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Consider the conservative,   -periodic orbit          and

��Physically, the Melnikov function measures the work done by non- 
 conservative forces in     cycles of oscillation;
��Mathematically, the analysis of its zeros is able to predict how a  
 conservative periodic orbit bifurcates into frequency responses:

For 
superhamonics do not occur, while, for primary and subharmonic reso-
nances, the Melnikov function simplifies to
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Mechanical systems with    -dofs as small,    -periodic perturbations of a 
conservative limit

                                                                           

where conservative NNMs exist for          . En!gy 
level

NNM
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In the first mode, isolas 
appear for low forcing 
amplitudes and vanish for 
high forcing amplitudes.

no persistence
two orbits bifurcate
one orbit survives, a limit occurs

Parametrizing the family with the amplitude, we compute the ridge                
                describing maximal responses, minimal ones or isolas.
Here, the   -th harmonic of                  is in quadrature with forcing.
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Frequency sweeps

Frequency sweeps are 
computed with numerical 
continuation and validate 
our analytic predictions.

Summary
� the Melnikov function governs the persistence of the conservative limit 

for generic, small, non-conservative forces;
� maximal responses and the appearance of isolas can be predicted 

from the conservative limit;
� the phase-lag quadrature criterion used in experimental testing holds 

also for nonlinear damping in co-location.

Outlook: stochastic forcing and interaction phenomena.

Predicting Frequency Response as 
Perturbation from the Conservative Limit
Mattia Cenedese and George Haller
Institute for Mechanical Systems, ETH Zürich
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Uncovering how conservative backbone curves 
survive the advent of forcing and damping

Mattia Cenedese  
Ph.D. Student, Chair in Nonlinear Dynamics 
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Dynamical models 

·x = f(x) + g(x, t)

conservative time-periodic

εg(x, t, ε), 0 < ε ≪ 1

Can we predict existence and stability of periodic orbits of the  
perturbed system starting from those of the conservative system?



Motivations: the case of Mechanical Vibrations

Consider N coupled, periodically forced and damped oscillators for 
arbitrary motion amplitude. Some nonlinear phenomena
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Why would practitioners capitalize on analytical tools?

Computational speed-up for studies of 
the effect forcing & damping terms

Find isolas: identification is challenging 
from numerical continuation

Validate and extend experimental 
routines using the phase-lag quadrature

Available methods: 

๏Asymptotic expansions 
from an equilibrium1 

๏LSM & SSM2  

๏Energy-type arguments3 

๏Melnikov methods 

1: Nayfeh & Mook (2007); 2: De la Llave & Kogelbauer (2020); 3: Peeters, G. Kerschen, & Golinval (2011), Hill, Cammarano, Neild & Barton (2017)



Overview of the Classic Melnikov Method

Or better, the Poincaré-Arnold-Melnikov method (1963) 

Originally:  ·x = JDH(x) + εg(x, t), g(x, t + T ) = g(x, t), x ∈ ℝ2

x1

x2

ε = 0

Evaluate the 
scalar Melnikov 
function ℳ(s)

x1

x2

0 < ε ≪ 1

If  has a  
transverse zero

ℳ(s)

Homoclinic Tangle

Chaotic attractor

Melnikov (1963), Guckenheimer & Holmes (1983), Yagasaki (1996)



Overview of the Classic Melnikov Method

Or better, the Poincaré-Arnold-Melnikov method (1963) 

Originally:   

Extended to integrable, low-dimensional hamiltonian systems

·x = JDH(x) + εg(x, t), g(x, t + T ) = g(x, t), x ∈ ℝ2

x1

x2

ε = 0

Evaluate the 
scalar Melnikov 
function ℳ(s)

x1

x2

0 < ε ≪ 1

If  has a  
transverse zero

ℳ(s)

Subharmonic Orbits

… not the case for structural problems in practical applications.

Melnikov (1963), Guckenheimer & Holmes (1983), Yagasaki (1996)



Setup: Weakly Forced and Damped Systems

Mechanical system with  degrees of freedom, whose 
conservative limit is defined by the Lagrangian 

 

and its energy reads:  

Collecting any dissipative or active force in the small, time- 
periodic Lagrangian component  with frequency , the 
equations of motion are 

 

n

L(q, ·q) =
1
2

⟨ ·q , M(q) ·q⟩ + ⟨ ·q , G1(q)⟩ + G0(q) − V(q)

H(q, ·q) =
1
2

⟨ ·q , M(q) ·q⟩ − G0(q) + V(q)

Q Ω

d
dt ( ∂L

∂ ·q ) −
∂L
∂q

= εQ(q, ·q, t; Ω, ε), 0 ≤ ε ≪ 1

q ∈ ℝn



Periodic Orbits of Conservative Systems

Present in almost all energy levels 

Generically, they exist in families 

Not structurally stable 

Types of orbits in 1 parameter families: 

Regular periodic orbits

𝒵
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Backbone curve: 
ℬ := {(ω(λ), h(λ)), λ ∈ ℝ}

frequency energy level
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h′ ≠ 0
ω′ ≠ 0

Muñoz-Almaraz, Freire, Galán, Doedel & Vanderbauwhede (2003)
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Periodic Orbits of Conservative Systems

Present in almost all energy levels 

Generically, they exist in families 

Not structurally stable 

Types of orbits in 1 parameter families: 

Regular periodic orbits 

Folding periodic orbits 

Critical cases

𝒵

ℱ

NNMs

ℋ

Backbone curve: 
ℬ := {(ω(λ), h(λ)), λ ∈ ℝ}

frequency energy level

h

ω

h′ ≠ 0
ω′ ≠ 0

h

ω

h′ ≠ 0
ω′ = 0

h

ω

h′ = 0
ω′ ≠ 0

h

ω

branching h

ω

homoclinic 

Muñoz-Almaraz, Freire, Galán, Doedel & Vanderbauwhede (2003)



Perturbation from the Conservative limit

We look for subharmonic orbits of order  
 in the forced-damped system  

Pick a regular orbit  with period  of 
the conservative backbone curve at  

Set  as well as  
a resonance constraint to fix , either 

(a) Exact resonance:  with  being relatively 
prime integers, or 

(b) Near resonance:   and 

l ∈ ℕ

q0(t) τ0

(ω0, h0)

q(t) = q0(t + s) + O(ε)
Ω

mΩ = lω0 m, l

mΩ = lω0 + O(ε) H(q(0), ·q(0)) = h0

t
qi

Qjl = 2
h

ω

h0

ω0



Main Result: Existence

Define the Melnikov function 

  

If  & , the conservative limit  
persists for the weakly damped, periodically forced system

ℳm:l(s) = ∫
mτ0

0
⟨ ·q0(t + s), Q(q0(t + s), ·q0(t + s), t; lω0/m,0)⟩dt

ℳm:l(s0) = 0 ℳ′ m:l(s0) ≠ 0 q0(s0 + t)

Work done by non-conservative forces 
evaluated at the conservative limit!

h

ω

Exact resonance
h

ω

Near resonance

ε = 0

0 < ε ≪ 1

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)



Main Result: Existence

Define the Melnikov function 

  

If  & , but the backbone curve has a 
fold at , then  persists in any direction 
transverse to the folding direction

ℳm:l(s) = ∫
mτ0

0
⟨ ·q0(t + s), Q(q0(t + s), ·q0(t + s), t; lω0/m,0)⟩dt

ℳm:l(s0) = 0 ℳ′ m:l(s0) ≠ 0
(ω0, h0) q0(s0 + t)

h

ω

Fold in  ω

ε = 0

0 < ε ≪ 1

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)



Main Result: Existence

Define the Melnikov function 

  

If , the conservative limit does not persist for the 
weakly damped, periodically forced system 

If the conservative periodic orbit  
is a critical orbit, the Melnikov function  
alone is not sufficient to predict  
the fate of the fate of 

ℳm:l(s) = ∫
mτ0

0
⟨ ·q0(t + s), Q(q0(t + s), ·q0(t + s), t; lω0/m,0)⟩dt

|ℳm:l(s) | > 0

q0(t)

q0(t)

h

ω

h

ω

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)



Towards Stability

Write the system in Hamiltonian form 

  

 

For the stability of a periodic orbit with period  we need to 
study the eigenvalues of the monodromy matrix  

     
 

p =
∂L
∂ ·q

= M(q) ·q + G1(q)

x = (q, p)

lΩ
X(lΩ) ∈ ℝn×n

·X = JD2H(x(t))X + εDxg(x(t), t; Ω, ε)
X(0) = I

·x = JDH(x) + εg(x, t; Ω, ε)

g = (0
Q)J = [ 0 In

−In 0]

 is the 
solution at 

Π0 = X0(mτ0)
ε = 0

Arnold (1989), Meyer and Offin (2017)



Towards Stability

The conservative limit has always at least 2 eigenvalues of  
equal to . Possible configurations of the unperturbed spectrum

Π0

+1
Im(μ)

Re(μ)

|μ | = 1
Im(μ)

Re(μ)

|μ | = 1

Im(μ)

Re(μ)

|μ | = 1
Im(μ)

Re(μ)

|μ | = 1
Im(μ)

Re(μ)

|μ | = 1

Im(μ)

Re(μ)

|μ | = 1



Towards Stability

We consider a conservative limit that satisfies 

For each of the  couples of eigenvalues, define the nonlinear 
damping rate 

n

Ci = −
1

mτ0 ∫
mτ0

0
trace(SiX−1

0 (t)Dxg(x0(t), t; lω0/m,0)X0(t)Ri)dt

Im(μ)

Re(μ)

|μ | = 1ω′ 0 ≠ 0
h

ω

 is the i-th eigenspace,   and   span(Ri) Si = (R⊤
i JRi)−1 R⊤

i J ·X0 = JD2H(x0(t))X0, X0(0) = I

Note: the  eigenvalue  
 is not regular+1



Main Result: Stability

The forced-damped periodic orbit is unstable if 

        or          

The forced-damped periodic orbit is asymptotically stable if 

        and          

ℳ′ m:l(s0)ω′ 0 < 0 ∃ i ∈ {1,... n} : Ci < 0

ℳ′ m:l(s0)ω′ 0 > 0 Ci > 0 ∀ i ∈ {1,... n}

Im(μ)

Re(μ)

|μ | = 1

Im(μ)

Re(μ)

|μ | = 1

Cenedese & Haller, Stability of forced-damped response in mechanical systems from a Melnikov analysis, Chaos (2020)



Connection with Experimental Observations

Assume that the nonlinear damping rates are positive

Im(μ)

Re(μ)

|μ | = 1

εmτCi /2

h

ω

ℳm:l(s)

s

mτ
ℳ′ m:l > 0

ℳ′ m:l < 0

These predictions are obtained without any 
simulation of the forced-damped system



Remarks

The formula for the nonlinear damping rate is complex. 

 

For ,  

For , then   

Instability conditions can be formulated for other cases

Ci = −
1

mτ0 ∫
mτ0

0
trace(SiX−1

0 (t)Dxg(x0(t), t; lω0/m,0)X0(t)Ri)dt

n = 1 C1 = −
1

mτ0 ∫
mτ0

0
trace(Dxg(x0(t), t; lω0/m,0))dt

Q = F(t) − αM(q)p Ci = α ∀ i ∈ {1,... n}
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Example: Subharmonics in a Gyro

mb
··q + 2G ·q − mbΩ2q + DV(q) = Q̂(q, ·q, t)

G = mb [ 0 −Ω
Ω 0 ],

V(q) =
1
2

4

∑
j=1

kj(lj(x, y) − l0)2,

l1,3(x, y) = (l0 ± x)2 + y2,

l2,4(x, y) = x2 + (l0 ± y)2,

Ω = 0.942, l0 = 1, k1 = 1, k2 = 4.08, k3 = 1.37, k4 = 2.51



Example: Subharmonics in a Gyro

  

Damping linearly depending on the absolute velocities the mass 
 (e.g. air damping)  

Stiffness-proportional damping for the spring-damper elements, 
i.e.  for  and 

Q̂(q, ·q, t) = ε(Qd,α(q, ·q) + Qd,β(q, ·q) + Qf(t))

mb εQd,α(q, ·q) = − εαmb( ·q + m−1
b Gq);

cj = εβkj j = 1,... 4 εQd,β(q, ·q) = − εβC(q) ·q,

C(q) =
4

∑
j=1

kj
(∂xlj(x, y))2 ∂xlj(x, y)∂ylj(x, y)

∂xlj(x, y)∂ylj(x, y) (∂ylj(x, y))2

mb
··q + 2G ·q − mbΩ2q + DV(q) = Q̂(q, ·q, t)



Example: Subharmonics in a Gyro

  

Damping linearly depending on the absolute velocities the mass 
 (e.g. air damping)  

Stiffness-proportional damping for the spring-damper elements, 
i.e.  for  and  

Mono-harmonic forcing of frequency 

Q̂(q, ·q, t) = ε(Qd,α(q, ·q) + Qd,β(q, ·q) + Qf(t))

mb εQd,α(q, ·q) = − εαmb( ·q + m−1
b Gq);

cj = εβkj j = 1,... 4 εQd,β(q, ·q) = − εβC(q) ·q,

lΩ

εQf(t) = ε (+cos(lΩt)
−sin(lΩt)), l ∈ ℕ .

mb
··q + 2G ·q − mbΩ2q + DV(q) = Q̂(q, ·q, t)



Example: Subharmonics in a Gyro

Equations of motion in Hamiltonian form 

 

Conservative limit: 

Linearized frequencies at 
the equilibrium 

 and  

Focus on the first NNM

·q = − Gq + p,
·p = − DV(q) − Gp + ε(Qf(t) − αp − βC(q)(p − Gq)) .
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Example: Subharmonics in a Gyro

Equations of motion in Hamiltonian form 

 

Conservative limit: 

Linearized frequencies at 
the equilibrium 

 and  

Focus on the first NNM 

Set 

·q = − Gq + p,
·p = − DV(q) − Gp + ε(Qf(t) − αp − βC(q)(p − Gq)) .

0.92513 3.1431

l = 3 0.92 0.94 0.96
0

0.05

0.1

0.15

0.2

0.25

0.3

-1 0 1
x

0

0.05

0.1

0.15

0.2

0.25

0.3

x

y
Ω

k1

c1

k2

k3

k4

c2

c3

m

c4

b)a)

ΩΩ
y

x

k4

k3

k2

k1

c4

c3
c2

c1 mb

ω Re(μ)

h hh h
xy a

Harmonic content



Analysis of the two separate damping mechanisms 

The Melnikov function is  
for   and  

ℳ1:3(s) = 1.4402 cos(3Ωs) − 1.1553
α = 0.76376, β = 0 α = 0, β = 0.32

Example: Subharmonics in a Gyro
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Simulations with COCO  
at  ε = 0.01



From Single Orbits to Orbits Families

We have a framework to study eventual singular behaviors 
when varying a parameter  

We focus on quadratic zeros, defined as: 

The simplest case is the one of limit point (codim. 0)

κ

ℳm:l(s0, κ0) = Dsℳm:l(s0, κ0) = 0 Dssℳm:l(s0, κ0) ≠ 0

Dκℳm:l(s0, κ0) ≠ 0

Detection of maximal responses

0 
1 
2

κ0
h

ω



A Zoo of Bifurcations

Isola Center

Simple Bifurcation

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)

Closed isola

h
ω

h
ω

h
ω

h
ω

h
ω

h
ω

No solution Single solution

Break-upBottleneck Node singularity

ℳm:l(s0, ω0) = Dsℳm:l(s0, ω0) = Dωℳm:l(s0, ω0) = 0Defining conditions:

det(D2ℳm:l(s0, ω0)) > 0Nondegeneracy condition:

det(D2ℳm:l(s0, ω0)) < 0Nondegeneracy condition:



Example: Parametric Forcing and Isolas
·q = p,

·p1 = −k(q1 − q2) − k /3q1 − aq2
1 − bq3

1 − εαp1,
·p2 = −k(q2 − q1) − k(q2 − q3) − εαp2,
·p3 = −k(q3 − q2) + ε(q3 f(t; Ω) − αp3),
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q1 q2 q3

εq3 f(t; Ω)

ω

Re
(μ

)
Im

(μ
)

ω

ω

m
ax

| q
3,0

|

Conservative limit:

f(t; Ω) =
4
π

3

∑
j=1

1
2j − 1

sin((2j − 1)Ωt),Approximation of a square-wave 
up to the 6-th harmonic

q, p ∈ ℝ3

k = 1,
a = −0.5,
b = 1,



Example: Parametric Forcing and Isolas

Assume a 1:1 resonance and evaluate  along the familyℳ1:1
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θ

Distance of the frequency response 
from the backbone curve

Loci of zeros of the Melnikov function as function 
of the frequency and the phase shift of the orbit

ε = 0.0025



Experimental Applications

Testing for backbone curve extraction 

Phase-lag quadrature criterion: forcing is exactly balancing the 
damping if the phase lag between forcing and measurement is 90° 

This was show for: synchronous motions and linear damping

Shaker

Peeters, G. Kerschen, & Golinval (2011), Renson, Gonzalez-Buelga, Barton & Neild (2017), Peter, Scheel, Krack, & Leine (2018)



Experimental Applications

Testing for backbone curve extraction 

Phase-lag quadrature criterion: forcing is exactly balancing the 
damping if the phase lag between forcing and measurement is 90° 

This was show for: synchronous motions and linear damping

Shaker

Using our Melnikov analysis one can show that this is valid,  
when forcing is mono-harmonic, for arbitrary motions and damping 

shapes, but only for co-located measurements!

Co-located 
accelerometer



Summary and Future Directions

An energy balance is sufficient to establish the existence of 
weakly forced-damped vibrations from the conservative limit, 
while their stability can be studied with nonlinear damping rates 

These analytical results matches with available ones for single- 
degree-of-freedom oscillators and with real life observations 

Our approach offers significant advantages both for numerical 
and experimental studies 

What about the survival of tori?
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