Uncovering how conservative backbone curves survive the advent of forcing and damping

Mattia Cenedese

Ph.D. Student, Chair in Nonlinear Dynamics Joint work with Prof. Dr. George Haller

The Role of Periodic Orbits in Dynamics

Periodic orbit: motion that repeats identically after a finite period of time

The Role of Periodic Orbits in Dynamics

Periodic orbit: motion that repeats identically after a finite period of time

Consider **N** coupled, periodically forced and damped oscillators for **arbitrary motion amplitude**. Some nonlinear phenomena

Why would practitioners capitalize on analytical tools?

1: Nayfeh & Mook (2007); 2: De la Llave & Kogelbauer (2020); 3: Peeters, G. Kerschen, & Golinval (2011), Hill, Cammarano, Neild & Barton (2017)

Overview of the Classic Melnikov Method

- Or better, the Poincaré-Arnold-Melnikov method (1963)
- Originally: $\dot{x} = JDH(x) + \varepsilon g(x, t), \quad g(x, t + T) = g(x, t), \quad x \in \mathbb{R}^2$

Melnikov (1963), Guckenheimer & Holmes (1983), Yagasaki (1996)

Overview of the Classic Melnikov Method

- Or better, the <u>Poincaré-Arnold-Melnikov</u> method (1963)
- Originally: $\dot{x} = JDH(x) + \varepsilon g(x, t), \quad g(x, t + T) = g(x, t), \quad x \in \mathbb{R}^2$

Extended to integrable, low-dimensional hamiltonian systems

... not the case for structural problems in practical applications.

Setup: Weakly Forced and Damped Systems

Mechanical system with n degrees of freedom, whose conservative limit is defined by the Lagrangian

$$L(q, \dot{q}) = \frac{1}{2} \langle \dot{q}, M(q) \dot{q} \rangle + \langle \dot{q}, G_1(q) \rangle + G_0(q) - V(q)$$

and its energy reads: $H(q, \dot{q}) = \frac{1}{2} \langle \dot{q}, M(q) \dot{q} \rangle - G_0(q) + V(q)$

 $q \in \mathbb{R}^n$

Collecting any dissipative or active force in the small, timeperiodic Lagrangian component Q with frequency Ω , the equations of motion are

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = \varepsilon Q(q, \dot{q}, t; \Omega, \varepsilon), \qquad 0 \le \varepsilon \ll 1$$

Periodic Orbits of Conservative Systems

- Present in almost all energy levels
- Generically, they exist in families
 MMMs
- Not structurally stable
- **Types of orbits in 1 parameter families:**
 - Regular periodic orbits

Muñoz-Almaraz, Freire, Galán, Doedel & Vanderbauwhede (2003)

Periodic Orbits of Conservative Systems

- Present in almost all energy levels
- Generically, they exist in families
 MMMs
- Not structurally stable
- **Types of orbits in 1 parameter families:**
 - Regular periodic orbits
 - Folding periodic orbits

$$\begin{array}{c|c} h \\ \hline \\ h' \neq 0 \\ \hline \\ \omega' = 0 \\ \hline \\ \omega \end{array}$$

Periodic Orbits of Conservative Systems

- Present in almost all energy levels
- Generically, they exist in families *NNMs*
- Not structurally stable

- Types of orbits in 1 parameter families:
 - Regular periodic orbits
 - Folding periodic orbits

h branching h homoclinic ω

Critical cases

Muñoz-Almaraz, Freire, Galán, Doedel & Vanderbauwhede (2003)

Perturbation from the Conservative limit

- We look for subharmonic orbits of order $l \in \mathbb{N}$ in the forced-damped system
- Pick a regular orbit $q_0(t)$ with period τ_0 of the conservative backbone curve at (ω_0, h_0)
- Set $q(t) = q_0(t + s) + O(\varepsilon)$ as well as a resonance constraint to fix Ω , either

(b) Near resonance: $m\Omega = l\omega_0 + O(\varepsilon)$ and $H(q(0), \dot{q}(0)) = h_0$

Main Result: Existence

Define the Melnikov function

a mt

. Work done by non-conservative forces evaluated at the conservative limit!

$$\mathcal{M}_{m:l}(s) = \int_0^{m_0} \langle \dot{q}_0(t+s), Q(q_0(t+s), \dot{q}_0(t+s), t; l\omega_0/m, 0) \rangle dt$$

If $\mathcal{M}_{m:l}(s_0) = 0$ & $\mathcal{M}'_{m:l}(s_0) \neq 0$, the conservative limit $q_0(s_0 + t)$ persists for the weakly damped, periodically forced system *Exact resonance Near resonance*

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)

Main Result: Existence

Define the Melnikov function

$$\mathcal{M}_{m:l}(s) = \int_0^{m\tau_0} \langle \dot{q}_0(t+s), Q(q_0(t+s), \dot{q}_0(t+s), t; l\omega_0/m, 0) \rangle dt$$

If $\mathcal{M}_{m:l}(s_0) = 0$ & $\mathcal{M}'_{m:l}(s_0) \neq 0$, but the backbone curve has a fold at (ω_0, h_0) , then $q_0(s_0 + t)$ persists in any direction transverse to the folding direction

Fold in
$$\omega$$

 $\varepsilon = 0$
 $0 < \varepsilon \ll 1$

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)

Main Result: Existence

Define the Melnikov function

$$\mathcal{M}_{m:l}(s) = \int_0^{m\tau_0} \langle \dot{q}_0(t+s), Q(q_0(t+s), \dot{q}_0(t+s), t; l\omega_0/m, 0) \rangle dt$$

- If $|\mathcal{M}_{m:l}(s)| > 0$, the conservative limit does not persist for the weakly damped, periodically forced system
- If the conservative periodic orbit $q_0(t)$ is a critical orbit, the Melnikov function alone is not sufficient to predict the fate of the fate of $q_0(t)$

Towards Stability

- Write the system in Hamiltonian form $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} g = \begin{pmatrix} 0 \\ Q \end{pmatrix}$ $p = \frac{\partial L}{\partial \dot{q}} = M(q)\dot{q} + G_1(q)$ $\dot{x} = JDH(x) + \varepsilon g(x, t; \Omega, \varepsilon)$ x = (q, p)
- For the stability of a periodic orbit with period $l\Omega$ we need to study the eigenvalues of the monodromy matrix $X(l\Omega) \in \mathbb{R}^{n \times n}$

$$\dot{X} = JD^{2}H(x(t))X + \varepsilon D_{x}g(x(t), t; \Omega, \varepsilon) \qquad \Pi_{0} = X_{0}(m\tau_{0}) \text{ is the}$$

$$X(0) = I \qquad \qquad \text{solution at } \varepsilon = 0$$

Towards Stability

The conservative limit has always at least 2 eigenvalues of Π_0 equal to +1. Possible configurations of the unperturbed spectrum

Towards Stability

For each of the *n* couples of eigenvalues, define the nonlinear damping rate

$$C_{i} = -\frac{1}{m\tau_{0}} \int_{0}^{m\tau_{0}} \operatorname{trace}\left(S_{i}X_{0}^{-1}(t)D_{x}g(x_{0}(t), t; l\omega_{0}/m, 0)X_{0}(t)R_{i}\right)dt$$

span (R_i) is the *i*-th eigenspace, $S_i = (R_i^{\top}JR_i)^{-1}R_i^{\top}J$ and $\dot{X}_0 = JD^2H(x_0(t))X_0$, $X_0(0) = I$

Main Result: Stability

Cenedese & Haller, Stability of forced-damped response in mechanical systems from a Melnikov analysis, Chaos (2020)

Connection with Experimental Observations

Assume that the nonlinear damping rates are positive

simulation of the forced-damped system

Remarks

The formula for the nonlinear damping rate is complex.

$$C_{i} = -\frac{1}{m\tau_{0}} \int_{0}^{m\tau_{0}} \operatorname{trace}\left(S_{i}X_{0}^{-1}(t)D_{x}g(x_{0}(t), t; l\omega_{0}/m, 0)X_{0}(t)R_{i}\right)dt$$

For
$$n = 1$$
, $C_1 = -\frac{1}{m\tau_0} \int_0^{m\tau_0} \operatorname{trace} \left(D_x g(x_0(t), t; l\omega_0/m, 0) \right) dt$

- For $Q = F(t) \alpha M(q)p$, then $C_i = \alpha \ \forall i \in \{1, ..., n\}$
- Instability conditions can be formulated for other cases

$$m_b \ddot{q} + 2G\dot{q} - m_b \Omega^2 q + DV(q) = \hat{Q}(q, \dot{q}, t)$$

$$G = m_b \begin{bmatrix} 0 & -\Omega \\ \Omega & 0 \end{bmatrix},$$

$$V(q) = \frac{1}{2} \sum_{j=1}^4 k_j (l_j(x, y) - l_0)^2,$$

$$l_{1,3}(x, y) = \sqrt{(l_0 \pm x)^2 + y^2},$$

$$l_{2,4}(x, y) = \sqrt{x^2 + (l_0 \pm y)^2},$$

 $\Omega = 0.942, \ l_0 = 1, \ k_1 = 1, \ k_2 = 4.08, \ k_3 = 1.37, \ k_4 = 2.51$

$$m_b \ddot{q} + 2G\dot{q} - m_b \Omega^2 q + DV(q) = \hat{Q}(q, \dot{q}, t)$$

$$\hat{Q}(q,\dot{q},t) = \varepsilon \big(Q_{d,\alpha}(q,\dot{q}) + Q_{d,\beta}(q,\dot{q}) + Q_f(t) \big)$$

- Damping linearly depending on the absolute velocities the mass m_b (e.g. air damping) $\varepsilon Q_{d,\alpha}(q,\dot{q}) = -\varepsilon \alpha m_b (\dot{q} + m_b^{-1}Gq);$
- Stiffness-proportional damping for the spring-damper elements, i.e. $c_j = \varepsilon \beta k_j$ for j = 1, ..., 4 and $\varepsilon Q_{d,\beta}(q, \dot{q}) = -\varepsilon \beta C(q) \dot{q}$,

$$C(q) = \sum_{j=1}^{4} k_j \begin{bmatrix} \left(\partial_x l_j(x, y)\right)^2 & \partial_x l_j(x, y)\partial_y l_j(x, y) \\ \partial_x l_j(x, y)\partial_y l_j(x, y) & \left(\partial_y l_j(x, y)\right)^2 \end{bmatrix}$$

$$m_b \ddot{q} + 2G\dot{q} - m_b \Omega^2 q + DV(q) = \hat{Q}(q, \dot{q}, t)$$

$$\hat{Q}(q,\dot{q},t) = \varepsilon \left(Q_{d,\alpha}(q,\dot{q}) + Q_{d,\beta}(q,\dot{q}) + Q_f(t) \right)$$

- Damping linearly depending on the absolute velocities the mass m_b (e.g. air damping) $\varepsilon Q_{d,\alpha}(q,\dot{q}) = -\varepsilon \alpha m_b (\dot{q} + m_b^{-1}Gq);$
- Stiffness-proportional damping for the spring-damper elements, i.e. $c_j = \epsilon \beta k_j$ for j = 1, ..., 4 and $\epsilon Q_{d,\beta}(q, \dot{q}) = -\epsilon \beta C(q) \dot{q}$,
- Mono-harmonic forcing of frequency $l\Omega$

$$\varepsilon Q_f(t) = \varepsilon \begin{pmatrix} +\cos(l\Omega t) \\ -\sin(l\Omega t) \end{pmatrix}, \quad l \in \mathbb{N}.$$

Equations of motion in Hamiltonian form

$$\dot{q} = -Gq + p,$$

$$-\beta C(q)(p-Gq)\big)\,.$$

Equations of motion in Hamiltonian form

$$\dot{q} = -Gq + p,$$

 $-\beta C(q)(p-Gq)$.

- Analysis of the two separate damping mechanisms
- The Melnikov function is $\mathcal{M}_{1:3}(s) = 1.4402 \cos(3\Omega s) 1.1553$ for $\alpha = 0.76376$, $\beta = 0$ and $\alpha = 0$, $\beta = 0.32$

From Single Orbits to Orbits Families

- We have a framework to study eventual singular behaviors when varying a parameter κ
- We focus on quadratic zeros, defined as:

$$\mathcal{M}_{m:l}(s_0,\kappa_0) = D_s \mathcal{M}_{m:l}(s_0,\kappa_0) = 0 \qquad D_{ss} \mathcal{M}_{m:l}(s_0,\kappa_0) \neq 0$$

The simplest case is the one of limit point (codim. 0)

 $D_{\kappa}\mathcal{M}_{m:l}(s_0,\kappa_0) \neq 0$

Detection of maximal responses

A Zoo of Bifurcations

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)

Example: Parametric Forcing and Isolas

$$\begin{split} \dot{q} &= p, & q, p \in \mathbb{R}^3 \\ \dot{p}_1 &= -k(q_1 - q_2) - k/3q_1 - aq_1^2 - bq_1^3 - \varepsilon \alpha p_1, & k = 1, \\ \dot{p}_2 &= -k(q_2 - q_1) - k(q_2 - q_3) - \varepsilon \alpha p_2, & a = -0.5, \\ \dot{p}_3 &= -k(q_3 - q_2) + \varepsilon (q_3 f(t; \Omega) - \alpha p_3), & b = 1, \end{split}$$

Approximation of a square-wave
$$f(t; \Omega) = \frac{4}{\pi} \sum_{j=1}^{3} \frac{1}{2j-1} \sin((2j-1)\Omega t),$$

Example: Parametric Forcing and Isolas

Assume a 1:1 resonance and evaluate $\mathcal{M}_{1\cdot 1}$ along the family

Experimental Applications

Testing for backbone curve extraction

Phase-lag quadrature criterion: forcing is exactly balancing the damping if the phase lag between forcing and measurement is 90°

This was show for: synchronous motions and linear damping

Experimental Applications

Testing for backbone curve extraction

Co-located accelerometer

Phase-lag quadrature criterion: forcing is exactly balancing the damping if the phase lag between forcing and measurement is 90°

Using our Melnikov analysis one can show that this is valid, when forcing is mono-harmonic, for arbitrary motions and damping shapes, but only for co-located measurements!

Summary and Future Directions

- An energy balance is sufficient to establish the existence of weakly forced-damped vibrations from the conservative limit, while their stability can be studied with nonlinear damping rates
- These analytical results matches with available ones for singledegree-of-freedom oscillators and with real life observations
- Our approach offers significant advantages both for numerical and experimental studies
- * What about the survival of tori?

