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Abstract Dynamical systems are often subject to
algebraic constraints in conjunction with their gov-
erning ordinary differential equations. In particular,
multibody systems are commonly subject to config-
uration constraints that define kinematic compatibility
between the motion of different bodies. A full-scale
numerical simulation of such constrained problems is
challenging, making reduced-order models (ROMs) of
paramount importance. In this work, we show how to
use spectral submanifolds (SSMs) to construct rigor-
ous ROMs for mechanical systems with configuration
constraints. These SSM-based ROMs enable the direct
extraction of backbone curves and forced response
curves and facilitate efficient bifurcation analysis. We
demonstrate the effectiveness of this SSM-based reduc-
tion procedure on several examples of varying com-
plexity, including nonlinear finite-element models of
multibody systems. We also provide an open-source
implementation of the proposed method that also con-
tains all details of our numerical examples.
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1 Introduction

Constrained mechanical systems arise in a number of
engineering applications. In multibody dynamics, for
instance, different components of a multibody system
are connected by joints that impose kinematic con-
figuration constraints on the system [1]. In NEMS
applications, the piezoelectric equations again feature
algebraic constraints that couple electric potentials to
mechanical displacements [2]. In fluid mechanics, the
preservation of mass in the incompressible, spatially
discretized Navier–Stokes equations is another exam-
ple of an algebraic constraint [3]. The sheer num-
ber of variables that arise from the spatial discretiza-
tion of partial differential equations in such appli-
cations, e.g., the generalized displacements in flexi-
ble multibody systems, renders the full-scale simula-
tion of such constrained dynamical systems infeasi-
ble. Model reduction enables efficient analysis of these
high-dimensional systems. The goal of this paper is to
present amathematically rigorous and computationally
efficient nonlinear model reduction method for con-
strained nonlinear systems based on the theory of spec-
tral submanifolds.

For model reduction in flexible multibody systems,
the floating frame of reference formulation is com-
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monly adopted, wherein the motion of a deformable
body is decomposed into rigid-body motion of a float-
ing frame and an elastic deformation relative to the
floating frame [1]. Model reduction is then performed
on the elastic deformation component by projecting it
onto a linear subspace. Depending on the choice of
that subspace, various projection-based reduction tech-
niques have been developed such as linear normalmode
(LNM) approaches [4] and component mode synthe-
sis (CMS) methods [5]. In both the LNM and CMS-
based projection methods, each flexible body has its
own local reduction subspace. In systems comprising
many bodies, this may result in an excessive number of
variables in the reduced-order model (ROM). To over-
come this issue, projection-based reduction methods
based on global flexible modes have been proposed
recently [6,7].

In control systems applications, other non-modal
reduction techniques [8–10] have also been employed
to generate the projection subspace. For linear control
systems, transfer functions characterize the relations
between the control inputs and outputs in frequency
domain. A common goal of reduction is then to find
an appropriate projection such that the transfer func-
tion of the ROMapproximates the full transfer function
(see [11] for a survey).

For flexible bodies undergoing large elastic defor-
mations, geometric nonlinearities need to be consid-
ered [1,12]. Absolute nodal coordinate formulation
(ANCF) is useful when the system performs both over-
all motions and large deformations [1]. In the ANCF,
all motions are expressed in the same inertial frame and
hence there is no separation between reference frame
motion and elastic deformation. CMS-based reduc-
tion methods have been developed in the ANCF as
well [13,14]. Here, the equations of motion in ANCF
are locally linearized with respect to a set of quasi-
static loading configurations and the corresponding
local modes are used for model reduction.

Projection subspaces have also been obtained in
data-driven settings. Specifically, the proper orthogonal
decomposition (POD) has been used to perform model
reduction for flexiblemultibody systems inANCF [15].
As an extension of POD, a proper symplectic decom-
position [16] (PSD) has been proposed recently to con-
struct the modal bases while preserving the symplectic
structure of the equations. The PSD has shown bet-
ter numerical accuracy and higher computational effi-
ciency than the POD [16].

All these reduction methods are fundamentally lin-
ear because they project governing equations from the
full phase space or configuration space onto a lin-
ear subspace. Such linear techniques generally fail to
reproduce geometrically nonlinear response involving
larger displacements. Indeed, no linear subspace is
invariant in a generic nonlinear system and hence linear
projection can only be guaranteed to work in a small
neighborhood of the equilibrium [17]. More accurate
approaches should therefore be based on ROMs on
attracting low-dimensional invariant manifolds in the
full phase space of the system.

In structural dynamics, invariant-manifold-based
model reduction has been explored for a few decades
now ([18–23]). Nonlinear normal modes (NNMs) [18]
were first sought as invariant manifolds tangent to lin-
ear modal subspaces at the origin, serving as non-
linear continuations of linear normal modes. When
they exist, such NNMs offer a way to mathematically
rigorous model reduction for nonlinear systems. The
recent theory of spectral submanifolds (SSMs) [21]
has indeed clarified the spectral conditions under
which NNMs exist uniquely as SSMs, which are the
unique smoothest invariant manifolds among all possi-
ble NNMs. Importantly, slow SSMs attract nearby full-
system trajectories and their internal dynamics serve
as a mathematically exact ROM for the full nonlin-
ear system. Furthermore, SSM-based ROMs enable
a direct extraction of backbone curves [24], forced
response curves [25,26] and bifurcation analysis [27].
A recent development is the computation of SSMs and
their reduced dynamics in physical coordinates using
only a minimal number of eigenvectors, which makes
SSM computations scalable to realistic finite-element
models in structural dynamics [22]. An open-source
implementation of the computational procedure has
been available in the MATLAB-based ssmtool pack-
age [28].

All these SSM computations have targeted mechan-
ical systems defined by systems of ordinary differ-
ential equations (ODEs). In mechanical systems with
configuration constraints, however, the constraints sat-
isfy additional algebraic equations, resulting in govern-
ing equations that are systems of differential algebraic
equations (DAEs). While these DAEs can be formu-
lated as an equivalent system of ODEs via an appro-
priate choice of generalized coordinates or the elimi-
nation of the associated Lagrange multipliers [29,30],
we focus here on the DAE formulation due to its

123



Model reduction for constrained mechanical systems 8883

compactness and simplicity. In this work, we lever-
age SSM theory to reduce mechanical systems with
configuration constraints. Specifically, we generalize
SSM computations and SSM-based model reduction
to constrained nonlinear systems described by DAEs,
thereby enabling rigorous and efficient nonlinear anal-
ysis of high-dimensional constrained mechanical sys-
tems.We also provide an open-source numerical imple-
mentation of this approach which constitutes an exten-
sion of ssmtool [28], a MATLAB-based package for
the calculation of SSMs for differential equations.

The rest of this paper is organized as follows. Sec-
tion 2 details the setup of mechanical systems with
configuration constraints. In Sect. 3, we review SSM
theory for ODEs and extend it to DAEs. In Sect. 4, we
briefly review ssmtool, which is used for the compu-
tation of SSMs for constrained mechanical systems in
this work. Furthermore, we discuss the computational
treatment for non-polynomial nonlinearities,which fre-
quently arise in multibody systems. Finally, in Sect. 5,
we present several examples to illustrate the power of
the SSM-based ROMs before drawing conclusions in
Sect. 6.

2 System setup

We consider a periodically forced nonlinear mechani-
cal system with configuration constraints

Mẍ + Cẋ + Kx + f (x, ẋ) + [G(x)]Tμ

= ε f ext(x, ẋ,�t), g(x) = 0, 0 ≤ ε � 1, (1)

where x ∈ R
n is a displacement vector; M,C, K ∈

R
n×n are mass, damping and stiffness matrices;
f (x, ẋ) is a Cr smooth nonlinear function for some
integer r ≥ 2 such that f (x, ẋ) ∼ O(|x|2, |x||ẋ|, |ẋ|2);
f ext(x, ẋ,�t) denotes an external (parametric) har-
monic excitation with forcing frequency � and scalar
amplitude ε such that ε = 0 corresponds to the
unforced autonomous limit of the system; g : Rn →
R
nc (nc < n) represents a set of Cr smooth configu-

ration constraints with G = ∂ g/∂x : R
n → R

nc×n

being the Jacobian of the constraints; and μ denotes
a vector of Lagrange multipliers corresponding to the
configuration constraints [1].

Note that the setup above allows for gyroscopic
forces as well as non-proportional and non-viscous
damping due to the possibly asymmetric damping

matrix C and the velocity-dependent nonlinear inter-
nal force f (x, ẋ) in system (1). While we make a
smallness assumption on the external excitation term
ε f ext(x, ẋ,�t) in system (1), we remark that the non-
linear internal force f (x, ẋ) is not assumed to be small.
Consequently, we will be able to handle large nonlin-
earities in free vibration.

Without loss of generality, we assume g(0) = 0
such that the origin (x, ẋ,μ) = 0 of the phase space
is a fixed point of system (1) when ε = 0. We fur-
ther assume that the matrix G is of full rank, i.e.,
the constraints g are not redundant. Consequently, the
vector μ of Lagrange multipliers is well defined. Let-
ting G0 := G(0), the configuration constraints can be
rewritten as

g(x) = G0x + gnl(x) = 0, (2)

where gnl is a C
r smooth nonlinear function such that

gnl(x) ∼ O(|x|2). Accordingly, we have
G = G0 + Gnl(x), Gnl = ∂ gnl/∂x. (3)

We transform the second-order DAE system (1) into
a first-order form as

Bż = Az + F(z) + εFext(z,�t), (4)

where

z =
⎛
⎝
x
ẋ
μ

⎞
⎠ ∈ R

2n+nc ,

A =
⎛
⎝

−K 0 −GT
0

0 M 0
G0 0 0

⎞
⎠ , B =

⎛
⎝
C M 0
M 0 0
0 0 0

⎞
⎠ ,

F(z) =
⎛
⎝
− f (x, ẋ) − (Gnl(x))T μ

0
gnl(x)

⎞
⎠ ,

Fext(z,�t) =
⎛
⎝

f ext(x, ẋ,�t)
0
0

⎞
⎠ . (5)

The linearization of system (4) at the origin leads to the
eigenvalue problem

Av j = λ j Bv j , u∗
j A = λ ju∗

j B, (6)

for j = 1, · · · , 2n + nc, where λ j is a generalized
eigenvalue and v j and u j are the corresponding right
and left eigenvectors, respectively.

Since the nc constraints are well defined, the
mechanical system (1) effectively has n − nc degrees
of freedom. This results in the matrix pair (A, B) hav-
ing 2(n − nc) eigenvalues with finite magnitude. We
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assume that the linear matrix pencil (A, B) is regular,
namely, there exists λ ∈ C such that det(λB− A) 	= 0.
Then, the remaining 3nc eigenvalues of the systemhave
infinite magnitude due to the singularity of B [31]. We
note that this regularity assumption is already satis-
fied when M is non-singular and the constraints g are
not redundant. The eigenvectors corresponding to the
infinite eigenvalues are called constraint modes [7,32].
Further details about the spectrum of the linear part of
the DAE system (1) are given in Appendix D.

We now assume that the real parts of all finite-
magnitude eigenvalues are strictly less than zero,which
is the case for dissipative mechanical systems. Hence,
the fixed point of the linearized system Bż = Az is
asymptotically stable [33].We sort thefinite-magnitude
eigenvalues in decreasing order of their real parts as

Re(λ2n−2nc) ≤ · · · ≤ Re(λ1) < 0. (7)

We have listed all eigenvalues of finite magnitude
here for completeness. However, as we will see, it is
not necessary to calculate all eigenvalues in our SSM
computations becausewe employ the computation pro-
cedure proposed in [22]. Following that procedure, the
SSM and its reduced dynamics are computed in the
physical coordinates using only themastermodes asso-
ciated with the SSM.

Remark 1 The 3nc constraint modes of system (4) are
orthogonal to the configuration space (x1, · · · , xn).
Indeed, for each constraint mode, we have x = 0 and
μ 	= 0 (see Eq. (87) in Appendix D). As the constraint
modes exhibit infinite-magnitude eigenvalues, they are
irrelevant for model reduction via slow SSMs. Hence,
the constraint modes are not included in themaster sub-
space of the relevant SSM and need not be computed.

3 Spectral submanifolds for constrained
mechanical systems

In this section,wefirst review thenotionof spectral sub-
manifolds for unconstrained systems whose governing
equations are in the form of ODEs. Then, we show how
this definition can be extended to constrained systems
whose governing equations are DAEs.

3.1 SSM theory for unconstrained systems

For systems without configuration constraints, we have
nc = 0 and

z =
(
x
ẋ

)
, A =

(−K 0
0 M

)
,

B =
(
C M
M 0

)
, F(z) =

(− f (x, ẋ)

0

)
,

Fext(z,�t) =
(
f ext(x, ẋ,�t)

0

)
. (8)

We note that for a positive definite mass matrix M,
the matrix B is invertible. In this work, we consider
the SSM constructed around a 2m-dimensional master
spectral subspace

E = span{vE1 , v̄E1 , · · · , vEm, v̄Em}, (9)

which is spanned by m pairs of underdamped modes
corresponding to the eigenvalues λE1 , λ̄E1 , . . . , λEm, λ̄Em .
Hence, we have

Spect(E) = {λE1 , λ̄E1 , · · · , λEm, λ̄Em}. (10)

The spectral subspace E is invariant under the flow
of the linearized system

Bż = Az. (11)

This invariance property of spectral subspaces is uti-
lized in linearmechanical vibrations to construct a trun-
cated modal expansion for model reduction [34].

3.1.1 Addition of nonlinearity

Under the addition of the nonlinearity F(z) to Eq. (11),
the spectral subspace E perturbs into invariant man-
ifolds that are tangent to E at the origin of the
autonomous system

Bż = Az + F(z). (12)

In fact, for the given master subspace E , there are
infinitely many invariant manifolds of system (12) tan-
gent to E at the origin [21]. However, the smoothest one
among all these invariant manifolds is guaranteed to
exist uniquely under appropriate non-resonance condi-
tions [21]. This unique, smoothest invariant manifold is
defined as the SSMassociated toE , whichwe denote by
W(E) [21]. The reduced dynamics on the SSM,W(E),
then serves as amathematically rigorous reduced-order
model for the full nonlinear system.

We review the conditions for the existence and
uniqueness of SSMs in Theorem 1 of Appendix A.
Specifically, the non-resonance condition (53) in
Appendix A is based on the spectrum of the linearized
system (11), which we denote as

Spect(�) = {λ1, · · · , λ2n}. (13)
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The non-resonance condition (53) restricts specific
low-order resonances of any eigenvalues contained in
Spect(E) with any eigenvalue, λk , that lies outside
Spect(E), i.e., λk ∈ Spect(�) \ Spect(E). Importantly,
however, any resonances among the eigenvalues within
Spect(E) are not restricted by the non-resonance con-
dition (53).

As an illustration of the types of resonances that
are allowed, we consider an internally resonant system
such that the first two pairs of modes exhibit a near 1:2
resonances, i.e., λ2 ≈ 2λ1 and λ̄2 ≈ 2λ̄1. Then we
have

λ1 ≈ ( j + 1)λ1 + j λ̄1 + lλ2 + lλ̄2,

λ2 ≈ ( j + 1)λ2 + j λ̄2 + lλ1 + lλ̄1,

λ2 ≈ ( j + 2)λ1 + j λ̄1 + lλ2 + lλ̄2 (14)

for all j, l ∈ N0. Note that for a two-dimensional
spectral subspace comprising of the first mode only,
the resonance relation (14) (nearly) violates the non-
resonance condition (53) that is essential for the exis-
tence of the corresponding two-dimensional SSM.
However, for a four-dimensionalmaster subspace com-
prising of the first two modes, the resonance rela-
tion (14) becomes an approximate inner resonance
within Spect(E) that is still allowed for the existence
of the corresponding four-dimensional SSM.

Thus, any choice for themaster subspaceE must take
into account the (near) resonances within the spectrum
of linearization. In accordance with non-resonance
condition (53), for a 2m-dimensional master subspace
E , we allow for a (near) inner resonance relationship of
the form

λEi ≈ l · λE + j · λ̄
E
, λ̄Ei ≈ j · λE + l · λ̄

E
(15)

for some i ∈ {1, · · · ,m}, where l, j ∈ N
m
0 , |l + j | :=∑m

k=1(lk + jk) ≥ 2, and λE = (λE1 , · · · , λEm). We note
that (14) is a special case of (15). Thus, SSM theory can
be used to treat internally resonant mechanical systems
by choosing the spectral subspace E which contains all
such resonant eigenvalues [21,26].

3.1.2 Addition of external forcing

Finally, upon addition of the small-amplitude external
force εFext(z,�t) to the autonomous system (12), the
origin, which is a stable fixed point of system (12), per-
turbs into a small-amplitude stable periodic orbit, γε ,
of system (4) for ε > 0, small enough [35]. Further-
more, this periodic orbit has an SSM emerging from

its spectral subbundle γε × E as long as appropriate
resonance conditions hold [21]. This SSM is then a
(2m + 1)-dimensional fiber bundle, whose fibers per-
turb smoothly from the spectral subspace E of the lin-
earized system (11) under the addition of nonlinear
and O(ε) terms in system (4). We denote this periodic
SSM of system (4) asW(E,�t) and review the condi-
tions for its existence and uniqueness in Theorem 2 of
Appendix A.

We note that the non-resonance condition (57)
in Appendix A for the existence and uniqueness of
W(E,�t) is independent of the frequency of periodic
forcing �. However, an effective choice for the master
subspaceE depends on the range of interest for the forc-
ing frequency �. Specifically, we include those modes
in the master subspace E whose eigenvalues are near
i� as these modes are nearly resonant with the exter-
nal forcing frequency. Including these nearly resonant
modes in the master subspace enhances the domain
of convergence of our SSM approximations by avoid-
ing small denominators [22]. To ensure satisfaction of
the non-resonance condition (53) as well, we further
include into the master subspace E any modes that
may be internally resonant with the externally resonant
modes mentioned above. Consequently, we choose the
master subspace for non-autonomous systems based
on both external and internal resonances, as discussed
in [26].

The external resonance above can be formulated as
a relation between the excitation frequency � and the
eigenvalues of themaster subspaceλE . In particular,we
allow for the external forcing frequency � to be nearly
resonant with the master eigenvalues as (see [26]):

λE − ir� ≈ 0, r ∈ Q
m . (16)

To illustrate the external resonance above, we again
consider the system whose master subspace E has two
pairs of modes that exhibit near 1:2 inner resonances,
i.e., λE2 ≈ 2λE1 and λ̄E2 ≈ 2λ̄E1 . Now, if the external
forcing frequency � is nearly resonant with the first
pair of modes, i.e., λE1 ≈ i�, λE2 ≈ i2�, we have
r = (1, 2) in (16). In contrast, if the external forcing
resonates with the second pair of modes, i.e., λE1 ≈
1
2 i�, λE2 ≈ i�, we have r = (1/2, 1).

3.2 Extension to constrained systems

For constrained systems, we have 0 < nc < n and the
matrix B in (5) is not invertible. However, theDAEs (1)
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can be converted into an equivalent system of ODEs
via an index reduction technique, as we detail below.
In principle, the existence and uniqueness results for
SSMs given in Theorems 1 and 2 of Appendix A are
then applicable to constrained systems as well. In prac-
tice, however, this conversion is not required during
computations as we show later.

As we illustrate in Appendix B, the DAE system (1)
is equivalent to the following system of ODEs:

B(z)ż = A(z)z + F(z) + εFext(z,�t), (17)

with

z =
(
x
e

)
, A(z) =

(−αq�(x)G0 �(x)

−[�(x)]TK 0

)
,

B(z) =
(

I 0
[�(x)]TC − α[�(x)]TMq�(x)G(x) �TM�

)
,

F(z) =
(

−αq�(x)gnl(x)

−[�(x)]Tf(z) − �TM�̇e + α[�(x)]TM q̇�(x)g(x)

)
,

Fext(z, �t) =
(

0
�T(x) f ext(x, ẋ, �t)

)
, (18)

where e ∈ R
n−nc is a set of generalized speeds;α ∈ R

+
is a user-defined stabilization parameter in differen-
tiating the configuration constraints; � ∈ R

n×(n−nc)

and q� ∈ R
n×nc are appropriately defined full rank

matrices (see Appendix B); and f(z) = f (x,�(x)e −
αq�(x)g(x)).

Thus, we have obtained a reformulated ODE sys-
tem (17) of the original DAE system (1) or equiva-
lently (4). The phase space of the original DAE system
is 2n + nc dimensional because z = (x, ẋ,μ), while
the phase space dimension of the reformulated system
is 2n − nc because z = (x, e). Here, the generalized
speeds e are also called kinematic characteristics or
independent quasi-velocities [29].

The above reformulation guarantees the invertibility
of B(z) as long as M is invertible [36]. Furthermore,
as follows from a one-to-one correspondence of spec-
trum that will be established later this section, the ori-
gin is a stable fixed point of system (17). This allows us
to apply SSM theory to the reformulated system (17).
Indeed, the results and discussions in Sect. 3.1 and The-
orems 1 and 2 in Appendix A can be generalized to the
system of ODEs (17) by extending the constant matri-
ces A and B to A(z) and B(z). While useful for estab-
lishing theoretical equivalence, this conversion is not
desirable in practice due to the following reasons:

1. The ODEs in system (17) are implicit due to the
state dependence in the coefficient matrix B(z),

which adds complexity to the original invariance
Eqs. (55), (60) that need to be solved for SSM
computation.

2. The construction of the matrices �(x) and q�(x)

is not unique and can be computationally chal-
lenging (see Appendix B).

3. The external forcing terms in the ODE sys-
tem (17) are generally state-dependent even if the
external forcing in the original DAE system (4) is
independent of the state. Again, this adds compu-
tational complexity in the solution of invariance
equations.

To overcome these issues, we propose to compute
SSMs by solving invariance equations (see (55) and
(60) in Appendix A for more details) directly for the
DAE system (4). To apply SSM theory directly on the
DAE system (4), however, it is necessary to relate the
spectrum of the equivalent ODE system (17) to that of
the original DAE system (4).

Indeed, we establish such a relationship in
Appendix C, where we derive the spectrum of the lin-
ear part of the reformulated ODE system (17). It turns
out that this spectrum can be divided into two groups.
These twogroups of eigenvalues alongwith their eigen-
vectors are listed in (79) and (80) in Appendix C. In
particular, the first group has 2(n − nc) eigenvalues
while the second group has nc eigenvalues that are all
equal to −α.

We further derive the spectrum of the linear part of
the DAE system (1) or equivalently (4) in Appendix D.
We find that this spectrum can also be divided into
two groups. These two groups of eigenvalues along
with their eigenvectors are listed in (86) and (87) in
Appendix D. Here, the first group has 2(n− nc) eigen-
values with finite magnitude while the second group
has 3nc eigenvalues of infinite magnitude.

By comparing (79) and (86), we conclude the equiv-
alence of the eigenvalues of the first group of the
ODE system (17) and that of the DAE system (1).
Furthermore, there exists a one-to-one correspondence
between the eigenvectors in the first group of the ODE
system (17) and that of the DAE system (1). The one-
to-one correspondence follows from the orthogonal-
ity of the constraint modes to the configuration space
(see Remark 1). The explicit expressions for relation-
ship between the two sets of eigenvectors are given in
Eqs. (79) and (86).
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Thus, we have established a one-to-one correspon-
dence of the 2(n − nc) finite-magnitude eigenvalues
and eigenvectors of the DAE system (4) to those of the
equivalent ODE system (17). Since the real parts of all
finite-magnitude eigenvalues of system (4) are assumed
to be negative, it follows from the equivalence of the
eigenvalues that the origin is a stable fixed point of
system (17). Furthermore, as the stabilization param-
eter α ∈ R

+ can be chosen arbitrarily, the remaining
nc eigenvalues of the ODE system (17), which are all
equal to −α, can be made to satisfy the non-resonance
conditions in Theorems 1 and 2.

As such, the eigenvectors corresponding to these nc
spurious eigenvalues are an artifact of the index reduc-
tion in DAEs (1) and are not relevant for model reduc-
tion via SSMs. Thus, in analogy with Remark 1, these
modes are not included in the master subspace of the
relevant SSM. We note that for the purpose of verifica-
tion of non-resonance conditions given in Theorems 1
and 2 of Appendix A for the DAE system (4), only
the 2(n−nc) eigenvalues outside the constraint modes
are relevant (cf. Remark 1). Hence, without any loss of
generality, for the DAE system, we define the spectrum
as Spect(�) = {λ1, · · · , λ2(n−nc)}.

To summarize, the reformulation of the DAE sys-
tem (1) as the ODE system (17) and the established
one-to-one correspondence of their spectrum together
provide us a constructive tool to apply SSM theory and
computation directly to DAE systems with configura-
tion constraints.

4 Computation of SSMs and their reduced
dynamics

4.1 SSMTool

The DAE system (4) is of the form of the equation
of motion for which SSMTool [22,26–28] computes
SSMs and their reduced dynamics. Next, we briefly
review the main features of SSMTool.

SSMTool performs SSM computations in physi-
cal coordinates using only the master modes asso-
ciated with the SSMs [22]. This makes SSM com-
putations applicable even to high-dimensional finite-
element models. The algorithm supports the computa-
tion of parameterized SSMs along with their reduced
dynamics up to an arbitrary order of accuracy in an
automated fashion. Specifically, for autonomous sys-

tems (ε = 0), it returns the Taylor expansions of the
SSMparameterizationW( p) and its reduced dynamics
R( p), defined in Theorem 1, by solving the invariance
equation (55).

For non-autonomous systems with periodic forcing
(ε > 0), SSMTool returns time-periodic SSM parame-
terization (59) and its reduceddynamics (61) by solving
the invariance equation (60). Specifically, it computes
the terms in the expansions

z = W ε( p, φ) = W( p) + εX0(φ) + O(ε| p|), (19)

ṗ = Rε( p, φ) = R( p) + εS0(φ) + O(ε| p|), (20)

where X0 is the leading-order, non-autonomous part
of the SSM and S0 is the leading-order periodic forc-
ing term in the reduced dynamics. We use a normal-
form-style parameterization to compute the SSM and
its reduced dynamics. This allows us to factor out the
φ-dependent terms in (20) after appropriate coordinate
transformations, and simplifies the forced response
curve (FRC) computation (see [26] for more details).
Specifically, the periodic response of the full nonlin-
ear system is simply obtained by computing the fixed
points of the corresponding SSM-based ROM [22,26].
Similarly, quasiperiodic tori in the full system can be
directly obtained by computing periodic orbits in the
SSM-based ROM [27].

Furthermore, these SSM-based ROMs enable effi-
cient bifurcation analysis of high-dimensional systems.
For instance, one can predict the existence of limit
cycles and quasiperiodic orbits of full systems via the
Hopf bifurcation of fixed points and limit cycles of the
reduced dynamics on the SSMs. To this end, SSMTool
has been integrated with the numerical continuation
package coco [37–39] to facilitate nonlinear analysis
of SSM-based ROMs (see [26,27] for the details).

4.2 Treatment of non-polynomial nonlinearities

In constrained mechanical systems, nonlinearities with
trigonometric terms commonly arise. The current
implementation of SSMTool, however, supports only
polynomial nonlinearities. Nonetheless, by introduc-
ing auxiliary variables and constraints, systems with
trigonometric terms can be recast into DAEswith poly-
nomial terms [40]. A table of recasts of the most com-
mon transcendental functions is given in the appendix
of [40]. This conversion technique can be applied to
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systems with common non-polynomial nonlinearities
to obtain DAEs with polynomial nonlinearities.

As an illustration, we consider here the example of
a forced pendulum to show how its equation of motion,
which contains a sinusoidal nonlinearity, can be recast
into a DAE systemwith polynomial nonlinearities. The
equation of motion is given by

ϕ̈ + cϕ̇ + sin ϕ = ε cos�t, (21)

whereϕ is the rotation angle of the pendulum and c > 0
is a damping coefficient. We define z1 = ϕ, z2 = ϕ̇

and introduce auxiliary variables z3 = sin ϕ and z4 =
cosϕ − 1. Then (21) can be expressed as

ż1 = z2,

ż2 = −cz2 − z3 + ε cos�t,

ż3 = (1 + z4)z2,

z23 + (1 + z4)
2 = 1, (22)

where the last two sub-equations above relate the aux-
iliary variables, z3 and z4, to the pendulum’s dynam-
ics governed by the state variable ϕ. Indeed, the refor-
mulated DAE system (22) contains only polynomial
terms in the variables (z1, z2, z3, z4). Such a reformu-
lation is not unique: the auxiliary variable z4 = cosϕ,
suggested in [40], would also work. Here, we choose
z4 = cosϕ−1 instead to ensure that the origin remains
a fixed point of the reformulated system.

The z3-equation in system (22) results in a zero
eigenvalue for the linear part of the DAE system (22).
Furthermore, the algebraic equation in the DAE sys-
tem (22) introduces an eigenvalue with infinite magni-
tude due to the singularity of the coefficient matrix B in
the reformulated setting, which is typical for mechani-
cal systemswith configuration constraints (see Sect. 2).
The two modes corresponding to the spurious zero and
infinite eigenvalues are an artifact of the reformula-
tion and should not be included in the master sub-
space for SSM-based reduction, as we discussed in
Remark 1. Indeed, these two spurious modes are not
considered in the spectrum of the DAE system when
we check the non-resonance conditions in Theorems 1
and 2, as we discussed in Sect. 3.2.

In summary, by introducing auxiliary variables and
additional constraint equations, systems with non-
polynomial nonlinearities can be converted into sys-
tems with purely polynomial nonlinearities, to which
SSMTool can be directly applied to compute SSMs
and their reduced dynamics. Without this conversion,
one would have to approximate general nonlinearities

locally via their Taylor expansions. This would render
SSMs and their reduced dynamics over substantially
smaller domains of the phase space.

5 Examples

We now consider a series of examples with increas-
ing complexity to demonstrate the effectiveness of the
proposed SSM-based model reduction. Both free and
forced vibrations of constrained mechanical systems
will be predicted via the SSM-based ROMs and further
validated using some reference solutions of the full sys-
tems. Here, we consider only the displacement x and
velocity ẋ for presenting the results, because x and ẋ
are physically more relevant relative to the Lagrange
multipliers μ. However, our SSM-based ROMs also
make efficient and accurate predictions of μ, as we
demonstrate in Appendix G.

5.1 A spatial oscillator with a path constraint

Consider a spatial oscillator shown in Fig. 1. The equa-
tions of motion are given by [41]

ẍ1 + 2ζ1ω1 ẋ1 + ω2
1x1 + ω2

1

2
(3x21 + x22 + x23 )

+ ω2
2x1x2 + ω2

3x1x3

+ ω2
1 + ω2

2 + ω2
3

2
x1(x

2
1 + x22 + x23 ) = ε f1 cos�t,

ẍ2 + 2ζ2ω2 ẋ2 + ω2
2x2 + ω2

2

2
(3x22 + x21 + x23 )

+ ω2
1x1x2 + ω2

3x2x3

+ ω2
1 + ω2

2 + ω2
3

2
x2(x

2
1 + x22 + x23 ) = 0,

ẍ3 + 2ζ3ω3 ẋ3 + ω2
3x3 + ω2

3

2
(3x23 + x21 + x22 )

+ ω2
1x1x3 + ω2

2x2x3

+ ω2
1 + ω2

2 + ω2
3

2
x3(x

2
1 + x22 + x23 ) = 0. (23)

Fig. 1 An oscillator in
three-dimensional space
(see Eq. (23)) with possible
configuration constraints
imposed in Eqs. (24)
and (25)
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We impose a configuration constraint g(x1, x2, x3) =
0 so that the oscillator can move only on the surface
defined by the constraint. We consider the following
two types of constraints:

cubic : g(x1, x2, x3) = x3 − x31 − x32 , (24)

spherical : g(x1, x2, x3) = x21 + x22 + (x3 − 1)2 − 1.
(25)

Each of these constraint functions satisfies our initial
assumptions, namely, g(0, 0, 0) = 0 and G0 is of full
rank. When either of these configuration constraints is
added, the left-hand side of (23) is modified by the
addition of μ∇g (see Eq. (1)).

In the following computations, we set ζ1 = 0.01,
ζ2 = ζ3 = 0.05, ω1 = 2, ω2 = 3, ω3 = 5 and f1 = 1.
The three pairs of complex conjugate eigenvalues for
the linear part of the system (23) without configuration
constraints are

λ1,2 = −0.02 ± 1.9999i,

λ3,4 = −0.15 ± 2.9962i,

λ5,6 = −0.25 ± 4.9937i. (26)

When a configuration constraint is added, the effec-
tive number of degrees of freedom is reduced by one.
Thus, based on our discussion in Sect. 3.2, we obtain
only twofinite-magnitude natural frequencies and three
eigenvalues with infinite magnitude corresponding to
the constraint modes of the governingDAE system. For
both configuration constraints in (24)–(25), the eigen-
values of the DAE system are given as

λ1,2 = −0.02 ± 1.9999i,

λ3,4 = −0.15 ± 2.9962i, |λ5,6,7| = ∞. (27)

Comparing the eigenvalues (26) of the uncon-
strained system with the eigenvalues (27) of the con-
strained DAE system, we note that the first two pairs of
eigenvalues are common. This observation is consis-
tent with the established one-to-one correspondence of
spectrum in Sect. 3.2. Thus, the mode corresponding to
the third pair of eigenvalues in (26) is constrained by the
configuration constraint (cubic or spherical). Indeed,
the linear parts of constraint equations (24) and (25)
depend only on the modal coordinate x3.

Next, we calculate the SSM tangent to the spectral
subspace corresponding to the first pair of eigenval-
ues in (26) and (27), along with the reduced dynam-
ics on the SSM. Thus, our SSM-based ROM is two-
dimensional, independently of the type of configuration

constraint (cubic or spherical) and of the dimension of
the full phase space. Indeed, since there is no inter-
nal resonance between the first pair of modes and the
remaining modes, the non-resonance condition (53) in
Theorem 1 is satisfied and we have an analytic SSM for
the unforced system, i.e., when ε = 0. Likewise, the
non-resonance condition (57) in Theorem 2 is also sat-
isfied, and the autonomous SSM persists as a periodic
SSM when the external harmonic forcing is added.

5.1.1 Autonomous dynamics

First, we analyze the unforced (ε = 0) limit of sys-
tem (23) in the absence of any configuration constraints
and then in the presence of cubic and spherical con-
straints shown in (24) and (25). We compute the two-
dimensional, slow SSM associated to λ1,2 in (26) and
(27) using SSMTool.

Transforming the parameterization coordinates p ∈
C
2 into polar coordinates (ρ, ϑ) such that p =

(ρeiϑ , ρe−iϑ), we obtain two-dimensional ROMs up
to O(13) for the unconstrained and constrained vari-
ants of system (23) in the following form:

– unconstrained

ρ̇ = −0.02ρ − 0.2387ρ3 + 1.08ρ5 − 4.408ρ7

+ 27.75ρ9 − 71.08ρ11 + 50.58ρ13,

ϑ̇ = ω(ρ) = 2.0 − 1.206ρ2 − 0.3417ρ4 − 4.035ρ6

− 23.49ρ8 + 121.5ρ10 − 1370ρ12. (28)

– constrained (cubic)

ρ̇ = −0.02ρ − 0.02188ρ3 + 0.02972ρ1
5 − 1.029 ρ7

+ 5.913ρ9 − 27.97 ρ11 + 214.2ρ13,

ϑ̇ = ω(ρ) = 2.0 + 0.8168ρ2 − 8.958ρ4 + 3.485ρ6

− 66.98ρ8 − 7.963ρ10 − 882.8ρ12. (29)

– constrained (spherical)

ρ̇ = −0.02ρ − 0.05085ρ3 + 0.2779ρ5 − 1.945ρ7

+ 5.725ρ9 + 26.99ρ11 + 1068.0ρ13,

ϑ̇ = ω(ρ) = 2.0 + 4.421ρ2 − 3.666ρ4 − 88.02ρ6

+ 1341.0ρ8 − 12060.0ρ10 + 55620.0ρ12. (30)
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Fig. 2 Backbone curves in polar (reduced) coordinates under
increasing orders of approximation for the slowest two-
dimensional SSM of the oscillator system (23) in the absence of

any configuration constraints (left), in the presence of the cubic
configuration constraint (24) (middle), and in the presence of the
sphere configuration constraint (25) (right). (Color figure online)
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Fig. 3 Damped and conservative backbone curves depicting the
instantaneous and periodic vibration amplitude of the x1 degree
of freedom for the oscillator system (23) in the absence of any
configuration constraints (left), in the presence of the cubic con-
figuration constraint (24) (middle), and in the presence of the

spherical configuration constraint (25) (right). The backbone
curves at the conservative limits of the full systems are obtained
with the po-toolbox of coco, while the damped backbones are
obtained via SSM-based ROMs (28)–(30)

The second sub-equation in the ROMs (28), (29) and
(30) determines an instantaneous frequency of oscilla-
tion ω as a function of the polar amplitude ρ, defin-
ing the damped backbone curve in polar coordinates.
Figure 2 shows these backbone curves for the three
ROMs (28), (29) and (30) for increasing order of SSM
approximation up to O(13).

We observe that higher-order expansions are useful
to obtain convergence in backbones at higher ampli-
tudes. For instance, in the left panel of Fig. 2, the back-
bone curve is well converged at O(3) expansion for
amplitude ρ ≤ 0.2, atO(7) for amplitude ρ ≤ 0.3 and
at O(13) for amplitude ρ ≤ 0.35.

The presence of constraints have a remarkable effect
on the nature of backbones. Indeed, as the amplitude ρ

increases, the backbone exhibits softening behavior for
the unconstrained system (see Fig. 2(left)), hardening
followed by softening for the systemwith cubic config-
uration constraint (see Fig. 2(middle)), and hardening
behavior for the system with spherical configuration
constraint (see Fig. 2(right)).

These nonlinear hardening and softening effects on
the shape of the backbone curves can also be observed
in the physical coordinates of the full system. In Fig. 3,
we plot the damped backbone curves in the (x1, ω)

coordinates obtained via SSM reduction in the absence
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Fig. 4 Projection of SSM approximated up to O(13) for the
oscillator system (23) in the absence of any configuration con-
straints (left), in the presence of the cubic configuration con-
straint (24) (middle), and in the presence of the spherical con-
figuration constraint (25) (right). The red solid trajectory in each
panel is obtain via simulation of SSM-based ROMs (28)–(30),

while the dashed blue trajectory is obtained via full-system sim-
ulation with the same initial condition as that for the ROM coun-
terpart. For trajectory simulations, we choose initial conditions
on the SSM as (ρ0, ϑ0) = (0.35, 0.5) for the left andmiddle pan-
els and (ρ0, ϑ0) = (0.24, 0.5) for the right panel. (Color figure
online)

of any configuration constraints, in the presence of the
cubic configuration constraint (24), and in the presence
of the spherical configuration constraint (25). To vali-
date the backbone curves obtained by the SSM reduc-
tion, we compute the conservative backbone curves of
the original systems, to which the damped backbone
curves converge in the small damping limit [24].

Most available tools for the nonlinear analysis of
dynamical systems are restricted to ODEs. Indeed, the
direct computation of periodic orbits of constrained
mechanical systems in the form of DAEs is still an
emerging field [42,43]. To obtain a reference periodic
solution for validation purposes, however, we simply
convert the constrained DAE system into an equivalent
ODE system (see (17)) and perform numerical con-
tinuation on the equivalent ODE system. In this work,
instead of using the ODE system (17), we employ an
index-1 formulationwith stabilization [29,30] to obtain
the equivalent ODE system (95) as this alternative is
simpler to implement. We refer to Appendix E for fur-
ther details about this index-1 formulation.

Since the chosendamping ratios are small,we expect
the damped backbone curves to match closely the con-
servative backbone curves. We compute the conserva-
tive backbone curve of the full system in its undamped
limit by parameter continuation of periodic orbits using
thepo-toolboxof coco [38]. Indeed, the dampedback-
bone curves obtained from SSM-based ROMs (28)–

(30) agree with the conservative backbone curves of
the full systems, as shown in Fig. 3.

We also provide an alternative validation of our
SSM-based reduction by checking the invariance of the
SSM. For the SSM computed up to a given order, we
take an initial condition p0 = (ρ0eiϑ0 , ρ0e−iϑ0) on the
SSM, and perform forward time integration both of the
ROM and of the full system using the same initial con-
dition. As the SSM is an invariant manifold, the trajec-
tory obtained by simulating the full system must coin-
cide with the reduced trajectory obtained by simulating
the SSM-based ROM. We plot the SSM projection on
to the coordinates (x1, ẋ1, ẋ2) for the system without
configuration constraints, with the cubic configuration
constraint, and with the spherical configuration con-
straint in Fig. 4. Indeed, we observe from Fig. 4 that
for an O(13) SSM computation, the simulated trajec-
tory of the full system stays invariant on the computed
SSM and matches well with the simulated trajectory of
SSM-based ROM.

5.1.2 Forced response curve

Wenow introduce a small-amplitude external harmonic
excitation by setting 0 < ε � 1 in the governing equa-
tions (23). We are interested in computing the forced
response curve (FRC) of the system near the first nat-
ural frequency, i.e., for � ≈ ω1.

The near-resonant FRCs at various excitation ampli-
tudes are shown in Fig. 5. We observe that as the
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Fig. 5 Forced response curves in the vibration amplitude of x1
for the oscillator in three-dimensional space without configura-
tion constraints (upper-left panel), with the cubic configuration
constraint (upper-right panel), and with the spherical configu-
ration constraint (lower panel). The reference solutions of the
full systems are obtained with collocation methods implemented

in the po-toolbox of coco. The backbone curves in Fig. 3 are
also included. Here, and throughout the paper, the solid lines
of FRCs indicate stable solution branches, while dashed lines of
FRCsmark unstable solution branches. The cyan circles on FRCs
denote saddle-node bifurcation points. (Color figure online)

excitation amplitude ε increases, higher-order SSM
expansions are required for convergence of the reduced
response to the full system’s response. For instance,
for ε = 0.01 in the system without configuration con-
straints (upper-left panel of Fig. 5), the FRC from SSM
prediction already converges to the full reference solu-
tion at O(3) onwards. However, for ε = 0.02, the
FRC from SSM prediction shows convergence to the
full solution only beyond O(7). In Fig. 5, the full sys-
tem’s response (labeled with ’collocation’) is obtained
by parameter continuation of periodic orbits of (23)
(and its variants in the presence of constraints) using
the po-toolbox of coco [37].

We further observe from Fig. 5 that at the highest
forcing amplitudes, the SSM-based reduced response
converges to a response different from the full system’s
response. This may be attributed to the fact that we
have neglected higher-order non-autonomous terms at
O(ε| p|) in the expansions (19)-(20). To probe this fur-
ther, we use an alternative pointwise validation tech-
nique that involves the computation of the residual of
the invariance equation (60) (see Fig. 6).

As an illustration of this validation technique, we
consider the periodic orbit at saddle-node bifurcation
point, labeled ‘A’ in Fig. 5. This point obtained via an
O(11)-expansion of the SSM at ε = 0.03, overesti-
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Fig. 6 Time history of the residual of the invariance equa-
tion (60) for the saddle-node periodic orbit A shown in the upper-
left panel of Fig. 5

mates the peak of FRC computed from the reference
full solution. We determine the residual of the invari-
ance Eq. (60) for this reduced solution and plot the
residual time history in Fig. 6. We observe that the
maximum residual in Fig. 6 is more than 0.015, which
is large for an excitation amplitude ε = 0.03. Hence,
our SSM approximations are not accurate for such val-
ues of ε and higher-order non-autonomous terms need
to be considered for reducing the residual. We remark
that this validation technique does not require the full
system’s response in order to estimate the accuracy of
the prediction.

5.2 Pendulum models with and without internal
resonances

In this section, we demonstrate the computation of
SSMs for systems with non-polynomial nonlinearities
via SSMTool by recasting them into polynomial DAE
systems using the approach of Sect. 4.2.

5.2.1 Simple pendulum

We first consider the pendulum Eq. (21) in its unforced
limit, i.e., with ε = 0. Similarly to the previous exam-
ple, we will compute the damped backbone curve via
the reduced dynamics on the two-dimensional SSM
of the DAE system (22). Then, we will add external
periodic forcing in the next two pendulum examples
to compute the FRC via the reduced dynamics on the
corresponding non-autonomous SSMs created by the
forcing.

For low damping (0 < c < 2), the eigenvalues for
the linear part of the DAE system (22) are given by

λ1 = 0, λ2,3 = − c

2
± i

√
1 − c2

4
, |λ4| = ∞, (31)

where the zero and infinite-magnitude eigenvalues are
artifacts of reformulation of the ODE system (21) to
the DAE system (22), as discussed in Sect. 4.2. Hence,
we take the spectral subspace corresponding to λ2,3
as the master subspace of the SSM. Here the non-
resonance conditions in Theorems 1 and 2 are automat-
ically satisfied over the spectrum of the DAE system,
where the two spurious modes are excluded, as dis-
cussed in Sect. 3.2. We consider two values of damp-
ing c = 0.001, 0.1 and obtain SSM-based ROMs up to
O(35) via SSMTool.

In Fig. 7, we compare the damped backbone curves
obtained via SSM-based ROMs to the conservative
backbone of the pendulum obtained via periodic orbit
continuation using the po-toolbox of coco [37]. We
observe that for the lower damping value, c = 0.001,
the SSM-based damped backbone agrees with the con-
servative backbone till a higher response amplitude of
around 3π

4 relative to that for the higher damping value
of c = 0.1. Once again, this confirms the expecta-
tion that for lightly damped systems, the conservative
backbone serves as a first-order approximation for the
damped backbone curve.

5.2.2 A pendulum slider with 1:3 internal resonance

Next,we consider a pendulumattached to a slider under
periodic forcing, as shown in Fig. 8. The FRC of peri-
odic orbits for this systemhas been studied in [43] using
the harmonic balance method. Here, we adjust the sys-
tem parameters to introduce a 1:3 internal resonance
between the first two modes of the system and study
free and forced vibrations of the system using SSM
reduction.

Assuming the suspended beam in Fig. 8 to be rigid,
the equations of motion for the pendulum slider system
are given as

m1 ẍ1 + c1 ẋ1 + k1x1 − μ2 = ε cosωt,

m1 ÿ1 + μ1 − μ3 = m1g,

m2 ẍ2 + μ2 = 0,

m2 ÿ2 + μ3 = m2g,

J2ϕ̈2 + c2ϕ̇2 + k2ϕ2

−0.5lμ2 cosϕ2 + 0.5lμ3 sin ϕ2 = 0, (32)
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Fig. 7 Backbone curves in the vibration amplitude of the angle
of pendulum, obtained by two-dimensional SSM reduction at
various orders, and the parameter continuation of the original
system in undamped limit. (Color figure online)

Fig. 8 A pendulum slider under periodic forcing

where g is the acceleration due to gravity and the
masses m1 and m2 satisfy the following configuration
constraints

g1 = y1 = 0,

g2 = x2 − (x1 + 0.5l sin ϕ2) = 0,

g3 = y2 − (y1 + 0.5l cosϕ2) = 0. (33)

We note that the origin is not an equilibrium of the
unforced system and perform the transformation

y2 = ŷ2 + 0.5l,

μ1 = μ̂1 + m1g + m2g,

μ3 = μ̂3 + m2g, (34)

such that the trivial equilibrium is shifted to the origin.
Similarly to the previous simple pendulum example,
we introduce the auxiliary variables u1 = sin ϕ2 and
u2 = 1 − cosϕ2 to recast the trigonometric functions
in the equations of motion into polynomials as

m1 ẍ1 + c1 ẋ1 + k1x1 − μ2 = ε f1 cosωt,

m1 ÿ1 + μ̂1 − μ̂3 = 0,

m2 ẍ2 + μ2 = 0,

m2
¨̂y2 + μ̂3 = 0,

J2ϕ̈2 + c2ϕ̇2 + k2ϕ2 − 0.5lμ2(1 − u2)

+0.5l(μ̂3 + m2g)u1 = 0,

g1 = y1 = 0,

g2 = x2 − (x1 + 0.5lu1) = 0,

g3 = ŷ2 − y1 + 0.5lu2 = 0,

u̇1 = (1 − u2)ϕ̇2,

u21 + (1 − u2)
2 = 1. (35)

With the state vector

z = (x1, y1, x2, ŷ2, ϕ2, ẋ1, ẏ1, ẋ2,

˙̂y2, ϕ̇2, μ1, μ2, μ3, u1, u2), (36)

we can rewrite the DAE system (35) in the first-order
form (4) with a 15-dimensional phase space.

For the systemparametersm1 = m2 = 1, c1 = c2 =
0.02, k1 = 7.48, k2 = 1 and g = 9.8, the eigenvalues
of the linear part of the DAE system (35) are given as

λ1,2 = −0.0047 ± 1.8522i,

λ3,4 = −0.0513 ± 5.5561i,

λ5 = 0, |λ6,··· ,15| = ∞. (37)
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As λ3,4 ≈ 3λ1,2, the system exhibits a near 1:3 inter-
nal resonance for the chosen parameters. Thus, we take
the spectral subspace spanned by the first two modes
as the master subspace for SSM computation. Once
again, the non-resonance conditions in Theorems 1
and 2 are automatically satisfied as the spurious modes
5–16 are not considered in the spectrum of the DAE
system (see Sect. 3.2). We compute the correspond-
ing four-dimensional SSM and its reduced dynamics
via SSMTool. In the unforced setting (ε = 0), the
autonomous ROM on the SSM in polar coordinates
p = (ρ1eiϑ1 , ρ1e−iϑ1 , ρ2eiϑ2 , ρ2e−iϑ2) up to cubic
terms is given as

ρ̇1 = − 1.096 · 10−6ρ3
1+(

2.278 · 10−5 cos σ + 4.657 · 10−4 sin σ
)
ρ2
1ρ2

− 5.61 · 10−6ρ1ρ
2
2 − 4.701 · 10−3ρ1,

ϑ̇1 =8.074 · 10−4ρ2
1+(

4.657 · 10−4 cos σ − 2.278 · 10−5 sin σ
)
ρ1ρ2

− 1.278 · 10−3ρ2
2 + 1.852,

ρ̇2 =
(
−7.438 · 10−5 cos σ − 1.692 · 10−3 sin σ

)
ρ3
1+

6.25 · 10−4ρ2
1ρ2 + 2.125 · 10−3ρ3

2 − 0.0513ρ2,

ϑ̇2 =
(
1.692 · 10−3 cos σ − 7.438 · 10−5 sin σ

)
ρ3
1/ρ2

− 0.1007ρ2
2 − 0.01393ρ2

1 + 5.556, (38)

where σ = 3ϑ1 − ϑ2. We see coupling terms between
the dynamics of the two pair of modes due to the inter-
nal resonance. The damped backbone curve defined by
instantaneous frequency (cf. (28)–(30)) is inapplicable
because of the coupling terms. Then we are not able
to select the expansion order of the SSM based on the
convergence of the backbone curve.

A posteriori invariance error measure

Next, we provide an a posteriori error estimation
method which is also useful in determining an appro-
priate order for the SSM expansion. To this end, we
compute the residual of the invariance Eq. (55) over a
set of sampled points on the computed SSM and use
the averaged residual over the samples as a measure
for the invariance error. The sample set of points on the
SSM is constructed as

pi jk =

⎛
⎜⎜⎝

� cosαi eiϑ1, j

� cosαi e−iϑ1, j

� sin αi eiϑ1,k

� sin αi e−iϑ1,k

⎞
⎟⎟⎠ , (39)

for 1 ≤ i ≤ nα and 1 ≤ i, j ≤ nϑ Here, each pi jk is
a point on a four-dimensional sphere with radius � =√

ρ2
1 + ρ2

2 in the SSM parameterization space, and

αi = (i − 1)π

2(nα − 1)
, ϑ1, j = 2( j − 1)π

nϑ

,

ϑ1,k = 2(k − 1)π

nϑ

. (40)

We choose αi ∈ [0, π/2] such that ρ1 ≥ 0 and ρ2 ≥ 0.
As the numbers nα, nϑ increase, we obtain a more
refined sampling over the 4-sphere. Now,W( pi jk) pro-
vides the coordinates of the sampled points on the SSM
in the full phase space, which enables us to calculate
the averaged invariance error as

Error = 1

Nnαn2ϑ

nα∑
i=1

nϑ∑
j=1

nϑ∑
k=1

||Res( pi jk)||2. (41)

where

Res( pi jk) =BD pW( pi jk)R( pi jk)−
AW( pi jk) − F(W( pi jk)). (42)

Here, we normalize the error norm by dividing it by the
phase space dimension N as the Euclidean norm of the
residual vector increases linearly with the dimension of
the phase space. We use such a normalized error mea-
sure to characterize the accuracy of SSM expansions.
Generally, for a fixed small value of �, i.e., near the ori-
gin, the invariance error (41) will decrease as the order
of approximation of the SSM increases.We remark that
the invariance error estimate (41) does not require any
simulation of the full system or of the reduced sys-
tem and is applicable for general invariant manifolds.
Furthermore, while we have only discussed the case of
four-dimensional SSM for simplicity, the sampling for-
mula (39) can be generalized to 2m-dimensional SSMs
for m ∈ N.

In this example, we choose nα = 10 and nϑ = 30
and calculate the invariance errors for different val-
ues of � and expansion order. The logarithmic plot in
Fig. 9 shows that the invariance error decays following
a power law until it approaches machine precision as
� decreases. The corresponding decay rate increases
with increasing order of approximation of the SSM, as
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Fig. 9 Invariance error measure (41) of the four-dimensional
SSM approximations of the pendulum slider system (35) at var-
ious orders as the distance from the origin (�) varies

expected. Furthermore, we observe that for a given �,
the error decreases with increase in the approximation
order up to a critical value of � ≈ 4, beyond which the
error seems unaffected with increase in the expansion
order. Hence, we conclude that � = 4 is close to the
boundary of the domain of convergence of our SSM
expansions.

Indeed, Fig. 9 provides critical insights for assess-
ing the accuracy of SSM-based ROM predictions and
for choosing a suitable order of approximation for the
SSM. For instance, with an error tolerance of 0.01,
an O(3)-expansion is sufficient in the domain � ≤ 1,
whereas O(13)-expansion is needed to guarantee sim-
ilar accuracy in the domain � ≤ 3.

Time histories and forced response curves

Next, we choose an error tolerance of 0.01, which
is near but within the convergence domain boundary
deduced from Fig. 9. We compare the trajectories from
the simulations of the SSM-based ROM up to O(13)
with those of the full system. In particular, we consider
two sets of initial conditions as

IC1 : p0 = (3.5ei, 3.5e−i, 0, 0),

IC2 : p0 = (0, 0, 3.5ei, 3.5e−i), (43)

where IC1 and IC2 are chosen along the first and the
second mode on a hypersphere of radius � = 3.5 in
the parameterization space of the SSM. Physically, the
first mode is dominated by the vibration of the slider

along the x1 directionwhereas the secondmode is dom-
inated by the oscillation of the pendulum (ϕ2). The tra-
jectories of the horizontal displacement x1, the rotation
angle ϕ2 of the pendulum initialized at IC1 and IC2 are
shown in the left and right panels of Fig. 10. The results
obtained by SSM prediction match well with the refer-
ence results of the full system. An excellent match is
also obtained for Lagrange multipliers, as detailed in
Appendix G.1. This indicates a high accuracy of SSM
prediction for reaction forces as well.

The response in the left panel of Fig. 10 is dominated
by the first mode that involves the vibration of the slider
near the first natural frequency whereas the response in
right panel is dominated by the secondmodewith oscil-
lation of the pendulum at near thrice the frequency of
the first mode. Interestingly, the response time history
of ϕ2 in the left panel of Fig. 10 indicates modal inter-
action as the amplitude first increases and then decays,
i.e., exchange of energy between the vibration of the
slider and the oscillation of the pendulum.

Adding a periodic forcing ε cos�t to the slider, we
now compute the FRCof the system (35)with ε = 0.08
and� ≈ Im(λ1) using SSMTool. The FRC is obtained
directly by analyzing the reduced dynamics of the four-
dimensional SSM in a normal-form parameterization
style, where the periodic orbit is simply given by the
solution to a fixed point problem (see [26] for details).
FRCs for the horizontal vibration of the slider (x1)
and the oscillation of the pendulum (ϕ2) are shown in
Fig. 11. We observe that the FRCs obtained by SSM-
based reduction converge toward the reference solution
at O(7).

We obtain the reference solutions in Figs. 10 and 11
by simulating the Euler–Lagrange equations of the full
system in the generalized coordinates x1 and ϕ2 given
by

m1 ẍ1 + m2(ẍ1 − 0.5l sin ϕ2ϕ̇
2
2 + 0.5l cosϕ2ϕ̈2)

+ c1 ẋ1 + k1x1 = ε f1 cosωt,

J2ϕ̈2 + m2

(
0.5l ẍ1 cosϕ2 + 0.25l2ϕ̈2

)

+ c2ϕ̇2 + k2ϕ2 + 0.5lm2g sin ϕ2 = 0. (44)

In particular, the reference FRC in Fig. 11 is com-
puted via parameter continuation using the po-toolbox
of coco [38] on system (44). We remark that the
derivation of Euler–Lagrange equation with minimal
number of coordinates, while concise in this sim-
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Fig. 10 Time histories for the displacements (x1, ϕ2) of the pendulum slider system (35) with initial condition IC1 (3.5ei, 3.5e−i, 0, 0)
(left) and IC2 (0, 0, 3.5ei, 3.5e−i) (right) on the SSM approximated up to O(13). (Color figure online)
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Fig. 11 Forced response curves in vibration amplitude of the
slider (x1, upper panel) and the pendulum (ϕ2, lower panel),
obtained by SSM reduction at various approximation orders. The
reference solutions obtained by parameter continuation of the
periodic orbits of (44) (labeled as ‘Collocation’) are presented
for validation. (Color figure online)

Fig. 12 A chain of pendulums attached to a slider

ple example, becomes cumbersome and unfeasible for
higher-dimensional constrained mechanical systems,
such as the pendulum chain in our next example. At the
same time, the derivation of DAE formulations remains
straightforward for high-dimensional systems.

5.2.3 A chain of pendulums

As our final pendulum-based example, we consider a
chain of pendulums attached to a slider [43], illustrated
in Fig. 12. We derive the equations of motion of this
system in the form (4) in Appendix F.
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Fig. 13 Backbone curves in reduced coordinates for the chain
of pendulums attached to a slider. (Color figure online)

We choose the system parameters in Fig. 12 as n =
41, m1 = 0.61, m2 = · · · = m41 = 0.02, c1 = 0.22,
c = 0.02, k1 = 6.5, k = 4.1, and l = 0.03. The first
two pairs of nontrivial eigenvalues of the linear part of
the DAE system are given as

λ1,2 = −0.0569 ± 1.9939i,

λ3,4 = −0.0730 ± 4.9038i. (45)

Due to the absence of any (near) internal resonance,
we choose the slowest spectral subspace spanned by
the first mode as the master subspace for SSM reduc-
tion. This choice ensures that the non-resonance con-
dition (53) in Theorem 1 is satisfied. We compute the
corresponding two-dimensional SSM and its reduced
dynamics viaSSMTool. In the unforced setting (ε = 0),
the autonomous ROM on the SSM in polar coordinates
(ρ, ϑ) up to O(13) is given as

ρ̇ = −0.05691ρ1 − 0.004259ρ1
3 + 0.0001677ρ5

1

+ 0.000832ρ7
1 − 0.0009862ρ9

1 + 0.001242ρ11
1

− 0.001757ρ13
1 ,

ϑ̇ =1.994 + 0.04249ρ2
1 − 0.0107ρ4

1

+ 0.0003925ρ6
1 + 0.002133ρ8

1 − 0.002778ρ10
1

+ 0.004065ρ12
1 = ω(ρ). (46)

The dampedbackbone curves obtained directly from
the reduced dynamics (46) for different orders of
SSM approximation are shown in Fig. 13. Similarly
to the previous examples, we observe that higher-order

Fig. 14 Projections of the SSM at O(13) approximation for
the chain of pendulums onto (x1, ẋ1, ϕn) and (x1, ẋ1, ŷn). The
red solid lines indicates the projections of the trajectory of
the reduced-order model (46), starting from the initial position
(ρ0, ϑ0) = (0.8, 3). The dashed blue lines represent the pro-
jections of the trajectory of the full system for the same initial
position. The thin solid gray curves represent contour lines of
equal parameterized distance ρ and ϑ . (Color figure online)

expansions are useful to obtain convergence in back-
bones at higher amplitudes. In particular, the back-
bone curves in Fig. 13 show convergence at O(3) for
ρ ≤ 0.3, at O(5) expansion for ρ ≤ 0.6, and at O(13)
expansion for ρ ≤ 0.8. The backbone curves do not
seem to converge for ρ ≥ 1, indicating ρ = 1 is out-
side the domain of convergence for the power series
ω(ρ) in (46).

To validate convergence, we illustrate the invari-
ance of the SSM approximated up to O(13) within
the convergence domain ρ ≤ 0.8 in Fig. 14. To
check invariance, we pick an initial condition p0 =
(ρ0eiϑ0 , ρ0e−iϑ0) on the SSM with ρ0 = 0.8 and
ϑ0 = 3, and perform time integration of both the SSM-
based ROM and the full system in the index-1 formu-
lation (95). Indeed, the full-system trajectory stays on
the computed SSM and overlaps with the prediction of
the SSM-based ROM.
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Fig. 15 Forced response curve and backbone curve in the rota-
tion angle of the last pendulum in the chain of pendulums. (Color
figure online)

Adding a periodic forcing ε cos�t to the slider in
Fig. 12, we compute the FRC of the system (102) with
ε = 0.6 and� ≈ Im(λ1) using SSMTool. The FRC for
the rotation angle of the last pendulum (ϕn) at various
orders of SSM approximation is shown in Fig. 15. We
observe that the SSM-based FRCs at O(5) converge
toward the reference solution. The reference solution
points (Fig. 15) are obtained from numerical time inte-
gration of the full system (102) in ODEs (95). Specifi-
cally,we sample the frequency span [1.8, 2.2] rad/s uni-
formly to obtain 21 forcing frequencies. For each sam-
pled frequency, we initialize a time integration at the
unforced equilibrium position. The integrated solution
is checked for convergence toward a periodic response
after each forcing cycle of period T = 2π/� according
to the criterion

||z(iT ) − z((i − 1)T )||
||z((i − 1)T )|| < δ, (47)

where δ is a user-defined relative tolerance for conver-
gence, chosen be 0.001.

All computations of this example are performed on
an Intel(R)Core(TM) i7-6700HQprocessor (2.60GHz)
of a laptop. The total computational time for obtaining
the 21 periodic orbits via numerical time integration
usingode15s ofMATLAB is 14.6min, i.e., each peri-
odic orbit takes 42s on an average.At the same time, the
entire FRC via an O(5) SSM reduction is obtained in
just two seconds. Additionally, we plot the linear peri-
odic response of (102), which overestimates the peak
amplitude, as shown in Fig. 15.

Fig. 16 A frequency divider made of two beams connected via
a revolute joint

5.3 A frequency divider

As a final example, we consider the finite-element
model of a frequency divider shown in Fig. 16. This
device is composed of two cantilevered beams that are
initially perpendicular and their free ends are connected
via a revolute joint, resulting in a flexible multibody
system. We choose the geometry such that the first two
modes of the system satisfy a near 1:2 internal reso-
nance, namely, ω2 ≈ 2ω1. When the system is peri-
odically forced near its second natural frequency, i.e.,
� ≈ ω2, we expect a subharmonic periodic response
with frequency 0.5� ≈ ω1 due to modal interactions.
This nonlinear feature has been exploited for the design
of frequency dividers [44,45].

We model the frequency divider using von Kármán
beam elements in two-dimensional space. The finite-
element discretization results in three degrees of free-
dom per node that are associated to the axial displace-
ment (u), the transverse displacement (w), and the rota-
tion angle (φ) (see [46] for details) . The equations of
motion of the full system can be derived using the equa-
tions of motion of the two cantilevered beam substruc-
tures of length l1 and l2 by introducing two configu-
ration constraints corresponding to the revolute joint
as
(
M1 0
0 M2

) (
x1
x2

)
+

(
C1 0
0 C2

)(
ẋ1
ẋ2

)

+
(
K 1 0
0 K 2

) (
x1
x2

)
+

(
f 1(x1)
f 2(x2)

)

+GTμ = ε

(
f ext1 (�t)
f ext2 (�t)

)
, (48)
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g =
(
g1(x1, x2)
g2(x1, x2)

)
=

(
u1|x1=l1 + w2|x2=l2 ,

w1|x1=l1 − u2|x2=l2

)
= 0,

(49)

where the subsystems 1 and 2 denote the equations of
motion of the horizontal and vertical beams in Fig. 16;
g1 and g2 define the continuity constraints imposed by
the revolute joint on the free ends of the two beams;
G = ∂ g/∂(x1, x2) is the Jacobian of the constraint
equations; and μ ∈ R

2 is the vector of Lagrange mul-
tipliers corresponding to these two constraints.

With hi , bi and li denoting the thickness, width
and the length of the beam in the i th subsystem, we
choose h1 = h2 = 1mm, b1 = 10mm, b2 = 1mm,
l1 = 707mm, and l2 = 1000mm. Both beams
have the same material properties, namely density of
2700 × 10−9 kg/mm3, and the Young’s modulus of
70× 106 kPa. We discretize the horizontal beam using
N1 = 10 finite elements and the vertical beam using
N2 = 14 finite elements, yielding a 146-dimensional
phase space z = (x1, x2, ẋ1, ẋ2,μ) for the governing
system in the first-order DAE form.

For the chosen physical parameters, the first two
undamped natural frequencies of the linear part of sys-
tem (48) are given by

ω1 = 22.66 rad/s, ω2 = 45.34 rad/s ≈ 2ω1. (50)

Thus, we obtain an internal resonance between the nat-
ural frequencies of thefirst twomodes. The correspond-
ing mode shapes are plotted in Fig. 17. We observe that
both modes exhibit localized bending of either beams:
mode 1 features bending of the vertical beam leaving
the horizontal beamundeformed, vice versa formode 2.

Fig. 17 The first two mode shapes of the frequency divider

We choose a Rayleigh damping model C i = βK i

(i = 1, 2)with damping ratio β = 10−3/7, resulting in
the following two pairs of eigenvalues corresponding
to the first two modes of the damped linear system

λ1,2 = −0.04 ± 22.66i ≈ iω1,

λ3,4 = −0.15 ± 45.34i ≈ iω2. (51)

To account for the near 1:2 internal resonance,
we take the spectral subspace spanned by the first
two modes as the master subspace for SSM computa-
tion. The non-resonance condition (53) in Theorem 1
is satisfied because these internally resonant modes
are all included into the master subspace, as we dis-
cussed in Sect. 3. We compute the corresponding four-
dimensional SSM and its reduced dynamics via SSM-
Tool. In the unforced setting (ε = 0), we obtain the
autonomous ROM on the SSM in polar coordinates up
to cubic approximation as

ρ̇1 = − 5.642 · 10−5ρ3
1 − 1.332 · 10−8ρ1ρ

2
2

+
(
2.972 · 10−4 cos σ − 8.97 · 10−3 sin σ

)
ρ1ρ2

− 0.03669ρ1,

ϑ̇1 =2.635 · 10−4ρ2
1 − 1.7 · 10−6ρ2

2

+
(
−8.97 · 10−3 cos σ − 2.972 · 10−4 sin σ

)
ρ2

+ 22.66,

ρ̇2 = − 5.164 · 10−9ρ2
1ρ2

+
(
9.135 · 10−4 sin σ − 3.027 · 10−5 cos σ

)
ρ2
1

− 7.761 · 10−5ρ3
2 − 0.1468ρ2,

ϑ̇2 =3.538 · 10−4ρ2
2 − 3.462 · 10−7ρ2

1−
ρ2
1

(
9.135 · 10−4 cos σ + 3.027 · 10−5 sin σ

)
/ρ2

+ 45.34, (52)

where σ = 2ϑ1 − ϑ2. Note the ρ2
1 terms in the vector

fields for ρ2 and ϑ2 are direct results of the near 1:2
internal resonance. Importantly, these terms imply that
the response of the second mode will not be trivial if
the first mode ρ1 is activated, namely, the energy of
the first mode can be transferred to the second mode.
In contrast, ρ1 ≡ 0 is a solution family to the first
mode for any nontrivial ρ2 (see the first sub-equation
of (52)). This implies that the dynamics along the first
mode stays trivial if it is not activated initially, and the
energy of the second mode cannot be transferred to
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the first mode in this case. We have observed similar
phenomenon in the pendulum slider example with a
near 1:3 internal resonance.

We again use the invariance error measure (41) for
selecting appropriate expansion orders. As detailed in
Appendix G.2, expansions at O(3), O(5) and O(7)
will be required to meet error tolerance 0.01 in the
domains � ≤ 14, � ≤ 30, and � ≤ 50, respectively. In
Appendix G.2, we also validate that the error tolerance
is acceptable by comparing transient responses of the
system obtained by both SSM-based ROM predictions
and direct numerical integration to the full system.

We now apply a harmonic forcing at the midpoint
of the horizontal beam, as illustrated in Fig. 16, and
compute the FRC via SSMTool to illustrate the mecha-
nism of the frequency divider. Here, we restrict� ≈ ω2

such that the secondmode is in resonancewith the forc-
ing frequency. As we will see, the internal resonance
between the first two modes causes energy exchange
between them, resulting in finite vibration of the verti-
cal beam when the horizontal beam is excited.

Recall that ρ1 = 0 results in a vanishing vector field
for the ρ1 variable in Eq. (52). Indeed, this also holds
in the non-autonomous (forced) setting, where the
reduced dynamics (52) is simply modified by adding
�t-dependent terms to the vector field of (ρ2, ϑ2) vari-
ables since only the second mode is in resonance with
the forcing [26,27]. In addition, we can factor out these
�t-dependent terms with proper coordinate transfor-
mations (ϑ1 = θ1 + 0.5�t and ϑ2 = θ2 + �t), as
detailed in [26,27]. In the transformed system,we have
a family of fixed points with ρ1 = 0 and ρ2(�) 	= 0,
some of which turn out to be unstable depending on the
forcing frequency �. In this example, such a change
in stability is accompanied with a secondary solution
branch with nontrivial ρ1 bifurcating from the main
solution branch. Physically, this nontrivial ρ1 branch,
which contains stable solutions, is responsible for the
observation of finite amplitude vibrations in the ver-
tical beam at half of the forcing frequency when the
horizontal beam is forced near its resonance.

Similarly to the pendulum slider example, we obtain
the FRC directly by analyzing the reduced dynamics of
the four-dimensional SSM in a normal-form parame-
terization style, where the periodic orbit is simply given
by the solution to a fixed point problem (see [26] for
details). Choosing a forcing amplitude of F = 0.1 in
this example, we compute the SSM up to O(5) via
SSMTool and analyze the reduced dynamics on the
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Fig. 18 Forced response curves in (ρ1, ρ2) of the frequency
divider with F = 0.1. Here and in Fig. 19, the ‘1st’ and ‘2nd’ in
the figure legend denote the first (main) and secondary solution
branches. (Color figure online)

SSM to obtain the two solution branches, as shown
in Fig. 18. We perform the numerical continuation via
the ep-toolbox of coco [37] for detecting the branch
points along the main solution branch with ρ1 ≡ 0 and
switching to the secondary solution branch.

As shown in Fig. 18, two branch points BP1 and
BP2 are detected on the main branch (blue curve) at
�BP1 = 45.06 and �BP2 = 45.71. The solution along
the main branch becomes unstable between the two
branch points, i.e., for � ∈ [�BP1,�BP2]. We switch
branches at BP1 to continue the solution along the sec-
ondary branch (red curve) with ρ1 	= 0. Indeed, the
peak for the polar amplitude ρ1 along the secondary
branch is higher than that forρ2. Given that only second
mode is excited by external forcing, this indicates trans-
fer of energy from the second mode to the first mode.
We further obtain a saddle-node bifurcation (SN) along
the secondary branch which results in change of solu-
tion stability along the branch. Finally, the secondary
branchmerges with themain branch at the other branch
point (BP2). Note that the fundamental frequency of a
periodic response on the secondary branch is�/2 as the
period of the response is doubled when we switch from
the main branch to the secondary branch. Interestingly,
we obtain stable solutions along the secondary branch
in the frequency range that main branch’s response
becomes unstable. This guarantees the experimental
observability of the secondary branch’s response for
� ∈ [�BP1,�BP2] in contrast to the response on along
the main branch.
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To demonstrate the accuracy and efficiency of the
predictions from our SSM-based ROM, we calculate
the FRC of the full system (48)–(49) using the po-
toolbox of coco. We discretize a periodic orbit along
the main branch using a mesh with 10 time intervals,
5 base points and 4 collocation nodes in each interval.
We set themaximumcontinuation step size and allowed
residual for the predictor in the continuation algorithm
to be 100 and 1000. Two periodic-doubling bifurca-
tion points are detected along the main branch, which
matchwell with the two branch points shown in Fig. 18.
We then switch to the secondary branch of periodic
obits with doubled time period. To maintain the mesh
refinement up to switching to the secondary branch,
we now discretize a periodic orbit using a mesh with
20 intervals. Accordingly, we also increase the maxi-
mum allowed residual for predictor step to 10,000. We
carefully choose these solver settings to ensure that the
computational time of the collocationmethod using po
is reasonable.

As shown in Fig. 19, the FRC of the full system
matchwith the ones predicted by the SSM-basedROM.
Here, the computations of FRCs using coco are per-
formed on a remote Intel Xeon E3-1585Lv5 processor
(3.0–3.7GHz) on theETHEuler cluster. The FRCcom-
putation for full system using the collocation method
took about 27 hours. In contrast, the computation of
FRCs using O(5) SSM reduction, performed on an
Intel(R) Core(TM) i7-6700HQ processor (2.60GHz)
of a laptop, took only 10s.

One may note the similarity between the FRC of
||whori||∞ and the one of ρ2, and the similarity between
the FRC of ||wvert||∞ and the one of ρ1. Such similar-
ities can be explained by the fact that midpoints of the
horizontal and vertical beam are (nearly) located at the
peak response of the second and first bending modes,
respectively (cf. Fig. 17).

6 Conclusion

Using the theory of spectral submanifolds (SSMs),
we have developed reduced-order models (ROMs) for
nonlinear mechanical systems with configuration con-
straints and possible internal resonances.We have used
these SSM-based ROMs to extract damped backbone
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Fig. 19 Forced response curves in vibration amplitudes of the
transverse deflections of the horizontal (upper panel) and the
vertical (lower panel) beams. Here whori and wvert are transverse
deflection at the midpoint the horizontal and vertical beams of
the divider. (Color figure online)

curves, predict the transient response of the unforced
system, extract the periodic forced response curves
(FRCs) under external harmonic forcing, and predict
the bifurcations of steady-state periodic response under
the variation of excitation frequency and amplitude.We
have demonstrated our reduction technique over sev-
eral examples from rigid as well as flexible multibody
dynamics, including a chain of pendulums linked to a
slider and a finite-element model of a frequency divider
featuring internal resonance.

We also made an open-source implementation of
all methods and examples discussed here in the soft-
ware package SSMTool [28], which supports auto-
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mated computations of SSMs and their associated
reduced dynamics. SSMTool also enables the detec-
tion and analysis of quasiperiodic responses of con-
strained systems as well. Typically, quasiperiodic solu-
tions are born out of Hopf bifurcations along an FRC,
as shown in [27]. Furthermore, we have illustrated a
reformulation technique that transforms systems with
non-polynomial nonlinearities into systems with only
polynomial nonlinearities, enabling the application of
SSMTool to systems with non-polynomial nonlinear-
ities. We further introduced invariance error measure
that enables the a posteriori estimation of the conver-
gence domain of SSM approximations and allows reli-
able reduction without the need for validations based
on full-system simulations.

We have not considered examples with gyroscopic
and nonlinear damping forces in this work. However,
the general setup and our results for the DAE sys-
tem (1) allows for gyroscopic and nonlinear damping
terms. Indeed, SSM-based model reduction has been
successfully applied to systems with distributed gyro-
scopic and nonlinear damping forces [26], albeit in the
absence of configuration constraints. We leave such a
demonstration of SSM-based model reduction to con-
strained mechanical systems with gyroscopic or non-
linear damping forces to be carried out elsewhere.

In the forced setting, we have restricted to the
leading-order approximation of the non-autonomous
part of the SSMs. For larger forcing amplitudes, how-
ever, higher-order non-autonomous terms are impor-
tant as we observed high invariance errors and dif-
ferences with respect to the full-system simulations
(cf. upper-left panel of Fig. 5). Flexible multibody sys-
tems undergoing combination of overall motion and
large deformations were not considered in this work
but are of great interest. All these development are cur-
rently underway and will be reported elsewhere. Fur-
ther areas of application not considered in the current
work include piezoelectric structures [2], incompress-
ible flows [47], computational electromagnetics [48],
and power grids [49].
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A Theorems on autonomous and non-autonomous
SSMs

A.1 Autonomous systems

In the ε = 0 limit of system (8), we have the follow-
ing statement for the existence and uniqueness of the
autonomous SSM tangent to E at the origin [21].

Theorem 1 Under the non-resonance condition

a · λE + b · λ̄
E 	= λk,

∀ λk ∈ Spect(�) \ Spect(E),

∀ a, b ∈ N
m
0 , 2 ≤ |a + b| ≤ σ(E), (53)

where the relative spectral quotient σ(E) associated to
the spectral subspace E is defined as

σ(E) = Int

(
minλ∈Spect(�)\Spect(E) Reλ

maxλ∈Spect(E) Reλ

)
, (54)

the following hold for system (4):

(i) There exists a Cr -smooth, 2m-dimensional SSM,
W(E) ⊂ R

2n, which is tangent to the spectral
subspace E at the origin.

(ii) W(E) is unique among all class Cσ(E)+1 invari-
ant manifolds of system (4) satisfying (i).

(iii) W(E) can be viewed as an embedding of an
open set in the reduced coordinates p ∈ C

2m

into the phase space of system (4) via a map
W( p) : C2m → R

2n.
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(iv) There exists a polynomial series R( p) : C2m →
C
2m satisfying the invariance equation

BD pW( p)R( p) = AW( p) + F(W( p)), (55)

such that the reduced dynamics onW(E) can be
expressed as

ṗ = R( p). (56)

Proof This theorem is simply a restatement of Theo-
rem 3 by Haller and Ponsioen [21] (given the matrix B
is invertible), which is based on more abstract results
by Cabré et al. [50–52]. ��

A.2 Non-autonomous systems

Under small-amplitude periodic forcing, i.e., 0 < ε �
1, the SSMs persist as periodic whiskers as per the
following statement [21].

Theorem 2 Assume the non-resonance condition

a · Re(λE ) + b · Re(λ̄E ) 	= Re(λk),

∀ λk ∈ Spect(�) \ Spect(E)

∀ a, b ∈ N
m
0 , 2 ≤ |a + b| ≤ �(E), (57)

where the absolute spectral quotient �(E) associated
to the spectral subspace E is defined as

�(E) = Int

(
minλ∈Spect(�) Reλ

maxλ∈Spect(E) Reλ

)
. (58)

Then the following hold for system (4) for ε > 0, small
enough:

(i) There exists a 2m-dimensional, time-periodic,
class Cr -SSM,W(E,�t), that depends smoothly
on ε,

(ii) The SSMW(E,�t) is unique among all C�(E)+1

invariant manifolds satisfying (i)
(iii) W(E,�t) can be viewed as an embedding of an

open set in the reduced coordinates ( p, φ) into
the phase space of system (4) via the map

W ε( p, φ) : C2m × S1 → R
2n . (59)

(iv) There exists a polynomial function Rε( p, φ) :
C
2m×S1 → C

2m satisfying the invariance equa-
tion

B
[
D pW ε( p, φ)Rε( p, φ) + DφW ε( p, φ)�

]

= AW ε( p, φ) + F(W ε( p, φ))

+ εFext(W ε( p, φ), φ), (60)

such that the reduced dynamics on the SSM,
W(E,�t), can be expressed as

ṗ = Rε( p, φ), φ̇ = �. (61)

Proof This theorem is simply a restatement of Theo-
rem 4 by Haller and Ponsioen [21] (given the matrix B
is invertible), which is based on more abstract results
by Haro and de la Llave [53,54]. ��

B Reformulation of DAEs as ODEs

Here,we useMaggi’s reformulation of constrained sys-
tems, as presented in [29]. With an initial condition
x0 that satisfies g(x0) = 0, the algebraic constraints
g = 0 in (1) can be extended by ġ + αg = 0, or
equivalently

G(x)ẋ + αg(x) = 0, (62)

where α ∈ R
+ is a stabilization parameter. We intro-

duce n − nc kinematic characteristics, which are also
called generalized speeds [29], denoted by e, that sat-
isfy
(

G(nc×n)(x)
qG((n−nc)×n)(x)

)
ẋ +

(
αg(nc)(x)

0(n−nc)

)
=

(
0(nc)

e(n−nc)

)
.

(63)

Here and below, the bracketed subscripts denote the
size of a matrix or vector. Recall that G ∈ R

nc×n and
it is of full rank. Thus one can choose qG such that the
matrix formed by G and qG defines an invertible linear
transformation. With this inverse
(

G(nc×n)(x)
qG((n−nc)×n)(x)

)−1

=
(
q�(n×nc)(x) �(n×(n−nc))(x)

)
,

(64)

the generalized velocities ẋ can be readily expressed in
terms of the kinematic characteristics as

ẋ = �(x)e − αq�(x)g(x). (65)

From now on, we do not show the x dependencies and
the sizes of matrices and vectors explicitly for com-
pactness. We note that
(
G
qG

) (
q� �

)
=

(
Gq� G�
qGq� qG�

)
=

(
I 0
0 I

)
,

(
q� �

) (
G
qG

)
= q�G + � qG = I . (66)
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Since G� = 0, � spans the null space of the constraint
matrix. Differentiating (65), the generalized accelera-
tions ẍ can also be expressed in terms of the kinematic
characteristics

ẍ = � ė + �̇e − αq�Gẋ − α q̇�g. (67)

Substituting (65) and (67) into the differential equa-
tions in (1), premultiplying the equations by �T and
utilizing the fact that G� = 0, we obtain governing
equations expressed in terms of the kinematic charac-
teristics as follows

�TM� ė + (�TC − α�TMq�G)ẋ + �TKx

+ �T f + �TM�̇e − α�TM q̇�g = ε�T f ext. (68)

Therefore, the original equations of motion can be
reformulatedwithout separate equations for constraints
as follows

(
I 0

�TC − α�TMq�G �TM�

) (
ẋ
ė

)
=

(−αq�G0 �

−�TK 0

) (
x
e

)
+

(
−αq�gnl

−�T f − �TM�̇e + α�TM q̇�g

)
+ ε

(
0

�T f ext

)
. (69)

In the case of linear configuration constraints, we have
G = G0 and we can choose a constant matrix qG. Then
both � and q� are constant matrices as well. Conse-
quently, the two coefficient matrices in the above sys-
tem of equations are also constant.

C Spectrum of linear ODEs

Next, we study the spectrum of the system (69) lin-
earized around the origin. Let the constant parts of �

and q� be �0 and q�0. The equations of motion of the
linearized system are

(
I 0

�T
0C − α�T

0 Mq�0G0 �T
0M�0

) (
ẋ
ė

)

=
(−αq�0G0 �0

−�T
0 K 0

) (
x
e

)
. (70)

We assume the linearized system has an eigensolution
as follows(
x
e

)
=

(
x̂
ê

)
eλt . (71)

Substituting this solution into (70) yields

λx̂ = −αq�0G0 x̂ + �0̂e, (72)

λ(�T
0C − α�T

0Mq�0G0)̂x + λ�T
0 M�0̂e = −�T

0 K x̂.

(73)

We obtain from (72) that �0̂e = λx̂ + αq�0G0 x̂. We
substitute the expression of �0̂e into (73) to obtain

�T
0 (λ2Mx̂ + λCx̂ + K x̂) = 0. (74)

Given that q�0G0 + �0 qG0 = I (see (66)), we obtain
from (72) that

(λ + α)̂x = α�0 qG0 x̂ + �0̂e. (75)

Now we analyze the solutions to (74) and (75)
depending on whether λ + α is zero or not. In the case
that λ+α 	= 0, we infer from (75) that x̂ ∈ Range(�0)

and then we can introduce x̃ ∈ C
n−nc such that

x̂ = �0 x̃. (76)

Substituting (76) into (74), we obtain

(λ2�T
0 M�0 + λ�T

0C�0 + �T
0 K�0)x̃ = 0. (77)

Therefore, we obtain 2(n − nc) eigenvalues from a
system with mass matrix �T

0 M�0, damping matrix
�T
0C�0 and stiffness matrix �T

0 K�0.
In the special of λ+α = 0, we obtain from (75) that

ê = −α qG0 x̂. Given that G0�0 = 0 (cf. (66)), we infer
from (74) that

(α2M − αC + K )̂x ∈ range(GT
0 ). (78)

Since α ∈ R
+ is arbitrary and can be chosen differ-

ent from any eigenvalues of the system (M,C, K ), the
coefficient matrix (α2M − αC + K ) is invertible, and
then there are m linearly independent solutions of x̂.

In summary, the eigenvalues and eigenvectors of the
linearized system (70) are given as below

(a) i = 1, · · · , 2(n − nc):

(λ2i �
T
0 M�0 + λ�T

0C�0 + �T
0 K�0)x̃i = 0,

x̂i = �0 x̃i , êi = (λi + α)x̃i − α qGx̂i , (79)

(b) i = 2(n−nc)+1, · · · , 2(n−nc)+nc: λi = −α

and
(
x̂2(n−nc)+1 · · · x̂2(n−nc)+nc
ê2(n−nc)+1 · · · ê2(n−nc)+nc

)
=

(
GT

0
−α qG0GT

0

)
.

(80)
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D Spectrum of linear DAEs

The linear part of (1) in the limit ε = 0 is given by

Mẍ + Cẋ + Kx + GT
0μ = 0, G0x = 0. (81)

Consider an eigensolution(
x
μ

)
=

(
x̂
μ̂

)
eλt . (82)

Substituting the solution above into (81) yields

λ2Mx̂ + λCx̂ + K x̂ + GT
0 μ̂ = 0, G0 x̂ = 0. (83)

Since x̂ ∈ kernel(G0) and G0 is of full rank, we can
find �0 ∈ R

n×(n−nc) (cf. (66)) such that G0�0 = 0.
Then we can introduce x̃ ∈ C

n−nc such that x̂ = �0 x̃
and then the second sub-equation in (83) is satisfied.
We substitute x̂ = �0 x̃ into the first sub-equation and
premultiply the equation by �T

0 to obtain

(λ2�T
0M�0 + λ�T

0C�0 + �T
0 K�0)x̃ = 0. (84)

In the case of x̃ 	= 0, the spectrumof the equation above
is composed of 2(n − nc) eigenvalues from a system
with mass matrix �T

0 M�0, damping matrix �T
0C�0

and stiffness matrix �T
0 K�0 (cf. (79)).

In the case of x̃ = 0, we have x̂ = 0 and (83)
becomes

λ2Mx̂ + λCx̂ + GT
0 μ̂ = 0. (85)

Provided that λ ∈ C, the equation above is reduced
to GT

0 μ̂ = 0, from which we obtain μ = 0 because
G0 is of full rank. However, (̂x, μ̂) = (0, 0) is not an
eigenvector.We can rewrite (85) as GT

0 μ̂/λ2 = 0, from
which we infer that μ̂ can be arbitrary nonzeros when
|λ| = ∞. So the system has eigenvalues with infinite
magnitude.

Next, we explore how many such eigenvalues of
infinite magnitude the system has. We note that (81)
is equivalent to the linear part of (4) when ε = 0.
In (4), the equations ofmotion are in the first order form
with two matrices A and B. Since we have assumed
that the matrix pencil λB − A is regular, namely,
det(λB − A) 	= 0 for some λ ∈ C, the system has
3nc such infinite eigenvalues [31].

In summary, the eigenvalues and eigenvectors of the
system (81) are given by

(c) i = 1, · · · , 2(n − nc):

(λ2i �
T
0 M�0 + λ�T

0C�0 + �T
0 K�0)x̃i = 0,

x̂i = �0 x̃i , λ2i Mx̂i + λiCx̂i + K x̂i + GT
0 μ̂i = 0

(86)

(d) i = 2(n − nc), · · · , 2n + nc:

|λi | = ∞, x̂i = 0, μ̂i 	= 0. (87)

E Index-1 formulation with stabilization

Provided that we have a consistent initial condition
(x0, ẋ0) that satisfies

g(x0) = 0, G(x0)ẋ0 = 0, (88)

the algebraic constraints g = 0 in (1) can be replaced
by

g̈ + α ġ + β g = 0, (89)

where α, β ∈ R
+ are stabilization parameters. The dif-

ferential equations in (1), along with the replaced con-
figuration constraints (89), can be written in the more
compact form
(
M GT

G 0

) (
ẍ
μ

)
=

(
f̂
c

)
, (90)

where

f̂ = ε f ext(�t) − Cẋ − Kx − f (x, ẋ), (91)

c = −αGẋ − β g − Ġ ẋ. (92)

One can express the vector of Lagrange multipliers
μ from (90) as

μ = −
(
GM−1GT

)−1 (
c− GM−1 f̂

)
. (93)

Then the equations of motion without algebraic equa-
tions are obtained as

Mẍ = f̂ + GT
(
GM−1GT

)−1 (
c− GM−1 f̂

)
,

(94)

which can be rewritten in the more familiar form

Mẍ + (I − P) (Cẋ + Kx + f (x, ẋ))

− GT
(
GM−1GT

)−1
c = ε(I − P) f ext(�t),

(95)

where

P = GT
(
GM−1GT

)−1
GM−1 (96)

is a projector and I − P is the complement projector of
P . We note that P is x-dependent if the configuration
constraints are nonlinear.

123



Model reduction for constrained mechanical systems 8907

F Equations of motion for a chain of pendulums

The generalized coordinates for the slider and the rods
are given by

q1 = (x1, y1), qi = (xi , yi , ϕi ), 2 ≤ i ≤ n. (97)

The kinetic energy of the system is given by T =∑n
i=1 Ti with

Ti = 1

2
qTi Miqi , M1 = diag(m1,m1),

Mi = diag(mi ,mi , Ji ), 2 ≤ i ≤ n. (98)

The potential energy of the system is given by V =∑n
i=1 Vi with

V1 = k1
2
x21 − m1gy1, V2 = k

2
ϕ2
2 − m2gy2,

Vi = k

2
(ϕi − ϕi−1)

2 − migyi , 3 ≤ i ≤ n − 1. (99)

The configuration constraints are given by

g1 = y1, g2 = x2 − 0.5l sin ϕ2 − x1,

g3 = y2 − 0.5l cosϕ2 − y1 (100)

and

g2i = xi+1 − 0.5l sin ϕi+1 − (xi + 0.5l sin ϕi ),

g2i+1 = yi+1 − 0.5l cosϕi+1 − (yi + 0.5l cosϕi ),

(101)

for 2 ≤ i ≤ n − 1.
Let q = (q1,q2, · · · ,qn) and introduce Lagrangian

L(q, q̇) = T (q̇) − V (q), The equations of motion is
given by

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+ GTμ = Q, g(q) = 0, (102)

where Q denote a vector of generalized forces which
are related to damping and external forces. In particular,
we have differential equations as follows

m1 ẍ1 + k1x1 − μ2 = −c1 ẋ1 + ε cos�t,

m1 ÿ1 − m1g + μ1 − μ3 = 0, (103)

m2 ẍ2+μ2 − μ4 = 0, m2 ÿ2 − m2g+μ3 − μ5 = 0,

J2ϕ̈2 + kϕ2 − k(ϕ3 − ϕ2) − 0.5l cosϕ2(μ2 + μ4)

+ 0.5l sin ϕ2(μ3 + μ5) = −cϕ̇2 − c(ϕ̇2 − ϕ̇3),

(104)

mi ẍi + μ2(i−1) − μ2i = 0,

mi ÿi − mig + μ2i−1 − μ2i+1 = 0,

Ji ϕ̈i + k(ϕi − ϕi−1) − k(ϕi+1 − ϕi )

− 0.5l cosϕiμ2i + 0.5l sin ϕiμ2i+1

− 0.5l cosϕiμ2(i−1) + 0.5l sin ϕiμ2i−1

= −c(ϕ̇i − ϕ̇i−1) − c(ϕ̇i − ϕ̇i+1), (105)

for 3 ≤ i ≤ n − 1, and

mnẍn + μ2(n−1) = 0, mn ÿn − mng + μ2n−1 = 0,

Jn ϕ̈n + k(ϕn − ϕn−1) − 0.5l cosϕnμ2n−2

+ 0.5l sin ϕnμ2n−1 = −c(ϕ̇n − ϕ̇n−1). (106)

Similarly to the previous example,we shift the rest state
to the origin of the phase space such that the origin
becomes a fixed point. Specifically, we take

yi = ŷi + 0.5l + (i − 2)l, 2 ≤ i ≤ n,

μ2i−1 = μ̂2i−1 +
n∑
j=i

mi g, 1 ≤ i ≤ n. (107)

We further introduce the auxiliary variables

u2i−3 = sin ϕi , u2i−2 = 1 − cosϕi , 2 ≤ i ≤ n,

(108)

to recast the trigonometric terms in (103)–(106) into
polynomials. Substituting (107) and (108) into (103)–
(106), the differential equations become

m1 ẍ1 + k1x1 − μ2 = −c1 ẋ1 + ε cos�t,

m1 ÿ1 + μ1 − μ3 = 0, (109)

m2 ẍ2 + μ2 − μ4 = 0, m2
¨̂y2 + μ̂3 − μ̂5 = 0,

J2ϕ̈2 + k(2ϕ2 − ϕ3) − 0.5l(1 − u2)(μ2 + μ4)

+ 0.5lu1(μ̂3 + μ̂5 + m2g + 2
n∑
j=3

m j g)

= −c(2ϕ̇2 − ϕ̇3), (110)

mi ẍi + μ2(i−1) − μ2i = 0,

mi
¨̂yi + μ̂2i−1 − μ̂2i+1 = 0,

Ji ϕ̈i + k(2ϕi − ϕi−1 − ϕi+1)

− 0.5l(1 − u2i−2)(μ2i + μ2(i−1))

+ 0.5lu2i−3(μ2i+1 + μ2i−1 + mig + 2
n∑

j=i+1

m j g)

= −c(2̇ϕi − ϕ̇i−1 − ϕ̇i+1), (111)

for 3 ≤ i ≤ n − 1,

mnẍn + μ2(n−1) = 0, mn
¨̂yn + μ̂2n−1 = 0,
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Jn ϕ̈n + k(ϕn − ϕn−1) − 0.5l(1 − u2n−2)μ2n−2

+ 0.5lu2n−3(μ̂2n−1 + mng) = −c(ϕ̇n − ϕ̇n−1),

(112)

and the configuration constraints (100)–(101) become

g1 = y1, g2 = x2 − 0.5lu1 − x1,

g3 = ŷ2 + 0.5lu2 − y1, (113)

and

g2i = xi+1 − 0.5lu2i−1 − (xi + 0.5lu2i−3),

g2i+1 = ŷi+1 − ŷi + 0.5l(u2i−2 + u2i ), (114)

for 2 ≤ i ≤ n − 1. We have additional equations for
the auxiliary variables in the form

u̇2i−3 = (1 − u2i−2)ϕ̇i ,

u22i−3 − 2u2i−2 + u22i−2 = 0, 2 ≤ i ≤ n. (115)

Let u = (u1, · · · , u2n−2) and define z = (q, q̇,μ,u),
the equations of motion (109)–(115) can be written in
the form of (4).

G Supplementary analysis

G.1 Example 5.2.2

Along with the plots of time histories of the transla-
tional displacement of the slider (x1) and the angular
displacement of the pendulum (ϕ2) shown in Fig. 10,
we present the corresponding plots of time histories of
Lagrange multipliers μ2 and μ3 defined in (32). These
two multipliers represent reaction forces induced by
the last two configuration constraints in (33). The time
histories for reaction forcesμ2 andμ3 with initial con-
ditions IC1 and IC2 are shown in Fig. 20, from which
weobserve a closematch between the results fromSSM
predictions and the reference results of the full system.
Here, the reference results are obtained from the fol-
lowing steps:

1. Perform forward simulation of Euler–Lagrange
equations (44);

2. Calculate ẍ2 and ÿ2 with x1 and ϕ2 obtained from
the above simulation;

3. Calculate μ2 and μ3 from the third and fourth
sub-equations in (32).

G.2 Example 5.3

We again use the invariance error measure introduced
in Eq. (41) for validating our results and choosing an
appropriate order of expansion. Similarly to the pendu-
lum slider example, we choose the refinement param-
eters nα = 10, nϑ = 30 (see Eq. (39)) and estimate
the average invariance error over a 4-sphere of radius
� in the parameterization space at various orders of
approximation of the SSM. As shown in Fig. 21, the
normalized error measure decreases with decreasing �

and increasing orders, as seen previously. We choose
an error tolerance of 0.01, which is still inside the con-
vergence domain boundary deduced from Fig. 21. We
infer from Fig. 21 that expansions at O(3), O(5) and

0 10 20 30 40 50
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0 10 20 30 40 50
8
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0 10 20 30 40 50
-10

0
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0 10 20 30 40 50
0
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Fig. 20 Time histories for the reaction forces (μ2, μ3) of
the pendulum slider system (35) with initial condition IC1
(3.5ei, 3.5e−i, 0, 0) (upper panel) and IC2 (0, 0, 3.5ei, 3.5e−i)

(lower panel) on the SSM approximated up to O(13). (Color
figure online)

123



Model reduction for constrained mechanical systems 8909

O(7) will be required to meet the chosen error toler-
ance in the domains � ≤ 14, � ≤ 30, and � ≤ 50,
respectively.

We compare the trajectories from the simulations of
the SSM-based ROM up toO(7) with those of the full
system. Similarly to (43), we consider two sets of initial
conditions as

IC1 : p0 = (50e2i, 50e−2i, 0, 0),

IC2 : p0 = (0, 0, 50e2i, 50e−2i), (116)

where IC1 and IC2 are chosen along the first and the
second mode on a hypersphere of radius � = 50 in
the parameterization space of the SSM. In Fig. 22, we
plot the transverse displacement trajectories at themid-
points of the horizontal and the vertical beams initial-
ized at IC1 and IC2. The results obtained by SSM pre-
diction match well with the reference results from the
full system.

In the upper panel of Fig. 22, we observe that the
vibration amplitude of the transverse displacement at
the midpoint of the horizontal beam increases gradu-
ally from zero and then decays in time. In contrast,
we observe a monotonic decay for the vibration ampli-
tude of the transverse displacement at the midpoint of
the vertical beam. Since the transverse displacements
at the midpoints of the horizontal and vertical beams
feature the vibrations of the second and the first modes
(see Fig. 17), the time histories in the upper panel indi-
cate a energy transfer from the first mode to the second
mode. In contrast, the transverse displacement at the
midpoint of the vertical beam in the right panel stays
close to zero because ρ1 ≡ 0 along the trajectory of

0.2 0.4 1 4 10 30 100
10-15

10-10

10-5

100

Fig. 21 Invariance error measure (41) of the four-dimensional
SSM approximations of the frequency divider system (48)
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Fig. 22 Timehistories for transverse deflections at themidpoints
of the two beams with initial condition IC1 (50e2i, 50e−2i, 0, 0)
(upper panel) and IC2 (0, 0, 50e2i, 50e−2i) (lower panel). Here,
whori and wvert are transverse deflection at the midpoint the hor-
izontal and vertical beams of the divider. (Color figure online)

the reduced dynamics (52) and then the first mode is
inactive.
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