable modal subspaces are present in the direct sum (19),
then E is a like-mode spectral subspace which we seek to continue
into a like-mode non-autonomous SSM in system (1).

Note that the third condition in (19) always holds for arbi-
trary ρ > 1 if Reλk and Reλk+1 have different signs. If Reλk and
Reλk+1 have the same sign, then the third condition in (19) holds
only if the decay exponents of solutions outside E are at least ρ-times
stronger than those of solutions inside E. This ρ will then determine
the maximal smoothness that we can a priori guarantee for the SSM
emanating from E without further assumptions. Formal expansions
for such SSMs will, however, indicate higher degrees of smoothness
under appropriate nonresonance conditions.

The following theorem gives our main result on the existence
of non-autonomous SSMs associated with a spectral subspace E sat-
isfying (19). We will use the term locally invariant manifold when
referring to a manifold carrying trajectories that can only leave the
manifold through its boundary (see, e.g., Fenichel38).

Theorem 3 (Existence of non-autonomous SSMs). Assume
that conditions (11) of Theorem 1 are satisfied in a ball Bδ ⊂ R

n of
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radius δ > 0 around x = 0. Assume further that f0, f1 ∈ Cr(Bδ) for
some r > 1 and the uniform bound,

∣

∣∂2
x f1(x, t)

∣

∣ ≤ K3, x ∈ Bδ , t ∈ R, (20)

holds for some finite constant K3 > 0. Assume finally that E is a
ρ-normally hyperbolic spectral subspace with 1 < ρ ≤ r that satisfies
the nonresonance conditions,

λj 6=

n
∑

k=1

mkλk, mk ∈ N,
n
∑

k=1

mk ≥ 2, j = 1, . . . , n. (21)

Then,

(i) There exists a non-autonomous spectral submanifold W(E, t)
⊂ Bδ of class Cρ that has the same dimension as E, contains x∗(t)
and acts as a locally invariant manifold for system (1).

(ii) The SSM W(E, t) is as smooth in any parameter as system (1).

Proof. See Appendix B 1. We sketch the geometry of the non-
autonomous SSM, W(E, t), for non-vanishing f1(x, t) in Fig. 1. �

Remark 3 (Uniqueness and smoothness of non-autonomous
SSMs). The manifolds discussed in Theorem 3 are generally non-
unique. In principle, an argument involving the smoothness of the
Lyapunov and dichotomy spectra under generic perturbation (see
Son39) could be invoked to deduce sharper smoothness results for
these manifolds from linearization (see Yomdin30). These results,
however, require the identification of the full Lyapunov spectrum
of the linear part of the non-autonomous linear differential equation
(B1) in our Appendix B 1 in order to exclude resonances. This is gen-
erally challenging for equations and unrealistic for datasets. As an
alternative, Theorem 4 below will provide unique Taylor expansions
for W(E, t) under explicitly verifiable nonresonance conditions.
These expansions are varied on each persisting non-autonomous
SSM up to the degree of smoothness of the SSM. We conjecture that,
just as in the time-periodic and time-quasiperiodic case treated by
Cabré et al.11 and Haro and de la Llave,24 a unique member of the
W(E, t) family of manifolds will be smoother than all the others. Our
Taylor expansion will then approximate those unique, smoothest
manifolds at orders higher than the spectral quotient 6(E) defined
in Haller and Ponsioen.1 The remaining manifolds can be con-
structed via time-dependent versions of the fractional expansions
identified in Haller et al.12

Remark 4 (Non-autonomous SSMs without anchor trajecto-
ries). For stable hyperbolic fixed points in the f1(x, t) ≡ 0 limit,
an alternative to the proof in Appendix B 1 for Theorem 3 can also
be given. This alternative uses the theory of non-compact normally
hyperbolic invariant manifolds (see Eldering40) coupled with the
“wormhole” construct of Eldering et al.41 that enables the handling
of inflowing-invariant normally attracting invariant manifolds. Fol-
lowing the steps of our proof in Appendix C 2 for the adiabatic
case, this alternative proof yields results similar to those in Theorem
3 but does not rely on a persisting anchor trajectory x∗(t) near
the origin. As a consequence, it can also capture non-autonomous
SSMs in weakly damped physical systems for higher forcing lev-
els at which x∗(t) is already destroyed. This is because the strength
of hyperbolicity of the unforced fixed point at x = 0 (measured by
|Reλ1| � 1) is generally much weaker than the strength of hyper-

bolicity of the unforced SSM, W∞ (E)

(

measured by |Reλk+1|
|Reλk|

> 1
)

in weakly damped systems. Such persisting SSMs without a sta-
ble hyperbolic anchor trajectory have been well-documented in
equation- and data-driven studies of time-periodically forced sys-
tems. Those SSMs are signaled by overhangs near resonances in the
forced response curves at higher forcing levels (see, e.g., Jain and
Haller16 and Cenedese et al.19).

As our examples will show, W(E, t) will generally persist even
under f1(x, t) perturbations that are significantly larger than those
allowed by the rather conservative assumptions of Theorem 1. In
addition, W(E, t) will also be smoother than Cρ under additional
nonresonance conditions. To this end, we will next derive numer-
ically implementable, recursive approximation formulas that are
valid for W(E, t) as long as it persists.

To state these approximations, we first introduce a small
perturbation parameter ε ≥ 0 with which we rescale the non-
autonomous term in (1) as

f1(x, t) = ε f̃1(x, t), (22)

in order to focus on moderate values of f1(x, t). As a consequence
of this scaling, the expansion (14) for the anchor trajectory is also
rescaled to

x∗
ε(t) =

N
∑

ν=1

εν x̃ν(t) + o
(

εN
)

, (23)

given that the form of the coefficients xν(t) in the formulas (15)
yields

xν(t) = εx̃ν(t). (24)

Second, we let P = [e1, . . . , en] ∈ C
n contain the complex

unit eigenvectors corresponding to the ordered eigenvalues (5)
of A. Then, under a coordinate change x 7→ (u, v) ∈ C

d × C
n−d

defined as
(

u
v

)

= P−1
(

x − x∗
ε (t)

)

, (25)

we obtain a complex system of ODEs,
(

u̇
v̇

)

=

(

Au 0
0 Av

)(

u
v

)

+ f̂(u, v, ε; t), (26)

where

Au =







λ1 0 0

0
. . . 0

0 0 λd






, Av =







λd+1 0 0

0
. . . 0

0 0 λn






, (27)

and

f̂(u, v, ε; t) = P−1

[

f0

(

x∗
ε(t) + P

(

u
v

))

+ Ax∗
ε (t) − ẋ∗

ε (t)

+ ε f̃1

(

x∗
ε (t) + P

(

u
v

)

, t

)]

. (28)

In system (26), the fixed point (u, v) = (0, 0) corresponds to the
anchor trajectory x∗

ε (t) and the u coordinate space is aligned with
the spectral subspace E.
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Third, using the integer multi-index
(

k, p
)

∈ N
d × N with

∣

∣

(

k, p
)
∣

∣ ≥ 0, we define a (now ε-dependent) order-
∣

∣

(

k, p
)
∣

∣ approxi-

mation to x∗
ε (t) and the evaluation of f̂(u, v, ε; t) on this approxima-

tion as

x∗
ε(t; k, p) =

|k|+p−1
∑

ν=0

ενxν(t),

(29)

f̂(u, v, ε; t; k, p) =

(

f̂ u(u, v, ε; t; k, p)

f̂ v(u, v, ε; t; k, p)

)

∈ C
d × C

n−d,

respectively, where

f̂(u, v, ε; t; k, p) = P−1

[

f0

(

x∗
ε(t; k, p) + P

(

u
v

))

+ Ax∗
ε(t; k, p)

− ẋ∗
ε(t; k, p) + ε f̃1

(

x∗
ε (t; k, p) + P

(

u
v

)

, t

)]

.

(30)

In short, x∗
ε (t; k, p) is an approximation of x∗(t) in the scaled vari-

able εx up to order |k| + p − 1. Accordingly, f̂(u, v, ε; t; k, p) is an

approximation of f̂(u, v, ε; t) that uses x∗
ε(t; k, p) instead of x∗(t).

Finally, for any multi-index k ∈ N
d, we define the time-

dependent diagonal matrix Gk(t) ∈ C(n−d)×(n−d) as

[Gk(t)]`` :=

{

e

[

λ`−
∑d

j=1 kjλj

]

t
, Re

[

λ` −
∑d

j=1 kjλj

]

< 0,

0, otherwise,
t ≥ 0,

(31)

[Gk(t)]`` :=

{

−e

[

λ`−
∑d

j=1 kjλj

]

t
, Re

[

λ` −
∑d

j=1 kjλj

]

> 0,

0, otherwise,
t < 0,

for ` = d + 1, . . . , n. Using these quantities, we can state the follow-
ing results.

Theorem 4 (Computation of non-autonomous SSMs and
their reduced dynamics). Assume that after the rescaling (22), an
ε-dependent SSM, Wε(E, t), of the type described in Theorem 3 exists
in the coordinates (u, v) for system (26) for all ε ∈ [0, ε∗]. Assume fur-
ther that Wε(E, t) is N-times continuously differentiable for any fixed
t and the nonresonance conditions,

Re λj 6=
∑

λk∈spect(A|E)

mkRe λk, λj ∈ spect (A) − spect (A|E) , (32)

hold for all j = k + 1, . . . , n and for all mk ∈ N with

1 ≤

n
∑

k=1

mk ≤ N. (33)

Then, for all ε ∈ [0, ε∗],:

(i) The SSM Wε(E, t) admits a formal asymptotic expansion,

Wε (E, t) =







(u, v) ∈ U ⊂ R
n : v = hε(u, t)

=

N
∑

|(k,p)|≥1

hkp(t)ukεp + o
(

|u|q εN−q
)







. (34)

The uniformly bounded hkp(t) coefficients in this expansion can
be computed recursively from their initial conditions,

h0p(t) ≡ 0, t ∈ R, p ∈ N; hk0(t) ≡ −A−1
k Mk0(hj0),

(35)
∣

∣j
∣

∣ < |k| ; h00 = 0,

via the formula,

hkp(t) =

∫ ∞

−∞

Gk(t − s)Mkp(s, hjm(s)) ds,

(36)
∣

∣(j, m)
∣

∣ <
∣

∣(k, p)
∣

∣ , t ∈ R,

where the functions Mkp are defined as

Mkp(t, hjm) =
∂|(k,p)|

∂u
k1
1 . . . ∂u

kd
d ∂εp



f̂ v



u,

|(k,p)|−1
∑

|(j,m)|≥1

hjm(t)ujεm, ε; t; k, p





−

|(k,p)|−1
∑

|(j,m)|≥1

εp











h
jm
1 (t)

j1uj

u1
· · · h

jm
1 (t)

jduj

ud

...
. . .

...

h
jm

n−d(t)
j1uj

u1
· · · h

jm

n−d(t)
jduj

ud











× f̂ u



u,

|(k,p)|−1
∑

|(j,m)|≥1

hjm(t)ujεm, ε; t; k, p









∣

∣

∣

∣

∣

∣

u=0, ε=0

.

(37)

(ii) The reduced dynamics on Wε (E, t) is obtained by restricting the
u-component of system (26) to Wε (E, t), which yields

u̇ = Auu + Qu

[

f0

(

x∗
ε(t) + P

(

u
hε(u, t)

))

+ ε f̃1

(

x∗
ε(t) + P

(

u
hε(u, t)

)

, t

)

+ Ax∗
ε(t) − ẋ∗

ε(t)

]

. (38)

Here, Qu ∈ C
d×n is a matrix whose jth row is êj/

(

êj · ej

)

for
j = 1, . . . d, where êj is the jth unit left eigenvector of P cor-
responding to its unit right eigenvector ej. Equivalently, Qu is
composed of the first d rows of P−1.

(iii) Let (ξ , η)T = P−1x denote coordinates aligned with the subspace
E and the direct sum of the remaining eigenspaces, respectively,
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emanating from the original x = 0 fixed point of system (1) for
ε = 0. In these coordinates, the reduced dynamics (38) becomes

ξ̇ = Auξ + Qu

[

f0

(

x∗
ε(t) + P

(

ξ − Qux∗
ε(t)

hε(ξ − Qux∗
ε(t), t)

))

+ ε f̃1

(

x∗
ε(t) + P

(

ξ − Qux∗
ε(t)

hε(ξ − Qux∗
ε(t), t)

)

, t

)]

. (39)

Proof. See Appendix B 2. �

Remark 5 (Related results). Pötzsche and Rassmussen42

derive Taylor approximations for a broad class of invariant mani-
folds emanating from fixed points of non-autonomous ODE. Due to
the generality of that setting, the resulting formulas are less explicit
than ours, assume global boundedness on the nonlinear terms, and
also assume that the origin remains a fixed point for all times (and
hence disallow additive external forcing). Nevertheless, under fur-
ther assumptions and appropriate reformulations, those formulas
should ultimately yield results equivalent to ours when applied to
SSMs. Although it does not directly overlap with our results here,
we also mention related work by Pötzsche and Rassmussen43 on the
computation of classic and strong stable/unstable manifolds, as well
as center-stable/unstable manifolds, for non-autonomous difference
equations.

Remark 6 (Extension to discontinuous forcing). The
derivatives in the definition of (37) can be evaluated using the same
higher-order chain-rule formula of Constantine and Savits44 that we
applied in the proof of Theorem 2. Using these formulas reveal that
hkp(t) can be formally computed as long as f1 and its x-derivatives at
x = 0 remain uniformly bounded in t. Therefore, the formal expan-
sion we have derived for the SSM Wε (E, t) is valid for small enough
ε even if f1 is discontinuous in the time t. We illustrate the contin-
ued accuracy of these expansions for discontinuous forcing on an
example in Sec. IV A 1.

Remark 7 (Relation to the case of periodic or quasi-periodic
forcing). The recursively defined coefficient vectors Mkp(s, hjm(s))
defined in Eq. (37) are explicitly time dependent but otherwise sat-
isfy the same formulas as the terms on the right-hand side of the
invariance equations arising from autonomous SSM calculations.
Consequently, the recursive formulas originally implemented in
SSMTool by Jain et al.18 for autonomous SSM calculations apply
here without modification. The difference is that those autonomous
Mk coefficients are used in solving linear algebraic systems of equa-
tions for hk, as opposed to the non-autonomous Mkp coefficients are
used in linear ODEs for hkp(t).

Remark 8 (Accuracy of asymptotic SSM formulas). The
accuracy of the reduced-order dynamics (38) increases with increas-
ing

∣

∣(k, p)
∣

∣. There is no general convergence result under N → ∞
in the reduced dynamics (38), but such convergence is known if
f(x, t) is analytic and has periodic or quasi-periodic time dependence
(Cabré et al.11 and Haro and de la Llave24). For those types of time
dependencies, the O (ε) term in the reduced dynamics (38) is the
same as that used for time-periodic and time-quasiperiodic SSMs in
earlier publications (see, e.g., Breunung and Haller45 and Cenedese
et al.20).

By formula (39), in the ξ coordinate aligned with E and ema-
nating from x = 0, the reduced dynamics up to first order in ε is of

the form

ξ̇ = Auξ + Quf0

(

P

(

ξ

h0(ξ)

))

+ εQu

[

Df0

(

P

(

ξ

h0(ξ)

))(∫ t

−∞

eA(t−τ) f̃1(0, τ) dτ

− P

(

Qu

∫ t

−∞
eA(t−τ) f̃1(0, τ) dτ

∂εhε(ξ , t)|ε=0

))]

+ εQu f̃1

(

P

(

ξ

h0(ξ)

)

, t

)

+ o (ε) , (40)

where we used formulas (16) and (24) in evaluating x̃1(t), the first
coefficient in the expansion of x∗

ε (t) in Eq. (23).
In prior treatments of time-periodically and time-quasi-

periodically forced SSMs, the second line on the right-hand side of
Eq. (40) has been justifiably dropped in leading-order approxima-

tions, because the factor Df0

(

P

(

ξ

h0(ξ)

))

is small close to the

origin (see, e.g., Breunung and Haller,45 Ponsioen et al.,15 Jain and
Haller,16 and Cenedese et al.,19). In that case, the leading-order cor-
rection to the unforced reduced dynamics is simply the third line in
(40), which is just the projection of the restriction of the forcing term
to the autonomous SSM onto the spectral subspace E. If, in addition,

the forcing term only depends on time (i.e., ∂x f̃1 ≡ 0), as is often the
case in structural vibrations, then a leading-order approximation for
small-amplitude motions on the SSM Wε (E, t) becomes

ξ̇ = Auξ + Quf0

(

P

(

ξ

h0(ξ)

))

+ εQu f̃1 (t) + O
(

ε |ξ | , ε2
)

. (41)

This level of approximation of the reduced dynamics was
shown to be accurate for small ε and |ξ | for periodic and quasi-
periodic forcing by the references cited above. Equation (41)
now establishes the same approximation formula for general, x-

independent forcing f1(t) = ε f̃1 (t) for trajectories that stay close to
the origin. Under general forcing, however, trajectories may well
stray away from the origin, given that Wε (E, t) itself will generally
move substantially away from the origin. In that case, the next level
of approximation obtained from Eq. (40) is

ξ̇ = Auξ + Quf0

(

P

(

ξ

h0(ξ)

))

+ εQu

[

Df0

(

P

(

ξ

0

))(∫ t

−∞

eA(t−τ) f̃1(0, τ) dτ

− P

(

Qu

∫ t

−∞
eA(t−τ) f̃1(0, τ) dτ

∂εhε(ξ , t)|ε=0

))]

+ εQu f̃1

(

P

(

ξ

0

)

, t

)

+ O
(

ε |ξ |2 , ε2
)

. (42)

Higher-order approximation can be systematically developed by
Taylor—expanding the reduced dynamics (39) in ε and utilizing the
terms from the expansions for x∗

ε (t) and Wε (E, t) using Theorems 2
and 4.

Alternative parametrizations of Wε (E, t) beyond the graph-
style parametrization worked out here in detail are also possible (see
Haller and Ponsioen,1 Haro et al.,27 and Vizzaccaro et al.35). One
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option is the normal-form style parameterization which simulta-
neously brings the reduced dynamics on Wε (E, t) to normal form.
Normal form transformations can also be applied separately once
Wε (E, t) is located (see, e.g., Cenedese et al.19).

III. ADIABATIC SSMs

A. Setup

We now consider slowly varying non-autonomous dynamical
systems of the form

ẋ = f(x, εt), x ∈ R
n, f ∈ Cr, 0 ≤ ε � 1, (43)

for some integer r ≥ 1. We obtain such a system, for instance, when
we replace the forcing function f1(x, t) in system (1) with its slowly
varying counterpart, f1(x, εt), in which case we have f(x, εt) = Ax
+ f0(x) + f1(x, εt). The form in (43) is, however, more general than
this specific example.

Introducing the slow variable α = εt, we rewrite system (43) as

ẋ = f(x, α),

α̇ = ε.
(44)

For ε = 0, we assume that the x-component of system (44) has an
α-dependent, uniformly bounded, and uniformly hyperbolic fixed
point x0(α), i.e., with the notation,

A(α) = Dxf(x0(α), α) ∈ R
n×n, (45)

we have

f(x0(α), α) = 0,
∣

∣Re
[

spect (A(α))
]∣

∣ ≥ K > 0, α ∈ R, (46)

for some constant K > 0. We further assume that x0(α) is a class Cr

function of α, in which case, by the first equation in (46), we have

dp

dαp
f(x0(α), α) ≡ 0, 0 ≤ p ≤ r, α ∈ R. (47)

By the hyperbolicity assumption (46), we can order the spec-
trum of A(α) as

spectA(α) = {λ1(α), . . . , λn(α)}

so that it satisfies

Re λn(α) ≤ . . . ≤ Re λj(α) ≤ −K < 0 < K ≤ Re λj−1(α)

≤ . . . ≤ Re λ1(α), α ∈ R, (48)

for some j ≥ 1. Conditions (46) imply that for ε = 0, the slow-
fast system (44) has a one-dimensional, normally attracting, non-
compact (but uniformly bounded) invariant manifold of the form

L0 = {(x, α) ∈ R
n × R : x = x0(α)} . (49)

The manifold L0 is composed of fixed points of system (44) for
ε = 0 and hence is called a critical manifold in the language of
geometric singular perturbation theory (Fenichel46).

B. Existence and computation of an adiabatic anchor

trajectory

As in the non-autonomous case treated in Sec. II, we first dis-
cuss the continued existence of an anchor trajectory that acts as a
continuation of the critical manifold L0.

Theorem 5 (Existence and computation of anchor trajectory
for adiabatic SSMs). For ε > 0 small enough, there exists a unique,
attracting, one-dimensional slow manifold Lε , composed of a slow
trajectory xε(α) that is uniformly bounded in α ∈ R. The trajectory
xε(α) is O (ε) C1-close and Cr diffeomorphic to the critical manifold
L0 defined in (49). Finally, for any non-negative integer N ≤ r, xε(α)

can be approximated as

Lε =

{

(x, α) ∈ R
n × R : x = xε(α) =

N
∑

ν=0

ενxν(α) + o
(

εN
)

}

,

(50)

with the recursively defined coefficients,

xν(α) = A−1(α)



x′
ν−1(α) −

∑

1<|γ |≤ν

∂ |γ |f (x0(α), α)

∂x
γ1
1 . . . ∂x

γn
n

×

ν
∑

s=1

∑

ps(ν,γ )

s
∏

j=1

∏n
i=1

[

xi
`j
(α)
]kji

∏n
i=1 kji!






, ν ≥ 1, (51)

where the index set ps (ν, γ ) is defined as

ps (ν, γ ) =

{

(k1, . . . , ks, `1, . . . , `s) : ki ∈ N
n − {0} , `i ∈ N,

0 < `1 < · · · < `s,
s
∑

i=1

ki = γ ,
s
∑

i=1

|ki| `i = ν

}

.

Proof. See Appendix C 1. �

Specifically, for N = 2, formula (51) gives an approximation for
the slow anchor trajectory xε(α) in the form

xε(α) = x0(α) + εx1(α) + ε2x2(α) + o
(

ε2
)

,

x1(α) =
[

Dxf(x0(α), α)
]−1

x′
0(α), (52)

x2(α) =
[

Dxf(x0(α), α)
]−1

×

[

x′
1(α) −

1

2
D2

xf (x0(α), α) ⊗ x1(α) ⊗ x1(α)

]

.

C. Existence and computation of an adiabatic SSM

We seek to construct an adiabatic SSM anchored along the slow
invariant manifold Lε that is spanned by xε(α) for small ε > 0. To
this end, we assume that the first k eigenvalues λ1(α), . . . , λk(α) in
the list (48) have negative real parts and there is a nonzero spectral
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gap between Re λk(α) and Re λk+1(α),

Re λn(α) ≤ . . . ≤ Re λk+1(α) < Re λk(α) ≤ . . . ≤ Re λ1(α) < 0,
(53)

α ∈ R.

We also assume that the real spectral subspace E(α) formed by the
corresponding first k eigenvalues varies smoothly in α and hence has
a constant dimension,

d = dim E(α), α ∈ R.

We then define the integer part ρ of the spectral gap associated with
E(α) as

ρ = min
α∈R

Int

[

Re λk+1(α)

Re λk(α)

]

∈ N
+. (54)

Note that ρ ≥ 1 holds by assumption (53), with ρ measuring the
minimum of how many times the attraction rates toward E(α)

overpower the contraction rates within E(α).
For ε = 0 and for each α ∈ R, system (44) has an SSM

W0 (E(α)) tangent to E(α) at x0(α) (see Haller and Ponsioen1). As
a consequence,

M0 = ∪
α∈R

W0 (E(α))

is a (d + 1)-dimensional, ρ-normally attracting invariant manifold
for system (44) for ε = 0 in the sense of Fenichel38 and Elder-
ing et al.41 More specifically, M0 is a ρ-normally attracting, non-
compact, inflowing-invariant manifold with a boundary, as shown
in Fig. 2 for ε = 0 .

We have the following main results on the persistence of the
manifold M0 in the form of an adiabatic SSM for small enough ε.

Theorem 6 (Existence of adiabatic SSMs). Assume that
x0(α) and f(x, α) have r continuous derivatives that are uniformly
bounded in α ∈ R in a small, closed neighborhood of M0. Let
m = min (r, ρ). Then, for ε > 0 small enough, there exists a persistent
invariant manifold (adiabatic SSM anchored alongLε), denotedMε ,
that is Cm diffeomorphic toM0, has m uniformly bounded derivatives
and is O (ε) C1 -close to M0. Furthermore, Lε ⊂ Mε holds.

FIG. 2. Left: the geometry of the critical manifoldL0 (spanned by the anchor tra-
jectory x0(α)), the attracting invariant manifoldM0, and the fast stable manifold
N0 (blue) ofL0. Two trajectories off these manifolds are shown in red. Right: the
persistent slow manifoldLε (spanned by xε(α)) and and the adiabatic SSMMε

for small enough ε > 0.

Proof. See Appendix B 2. �

We show the geometry of the adiabatic SSM, Mε , in Fig. 2 for
ε > 0.

Remark 9 (Applicability to mixed-mode adiabatic SSMs).
For the purposes of constructing Mε , we had to assume in Eq. (53)
that the spectrum of A(α) lies in the negative complex half plane, i.e.,
E(α) contains only stable directions. In the terminology of Haller
et al.,12 this means that W (E(α)) has to be a like-mode SSM for
all values of α for Theorem 6 to apply. This enables us to select an
inflowing-invariant, normally attracting manifold M̃0 in our proof
to which the wormhole construct in Proposition B1 of Eldering
et al.41 is applicable. There is every indication that Mε also exists
under the weaker assumption (46), which only requires A(α) to have
no eigenvalues on the imaginary axes, and hence allows W (E(α)) to
be a mixed-mode SSM that contains both stable and unstable direc-
tions. In this case, however, an M̃0 with an inflowing or overflowing
boundary cannot be chosen and hence Proposition B1 of Eldering
et al.41 would need a technical extension that we will not pursue
here, although it appears doable. We simply note that the asymp-
totic formulas we will derive for Mε are formally valid under the
weaker assumption (46) as well [i.e., for mixed-mode W (E(α))], as
long as E(α) is normally hyperbolic, i.e., attracts solutions at a rate
that is uniformly stronger than the contraction rates inside E(α).
We will evaluate and confirm these formulas in an example with a
mixed-mode adiabatic SSMs in Sec. IV B 2.

As in the general non-autonomous case treated in Sec. II, the
adiabatic Mε will generally persist for larger values of ε and will
also be smoother than Cm under additional nonresonance condi-
tions. In the following, we will provide a numerically implementable
recursive scheme for computing Mε , assuming that it exists and is
smooth enough.

To state these recursive approximation results, we first intro-
duce the new coordinates,

(

u
v

)

= P−1 (α) (x − xε(α)) , (55)

where P(α) ∈ C
n diagonalizes the matrix A(α). The coordinates

(u, v) ∈ C
d × C

n−d align with the d-dimensional stable spectral
subspace family E(α) and with the direct sum of the remain-
ing eigenspaces of A(α), respectively. In these new coordinates,
system (44) becomes

(

u̇
v̇

)

=

(

Au (α) 0
0 Av (α)

)(

u
v

)

+ f̂(u, v, ε; α),

α̇ = ε,

(56)

where

Au (α) =







λ1 (α) 0 0

0
. . . 0

0 0 λd (α)






,

(57)

Av (α) =







λd+1 (α) 0 0

0
. . . 0

0 0 λn (α)






,
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and

f̂(u, v, ε; α) = P−1 (α)

[

f

(

xε(α) + P (α)

(

u
v

)

, α

)

− A (α) P (α)

(

u
v

)

− εx′
ε(α) − εP′ (α)

(

u
v

)]

. (58)

By existing SSM theory, any α = const. slice of M0 can be written in the form of a Taylor expansion in u with coefficients depending
smoothly on α. Therefore, the whole of M0 can be written as

M0 = ∪α∈RW0 (E(α)) =

{

(u, v, α) ∈ U ⊂ R
n : v = h0(u, α) =

r
∑

|k|≥2

hk(α)uk + o
(

|u|r
)

}

. (59)

We can now state the following results on the computation of the adiabatic SSM, Mε , for ε ≥ 0.
Theorem 7 (Computation of adiabatic SSMs). Assume that an ε-dependent adiabatic SSM, Mε , of the type described in Theorem 6

exists in the transformed system (56) for all ε ∈ [0, ε∗] . Assume further that Mε is N-times continuously differentiable and the nonresonance
conditions,

λj(α) 6=
∑

λk(α)∈spect(A(α)|E(α))

mkλk(α), λj(α) ∈ spect (A(α)) − spect (A(α)|E(α)) , (60)

hold for all j = k + 1, . . . , n and for all mk ∈ N with

1 ≤

n
∑

k=1

mk ≤ N. (61)

Then, for all ε ∈ [0, ε∗].

(i) The adiabatic SSM, Mε , admits a formal asymptotic expansion

Mε =







(u, v, α) ∈ U ⊂ R
n : v = hε(u, α) =

N
∑

|(k,p)|≥1

hkp(α)ukεp + o
(

|u|q εN−q
)







. (62)

The functions hkp(α) are uniformly bounded in α ∈ R for all
(

k, p
)

and can be computed recursively from their initial conditions,

h0p(α) ≡ 0, p ≥ 0; hk0(α) ≡ hk(α), k ∈ N
d;

hk0(α) ≡ hk0(α) ≡ hk(α) = 0, |k| = 1; hk(−1)(α) := 0,
(63)

via the formula

hkp(α) = A−1
k (α)

[

[

hk(p−1)
]′

(α) − Mkp(α, hjm)
]

,
∣

∣(j, m)
∣

∣ <
∣

∣(k, p)
∣

∣ , (64)

where

Ak(α) = diag



λ`(α) −

d
∑

j=1

kjλj(α)





n

`=d+1

∈ C(n−d)×(n−d),

(65)

Mkp(α, hjm) =
∂|(k,p)|

∂u
k1
1 . . . ∂u

kd
d ∂εp















f̂ v



u,

|(k,p)|−1
∑

|(j,m)|≥1

hjm(α)ujεm, ε; α; k, p





−

|(k,p)|−1
∑

|(j,m)|≥1

εp















h
jm
1 (α)

j1u
j

u1
· · · h

jm
1 (α)

jdu
j

ud
...

. . .
...

h
jm

n−d(α)
j1u

j

u1
· · · h

jm

n−d(α)
jdu

j

ud















f̂ u



u,

|(k,p)|−1
∑

|(j,m)|≥1

hjm(α)ujεm, ε; α; k, p



















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u=0, ε=0

.

Specifically, for ε = 0, the coefficients in expansion (59) for M0 can be computed as

hk(α) ≡ hk0(α) = −A−1
k (α)Mk(α, hj0),

∣

∣j
∣

∣ < |k| . (66)
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(ii) The reduced dynamics on Mε is given by

u̇ = Qu (α)

[

f

(

xε(α) + P(α)

(

u
hε(u, α)

)

, α

)

− εx′
ε(α)

]

+ εQ′
u (α) P(α)

(

u
hε(u, α)

)

,

α̇ = ε.

(67)

Here, Qu (α) ∈ C
d×n is a matrix whose jth row is êj(α)/

(

êj(α) · ej(α)
)

for j = 1, . . . d, where êj(α) is the jth unit left eigenvector of P(α)

corresponding to its unit right eigenvector ej(α). Equivalently, Qu(α) is composed of the first d rows of P−1(α).

Proof. See Appendix C 3. �

A leading-order approximation for the reduced dynamics on the adiabatic SSM, Mε , can be obtained from formula (67) as

u̇ = Qu (α) f

(

x0(α) + P(α)

(

u
h0(u, α)

)

, α

)

+ εQu (α) Dxf

(

x0(α) + P(α)

(

u
h0(u, α)

)

, α

)

(

[

Dxf(x0(α), α)
]−1

− I
)

x′
0(α)

+ εQu (α) Dxf

(

x0(α) + P(α)

(

u
h0(u, α)

)

, α

)

P(α)

(

u
∂εhε(u, α)|ε=0

)

+ εQ′
u (α) P(α)

(

u
h0(u, α)

)

+ O
(

ε2
)

,

(68)
α̇ = ε,

where we have used the expression for x1(α) from expansion (52).

D. Special case: Adiabatic SSM under additive slow

forcing

We now assume that the slow time dependence in system (43)
arises from slow (but generally not small) additive forcing. This is a
reasonable assumption, for instance, in the setting of external con-
trol forces acting on a highly damped structure, whose unforced
decay rate to an equilibrium is much faster than the rate at which
the forcing changes in time. Another relevant setting is very slow
(quasi-static) forcing in structural dynamics.

In such cases, system (43) can be rewritten as

ẋ = f(x, εt) = f0(x) + f1(εt), x ∈ R
n, f0, f1 ∈ Cr, 0 ≤ ε � 1,

(69)

or, equivalently,

ẋ = f0(x) + f1(α),

α̇ = ε.
(70)

For ε = 0, the invariant manifold L0 of fixed points satisfies

f0(x0(α)) + f1(α) = 0, (71)

and we have

A(x0(α)) = Dxf(x0(α), α) = Dxf0(x0(α)) ∈ R
n×n. (72)

Note that we have changed our notation slightly for the matrix A to
point out that it depends solely on x0(α).

These simplifications imply that the matrix A(x0(α)), the col-
umn matrix P(x0(α)) of the right eigenvectors of A(x0(α)) and the
row matrix Qu(x0(α)) of the first d, appropriately normalized left
eigenvectors of A(x0(α)) can now be determined solely from the
unforced part f0(x) of the right-hand side of system (69) along any
parametrized path x0(α) defined implicitly by Eq. (71). Similarly, an
inspection of the formulas (66) defining the slow SSM, M0, reveals
that the graph h0(u, x0(α)) of M0 can be computed along the path

x0(α) solely based on the knowledge of f0(x); only the path itself
depends on the specific forcing term f1(α).

From Eq. (67), we obtain that the leading-order reduced
dynamics on Mε are now

u̇ = Qu (x0(α)) f0

(

x0(α) + P(x0(α))

(

u
h0(u, x0(α))

))

+ Qu (x0(α)) f1(α),
(73)

α̇ = ε.

Along any envisioned path x0(α), one can a priori compute the
parametric family of frozen-time reduced models,

u̇ = Qu

(

p
)

f0

(

p + P(p)

(

u
h0(u, p)

))

, p ∈ U, (74)

at all points p within an open set U in the phase space that is expected
to contain x0(α) for possible forcing functions f1(α) of interest.
Then, for any specific forcing f1(α), we can determine the path x0(α)

from Eq. (71) and use the appropriate elements of the model fam-
ily (74) with p = x0(α) in Eq. (73) to obtain the non-autonomous
leading-order model,

u̇ = Qu (x0(εt)) f0

(

x0(εt) + P(x0(εt))

(

u
h0(u, x0(εt))

))

+ Qu (x0(εt)) f1(εt). (75)

In practice, one would only precompute (74) at a discrete set of

points
{

pk

}K

k=1
⊂ U to obtain a finite model family from (74) and

then interpolate from these points to approximate the full leading-
order model (73) along x0(α).

A specific feature arising in applications to forced mechanical
systems is that the phase space variable x = (q, v) is composed of
positions q ∈ R

n/2 and their corresponding velocities v = q̇ ∈ R
n/2,
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where n is an even number denoting twice the number of degree of
freedom of the mechanical system. In that case, forcing only appears
in the v component of the ODE (69), implying

f0(x) =
(

v, f v
0 (q, v)

)

∈ R
n/2 × R

n/2,

f1(α) =
(

0, f v
1 (α)

)

∈ R
n/2 × R

n/2.

As a consequence, Eq. (71) takes the more specific form

v(α) = 0,

f v
0 (q(α), v(α)) + f v

1 (α) = 0,
(76)

leading to the single equation,

f v
0 (q(α), 0) + f v

1 (α) = 0,

for the path x0(α) = (q(α), 0). This means that the reduced-order
model family (74) can be constructed a priori along different spa-
tial locations q of the configuration space under the application of
static forces f v

1 (α) that keep the mechanical system at equilibrium
(v = 0) at those q(α) locations. This is a significant simplification
over the general setting of Eq. (74), because it only requires the
construction of the model family (74) over a codimension-n subset
Uq =

{

(q, v) ∈ R
n : v = 0

}

of the full phase space R
n of sys-

tem (69).
This simplified reduced model construction is expected to

provide further improvement over current autonomous-SSM-based
control strategies that use only a single member of the model family
(74), computed at fixed point x∗

0 of the unforced system (see Alora
et al.36,37). This single model is then used along the full path x0(α) to
approximate the leading-order model (73). Clearly, this approxima-
tion will generally only be valid when the instantaneous equilibrium
path x0(α) remains close to the unperturbed fixed point x∗

0 . We will
explore the application of the ideas described in this section to robot
control in other upcoming publications.

IV. EXAMPLES

Here, we consider two main mechanical examples to illustrate
the construction of anchor trajectories and the corresponding non-
autonomous SSMs under weak or adiabatic forcing. The governing
equations of these mechanical systems are of the general form

Mẍ + Cẋ + Kx + f(x) = F(t), (77)

where x is the vector of generalized coordinates; M = MT is the
positive definite mass matrix; and C = CT is the positive definite
damping matrix. The stiffness matrix K = KT is positive definite in
our first example and indefinite in our second example; f(x) is the
vector of geometric nonlinearities; and F(t) is the vector of exter-
nal forcing. We can rewrite the second-order system (77) in the
first-order form we have used in this paper by letting

x =

(

x
ẋ

)

, A =

(

0 I
−M−1K −M−1C

)

,

f0(x) =

(

0
−M−1f(x)

)

, f1(t) =

(

0
−M−1F(t)

)

.

With this notation, system (77) will take the form of the first-
order system (1) or that of (69), depending on whether F(t) can be
considered small or slow.

Both of our examples treated below admit a hyperbolic fixed
point at x = 0 in the absence of forcing. To add general aperiodic
forcing to these systems, we will construct the vector F(t) from a
trajectory on the chaotic attractor of the classic Lorenz system,

ẋ = σ(y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz,

(78)

with parameter values ρ = 28, σ = 10, and β = 8
3 . We solve this

system over the time interval [0, 500], starting from the initial condi-
tion (x0, y0,z0) = (0, 0.3, 0.5) to generate weak forcing and over the
time interval [−15, 20] from (x0, y0,z0) = (0.8, 0.3, 0.2) to generate
slow forcing. Specifically, we use the x(t) component of this solution
as forcing profile after appropriate scaling in both cases. Outside the
time interval [0, 500], we select the forcing to be identically zero for
the weak forcing case. To emulate slow forcing, we use a slowed-
down version of the chaotic signal by rescaling time as t 7→ α = εt.
These choices of the forcing ensure its uniform boundedness, which
was one of our fundamental assumptions in deriving our results for
weak forcing. In the slow forcing case, the signal is smooth enough
to ensure accurate numerical differentiability in the α-interval [0, 6]
we consider.

We formulated our results in Secs. II and III for fully non-
dimensionalized systems for which smallness or slowness can
simply be imposed by selecting a single perturbation param-
eter ε small enough. In specific physical examples, such a
non-dimensionalization can be done in multiple ways and is often
cumbersome to carry out for large systems. One nevertheless needs
to assess whether the external forcing is de facto smaller or slower
than the magnitude or the speed of variation of internal forces along
trajectories. While such a consideration has been largely ignored
in applications of perturbation results to physical problems, here
we will propose and apply heuristic physical measures that help
assessing the magnitude and the slowness of the perturbation.

To assess smallness or slowness in a systematic and non-
dimensional fashion without non-dimensionalization of the full
mechanical system, we first express the mechanical system in the
form

Mẍ = Fint (x, ẋ) + Fext (x, ẋ, t) , (79)

with the subscripts referring to the autonomous internal forces and
non-autonomous external forces, respectively. Using these forces,
we define the non-dimensional forcing weakness rw and forcing speed
rs as

rw =

∫ tf
t0

|Fext (x, ẋ, t)| dt

∫ tf
t0

|Fint (x, ẋ)| |dt

, rs =

∫ tf
t0

∣

∣

∂

∂t
Fext (x, ẋ, t)

∣

∣ dt

∫ tf
t0

∣

∣

d
dt

Fint (x, ẋ)
∣

∣ |dt

, (80)

where the over-bar represents averaging with respect to the ini-
tial conditions (x0, ẋ0) of the unperturbed (i.e., ε = 0) trajectories
[x(t), ẋ(t)] of the system over an open domain of interest in the phase
space.
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In a practical setting, we deem a specific external forcing weak if
rw � 1 or slow if rs � 1. This is the range in which the perturbation-
based invariant manifold techniques used in proving our relevant
theorems can reasonably expected to apply. We have noted, how-
ever, that the SSMs obtained from these techniques are normally
hyperbolic and hence persist under further increases in rw and rs.
Indeed, we will show that our formal asymptotic SSM expansions
tend to remain valid for rw > 1 and and rs > 1. In some cases, we
also find these formulas to have predictive power for rw, rs � 1.

All MATLAB scripts used in producing the results for the
examples below can be publicly accessed at Kaundinya and Haller.47

A. Example 1: Chaotically forced cart systems

1. Weak forcing

We consider the two-degree-of-freedom (2 DOF) mechanical
system from Haller and Ponsioen,1 placed now on a moving cart
subject to external chaotic shaking, as shown in Fig. 3(a). In this
example, the fixed point of the unforced system is asymptotically sta-
ble. As a result, under external forcing, the SSM attached to a unique
nearby anchor trajectory will be of like-mode type.

Using the coordinate vector x =
(

q1, q2, xc

)

, we obtain the
equations of motion in the form (77) with

M =













Mf

(m1 + m2)

MT

m2Mf

MT

0

m2Mf

MT

m2
(m1 + Mf)

MT

0

0 0 MT













, K =



















2k +
kf(m1 + m2)

2

M2
T

k +
kfm2(m1 + m2)

M2
T

−kf

m1 + m2

MT

k +
kfm2(m1 + m2)

M2
T

2k +
kfm

2
2

M2
T

−kf

m2

MT

−kf

m1 + m2

MT

−kf

m2

MT

kf



















,

C =



















c +
cf(m1 + m2)

2

M2
T

c +
cfm2(m1 + m2)

M2
T

−cf

m1 + m2

MT

c +
cfm2(m1 + m2)

M2
T

2c +
cfm

2
2

M2
T

−cf

m2

MT

−cf

m1 + m2

MT

−cf

m2

MT

cf



















, f (x, ẋ) =







γ q3
1

0

0






, F(t) =







0

0

MTg(t)






,

(81)

where MT = Mf + m1 + m2. We further set m1 = m2 = 1 (kg), Mf = 4 (kg), k = kf = 1 (N/m), c = cf = 0.3 (Nm/s), and γ = 0.5 (N/m3).
We will consider two different cases of forcing by scaling the magnitude of the chaotic signal g(t) in two different ways. In the first case, we
will have max |F (t)| = 0.06 (N), which gives the non-dimensional forcing weakness rw = 0.16 from the first formula in Eq. (80). This forcing
scheme can, thus, be considered weak albeit not very small. Our subsequent choice of max |F (t)| = 3 (N) gives rw = 7.8, which is definitely
outside the range of small forcing.

FIG. 3. (a) The physical setup for the forced cart problem. (b) The chaotic forcing signal g(t), generated as the x(t) component of the numerically solved Lorenz system (78)
with initial condition (0, 0.3, 0.5), computed over the time interval [0, 500] measured in seconds. For times below t < 0, we set g(t) ≡ 0.
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As the unforced x = 0 fixed point is asymptotically stable and the forcing in uniformly bounded, this fixed point perturbs for small
enough

∣

∣MTg(t)
∣

∣ into a nearby attracting anchor trajectory x∗(t) by Theorem (1). From the asymptotic formula (14) listed in the theorem, a
5th-order approximation for x∗(t) has the terms,

x1(t) =

∫ t

−∞

eA(t−τ)f1(τ ) dτ , x2(t) = 0, x3(t) =

∫ t

−∞

eA(t−τ)





























0

0

0

−
γ (Mf + m1)

m1Mf

[x1
1(τ )]3

γ

m1
[x1

1(τ )]3

0





























dτ ,

x4(t) = 0, x5(t) =

∫ t

−∞

eA(t−τ)





























0

0

0

−
γ (Mf + m1)

m1Mf

3[x1
1(τ )]2

x1
3(τ )

γ

m1
3[x1

1(τ )]2
x1

3(τ )

0





























dτ ,

(82)

with the external forcing f1(t) =
(

0, 0, 0, 0, 0, g(t)
)T

appearing in the
first-order version of the equation motion.

Utilizing that the forcing signal g(t) vanishes for t < 0, we eval-
uate the integrals in (82) via the trapezoidal integration scheme
of MATLAB. For sufficient accuracy, we use forcing values eval-
uated at 104 equally spaced times to ensure accurate numerical
integration. The terms xν(t) in the expansion for x∗(t) are then
spline-interpolated in time to obtain an expression for x∗(t) for
arbitrary t ∈ [0, 500].

To compute the non-autonomous SSM coefficients, we change
coordinates such that x∗(t) serves as the origin of the transformed
system (26). As a result, the matrices defined in Eq. (27) are of the
form

Au =

(

λ1 0
0 λ2

)

, Av =







λ3 0 0 0
0 λ4 0 0
0 0 λ5 0
0 0 0 λ6






,

with λ1,2 = −0.0227 ± 0.3956i, λ3,4 = −0.1234 ± 1.2700i, and
λ5,6 = −0.3788 ± 1.6707i. These eigenvalues satisfy the non-
resonance condition (32), and hence by Theorem 4, there exists
a 2D autonomous SSM, Wε(E, t), that admits a truncated Taylor
expansion,

vi ≈

j+|m|=N
∑

j,m=1

ε ju
m1
1 u

m2
2 h

jm
i (t), (83)

for any N ≥ 2 in system (26). Here, we choose the dimensional
book-keeping parameter,

ε =
max |F (t)|

Mf + m1 + m2
,

in computing expansion (83). As already noted, the actual ratio
between external forces to internal forces along trajectories is better
represented by the dimensionless forcing weakness parameter rw.

Up to the order of truncation in Eq. (83), the two-dimensional
SSM-reduced order model (38) can be written in the complex
coordinate u1 as

u̇1 = λ1u1 + fu1



u,
j+|m|=5
∑

j,m=1

ε ju
m1
1 u

m2
2 hjm(t), xε(t))



 . (84)

After computing the trajectory from formula (82) up to fifth order,
we use the recursive formulas in statement (i) of Theorem 4 to
compute the coefficients hjm(t) in Eq. (84) up to the same order
recursively. Details for the coefficients in the SSM-reduced model
(84) can be found in the code available from Kaundinya and Haller.47

To assess the performance of the truncated SSM-reduced
model (84) for N = 5, we first plot the normalized mean trajectory
error computed from ten different initial conditions for max||F||
= 0.06 (N) in Fig. 4(a). We compute the dependence of this error
on max||F|| in Fig. 4(b). As expected, the errors grow with max||F||
but remains an order of magnitude less than max||F||.

Probing larger forcing amplitudes, we still obtain accurate
reduced-order models up to max||F|| = 3 (N). As an illustration,
Fig. 5 uses the center-of-mass coordinate xc to show our 5th order
asymptotic approximation using Theorem 1 for the anchor trajec-
tory of the chaotic SSM (blue), a simulation from the full model for
a trajectory in the 2D SSM converging to the anchor point (black),
and a prediction from the 2D SSM-reduced model obtained from
Theorem 4 for the same trajectory (red).

In Fig. 6 (Multimedia available online), we also plot snapshots
of the chaotic 2D SSM, its anchor trajectory, a trajectory from the
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FIG. 4. Error distribution of the SSM-reduced modeling error for the chaotically shaken cart example. (a) Ensemble average (black) of the mean trajectory errors (grey,
normalized by the maximum of the maximal trajectory amplitude) computed from ten initial conditions under forcing with max||F|| = 0.06 (N). (b) The mean trajectory error
under varying max||F|| on trajectories starting from the initial condition u1 = u2 = 1.2 in all cases.

full-order model, and the prediction for this trajectory from the
SSM-reduced order model at three different times. Note how both
the full trajectory and the predicted model trajectory synchronize
with the anchor trajectory of the SSM (see Fig. 6). Finally, we would
like to illustrate that the improper integrals in our asymptotic for-
mulas for anchor trajectories and SSMs indeed converge and give

FIG. 5. SSM-reduced model predictions and their verification in the chaotically
forced cart example (see the text for details). The non-dimensional forcing weak-
ness measure gives rw = 7.8, which is clearly outside the small forcing regime.
We also zoom in to show the initial transient phase to highlight how the reduced
order model captures the dynamics of the full-order model.

correct results even for discontinuous forcing, as noted in Remark
6. To this end, we make the forcing discontinuous at ten random
points in time, as shown in Fig. 7(b). The same formulas for the
anchor trajectory, its attached SSM, and the SSM-reduced order
model remain formally applicable and continue to give accurate
approximations even for the relatively large forcing amplitude of
max||F|| = 3 (N), as seen in Fig. 7.

We close this subsection with a slight modification of our
example that adds more nonlinearity to the problem and underlines
the utility of the higher-order approximations we have developed
for the anchor trajectory (or generalized steady state) and the SSM
attached to it. For brevity, we will only illustrate the need for higher-
order approximations to the anchor trajectory by replacing the
localized nonlinearity in Eq. (81) with the more general nonlinearity,

f(x, ẋ) =













γ q3
1 − γf

m1 + m2

MT

β(x)

−γf

m2

MT

β(x)

γfβ(x)













,

(85)

β(x) =

(

xc −
(m1 + m2)

MT

q1 −
m2

MT

q2

)3

.

This makes the originally linear right-most spring between the cart
and the wall in Fig. 3(a) nonlinear with cubic nonlinear stiffness
coefficient γf.

First, Fig. 8(a) shows for γf = 0
(

N/m3
)

(i.e., for the linear limit
of the right-most spring), the O (1) and O (11) asymptotic approxi-
mations to the anchor trajectory of the chaotic SSM using the results
of Theorem 1. Already in this case, the O (1) approximation is
noticeably improved by the O (11) approximation, but the O (1)
approximation is also close to the actual generalized steady state.
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FIG. 6. (a)–(c) Snapshots of the evolution of the 2D SSM, its anchor trajectory, and a trajectory of the SSM-reduced model shown in the coordinates used in Theorem 4.
The non-dimensional forcing weakness measure is again rw = 7.8, which is no longer small. See Movie 1 in the supplementary material for the full evolution. Multimedia
available online.

In contrast, Fig. 8(b) shows a case in which much smaller
forcing is applied but the right-most spring is nonlinear with
γf = 0.5 (N/m3). In this case, more significant error develops
between the actual anchor trajectory and its O (1), while the O (11)
approximation remains indistinguishably close to the actual anchor
trajectory. This example, therefore, underlines the need for higher
approximations to the anchor point in the presence of stronger
nonlinearities. As the SSM is attached to the anchor trajectory, the
accuracy of an SSM-reduced model also depends critically on this
refined approximation.

2. Slow forcing

For the same cart system shown in Fig. 3(a), we select the phys-
ical parameters m1 = m2 = 1 (kg), Mf = 2 (kg), k = kf = 1 (N/m),
and c = cf = 0.3 (Ns/m). We now slow down the previously
applied chaotic forcing by replacing the external forcing vector in

Eq. (81) with F(α) =
(

0, 0, Nsg(α)
)T

. We select this forcing to be of
large amplitude by letting Ns = 10 and consider the phase range
α ∈ [0, 6]. In our analysis, we will start with the minimal forcing
speed ε = α̇ = 0.001, for which obtain the non-dimensional forc-
ing speed rs = 0.72 from the second formula in (80). This qualifies
as moderately slow external forcing relative to the speed of varia-
tion of internal forces along unperturbed trajectories. In contrast,
for the maximal forcing speed ε = α̇ = 0.008, we will consider, we
obtain rs = 7.26, which can no longer be considered slow. Again,
of particular interest will be how our asymptotic formulas for adia-
batic SSMs and their anchor points perform in the latter case, which
is clearly faster than what is normally considered slowly varying in
perturbation theory.

We start by solving for the fixed point x0(α) of the sys-
tem under static forcing, as defined by the algebraic equation in
Eq. (46). In the present example, this amounts to solving the
equation,
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FIG. 7. (a) Discontinuous chaotic forcing profile for the cart example with non-dimensional forcing weakness rw = 7.8. We set g(t) ≡ 0 for t < 0. (b) Same as Fig. 5 but for
the discontinuous chaotic forcing profile shown in the subplot (a).

Kx0 + f(x0, 0) = F(α), (86)

which is obtained from the general forced equation of motion (79). We solve this nonlinear algebraic equation for the selected range of α

values by Newton iteration.
Once x0(α) is available numerically, we evaluate the recursive formula (51) up to order N = 3 to obtain

FIG. 8. Leading-order and higher-order approximation of the generalized steady state of the cart system under weak chaotic forcing. (a) For max||F|| = 3 (N) with non-di-

mensional forcing weakness rw = 15.82 and a linear right-most spring [γf = 0 (N/m3
)]. (b) For one-fifth of the forcing level in the case (a) [max||F|| = 0.6 (N), rw = 6] but

for a nonlinear right-most spring [γf = 0.5 (N/m3
)].
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x1(α) = A−1(α)x′
0(α), x2(α) = A−1(α)





























x′
1(α) −





























0

0

0

−
γ (Mf + m1)

m1Mf

3[x1
1(α)]2

x1
0(α)

γ

m1
3[x1

1(α)]2
x1

0(α)

0

























































,

x3(α) = A−1(α)





























x′
2(α) −





























0

0

0

−
γ (Mf + m1)

m1Mf

([x1
1(α)]3

+ 6x1
1(α)x1

0(α)x1
2(α))

γ

m1
([x1

1(α)]3
+ 6x1

1(α)x1
0(α)x1

2(α))

0

























































.

Having computed this approximation for the anchor trajectory,
we change to the coordinates defined in Eq. (55). In those coor-
dinates, we compute the α-dependent matrices defined in Eq. (57)
numerically. Their general form in the present examples is

Au =

(

λ1(α) 0
0 λ2(α)

)

, Av =









λ3(α) 0 0 0
0 λ4(α) 0 0
0 0 λ5(α) 0
0 0 0 λ6(α)









.

To perturb from this frozen-time limit, we set α = ε�t and
� = 1 Hz to make the small parameter ε non-dimensional.

We set N = 3 and solve for all the α dependent coefficients in
the expansion of the 2D slow chaotic SSM by solving a recursive
linear algebraic equations (64) order by order. We find that all 28
coefficients that describe the SSM up to cubic order are nonzero. An
important numerical step used in this task is to perform differentia-
tion with respect to α. For this purpose, we first need to re-orient the
unit eigenvectors originally returned by MATLAB for specific val-
ues of α to make these eigenvectors smooth functions of α. We then
perform a central finite differencing which includes four adjacent
points in the α direction. We finally employ the Savitzky–Golay fil-
tering function of MATLAB to smoothen the results obtained from
finite differencing an already finite-differenced signal.

To illustrate the ultimate accuracy of these numerical pro-
cedures, Table I shows the normalized mean trajectory error for
predictions from two different SSM-reduced models. We see that
under increasing ε (i.e., faster forcing), the errors still remain an
order-of-magnitude smaller than ε.

As we did for weak forcing, we track the center of mass coordi-
nate xc to test the accuracy of our asymptotic formulas up to order
N = 3 for ε = 0.008 in Fig. 9. Note how this cubic-order approx-
imation of the SSM-reduced model already tracks the full solution

closely. Finally, as in the weakly forced case, we also plot in Fig. 10
snapshots of the evolution of the slow anchor trajectory, the attached
chaotic SSM, a simulated full-order trajectory, and its prediction
from the same initial condition based on the SSM-reduced dynam-
ics (Multimedia available online). These snapshots further confirm
the accuracy of our analytic approximation formulas, now in several
coordinate directions.

B. Example 2: Chaotically forced bumpy rail

1. Weak forcing

The physical setup of our second example, a particle moving
on a shaken rail with a bump in the middle, is shown in Fig. 11(a).
A major difference from our previous mechanical example is that
the origin of the unforced system is now an unstable, saddle-focus-
type fixed point. Therefore, under weak chaotic forcing, a nearby
chaotic SSM of mixed-mode type is expected to arise attached to a
saddle-focus-type chaotic anchor trajectory.

We use the center of mass position xc and the relative posi-
tion x of the smaller mass m as generalized coordinates. In terms
of these coordinates, the quantities featured in the general equation

TABLE I. Normalized mean trajectory error for predictions from two different SSM-re-

duced models under different ε values. The corresponding non-dimensional forcing

speed rs is also shown for each listed value of ε.

O(ε, j = 1, |m| = 3) O
(

ε3, j + |m| = 3
)

ε = 0.001 (rs = 0.72) 9.8 × 10−5 7.2 × 10−6

ε = 0.008(rs = 7.26) 6.4 × 10−3 7.8 × 10−4

ε = 0.010 (rs = 8.66) 1.1 × 10−2 2.9 × 10−3
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FIG. 9. (a) Slow chaotic forcing signal g(εt) for the cart example for ε = 0.008, which amounts to rs = 7.26. (b) Assessment of the accuracy of the anchor trajectory and
the reduced dynamics of the slow chaotic SSM in the cart example, based on the history of the xc(t) coordinate of the center of mass.

of motion (77) take the form

M =





Mf + m 0

0
mMf

m + Mf



 ,

K =









kf −kf

m

Mf + m

−kf

m

Mf + m
−4βa2mg + kf

m2

(Mf + m)2









,

C =









cf −cf

m

Mf + m

−cf

m

Mf + m
c + cf

m2

(Mf + m)2









,

f(x, ẋ) =

(

0

4gβmx3 + 16mβ2a4xẋ2

)

,

F(t) =

(

(m + Mf)g(t)
0

)

,

with for the coordinate vector x = (xc, x)
T. The parameter β con-

trols the height of the bumpy rail and a the distance to the wells. The
parameter c models linear damping of the mass m due to the rail.
The velocity-dependent nonlinearity f(x, ẋ) is the result of expand-
ing the exact equations of motion with respect to the height of the
rail and keeping only the leading-order nonlinearities.

We set m = 1 (kg), Mf = 4 (kg), kf = 1 (N/m), cf = c
= 0.3 (Ns/m), a = 0.3 (m), β = 1

5a3 , and g = 9.8 (m/s2). The forc-
ing signal g(t) will be the same as in the cart example. We scale
the chaotic forcing signal in a way that the non-dimensional forc-
ing weakness measure defined in formula (80) gives rw = 44.6 when
evaluated on the phase space region containing the trajectories used
in our analysis. Therefore, the external force here is large relative to
the internal forces of the system.

This forcing magnitude is outside the small range in which
Theorem 4 strictly guarantees the existence of a saddle-type anchor
trajectory for a mixed-mode chaotic SSM in this problem. We
nevertheless evaluate our asymptotic expansions for the anchor tra-
jectory, as those expansions hold as long as the SSM smoothly persist
under increasing forcing. Specifically, a cubic-order approximation
x∗(t) ≈

∑3
ν=1 xν(t) for the anchor trajectory x∗(t) from formula (14)

requires the functions,

x1(t) =

∫ ∞

−∞

G(t − τ)f1(τ ) dτ , x2(t) ≡ 0,

x3(t) =

∫ ∞

−∞

G(t − τ)











0
0
0

−4g(1 +
m

M
)β[x2

1(τ )]3
− 16a4(1 +

m

M
)β2x2

1(τ )[x4
1(τ )]2











dτ ,

Chaos 34, 043152 (2024); doi: 10.1063/5.0187080 34, 043152-20

© Author(s) 2024

 29 April 2024 10:51:51

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 10. (a)–(c) Snapshots of the evolution of the slow chaotic SSM, its anchor trajectory, the true solution of the full system, and the SSM-reduced model prediction for
the true solution of the chaotically shaken cart, all represented in the physical coordinates [q2, xc , ẋc]. The non-dimensional forcing speed is rs = 7.26. See Movie 2 in the
supplementary material for the full evolution. Multimedia available online.

with Green’s function G(t) defined in formula (13) for saddle-
type anchor trajectories. The external forcing appears now as f1(t)

=
(

0, g(t), 0, 0
)T

in the first-order formulation of the equation of
motions. We calculate these integrals using the same numerical
methodology as in our first cart example. In this example, the
calculation of G(t − τ) from (13) involves the matrices

Au =

(

λ1 0
0 λ2

)

, Av =

(

λ3 0
0 λ4

)

,

where the eigenvalues of the unforced saddle-focus-type fixed point
at the origin are λ1 = 5.5196, λ2 = −5.9094, and λ3,4 = −0.0301
± 0.4465i. The 2D non-autonomous SSM can be constructed as a

graph over the mixed-mode tangent space corresponding to the real
eigenvalues λ1 and λ2.

Without listing the details here, we also perform a similar cal-
culation for the two attracting anchor trajectories created by the
chaotic forcing from the two asymptotically stable fixed points of the
unperturbed system that lie at the two bottom points of the bumpy
rail. These two stable anchor trajectories will represent two chaotic
attractors for the forced system. Trajectories initialized near the
unstable anchor trajectory on its attached 2D mixed-mode SSM will
converge to one of these chaotic attractors. This is indeed observ-
able in Fig. 11(b), in which we launch several trajectories near the
unstable anchor trajectory (red) within the 2D mixed-mode SSM
approximated up to cubic order. These trajectories then converge to
one of the two predicted attracting chaotic anchor trajectories (blue)
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FIG. 11. (a) Setup for the chaotically forced bumpy real example. (b) Plots of 16 initial conditions on local mixed-mode non-autonomous 2D SSM, released at four different
times. The left inset shows how the transient behavior of the full system matches those of the anchor trajectories calculated from our theory. The right inset shows fast
convergence of the full solution to the anchor trajectories together with local predictions of the reduced order model. The non-dimensional forcing weakness measure in this
example is rw = 44.6.

which we have computed up to cubic order of accuracy from our
formulas.

The instability of the anchor trajectory perturbing from the
origin makes it challenging to verify the accuracy of our local
expansion (64) for the 2D mixed-mode SSM attached to this

trajectory. We can nevertheless verify the local accuracy for these
formulas by tracking nearby trajectories launched from the pre-
dicted 2D SSM and confirm in Fig. 12 (Multimedia available online)
that those trajectories evolve together with the predicted SSM until
ejected from a neighborhood of the unstable anchor trajectory.

FIG. 12. (a) and (b) SSM dynamics in the (not so) weakly forced bumpy rail example. Shown are snapshots of the predicted 2D mixed-mode SSM (grey), its anchor
trajectory (red), trajectories predicted by the SSM-reduced model (green), and full system simulations of trajectories launched from the same initial conditions (black).
The non-dimensional forcing weakness measure is again rw = 44.6. See Movie 3 in the supplementary material for the full evolution. Multimedia available online.
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FIG. 13. (a)–(c) Same as Fig. 12, but now for moderately slow chaotic forcing with non-dimensional forcing speed measure rs = 1.22. See Movie 4 in the supplementary
material for the full evolution. Multimedia available online.

2. Slow forcing

In the same bumpy rail problem but now with height
β = 1

103 , we rescale the forcing in time to make it slowly varying.

The slow forcing vector is given by F(α) =

(

Nsg(α)

0

)

with Ns = 3

and the range of interest is α ∈ [0, 6]. We will perform simula-
tions for the forcing speed ε = α̇ = 0.01, which yields the non-
dimensional forcing speed measure rs = 1.22, signaling moderately
fast forcing.

As in our first example, we compute the zeroth order term
x0(α) in the expansion of the slow anchor trajectory for the SSM by
solving an algebraic equation of the form (86) by Newton iteration,

Kx0 + f(x0, 0) = F(α).

Up to cubic order, expansion (51) for the slow, unstable anchor tra-
jectory perturbing from the origin under the slow forcing can be
written as
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x1(α) = A−1(α)x′
0(α), x2(α) = A−1(α)











x′
1(α) −











0
0
0

(

1 +
m

M

) (

−12gβx2
0(α)[x2

1(α)]2
− 16a4β2x2

0(α)[x4
1(α)]2

)





















,

x3(α) = A−1(α)











x′
2(α) −











0
0
0

(

1 +
m

M

) (

−4gβ
(

[x2
1(α)]3

+ 6x2
0(α)x2

1(α)x2
2(α)

)

− 16a4β2
(

x2
1(α)[x4

1(α)]2
+ 2x2

0(α)x4
1(α)x4

2(α)
))





















.

With this approximation for the anchor trajectory at hand, we
can change to the coordinates defined in Eq. (55). In those coor-
dinates, we compute the α-dependent matrices defined in Eq. (57)
now arise as

Au =

(

λ1(α) 0
0 λ2(α)

)

, Av =

(

λ3(α) 0
0 λ4(α)

)

,

where we again set α = ε�t with � = 1 Hz, as in our first example.
As in the weakly forced version of this example, we plot the

predictions from the 2D SSM-reduced order model and compare
it to simulations of the full system in Fig. 13(a) (Multimedia avail-
able online). We again see close agreement of the reduced dynamics
with the true solution in the vicinity of the slow, unstable anchor
trajectory, prior to the convergence of the trajectories to the two sta-
ble, chaotic anchor trajectories arising from the two stable unforced
equilibria along the rail. Finally, as in our first example, we show
snapshots of the projected 2D slow, mixed-mode SSM along with
some trajectories of its restricted dynamics. These again stay close
locally to trajectories of the full system that are launched from the
same initial conditions, thereby confirming the expectations put
forward in Remark 9.

V. CONCLUSIONS

In this paper, we have derived existence results for spectral sub-
manifolds (SSMs) in non-autonomous dynamical systems that are
either weakly non-autonomous or slowly varying (adiabatic). While
our exact proofs for these SSMs results only cover weak enough or
slow enough time dependence, the invariant manifolds we obtain
are structurally stable and hence are persistent away from these lim-
its. Under further nonresonance conditions, the manifolds and their
reduced dynamics also admit asymptotic expansions up to any finite
order for which we present recursive formulas. These formulas sug-
gest that one of the non-autonomous SSMs is as smooth as the
original dynamical system, just as primary SSMs are known to be in
the autonomous case reviewed in Sec. I. MATLAB implementations
of our recursive formulas for the examples treated here are available
from Kaundinya and Haller.47

In our results, weakly forced SSMs are guaranteed to exist
under uniformly bounded forcing. This restriction is expected
because unbounded perturbations to an autonomous limit of a
dynamical system will generally wipe out any structure identified in

that limit. For adiabatic SSMs, the uniformity of the forcing magni-
tude is replaced by the uniformity of the strength of hyperbolicity
along the anchor trajectory of the SSM in the limit of frozen time.

In the weakly forced case, the SSMs emanate from unique, uni-
formly bounded hyperbolic anchor trajectories. Our expansions for
these anchor trajectories are of independent interest as they provide
formal approximations of the generalized steady state response of
any nonlinear system subject to moderate but otherwise arbitrary
time-dependent forcing. In finite-element simulations under aperi-
odic forcing, such steady states have been assumed to exist but their
computation tends to involve lengthy simulations of randomly cho-
sen initial conditions until they have reached a (somewhat vaguely
defined) statistical steady state.

Even with today’s computational power, such simulations are
still prohibitively long due to the small damping of typical structural
materials, the high degrees of freedom of the models used, and the
costly evaluations of nonlinearities arising from complex geometries
and multi-physics. With the explicit recursive formulas we obtained
here, one can now directly approximate these generalized steady
states without lengthy simulations.

For these asymptotic formulas to converge, the forcing does
not actually have to be uniformly bounded: it may grow tempo-
rally unbounded in a compact neighborhood of the origin as long
as the improper integrals in the statements of Theorems 2 and
4 converge. To the best of our knowledge, such explicit, readily
computable asymptotic expansions for time-dependent steady states
have been unavailable in the literature even for time-periodic or
time-quasiperiodic forcing, let alone time-aperiodic forcing. Weak
or slow time-periodic and time-quasi-periodic forcing is also cov-
ered by these formulas as special cases.

Our existence results for SSMs assume temporal smoothness
for the dynamical system and hence do not strictly cover the case
of random forcing with continuous paths. Our approximation for-
mulas, however, are formally applicable (i.e., the improper inte-
grals in them converge) for much broader forcing types, including
mildly exponentially growing or temporally discontinuous forcing.
Therefore, the results in this paper provide formal nonlinear model-
reduction formulas that can be implemented as approximations for
all forcing types arising in practice.

The simple examples considered here already illustrate the abil-
ity of our asymptotic formulas to work under various forcing types,
including chaotic and discontinuous forcing. Our weakly non-
autonomous SSM theory is expected to be helpful in model reduc-
tion for structural vibration problems in which so far time-periodic
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and time-quasiperiodic SSMs have been constructed. An application
of our adiabatic SSM theory is already under way in the model-
predictive control of soft robots, wherein the target trajectories of
the robot generally have a much slower time scale than the highly
damped robot itself.

Going from the simple, illustrative examples treated here
to finite-element problems with temporally aperiodic forcing will
require no further theoretical development. Indeed, the existence
and smoothness results derived in this paper are valid in arbitrarily
high (finite) dimensions. However, a computational reformulation
will be required to make these results directly applicable to second-
order mechanical systems without the need to convert them to
first-order systems with diagonalized linear parts. The development
of such a reformulation using the approach of Jain and Haller16 is
currently under way.
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APPENDIX A: PROOF OF THEOREMS 1 AND 2

1. Proof of Theorem 1: Existence and regularity of a

hyperbolic anchor trajectory

We first recall a result of Palmer,29 reformulated from
Hartman,48 for a general non-autonomous ODE of the form

ẋ = A(t)x + f(x, t, p), (A1)

where A(t) and f(x, t, p) are C0 functions of their arguments;
∣

∣f(x, t, p)
∣

∣ ≤ µ is assumed to hold for a constant µ > 0 and for all
x ∈ R

n and t ∈ R; f(·, t, p) admits a global Lipschitz constant L > 0
for all times t; and p ∈ R

m is a parameter vector.

Assume that the linearization

ẋ = A(t)x (A2)

of system (A1) has an exponential dichotomy, i.e., there exists a fun-
damental matrix solution 8(t) of (A2), constants K, κ > 0 and a
projection P (with P2 = P) such that

∣

∣8(t)P8−1(s)
∣

∣ ≤ K eκ(t−s), t ≥ s,
∣

∣8(t) (I − P)8−1(s)
∣

∣ ≤ K eκ(t−s), s ≥ t.
(A3)

This condition guarantees that the x = 0 solution of the linearized
system (A2) is hyperbolic, i.e., has well-defined stable and/or unsta-
ble subbundles (no neutrally stable directions). Finally, assume
that

4LK ≤ κ . (A4)

Under these assumptions, there exists a unique, globally
bounded solution x∗(t; p) of the nonlinear system (A1) that satisfies

∣

∣x∗(t; p)
∣

∣ ≤ 2Kµ/κ , t ∈ R, (A5)

as shown in Lemma 1 of Palmer.29 Furthermore, x∗(t; p) is contin-
uous in the parameter p. [If f is smooth in its arguments, then the
continuity of x∗(t; p) in p can be strengthened to smooth dependence
on p using more general results for the persistence of non-compact,
normally hyperbolic invariant manifolds; see Eldering.40 Such a
strengthened version, however, would not be specific enough about
the norm of

∣

∣x∗(t; p)
∣

∣ to the extent given in (A5).] Note that x∗(t; p)
takes over the role of x = 0 as a unique, uniformly bounded solu-
tion under nonzero f(x, t, p). The result of Palmer29 quoted above
makes no assumption on f(x, t, p) containing only nonlinear terms,
and hence f(x, t, p) is allowed to be an arbitrary perturbation to the
linear ODE (A2), as long as it is uniformly bounded and uniformly
Lipschitz.

The uniform boundedness conditions (A4)–(A5) will not be
satisfied in realistic applications. Nevertheless, one can still use the
above results in such applications using smooth cutoff functions
(see, e.g., Fenichel38) that make f(x, t, p) vanish for all t ∈ Bδ outside
a small ball Bδ ⊂ R

n. The latter classic tool from invariant manifold
theory is, however, only applicable here if the predicted hyperbolic
trajectory x∗(t; p) lies inside Bδ , where the cutoff right-hand side and
the original right-hand side of (A1) still coincide.

To ensure this, we consider a δ-ball Bδ ⊂ R
n around x and

define the uniform bound µ(δ) and uniform Lipschitz constant
L(δ) as

µ(δ) = max
x∈Bδ

∣

∣f(x, t, p)
∣

∣ ,
∣

∣f(x, t, p) − f(x̃, t, p)
∣

∣ ≤ L(δ)
∣

∣x − x̃
∣

∣ ,

(A6)
x, x̃ ∈ Bδ .

Assume further that these bounds satisfy

2Kµ(δ)

κ
≤ δ, L(δ) ≤

κ

4K
, (A7)

which assures that assumption (A4) holds and also that the predicted
x∗(t; p) falls in Bδ by the estimate (A5). Note that the inequalities
in (A7) will always hold for δ > 0 small enough if f(x, t, p) is only
composed of terms that are nonlinear in x. Indeed, in that case, we
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can select µ(δ) = O
(

δ2
)

and L(δ) = O (δ) for all x ∈ Bδ , and hence
the inequalities in (A7) are satisfied for small enough δ, given that
K, κ > 0 do not depend on δ.

We now apply the above refined persistence result in the setting
of the perturbed nonlinear system (1) by letting

A(t) = A, f(x, t, p) = f0(x) + f1(x, t), (A8)

and assume a separate uniform Lipschitz constant L1(δ) for f1(x, t)
satisfying

∣

∣f1(x, t) − f1(x̃, t)
∣

∣ ≤ L1(δ)
∣

∣x − x̃
∣

∣ , x, x̃ ∈ Bδ .

By our hyperbolicity assumption on the x = 0 fixed point, we can
select the constant κ > 0 so that

κ < min
1≤j≤n

∣

∣Reλj

∣

∣ . (A9)

We can also bound within Bδ the nonlinear term f0 and its spatial
derivative as

∣

∣f0(x, p)
∣

∣ ≤ K1δ
2,

∣

∣∂xf0(x)
∣

∣ ≤ K2δ, x ∈ Bδ , (A10)

where K1, K2 > 0 are appropriate constants. Additionally, we
can specifically choose K2 = maxx∈Bδ

∣

∣∂xf0(x)
∣

∣ by the mean value
theorem. Given these bounds, the constants in formulas (A6) can
be estimated as

µ(δ) ≤ K1δ
2 +

∣

∣f1(x, t)
∣

∣ , L(δ) ≤ L1(δ) + K2δ, x ∈ Bδ . (A11)

Based on the inequalities (A11), we see that assumptions (A7)
are satisfied if

2K
(

K1δ
2 +

∣

∣f1(x, t)
∣

∣

)

κ
≤ δ, L1(δ) + K2δ ≤

κ

4K
, x ∈ Bδ , t ∈ R,

or, equivalently, if

∣

∣f1(x, t)
∣

∣ ≤
κδ

2K
− K1δ

2, L1(δ) ≤
κ

4K
− K2δ, x ∈ Bδ , t ∈ R.

(A12)

We stress again that these conditions do not have to hold globally for
all x, only for x ∈ Bδ , but they must hold uniformly within Bδ for all
times. This follows because we can apply the C∞ cutoff procedure
mentioned above to the whole right-hand side of (A1), including
f1(x, t). Based on these considerations and using the inequalities in
Eq. (A10), we obtain statement (i) of Theorem 1.

Statement (ii) of Theorem 1 follows from the smooth depen-
dence of x∗(t; p) on the parameter vector p, as shown by Palmer.29

2. Proof of Theorem 2: Approximation of the anchor

trajectory x*(t )

First, we introduce a perturbation parameter ε ≥ 0 and rewrite
the full non-autonomous system (1) as

ẋ = Ax + f(x, t; ε), f(x, t; ε) = f0(x) + ε f̃1(x, t). (A13)

By the smooth dependence of the uniformly bounded hyperbolic
solution x∗(t) on parameters, we can seek this solution in the form

of a Taylor expansion

x∗(t) =
∑

ν≥1

ενξν(t), (A14)

with Taylor coefficients ξν(t) that are uniformly bounded in time.
By statement (ii) of Theorem (1), such a formal Taylor expansion
in ε is justified up to any finite order, although may not necessarily
converge.

Substitution of the expansion (A14) into Eq. (A13) gives

∑

j≥1

ε jξ̇j(t) =
∑

j≥1

ε jAξj(t) + f (xε(t), t; ε) . (A15)

Equating equal powers of ε on both sides yields the system of
differential equations

ξ̇ν(t) = Aξν(t) +
1

ν!
Dν

ε f (xε(t), t; ε)
∣

∣

ε=0
. (A16)

Note that the term formally containing ξν(t) in Dν
ε f (xε(t), t; ε)

∣

∣

ε=0
is

ν!
[

Dxf0(xε(t)) + ε f̃1 (xε(t), t)
]

ε=0
ξν(t) ≡ 0,

because f0(x) = O
(

|x|2
)

and x0(t) ≡ 0. Therefore, the right-hand
side of Eq. (A16) only depends on ξ1(t), . . . , ξν−1(t), which makes
the whole system of equations a recursively solvable sequence of
inhomogeneous, linear, constant-coefficient system of ODEs. The
recursive solutions are of the form

ξν(t) = eA(t−t0)ξν(t0) +
1

ν!

∫ t

t0

eA(t−τ) Dν
ε f





ν−1
∑

j=1

ε jξj(τ ), τ ; ε





∣

∣

∣

∣

∣

∣

ε=0

dτ ,

(A17)

ν ≥ 1.

Assume first, for simplicity, that the x = 0 fixed point is asymptoti-
cally stable for ε = 0, and hence

Re
[

spect (A)
]

⊂ (−∞, 0) . (A18)

In that case, by the uniform boundedness of ξ1(t0) for all t0 ∈ R, we
can take the t0 → −∞ limit in (A17) to obtain

ξν(t) =
1

ν!

∫ t

−∞

eA(t−τ) Dν
ε f





ν−1
∑

j=1

ε jξj(τ ), τ ; ε





∣

∣

∣

∣

∣

∣

ε=0

dτ , ν ≥ 1.

(A19)

To obtain a more explicit recursive formula for ξν(t) for general
ν that is suitable for direct numerical implementation, we will use
the multi-variate Faá di Bruno formula of Constantine and Savits44

for higher-order derivatives of composite functions. To recall the
general form of this formula, we first consider a general composite
function H : R

p → R, defined as

H(x1, . . . , xp) = f
(

g1(x1, . . . , xp), . . . , gm(x1, . . . , xp)
)

, (A20)
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and introduce the non-negative multi-index ν and related notation as

ν =
(

ν1, . . . , νp

)

∈ N
p, |ν| =

p
∑

i=1

νi, ν! =

p
∏

i=1

(νi!) ,

Dν
x =

∂ |ν|

∂x
ν1
1 · · · ∂x

νp
p

.

We also introduce an ordering relation on N
p for arbitrary µ, ν ∈ N

p such that ν ≺ µ holds provided one of the following is satisfied:

(i) |µ| < |ν|,
(ii) |µ| = |ν| and µ1 < ν1, or
(iii) |µ| = |ν| and µ1 = ν1, . . . µk = νk, µk+1 < νk+1 for some 1 ≤ k < p.

Finally, for any µ, γ ∈ N
p and s ∈ N

+, we define the index set

ps (ν, γ ) =

{

(k1, . . . , ks, `1, . . . , `s) : ki ∈ N
m − {0} , `i ∈ N

p, 0 ≺ `1 ≺ · · · ≺ `s,
s
∑

i=1

ki = γ ,
s
∑

i=1

|ki| `i = ν

}

.

With this notation, Constantine and Savits44 prove the following multi-variate version of the Faá di Bruno formula:

Dν
xH
(

x0
)

=
∑

1≤|γ |≤|ν|

Dγ
y f
(

y0
)

|ν|
∑

s=1

∑

ps(ν,γ )

ν!
s
∏

j=1

∏m
i=1

[

D
`j
x gi(x0)

]kji

(

kj

)

!
[(

`j

)

!
]|kj|

, (A21)

where kji denotes the ith element of the multi-index kj ∈ N
m − {0}.

Of relevance to us is the case p = 1, wherein we have H = fq, m = n, gi =
∑

j≥1 ε jξ i
j (τ ), i = 1, . . . , n; x = ε ∈ R, x0 = 0 ∈ R, ν = ν ∈ N,

`i = `i ∈ N, and y = x ∈ R
n. In that case, we can write

H(ε) = fq





ν−1
∑

j=1

ε jξ 1
j (τ ), . . . ,

ν−1
∑

j=1

ε jξ n
j (τ ), τ ; ε



 , q = 1, . . . , n. (A22)

Note, however, that H(ε) also has explicit dependence on ε and hence is not exactly of the form (A20). To address this issue, we also observe
that

dν

dεν
H (0) =

dν

dεν
H0 (0) + ν

dν−1

dεν−1
H1 (0) ,

H0 (ε) = f0q





ν−1
∑

j=1

ε jξ 1
j (τ ), . . . ,

ν−1
∑

j=1

ε jξ n
j (τ )



 ,

H1 (ε) = f̃1q





ν−1
∑

j=1

ε jξ 1
j (τ ), . . . ,

ν−1
∑

j=1

ε jξ n
j (τ ), τ



 ,
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and hence H0 (ε) and H1 (ε) are individually of the form (A20). Applied to these two functions, the formula (A21) simplifies to

dν

dεν
H0 (0) = Dν

ε f0q





ν−1
∑

j=1

ε jξ 1
j (τ ), . . . ,

ν−1
∑

j=1

ε jξ n
j (τ )





∣

∣

∣

∣

∣

∣

ε=0

=
∑

1≤|γ |≤ν

Dγ
x fq (0)

ν
∑

s=1

∑

ps(ν,γ )

ν!
s
∏

j=1

∏n
i=1

[

(

`j

)

!ξ i
`j
(τ )
]kji

(

kj

)

!
[(

`j

)

!
]|kj|

=
∑

1≤|γ |≤ν

Dγ
x f0q (0)

ν
∑

s=1

∑

ps(ν,γ )

ν!
s
∏

j=1

∏n
i=1

[

ξ i
`j
(τ )
]kji

∏n
i=1 kji!

, q = 1, . . . , n,

dν−1

dεν−1
H1 (0) = Dν−1

ε f̃1q





ν−1
∑

j=1

ε jξ 1
j (τ ), . . . ,

ν−1
∑

j=1

ε jξ n
j (τ ), τ





∣

∣

∣

∣

∣

∣

ε=0

=
∑

1≤|γ |≤ν−1

Dγ
x f̃1q (0, τ)

ν−1
∑

s=1

∑

ps(ν−1,γ )

(ν − 1)!
s
∏

j=1

∏n
i=1

[

(

`j

)

!ξ i
`j
(τ )
]kji

(

kj

)

!
[(

`j

)

!
]|kj|

.

Substitution of these expressions into formula (A19) then gives the final recursive formulas

ξν(t) =
∑

1≤|γ |≤ν

ν
∑

s=1

∑

ps(ν,γ )

∫ t

−∞

eA(t−τ)







∂ |γ |f0 (0)

∂x
γ1
1 · · · ∂x

γn
n

s
∏

j=1

∏n
i=1

[

ξ i
`j
(τ )
]kji

∏n
i=1 kji!






dτ

+
∑

1≤|γ |≤ν−1

ν−1
∑

s=1

∑

ps(ν−1,γ )

∫ t

−∞

eA(t−τ)







∂ |γ | f̃1 (0, τ)

∂x
γ1
1 · · · ∂x

γn
n

s
∏

j=1

∏n
i=1

[

ξ i
`j
(τ )
]kji

∏n
i=1 kji!






dτ , ν ≥ 1, (A23)

where kji is the ith component of the integer vector kj ∈ N
n − {0} appearing in the index set

ps (ν, γ ) =

{

(k1, . . . , ks, `1, . . . , `s) : ki ∈ N
n − {0} , `i ∈ N, 0 < `1 < · · · < `s,

s
∑

i=1

ki = γ ,
s
∑

i=1

|ki| `i = ν

}

.

We have also used the notational convection ∂ |γ |

∂x
γ1
1 ···∂x

γn
n

= I for γ = 0.

Substitution of (A23) into the expansion (A14) gives

x∗(t) =
∑

ν≥1

xν(t),

(A24)

xν(t) =
∑

1≤|γ |≤ν

ν
∑

s=1

∑

ps(ν,γ )

∫ t

−∞

eA(t−τ)







∂ |γ |f0 (0)

∂x
γ1
1 · · · ∂x

γn
n

∏n
i=1

[

xi
`j
(τ )
]kji

∏n
i=1 kji!






dτ

+
∑

1≤|γ |≤ν−1

ν−1
∑

s=1

∑

ps(ν−1,γ )

∫ t

−∞

eA(t−τ)







∂ |γ |f1 (0, τ)

∂x
γ1
1 · · · ∂x

γn
n

s
∏

j=1

∏n
i=1

[

xi
`j
(τ )
]kji

∏n
i=1 kji!






dτ , ν ≥ 1.

These results cover anchor trajectories of like-mode SSMs of stable hyperbolic fixed points but do not cover anchor trajectories for mixed-
mode SSMs of such fixed points or anchor trajectories of like-mode SSMs of unstable hyperbolic fixed points.
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We now extend formula (A23) to mixed-mode SSMs by weak-
ening the stability assumption (A18) back to our general hyperbol-
icity assumption (6). In this case, the matrix A has an exponential
dichotomy, as described by the inequalities (10). The dichotomy
exponent κ > 0 can be selected as in (A9). We use the matrix T
defined in (12) in the coordinate transformation

x = Ty, y =
(

ys, yu
)T

∈ R
s × R

u,

which brings system system (1) to the form

ẏs = Asys + f s(y, t),

ẏu = Auyu + f u(y, t),

with
(

f s(y, t), f u(y, t)
)T

= T−1f(Ty, t) and

Re
[

spect (As)
]

⊂ (−∞, 0) , Re
[

spect (Au)
]

⊂ (0, ∞) . (A25)

In these new coordinates, with the notation

(

ξ̂ s
ν(t)

ξ̂ u
ν (t)

)

= T−1ξν(t),

the system of ODEs (A16) becomes

˙̂
ξ s
ν(t) = Asξ̂ s

ν(t) +
1

ν!
Dν

ε f s
(

T−1xε(t), t
)
∣

∣

ε=0
,

˙̂
ξ u
ν (t) = Auξ̂ u

ν (t) +
1

ν!
Dν

ε f u
(

T−1xε(t), t
)
∣

∣

ε=0
,

(A26)

whose solutions can be written as

ξ̂ s
ν(t) = eAs(t−ts0)ξ̂ s

ν(t
s
0) +

1

ν!

∫ t

ts0

eAs(t−τ) Dν
ε f s
(

T−1xε(τ ), τ
)
∣

∣

ε=0
dτ ,

(A27)

ξ̂ u
ν (t) = eAu(t−tu0)ξ̂ u

ν (tu
0) +

1

ν!

∫ t

tu0

eAu(t−τ) Dν
ε f u
(

T−1xε(τ ), τ
)
∣

∣

ε=0
dτ .

Based on the spectral properties of As and Au listed in (A25) and the
uniform boundedness of ξ̂ s,u

ν (ts,u
0 ), we can take the limits ts

0 → −∞
and tu

0 → +∞ to obtain

ξ̂ s
ν(t) =

1

ν!

∫ t

−∞

eAs(t−τ) Dν
ε f s
(

T−1xε(τ ), τ
)
∣

∣

ε=0
dτ ,

ξ̂ u
ν (t) = −

1

ν!

∫ ∞

t

eAu(t−τ) Dν
ε f u
(

T−1xε(τ ), τ
)
∣

∣

ε=0
dτ .

(A28)

Therefore, introducing Green’s function (13), we can write the
solution ξν(t) in the y coordinates as

ξν(t) =
1

ν!

∫ ∞

−∞

G(t − τ) Dν
ε f (xε(τ ), τ)

∣

∣

ε=0
dτ , ν ≥ 1.

This then leads to the final formula (15) for a general hyperbolic
trajectory x∗(t), in analogy with formula (A24) for an asymptotically
stable hyperbolic trajectory.

APPENDIX B: PROOFS OF THEOREMS 3 AND 4

1. Proof of Theorem 3: Existence of non-autonomous

spectral submanifolds

Under the conditions of Theorem 1, we can shift coordinates
by letting

y = x − x∗(t),

which transforms system (1) to the form

ẏ =
[

A + ∂xf(x
∗(t), t)

]

y + g(y, t), (B1)

where

g(y, t) = f(x∗(t) + y) − f(x∗(t)) − ∂xf(x
∗(t), t)y = O

(

∣

∣y
∣

∣

2
)

. (B2)

Next, we introduce a perturbation parameter 0 ≤ ε < δ and the
scalings

x = εξ , y = εη = εξ − εξ ∗(t), f0(x) = ε2 f̃0 (ξ ; ε) ,
(B3)

f1(x, t) = ε f̃1(x, t).

These scalings imply

f0(x
∗(t) + y) = ε2 f̃0(ξ

∗(t) + η; ε), Dxf0(x
∗(t)) = εDξ f̃0(ξ

∗(t); ε),

∂xf1(x
∗(t), t) = ε∂x f̃1(x

∗(t), t), g(y, t) = ε2g̃(η, t; ε).

With these expressions, we can rewrite Eq. (B1) as

η̇ =
[

A + εDξ f̃0(ξ
∗(t); ε) + ε∂x f̃1(εξ

∗(t), t)
]

η + εg̃(η, t; ε),

g̃(η, t) = O
(

|η|2
)

,

ε̇ = 0.

We can further rewrite these equations as

Ẏ = A(t)Y + G(Y, t), G(Y, t) = O
(

|Y|2
)

, Y =

(

η

ε

)

∈ R
n+1,

(B4)

A(t) =

(

A 0
0 0

)

,

(B5)

G(Y, t) =

(

ε∂x f̃0(ξ
∗(t); ε)η + ε∂x f̃1(εξ

∗(t), t)η + εg̃(η, t)
0

)

.

While linearization results do not apply to Eq. (B4) due to the
non-hyperbolicity of the origin, the invariant manifold results of
Kloeden and Rassmussen49 do apply. Their main condition stated
in our context is

G(0, t) = 0, lim
Y→0

sup
t∈R

|DYG(Y, t)| = 0, (B6)

of which the first one is already satisfied and the second one requires
the local uniform boundedness of the first derivatives of G(Y, t) in
a neighborhood of Y = 0. By inspection of formula (B5), we see
that the second condition in (B6) is satisfied if the following four
conditions are fulfilled:
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(a)
∣

∣∂xf0(x
∗(t))

∣

∣ is uniformly bounded,
(b)

∣

∣∂xf1(x, t)
∣

∣ and
∣

∣∂2
x f1(x, t)

∣

∣ are uniformly bounded in the Bδ

neighborhood of x = 0,
(c)

∣

∣g(y, t)
∣

∣ is uniformly bounded in a neighborhood of y = 0, and
(d) ∂y

∣

∣g(y, t)
∣

∣ is uniformly bounded in a neighborhood of y = 0.

Given the definition of g(y, t) in (B2), conditions (c)–(d) are
satisfied if

∣

∣∂xf(x
∗(t), t)

∣

∣ and
∣

∣∂xf(x
∗(t) + y, t) − ∂xf(x

∗(t), t)
∣

∣ (B7)

are uniformly bounded in Bδ .
First, note that condition (a) is satisfied because x∗(t) is uni-

formly bounded. Second, since x∗(t) stays in the Bδ ball under the
conditions (11), we obtain that

∣

∣∂xf0(x
∗(t) + y) − ∂xf0(x

∗(t))
∣

∣ in uni-
formly bounded in a compact neighborhood of y = 0. Therefore, for
condition (B7) to hold [and hence to ensure that (c)–(d) to hold], it
remains to require that

∣

∣∂xf1(x
∗(t) + y) − ∂xf1(x

∗(t))
∣

∣ remain uni-
formly bounded in a neighborhood of y = 0. By the mean value
theorem, this holds if

∣

∣∂2
x f1(x, t)

∣

∣ remains uniformly bounded in
Bδ , which is just condition (b) above. Therefore, in addition to
our assumptions in (11), we need to assume condition (20) for
(a)–(d) to hold. In summary, under the conditions (11) and (20),
the local invariant manifold results of Kloeden and Rassmussen49 are
applicable near the Y = 0 fixed point of system (B4)–(B5).

Specifically, under conditions (11) and (20), the results in
Sec. 6.3 of Kloeden and Rassmussen49 apply to general non-
autonomous systems of differential equations of the form (B4).
These results in turn build on classic result of Sacker and Sell50 that
establish the existence of a dichotomy spectrum 6 for A(t) that
consists up to n + 1 disjoint closed intervals of the form

6 =
[

a1, b1

]

∩ . . . ∩
[

am, bm

]

, m ≤ m + 1. (B8)

(By the definition of the dichotomy spectrum, the linear system
of ODE Ẏ = (A(t) − λI) Y admits no exponential dichotomy for
any λ ∈ 6.) Assuming m ≥ 2, one can therefore select constants
κ+

j , κ−
−j ∈ R for j = 1, . . . , m − 1 from the gaps among the closed

spectral subintervals in (B8) as follows:

bj < κ+
j <κ−

j < aj+1, j = 1, . . . , m − 1,

such that for appropriate constants K > 0 and projection maps
P

j
±(t0) ∈ R

(n+1)×(n+1) with P
j
±(t0)P

j
±(t0) = P

j
±(t0), the normalized

fundamental matrix solution 8 (t, t0) of Ẏ = A(t)Y satisfies
∥

∥

∥
8 (t, t0) P

j
−(t0)

∥

∥

∥
≤ K e

κ+
j (t−t0), t ≥ t0,

∥

∥

∥
8 (t, t0) P

j
+(t0)

∥

∥

∥
≤ K e

κ−
j (t−t0), t ≤ t0,

(B9)

for all j = 1, . . . , m − 1.
Then, by Theorem 6.10 and Remark 6.6 of Kloeden and

Rassmussen,49 for each j = 1, . . . , m − 1, there exist two non-
autonomous invariant manifolds W±

j (t) for system (B4) such that

(i) W
±
j (t) contain the Y = 0 fixed point of system (B4).

(ii) In a neighborhood U ⊂ R
n+1, the manifolds W

±
j (t) can

described as graphs with the help of C0 functions

w±
j : U × R → R

n+1 such that

W±
j (t) =

{

Y = Z + w±
j (Z, t) ∈ U : Z ∈ range

(

P
j
±(t)

)

,

w±
j (Z, t) ∈ range

(

P
j
∓(t)

)}

. (B10)

(iii) w±
j (Z, t) is uniformly o (|Z|), i.e., limu→0

∥

∥

∥
w±

j (Z,t)
∥

∥

∥

‖Z‖
= 0, uni-

formly in t.
(iv) If

m+
j κ+

j <κ−
j (B11)

holds for a positive integer m+
j , then W

+
j (t) is of class C

m+
j .

Similarly, if

κ+
j <m−

j κ−
j (B12)

holds for a positive integer m−
j , then W

−
j (t) is of class C

m−
j .

(v) If κ+
j < 0 then for all γ > κ+

j , we have supt≥0 ‖Y(t, t0, Y0)‖ e−γ t

< ∞ for all Y0 ∈ W
+
j (t0) ∩ U in a small enough neighbor-

hood U of Y = 0. Similarly, if κ−
j > 0 then for all γ < κ−

j , we
have supt≥0 ‖Y(t, t0, Y0)‖ e−γ t < ∞ for all Y0 ∈ W

+
j (t0) ∩ U in

a small enough neighborhood U of Y = 0.

Based on these results, further non-autonomous invariant manifolds
can be obtained by letting

Wi,j(t) = W+
i (t) ∩ W−

j (t), 1 ≤ j < i ≤ m − 1. (B13)

Note that Theorem 6.10 and Remark 6.6 of Kloeden and
Rassmussen49 assume no hyperbolicity for the Y = 0 fixed point of
system (B4), which makes them applicable to the Y = 0 fixed point
of the extended system (B4). Specifically, the dichotomy spectrum 6

of the matrix A(t) defined in Eq. (B5) is discrete and given by

6 = {µ1, µ2, . . . , µc = 0, . . . , µm+1} = Re
[

spect (A)
]

∪ {0} .

As Kloeden and Rassmussen49 point out, the definition (B13) yields
a hierarchy of invariant manifolds, which in turn implies the hier-
archy of invariant manifolds shown in Table II for the original
system (1) arising from this construct for the extended system.

For any index j ≤ c, all invariant manifolds W+
i,j (t) defined in

formula (B13) are graphs over a spectral subspace that contains the
µc = 0 center direction and hence they are as smooth in ε as they are

TABLE II. Hierarchy of invariant manifolds for the extended system (B4).

W
+
1 (t) ⊂ W

+
2 (t) ⊂ ·· · ⊂ W

+
n−1(t) ⊂ R

n+1

∪ ∪ ∪ ∪
W2,1(t) ⊂ ·· · ⊂ Wn−1,1(t) ⊂ W

−
1 (t)

∪ ∪

. . .
...

...
Wn−1,n−2(t) ⊂ W

−
n−2(t)
∪

W
−
n−1(t)
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in the other variables along that spectral subspace. This smoothness
property is in turn shared by all invariant manifolds of the form

Wi,c(t) = W+
i (t) ∩ W−

c (t), 1 ≤ c < i ≤ m − 1.

The ε =constant slices of W+
i (t), W−

j (t), and Wi,j(t) then pro-
vide similar invariant manifolds W+

i (t; ε), W−
j (t; ε), and Wi,j(t; ε)

of one less dimension along the x∗(t; ε) trajectory of the origi-
nal system (1) for small enough with ε > 0 under the assumed
scaling (B3). The degree of smoothness of W+

i (t; ε), W−
j (t; ε), and

Wi,j(t; ε) in x and ε coincides with the general degree of smooth-
ness that can be inferred from the above construct for their extended
counterparts, W+

j (t), W−
j (t), and Wi,j(t). Specifically, the following

non-autonomous invariant manifolds can be inferred from Table II
for system (1):

(A) W+
i (t; ε): the time-dependent smooth continuations of the

fastest decaying i modes for any 1 ≤ i ≤ n − 1. These manifolds
satisfy (B11) for arbitrary large m and hence are as smooth as
the original dynamical system. They are generally C0 in ε which
can be improved to Cr for pseudo-stable manifolds, i.e., for all
W+

i (t; ε) with µi > 0.
(B) W−

j (t; ε): the time-dependent smooth continuations of the
slowest decaying (or even growing) n − 1 − j modes. If
µj−1/µj > m−

j for some positive integer m−
j , then these mani-

folds satisfy (B12) with m−1
j and hence are of smoothness class

C
m−

j . For all j with µj < 0, W−
j (t; ε) is also C

m−
j smooth in ε.

Any manifold W−
j (t; ε) with µj > 0 (fast unstable manifolds)

can only be concluded to be C0 in ε from this argument.
(C) Wi,j(t; ε); the continuation of any (like-mode or mixed-mode)

spectral subspace, that is, ri,j-normally hyperbolic. In that case,
Wi,j(t; ε) is also of smoothness class Cri,j in ε.

2. Proof of Theorem 4: Approximation of the SSM, W
(E, t ), anchored at x∗

ε (t)

a. Invariance equation

Next, we derive an approximation for the non-autonomous
SSMs anchored to the hyperbolic trajectory x∗(t). We perform a
linear change of coordinates

(

u
v

)

= P−1
(

x − x∗
ε (t)

)

,

where P = [e1, . . . , en] ∈ C
n contains the complex eigenvectors cor-

responding to the ordered eigenvalues (5) of A, and (u, v) ∈ C
d

× C
n−d. Rewriting the scaled version (A13) of system (1) in these

complex coordinates, we obtain

(

u̇
v̇

)

= P−1
(

ẋ − ẋ∗
ε(t)

)

= P−1
[

Ax + f(x, t) − ẋ∗
ε (t)

]

= P−1AP

(

u
v

)

+ P−1Ax∗
ε(t) + P−1

[

f

(

x∗
ε (t) + P

(

u
v

)

, t

)

− ẋ∗
ε (t)

]

=

(

Au 0
0 Av

)(

u
v

)

+ f̂(u, v, ε; t), (B14)

where

f̂(u, v, ε; t) = P−1

[

f0

(

x∗
ε(t) + P

(

u
v

))

+ ε f̃1

(

x∗
ε (t) + P

(

u
v

)

, t

)

+ Ax∗
ε(t) − ẋ∗

ε(t)
]

, (B15)

Au =







λ1 0 0

0
. . . 0

0 0 λd






, Av =







λd+1 0 0

0
. . . 0

0 0 λn






.

Note that under the scaling (A13), the anchor trajectory x∗(t)
becomes ε-dependent, which is reflected by our modified notation
x∗

ε(t) for the same trajectory.
By definition, we have

x∗
0(t) ≡ 0,

f0
(

x∗
ε (t)

)

+ Ax∗
ε(t) − ẋ∗

ε(t) + ε f̃1
(

x∗
ε (t), t

)

≡ 0,

therefore,

Dp
ε

[

f0
(

x∗
ε(t)

)

+ Ax∗
ε(t) − ẋ∗

ε (t) + ε f̃1
(

x∗
ε(t), t

)

]

= Dp
ε f̂(0, 0, ε; t) ≡ 0,

(B16)
p ∈ N, t ∈ R.

By the definition of f̂ in (B15) and by formula (B16) with p = 1 , we
also have

f̂(0, 0, 0; t) = 0, Du f̂(0, 0, 0; t) = 0, Dv f̂(0, 0, 0; t) = 0,
(B17)

Dε f̂(0, 0, 0; t) = 0.

For ε = 0, under the nonresonance conditions (17), we have a
unique, primary spectral submanifold

W0 (E) =

{

(u, v) ∈ U ⊂ R
n : v = h0(u) =

∑

|k|≥0

hkuk

}

, (B18)

where h0(u) = O
(

|u|2
)

∈ Cr defines the primary SSM as a smooth
graph over E with a quadratic tangency to E at x = 0 (see Haller and
Ponsioen1). For ε > 0 small, under the conditions of statement (i)
of Theorem 3, this primary SSM persists in the form of an (generally
non-unique) invariant manifold

Wε (E, t) =







(u, v) ∈ U ⊂ R
n : v = hε(u, t) =

∑

|k|,p≥0

hkp(t)ukεp







,

(B19)

with coefficients hkp(t) that are uniformly bounded in t within a Bδ

ball around the origin x = 0 for 0 ≤ ε ≤ δ, and with the notation

uk = u
k1
1 · . . . · u

kd
d .

Note that this expansion is only valid up to the order of smoothness
of the SSM. For general members of the Wε (E, t), this smoothness

Chaos 34, 043152 (2024); doi: 10.1063/5.0187080 34, 043152-31

© Author(s) 2024

 29 April 2024 10:51:51

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

can only guaranteed to be class Cρ , but exceptional members may
admit higher-order expansions, just as primary SSMs do in the case
of autonomous, time-periodic, and time-quasiperiodic SSMs (see
Haller and Ponsioen1).

Also note that for the smooth persistence of W0(E) as Wε (E, t),
a possible 1:1 resonance between the an eigenvalue inside E and
another one outside E has to be excluded in order to secure the nor-
mal hyperbolicity of W0(E). This is reflected by the lowering of the
lower index in the summation in Eq. (33) from 2 to 1 relative to what
one requires for the existence of W0 (E).

Differentiating the definition (B19) of the invariant manifold
Wε (E, t) in time and using the system of ODEs (B14), we obtain

v̇ = Duhε(u, t)u̇ + Dthε(u, t)

= Duhε(u, t)
[

Auu + f̂ u(u, hε(u, t), t; ε)
]

+ Dthε(u, t). (B20)

At the same time, substitution into (B14) gives

v̇ = Avhε(u, t) + f̂ v(u, hε(u, t), t; ε). (B21)

Comparing (B20) and (B21) give the invariance PDE satisfied by
Wε (E, t),

Duhε

[

Auu + f̂ u
0 + ε f̂ u

1

]

+ Dthε = Avhε + f̂ v
0 + ε f̂ v

1 . (B22)

As the origin (u, v) = (0, 0) is a fixed point of system (B14) for
all t and ε, we must have h(0, t; ε) ≡ 0 for all ε ≥ 0 small and all
t ∈ R. This, in turn, implies,

h0p(t) ≡ 0, t ∈ R, p ∈ N. (B23)

Furthermore, for ε = 0, the non-autonomous SSM Wε (E, t)

becomes the autonomous SSM W(E), and hence we must have

hk0(t) ≡ hk, t ∈ R, k ∈ N
d, hk0(t) ≡ hk = 0, |k| = 1,

(B24)

with the time-independent Taylor series coefficients hk in the expan-
sion for W0(E) in Eq. (B18).

b. Structure of the invariance equation

Substitution of (B19) into the invariance equation (B22) gives

∑

|k|,p≥0

hkp(t)εpDuuk



Auu + f̂ u



u,
∑

|k|,p≥0

hkp(t)ukεp, ε, t







+
∑

|k|,p≥0

ḣkp(t)ukεp

=
∑

|k|≥0,p≥0

Avhkp(t)ukεp + f̂ v



u,
∑

|k|,p≥0

hkp(t)ukεp, ε, t



 . (B25)

We observe that

Avhkp(t)uk − hkp(t)DuukAuu =







λd+1 0 0

0
. . . 0

0 0 λn















h
kp
1
...

h
kp

n−d









uk −









h
kp
1
...

h
kp

n−d









(

k1uk

u1
· · ·

kduk

ud

)







λ1u1

...
λdud







=









λd+1h
kp
1

...

λnh
kp

n−d









uk −











h
kp
1

k1uk

u1
· · · h

kp
1

kduk

ud

...
. . .

...

h
kp

n−d
k1uk

u1
· · · h

kp

n−d

kduk

ud

















λ1u1

...
λdud







=









λd+1h
kp
1

...

λnh
kp

n−d









uk −









h
kp
1

∑d
j=1 kjλj

...

h
kp

n−d

∑d
j=1 kjλj









uk

=









λd+1 −
∑d

j=1 kjλj · · · 0
...

. . .
...

0 · · · λn −
∑d

j=1 kjλj









hkp(t)uk. (B26)
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Therefore, the invariance equation (B25) can be rewritten as
∑

|k|,p≥0

ḣkp(t)ukεp =
∑

|k|,p≥0

Akhk,p(t)ukεp +
∑

|k|,p≥0

Mkp(t, hjm)ukεp, (B27)

where

Ak = diag



λ` −

d
∑

j=1

kjλj





n

`=d+1

∈ C(n−d)×(n−d),

(B28)

∑

|k|,p≥0

Mkp(t, hjm)ukεp = M(u, hjm, ε; t) = f̂ v



u,
∑

|k|,p≥0

hkp(t)ukεp, ε; t





−
∑

|k|,p≥0

εp

















h
kp
1 (t)

k1u
k

u1
· · · h

kp
1 (t)

kdu
k

ud

...
. . .

...

h
kp

n−d(t)
k1u

k

u1
· · · h

kp

n−d(t)
kdu

k

ud

















f̂ u



u,
∑

|k|,p≥0

hkp(t)ukεp, ε; t



 .

Recall from Eq. (B17) that f̂ v and f̂ u vanish for u, v, ε = 0 and have no O (|v|) terms. Therefore, when
∑

|k|,p≥0 hkp(t)ukεp is substituted into

the terms in the Taylor expansion of f̂ v (u, v, ε; t), then it is multiplied in each case by at least the first power of u or at least the first power
of ε. (When

∑

|k|,p≥0 hkp(t)ukεp is substituted into terms of O
(

|v|2
)

then it is multiplied by itself, but h00(t) ≡ 0, and hence the lowest order

term multiplying
∑

|k|,p≥0 hkp(t)ukεp will be again at least the first power of u or at least the first power of ε.) As a result, Mkp(hjm, t) will only

depend on hjm that are lower in order, i.e.,

DhjmMkp(hjm, t) = 0,
∣

∣(j, m)
∣

∣ ≥
∣

∣(k, p)
∣

∣ .

Equating coefficients of equal powers of u in Eq. (B27), we therefore obtain the recursively solvable linear system of inhomogeneous linear
ODEs

ḣkp(t) = Akhkp(t) + Mkp
(

t, hjm
)

,
∣

∣(j, m)
∣

∣ <
∣

∣(k, p)
∣

∣ , (B29)

with Mkp(t, hjm) defined in formula (37). So far, we know from Eqs. (B23) and (B24) that

h0p(t) ≡ 0, t ∈ R, p ∈ N, hk0(t) ≡ hk, t ∈ R, k ∈ N
d, (B30)

which is a homogeneous system of ODEs in (B29) for |k| > 0.

c. Solution of the invariance equation

A first observation about solving the family (B29) of linear ODEs is that for arbitrary |k| and p = 0, we obtain from Eqs. (B24) and (B29)
the algebraic equations

0 = Akhk0 + Mk0(hj0).

We know from classic SSM theory that this algebraic system of equations is a recursively solvable linear system of equations, because
∣

∣j
∣

∣ < |k|

holds for all Mk0(hj0), and hence

hk0 = −A−1
k Mk0(hj0),

∣

∣j
∣

∣ < |k| . (B31)

Next, we note that the nonresonance assumption (18) implies that the coefficient matrix Ak of the homogeneous part of Eq. (B29) is
nonsingular. We additionally require now this homogenous part to admit a hyperbolic fixed point, which leads to the stronger nonresonance
condition (32) of Theorem 3. This is the same non-resonance condition that arises in the work of Haro and de la Llave24 for quasiperiodic
forcing, which is a subset of the general forcing class we are considering here.

Under the nonresonance condition (32), all diagonal elements of Ak have nonzero real parts. We can therefore uniquely split Ak into
the sum of a diagonal matrix A−

k , which contains the stable eigenvalues of Ak as well as zeros, and a diagonal matrix A+
k , which contains the
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unstable eigenvalues of Ak as well as zeros,

Ak = A−
k + A+

k ,

A−
k (j, j) =

{

Ak(j, j), ReAk(j, j) < 0,
0, otherwise,

A+
k (j, j) =

{

Ak(j, j), ReAk(j, j) > 0,
0, otherwise.

We define the corresponding splitting for the vectors hkp(t) and Mkp(t, hjm(t)) as

hkp = hkp− + hkp+,

h
kp−
j =

{

h
kp
j , ReAk(j, j) < 0,
0, otherwise,

h
kp+
j =

{

h
kp
j , ReAk(j, j) > 0,
0, otherwise,

Mkp = Mkp− + Mkp+,

M
kp−
j =

{

M
kp
j , ReAk(j, j) < 0,

0, otherwise,
M

kp+
j =

{

M
kp
j , ReAk(j, j) > 0,

0, otherwise.
.

We then then split the expression for the solution of system (B29) as

hkp−(t) = eA−
k (t−t0)hkp−(t0) +

∫ t

t0

eA−
k (t−s)Mkp−

(

s, hjm(s)
)

ds,

hkp+(t) = eA+
k (t−t0)hkp+(t0) +

∫ t

t0

eA+
k (t−s)Mkp+

(

s, hjm(s)
)

ds.

(B32)

If hkp(t) is a uniformly bounded solution of system (B29) for all forward and backward times, then using the signs of the nonzero diagonal
entries of the matrices A±

k , we obtain from the formulas (B32) that

hkp−(t) = lim
t0→−∞

[

eA−
k (t−t0)hkp−(t0) +

∫ t

t0

eA−
k (t−s)Mkp−

(

s, hjm(s)
)

ds

]

=

∫ t

−∞

eA−
k (t−s)Mkp−(s, hjm(s)) ds,

hkp−(t) = lim
t0→+∞

[

eA+
k (t−t0)hk+(t0) +

∫ t

t0

eA+
k (t−s)Mkp+

(

s, hjm(s)
)

ds

]

= −

∫ +∞

t

eA+
k (t−s) eA+

k (t−s)Mkp+
(

s, hjm(s)
)

ds,

which gives

hkp(t) = hkp−(t) + hkp−(t) =

∫ t

−∞

eA−
k (t−s)Mkp−(s, hjm(s)) ds −

∫ +∞

t

eA+
k (t−s) eA+

k (t−s)Mkp+
(

s, hjm(s)
)

ds.

Therefore, introducing Green’s function as the diagonal matrix Gk(t) ∈ C(n−d)×(n−d) defined in formula (31), we can write the unique globally
bounded solution of Eq. (B29) in the form

hkp(t) =

∫ ∞

−∞

Gk(t − s)Mkp(s, hjm(s)) ds,
∣

∣(j, m)
∣

∣ <
∣

∣(k, p)
∣

∣ , t ∈ R, (B33)

with Mkp(t, hjm(t)) defined in formula (37). As we have already seen in Eqs. (B30) and (B31), we specifically have

h0p(t) ≡ 0, t ∈ R, p ∈ N, hk0(t) ≡ −A−1
k Mk0(hj0),

∣

∣j
∣

∣ < |k| , h0 = 0. (B34)

d. Reduced dynamics

We obtain the reduced dynamics on Wε (E, t) by restricting the u-component of system (B14) to Wε (E, t):

u̇ = Auu + f̂ u
(

u, hε (u, t)
)

. (B35)

We obtain the form (38) of the reduced dynamics by substituting the definition of f̂ u into Eq. (B35), using the defining relationship

ẋ∗
ε(t) = Ax∗

ε(t) + f0
(

x∗
ε (t)

)

+ ε f̃1
(

x∗
ε(t), t

)
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of the anchor trajectory x∗
ε (t), and noting that the rows of P−1 are the appropriately normalized left eigenvectors of A, and hence Qu ∈ C

d×n

in formula (38) contains the first d rows of P−1. The end result is then

u̇ = Auu + f̂ u
(

u, hε(u, t), ε; t
)

= Auu + Qu

[

f0

(

x∗
ε(t) + P

(

u
hε(u, t)

))

+ ε f̃1

(

x∗
ε(t) + P

(

u
hε(u, t)

)

, t

)

+ Ax∗
ε(t) − ẋ∗

ε(t)

]

= Auu + Qu

[

f0

(

x∗
ε(t) + P

(

u
hε(u, t)

))

− f0
(

x∗
ε(t)

)

+ ε f̃1

(

x∗
ε (t) + P

(

u
hε(u, t)

)

, t

)

− ε f̃1
(

x∗
ε(t), t

)

]

,

as claimed in statement (ii) of Theorem 4.
The (u, v) coordinates are measured from the perturbed anchor trajectory x∗(t). We can also express the reduced dynamics on Wε (E, t)

in coordinates that are aligned with the subspace E and emanate from the original x = 0 fixed point of system (1) for ε = 0. Let
(

ξ

η

)

= P−1x,

which gives
(

u
v

)

= P−1
(

x − x∗
ε(t)

)

=

(

ξ

η

)

− P−1x∗
ε(t), (B36)

which implies

ξ = u + Qux∗
ε (t), η = v + Qvx

∗
ε (t) P−1 =

[

Qu

Qv

]

, Qu ∈ C
d×n, Qu ∈ C

(n−d)×n.

Note that

P−1AP =

[

Au 0d×n

0(n−d)×n Av

]

,

which implies
[

QuA
QvA

]

= P−1A =

[

Au 0d×n

0(n−d)×n Av

]

P−1 =

[

Au 0d×n

0(n−d)×n Av

] [

Qu

Qv

]

=

[

AuQu

AvQv

]

,

yielding the identity

QuA = AuQu. (B37)

Given that

u̇ = Auu + Qu

[

f0

(

x∗
ε (t) + P

(

u
hε(u, t)

))

+ ε f̃1

(

x∗
ε(t) + P

(

u
hε(u, t)

)

, t

)

+ Ax∗
ε (t) − ẋ∗

ε(t)

]

, (B38)

we obtain

ξ̇ = u̇ + Quẋ∗
ε (t)

= Auu + Qu

[

f0

(

x∗
ε(t) + P

(

u
hε(u, t)

))

+ ε f̃1

(

x∗
ε(t) + P

(

u
hε(u, t)

)

, t

)

+ Ax∗
ε(t)

]

= Au
(

ξ − Qux∗
ε (t)

)

+ QuAx∗
ε (t) + Qu

[

f0

(

x∗
ε(t) + P

(

u
hε(u, t)

))

+ ε f̃1

(

x∗
ε(t) + P

(

u
hε(u, t)

)

, t

)]

= Auξ +
[

QuA − AuQu

]

x∗
ε (t) + Qu

[

f0

(

x∗
ε(t) + P

(

ξ − Qux∗
ε(t)

hε(ξ − Qux∗
ε(t), t)

))

+ ε f̃1

(

x∗
ε(t) + P

(

ξ − Qux∗
ε(t)

hε(ξ − Qux∗
ε (t), t)

)

, t

)]

= Auξ + Quf0

(

x∗
ε (t) + P

(

ξ − Qux∗
ε (t)

hε(ξ − Qux∗
ε (t), t)

))

+ Quε f̃1

(

x∗
ε(t) + P

(

ξ − Qux∗
ε(t)

hε(ξ − Qux∗
ε(t), t)

)

, t

)

,

where we have used the identity (B37). This completes the proof of statement (iii) of Theorem 4.
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APPENDIX C: PROOF OF THEOREMS 5–7

1. Proof of Theorem 5: Expansion for the hyperbolic slow manifold Lε

We now assume that f and x′
0(α) have r ≥ 1 uniformly bounded derivatives over a closed neighborhood of x0(α) for all α. Then, by

the results of Eldering40 on the persistence of non-compact, normally hyperbolic invariant manifolds, a unique and uniformly bounded slow
manifold Lε exists near L0 for ε small enough. These results are applicable because the O (ε) perturbation term in (44) is uniformly bounded
in the C1 norm. The slow manifold Lε is Cr-diffeomorphic to L0 and is as smooth in the ε parameter as system (44). As a consequence, we
have an asymptotic expansion

Lε =







(x, α) ∈ R
n × R : x = xε(α) =

r
∑

j=0

ε jxj(α) + o (εr)







, (C1)

where the functions xj(α) are uniformly bounded in α. By the definition of xε(α) and by Eq. (47), we have

Dp
ε

[

f (xε(α), α) − εx′
ε(α)

]

≡ 0, p ∈ N, α ∈ R. (C2)

Substituting the expansion (C1) into (44), we obtain

∑

j≥0

ε j+1x′
j(α) = f





∑

j≥0

ε jxj(α), α



 .

Comparison of equal powers of ε in the last equation gives

x′
ν−1(α) =

1

ν!

∂ν

∂εν
f





∑

j≥0

ε jxj(α), α





∣

∣

∣

∣

∣

∣

ε=0

, ν ≥ 1. (C3)

Specifically, we have

εx′
0(α) + ε2x′

1(α) + ε3x′
2(α) + . . . = f (x0(α), α) + εDfx1(α) +

1

2

∂2

∂ε2
f





∑

p≥0

εpxp(α), α





∣

∣

∣

∣

∣

∣

ε=0

ε2 + . . . .

Note that

∂2

∂ε2
f





∑

j≥0

ε jxj(α), α



 =
∂

∂ε



Dxf





∑

j≥0

ε jxj(α), α





∑

j≥0

jε j−1xj(α)





= D2
xf





∑

j≥0

ε jxj(α), α



⊗





∑

j≥1

jε j−1xj(α)



⊗





∑

j≥1

jε j−1xj(α)



+ Dxf





∑

j≥0

ε jxj(α), α





∑

j≥2

j
(

j − 1
)

ε j−2xj(α),

therefore, we have

1

2

∂2

∂ε2
f





∑

j≥0

ε jxj(α), α





∣

∣

∣

∣

∣

∣

ε=0

=
1

2
D2

xf (x0(α), α) ⊗ x1(α) ⊗ x1(α) + Dxf (x0(α), α) x2(α),

which gives formulas (52) as solutions up to second order. We note that A−1(α) =
[

Dxf (x0(α), α)
]−1

is known to exist by the hyperbolicity
assumption (46).

To obtain the coefficients in Eq. (C1) up to an arbitrary order ν, we need to solve the recursive set of algebraic equations (C3) for xj(α).
To solve these equations, we again recall the multi-variate Faá di Bruno formula (A21), for which we now have p = 1, wherein we have H = fq,
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gi =
∑

p≥0 εpxi
p(α), x = ε ∈ R, x0 = 0 ∈ R, ν = ν ∈ N, `i = `i ∈ N, and y = x ∈ R

n. Therefore, for

H(ε) = fq





∑

j≥0

ε jx1
j (α), . . . ,

∑

j≥0

ε jxn
j (α), α



 , q = 1, . . . , n,

formula (A21) gives

dν

dεν
H (0) = Dν

ε fq





∑

j≥0

ε jx1
j (α), . . . ,

∑

j≥0

ε jxn
j (α), α





∣

∣

∣

∣

∣

∣

ε=0

=
∑

1≤|γ |≤ν

Dγ
x fq (x0(α), α)

ν
∑

s=1

∑

ps(ν,γ )

ν!
s
∏

j=1

∏n
i=1

[

(

`j

)

!xi
`j
(α)
]kji

(

kj

)

!
[(

`j

)

!
]|kj|

=
∑

1≤|γ |≤ν

Dγ
x fq (x0(α), α)

ν
∑

s=1

∑

ps(ν,γ )

ν!
s
∏

j=1

∏n
i=1

[

xi
`j
(α)
]kji

∏n
i=1 kji!

= ν! [A(α)xν(α)]q +
∑

1<|γ |≤ν

Dγ
x fq (x0(α), α)

ν
∑

s=1

∑

ps(ν,γ )

ν!
s
∏

j=1

∏n
i=1

[

xi
`j
(α)
]kji

∏n
i=1 kji!

, q = 1, . . . , n.

Using this last expression in (C3), we obtain formula (51).

2. Existence of the adiabatic SSM Mε

The classic persistence results of Fenichel38 assume compactness for the underlying manifold and hence do not guarantee the smooth
persistence of M0 for ε > 0. To conclude the persistence of M0, we first employ the “wormhole” construct from Proposition B1 of Eldering
et al.41 that extends M0 smoothly over its boundary so that it becomes a subset of a ρ-normally hyperbolic, normally attracting, class Cr

invariant manifold M̃0 without boundary. Under this extension, the stable foliation of Ws (M0) coincides with that part of the stable foliation

of Ws
(

M̃0

)

.

Due to the exclusion of a 1 : 1 resonance [see Eq. (61)] between eigenvalues inside and outside M̃0, the non-compact, boundaryless
extended manifold M̃0 is a normally attracting invariant manifold. Its persistence can then be concluded for small enough ε > 0 from related
results by Eldering40 as long as assumption (54) holds for the same ρ, uniformly in α. In addition, M0 and f(x, α) must have r derivatives
that are uniformly bounded in α in a small neighborhood of M0. For ε > 0 small enough, we then obtain a unique (for a given choice of
the wormhole construct) persistent invariant manifold Mε that is diffeomorphic to M0, has r uniformly bounded derivatives and is O (ε)

C1-close to M0. The smoothness class of Mε is Cm where m = min (r, ρ).
We do not obtain uniqueness from any of these constructs as they all involve modifications of the vector field. But the initial conditions

are anyway with probability zero on an SSM that is smoother than the smoothness implied by the spectral gap. In other words, there is an
inherent non-uniqueness in the choice of Mε as a ρ-normally hyperbolic invariant manifold tangent to E(α) for each α, as there are infinitely
many different choices for W (E(α)) to begin with.

Despite the non-uniqueness of Mε , all persisting manifolds Mε must contain the unique, persisting continuation Lε of L0. The reason
is that by the results of Eldering,40 Lε is unique, uniformly bounded and lies fully in a small, inflowing neighborhood of Mε whose size is
O(1) in ε. Points on Lε would then be mapped by the inverse flow map outside that inflowing neighborhood, unless they are contained in
Mε . Therefore, Lε ⊂ Mε must hold.

3. Computation of the adiabatic SSM Mε

Based on formula (C2),
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f̂(u, v, ε; α) = P−1 (α)

[

f

(

xε(α) + P (α)

(

u
v

)

, α

)

− A (α) P (α)

(

u
v

)

− εx′
ε(α) − εP′ (α)

(

u
v

)]

= P−1 (α)

[

f (xε(α), α) + Dxf (xε(α), α) P (α)

(

u
v

)

− A (α) P (α)

(

u
v

)

− εx′
ε(α) − εP′ (α)

(

u
v

)

+ O
(

|u|2 , |u| |v| , |v|2
)

]

= P−1 (α)

[

[

Dxf (xε(α), α) − Dxf (x0(α), α)
]

P (α)

(

u
v

)

+ O
(

|u|2 , |u| |v| , |v|2 , ε |u| , ε |v|
)

]

(C4)

= P−1 (α)
[

O
(

|u|2 , |u| |v| , |v|2 , ε |u| , ε |v|
)]

. (C5)

Under the assumptions (46) and (53), and by the definition of f̂ in (58), we have

f̂(0, 0, 0; α) = 0, Du f̂(0, 0, 0; α) = 0, Dv f̂(0, 0, 0; α) = 0, Dε f̂(0, 0, 0; α) = 0. (C6)

Specifically, in the (u, v, α) coordinates, the perturbed slow manifold Lε satisfies

Lε = {(u, v, α) ∈ R
n × R : u = 0, v = 0} .

We note the similarity between formulas (56)–(C6) and the setting of Eqs. (B14)–(B17) for general non-autonomous SSMs. Based on this
similarity, we will follow the same strategy here that we employed to compute invariant manifolds in system (B14). Specifically, we will seek
the perturbed invariant manifold Mε in system (56) in the form of the asymptotic expansion (62).

On the one hand, differentiating the definition of the invariant manifold Mε from Eq. (62) with respect to t and using the ODE (26), we
obtain

v̇ = Duhε(u, α)u̇ + εDαhε(u, α) = Duhε(u, α)
[

Au(α)u + f̂ u(u, hε(u, α), α; ε)
]

+ εDαhε(u, α). (C7)

On the other hand, substitution of the definition of the invariant manifold Mε into (56) gives

v̇ = Avhε(u, α) + f̂ v(u, hε(u, α), α; ε). (C8)

Comparing (C7) and (C8), we obtain

Duhε

[

Auu + f̂ u

]

+ εDαhε = Avhε + f̂v. (C9)

4. Structure and solution of the invariance equation

Substitution of (62) into (C9) gives

∑

|(k,p)|≥1

hkp(α)εpDuuk



Au(α)u + f̂ u



u,
∑

|(k,p)|≥1

hkp(α)ukεp, α; ε







+
∑

|(k,p)|≥1

[

hkp
]′

(α)ukεp+1

=
∑

|(k,p)|≥1

Avhkp(α)ukεp + f̂ v



u,
∑

|(k,p)|≥1

hkp(α)ukεp, α; ε



 . (C10)

As we did in the general non-autonomous case, we observe that

Av(α)hkp(α)uk − hkp(α)DuukAu(α)u =













λd+1(α) −
∑d

j=1 kjλj(α) · · · 0

...
. . .

...

0 · · · λn(α) −
∑d

j=1 kjλj(α)













hkp(α)uk. (C11)

Therefore, the invariance equation (C10) can be rewritten as

∑

|(k,p)|≥1

[

hkp
]′

(α)ukεp+1 =
∑

|(k,p)|≥1

Ak(α)hk,p(α)ukεp +
∑

|(k,p)|≥1

Mkp(α, hjm)ukεp, (C12)
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where

Ak(α) = diag



λ`(α) −

d
∑

j=1

kjλj(α)





n

`=d+1

∈ C(n−d)×(n−d),

(C13)

∑

|(k,p)|≥1

Mkp(α, hjm)ukεp = M(u, α, hjm, ε) = f̂ v



u,
∑

|(k,p)|≥1

hkp(α)ukεp, α; ε





−
∑

|(k,p)|≥1

εp











h
kp
1 (α)

k1uk

u1
· · · h

kp
1 (α)

kduk

ud

...
. . .

...

h
kp

n−d(α)
k1uk

u1
· · · h

kp

n−d(α)
kduk

ud











f̂ u



u,
∑

|(k,p)|≥1

hkp(α)ukεp, α; ε



 .

Recall from Eq. (C6) that f̂ v and f̂ u vanish for u, v, ε = 0 and
have no O (|v|) terms. Then, as we concluded in the general non-
autonomous case, Mkp(α, hjm) will only depend on hjm that are lower
in order, i.e.,

DhjmMkp(α, hjm)uk = 0,
∣

∣(j, m)
∣

∣ ≥
∣

∣(k, p)
∣

∣ . (C14)

Equating coefficients of equal powers of u in Eq. (C12), we then
obtain the system of equations

[

hk(p−1)
]′

(α) = Ak(α)hkp(α) + Mkp(α, hjm),
∣

∣(j, m)
∣

∣ <
∣

∣(k, p)
∣

∣ .

(C15)

This is a recursively defined set of linear algebraic equations for
hkp(α), which can be uniquely solved as long as Ak(α) is nonsingu-
lar, i.e., the non-resonance conditions (60) are satisfied. In that case,
the recursive solution of (C15) starts from

h0p(α) ≡ 0, p ≥ 0, hk0(α) ≡ hk(α), k ∈ N
d,

(C16)

hk0(α) ≡ hk(α) = 0, |k| = 1,

and takes the form (64), with the quantities in Eq. (65) obtained from
formulas (C13) using the relation (C14).

5. Reduced dynamics

To obtain the form of the reduced dynamics on the adia-
batic SSM Mε , we consider the u component of the transformation
formula (55),

u = Qu (α) (x − xε(α)), (C17)

where the rows of Qu (α) ∈ C
d×n are the appropriately scaled unit

left eigenvectors of A(α) corresponding to its first d (right) eigen-
vectors. This scaling is specified in statement (ii) of the theorem,
ensuring that the rows of Qu (α) coincide with the first d rows of
P−1(α).

Differentiation of (C17) with respect to time gives

u̇ = εQ′
u (α) (x − xε(α)) + Qu (α)

(

ẋ − εx′
ε(α)

)

= εQ′
u (α) P(α)

(

u
v

)

+ Qu (α)
(

f(x, α) − εx′
ε(α)

)

= Qu (α)

(

f

(

xε(α) + P(α)

(

u
v

)

, α

)

− εx′
ε(α)

)

+ εQ′
u (α) P(α)

(

u
v

)

.

Restricting this last formula to the graph v = hε(u, α) then proves
formula (67) in statement (ii) of the theorem.
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