Uncovering how conservative backbone curves
survive the advent of forcing and damping
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The Role of Periodic Orbits in Dynamics

Periodic orbit: motion that repeats identically after a finite period of time
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The Role of Periodic Orbits in Dynamics

Periodic orbit: motion that repeats identically after a finite period of time

Dynamical models

condervalive  lime-periodic

Vo

X =f(x)+ eg(x,t,e¢), D<ex

Can we predict existence and stability of periodic orbits of the

perturbed system starting from those of the conservative system?




Motivations: the case of Mechanical Vibrations

Consider N coupled, periodically forced and damped oscillators for

arbitrary motion amplitude. Some nonlinear phenomena
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Motivations: the case of Mechanical Vibrations

Why would practitioners capitalize on analytical tools?

é )
Computational speed-up for studies of Available methods:
the effect forcing & damping terms _ _
9 ) 1 ®Asymptotic expansions
g A from an equilibrium!?
Find isolas: identification is challenging
from numerical continuation ®LSM & SSM?
. ,
é )

® Energy-type arguments3

Validate and extend experimental

routines using the phase-lag quadrature | § @ Melnikov methods
g W,

1: Nayfeh & Mook (2007); 2: De la Llave & Kogelbauer (2020); 3: Peeters, G. Kerschen, & Golinval (2011), Hill, Cammarano, Neild & Barton (2017)



Overview of the Classic Melnikov Method

® Or better, the Poincaré-Arnold-Melnikov method (1963)

® Originally: x = JDH(x) + eg(x,1), g, t+T) =g, 1), xR’

//% R If /[ (s) has a
M A transverse zero

Melnikov (1963), Guckenheimer & Holmes (1983), Yagasaki (1996)



Overview of the Classic Melnikov Method

® Or better, the Poincaré-Arnold-Melnikov method (1963)

® Originally: x = JDH(x) + eg(x,1), g, t+T) =g, 1), xR’

//Es R If /[ (s) has a
M A transverse zero

e=1(

sz

Subltarumonic Orbitd

D<ex ]

® Extended to integrable, low-dimensional hamiltonian systems

.. not the case for structural problems in practical applications.

Melnikov (1963), Guckenheimer & Holmes (1983), Yagasaki (1996)



Setup: Weakly Forced and Damped Systems

Mechanical system with n degrees of freedom, whose

conservative limit is defined by the Lagrangian g € R”

1
L(q,éz)=5<q,M(q)(2> (q,Gi(q@) + Gy(g) — V(g)

1
and its energy reads: H(qg, q) = 5( q,M(q)q) — Gy(@) + V(g)

® (Collecting any dissipative or active force in the small, time-
periodic Lagrangian component Q with frequency €2, the

equations of motion are

d (oL oL 0(q, q,t;, 8, €) 0<exl
——— =¢ ,(, 1,384, ), S €
dt \oq )~ og 4



Periodic Orbits of Conservative Systems

Present in almost all energy levels

® Generically, they exist in families
Ny

® Not structurally stable

® Types of orbits in 1 parameter families:

¢ Regular periodic orbits

-----------------

® h£0
@' # 0

Mufoz-Almaraz, Freire, Galan, Doedel & Vanderbauwhede (2003)
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Periodic Orbits of Conservative Systems

® Generically, they exist in families

MMy,

® Not structurally stable

Present in almost all energy levels

-----------------

® Types of orbits in 1 parameter families:

¢ Regular periodic orbits

¢ Folding periodic orbits

o Ceitical

h

A

branching h

A

homoclinic

Mufoz-Almaraz, Freire, Galan, Doedel & Vanderbauwhede (2003)



Perturbation from the Conservative limit

® \We look for subharmonic orbits of order /\ q;

[ € N in the forced-damped system \/gy [

® Pick a regular orbit gy(#) with period 7, of

the conservative backbone curve at (w, /1)

® Set q(t) = qy(t + 5) + O(¢) as well as 0

a resonance constraint to fix €, either

(a) Exact resonance: m€2 = lw, with m, [ being relatively

prime integers, or

(b) Near resonance: mQ = lw, + O(e) and H(g(0), §(0)) = h,



Main Result: Existence

| _ _ Wok done by non-condervative foces
® Define the Melnikov function /_\ evaluated at Uhe condervative bimit!
T,
%m;l(s) — <QO(t Ll S)? Q(QO(t B S)a QO(ZL S)a L la)o/ma()))dt
Jo

|t M, . (s)) =0& M, (s9) #0, the conservative limit gy(sy + 1)

versists for the weakly damped, periodically forced system

Exact redonarnce Near, redonarnce
th th
?
E = O Q @<« - @9
D<<ex 1 s
a a)

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)



Main Result: Existence

® Define the Melnikov function

[ mTO

M oi(5) = | ot + 9), Qqo(t + 9), Golt + 5), 1; Ly m,0) )it
Jo

|t M, (s)) =0& M, (s5) #0, but the backbone curve has a
fold at (wy, hy), then gy(sy + f) persists in any direction

transverse to the folding direction
Fold in

e=0

D<ex ]

th

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)



Main Result: Existence

® Define the Melnikov function

[ mTO

M oi(5) = | ot + 9), Qqo(t + 9), Golt + 5), 1; Ly m,0) )it
Jo

® |f |, (s)| >0, the conservative limit does not persist for the

weakly damped, periodically forced system
® |f the conservative periodic orbit gy(?) th
is a critical orbit, the Melnikov function .

alone is not sufficient to predict

the fate of the fate of g,(?) a)

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)



Towards Stability

0 I 0
® \Write the system in Hamiltonian form J = [—I 0] 5= <Q>

o Y
= — = M(q)g + G,(g)

p=—
0qg :{> X = JDH(x) + eg(x, ; Q, ¢)
x =(q,p)

® For the stability of a periodic orbit with period /{2 we need to
study the eigenvalues of the monodromy matrix X(IQ) € R

X = JD?H(x(1)X + eD g(x(1), 1,2, €) 11, = Xy(mzy) is the
X0)=1 solution at e = ()

Arnold (1989), Meyer and Offin (2017)



Towards Stability

equal to +1. Possible configurations of the unperturbed s

Im(u) Im(p)

=4 lul =1
@
Re(u)

The conservative limit has always at least 2 eigenvalues o

:HO

Dectrum

"

Im(u) Im(p)

ul=1 |u|r=1/*
Re(u)




Towards Stability

® \We consider a conservative limit that satisfies Note. the. eigenvaive

Ah ' Im(y) +1M/wt/zega/a/z

’," a)(’) #+ 0 |ﬂ|7’
Re(u)
)
> L\O\

® For each of the n couples of eigenvalues, define the nonlinear

damping rate

1 P mTO

C, = trace(SiXo_l(t)ng(xO(t), . la)O/m,O)XO(t)Ri>dt
mty 0

span(R;) i the ¢-th eigendpace. S; = (R;'JR;) - R'J and X, = JD*H(xy(1))Xy, X,(0) =1



Main Result: Stability

The forced-damped periodic orbit is asymptotically stable if

M. . (Sg)wy > 0 and C;>0Vie {l,..n}

Cenedese & Haller, Stability of forced-damped response in mechanical systems from a Melnikov analysis, Chaos (2020)



Connection with Experimental Observations

® Assume that the nonlinear damping rates are positive

t h

These predictions are obtained without any

simulation of the forced-damped system




® [he formula for the nonlinear damping rate is complex.

1 rmMT,
C, = trace(SiXo_l(t)ng(xO(t), . la)O/m,O)XO(t)Ri)dt
mTO Jo
1 rMT,
® Forn=1, C, = trace(ng(xO(t), f la)o/m,O)>dt
mt . 0

® For Q= F({)—aM(g)p, then C.=a Vie {1,...n}

® |nstability conditions can be formulated for other cases



Example: Subharmonics in a Gyro

myg + 2Gq — myQ2q + DV(q) = (g, ¢, 1)

0
_Q
1 &
V<q>=5§ (Lo y) — 1)

j=1

[ 5(x,y) = \/ (lp = x)° + y°,

b 4(x,y) = \/ x>+ (h£y),




Example: Subharmonics in a Gyro

myg + 2Gq — myQ2q + DV(q) = (g, ¢, 1)

04,4, 1) = &(04(q: @) + Qu f(q-9) + QD))

® Damping linearly depending on the absolute velocities the mass

my, (e.g. air damping) €0, (g, ) = — eamy,(g + mb_le);

® Stiffness-proportional damping for the spring-damper elements,
i.e. ¢; = gpPk; tor j = 1,...4 and €0, 4(q, q) = — efC(q)q.

(0(6,))°  9.4(x)d,1(x, )
OOy (3dx)’

4
Clg)= ) k
j=1




Example: Subharmonics in a Gyro

myg + 2Gq — myQ2q + DV(q) = (g, ¢, 1)

04,4, 1) = &(04(q: @) + Qu f(q-9) + QD))

® Damping linearly depending on the absolute velocities the mass

my, (e.g. air damping) €0, (g, ) = — eamy,(g + mb_le);

® Stiffness-proportional damping for the spring-damper elements,

i.e. ¢; = gpPk; tor j = 1,...4 and €0, 4(q, q) = — efC(q)q.

® Mono-harmonic forcing of frequency [€2

- +cos(/€21)
Qi) = ¢ (—sin(zgzz)>’ 'eN



Example: Subharmonics in a Gyro

® Equations of motion in Hamiltonian form
q =—Gq+p,
p=—DV(g) — Gp+¢e(Qu1) — ap — pC(g)(p — Gg)) .

m Conservative limit: . ' . "

025} 1 025t

¢ Linearized frequencies at 0ol
the equilibrium

0.92513 and 3.1431  =<"" | ="

0.1 y 0.1

¢ Focus on the first NNM
005+ . 005+

0 / 0_

0.92 0.94 0.96
@




Example: Subharmonics in a Gyro

® Equations of motion in Hamiltonian form
q =—Gq+p,
p=—DV(g) — Gp+¢e(Qu1) — ap — pC(g)(p — Gg)) .

® Conservative limit: 03, awmonic content
0.3 - 0.25 |
¢ Linearized frequencies at (s
i . 0.2
the equilibrium 0.2 - —
— 1w
0.92513 and 3.1431 < 0.15 - = 0.15 2
— 3
0.1 - 01 _‘;’w
¢ Focus on the first NNM .05 — 6w
005 e
0- 0.5
0.2
. — : 0 0 |
Set l — 3 0 02 0.5 0.5 1
X a



Example: Subharmonics in a Gyro

® Analysis of the two separate damping mechanisms

® The Melnikov function is A .5(s) = 1.4402 cos(3€2s) — 1.1553
fora =0.76376, /=0 and a=0, f=0.32

Simulations with COCO —a=0, =032
—a = 0.79376, f = 0 1 " T
s & = ()
_08F | —1,a=0,5=032
= —e2,a=0,5=032
06 | —-—-1+eCz/2
—— 1 +eCyt/2 .
0.23 - 107 1072 107!
E
= 0.22 ~
0.21 -
0.2 - | ——a =0.79376, f =0
) 02 . —_— 1+ ceat/2
107 1072 107!




From Single Orbits to Orbits Families

® \Ve have a framework to study eventual singular behaviors

when varying a parameter k

® \We focus on quadratic zeros, defined as:

%m:l(SO’ KO) — Dsﬂm:l(SO’ KO) =0 Dss'%m:l(SO’ KO) 7& 0

® The simplest case is the one of limit point (codim. 0)

Dkﬂm:l(so’ KO) 7 0

Detection of maximal responses




A Zoo of Bifurcations

Defining conditions: %m:l(SO’ a)o) = Ds'%m:l(SO’ 0)0) = Da)%m:l(so’ 600) =0

Isola Center Nondegeneracy condition: det(Dzﬂm:l(SO, a)o)) > 0

No solution Single solution Closed isola

s s

Simple Bifurcation

Bottleneck

Cenedese & Haller, How do conservative backbone curves perturb into frequency responses? A Melnikov function analysis, P.R.S.A (2020)



Example: Parametric Forcing and lsolas

q =D, g,p € R’
p1 = —k(gq, — q,) — kI3q, — agi — bg; — eap,, k=1,
Py = —k(g, — q1) — k(q, — q3) — eap,, a=-0.5,
P3 = —k(gz — qp) + €(q5/(1; L2) — ap;), b=1,

4

71'

Anproximation of a dquare-wave —
a,o,a‘otéeé’(%%émm f(t Q)

Mw

2] — sin((2j — 1)),



Example: Parametric Forcing and lsolas

® Assume a 1:1 resonance and evaluate ./Z.; along the family

3712 .
—a=o121] Locto 4 of the ' on ad i
_Z :85& /g@w é /MMVW&O/Z W&Oﬂ
of the frequency and the phase sAL of the o'thil
S5m/4 ’
S 7
e = 0.0025
0.02 .
3m/4 0015
o |
= 001, ]
12 ' ' ' 5 "\
e 105 1.1 1.15 g 00051 M \
w L{U \:\ ________________ g /
< O o= //
=< /
£ -0.005 - K/ /tj .7
Distance of tee freq neqponge, 001 | _--=="TTTTTTT
from the backbone cwwe

1.05 1.1 1.15




Experimental Applications

Testing for backbone curve extraction

Phase-lag quadrature criterion: forcing is exactly balancing the

damping if the phase lag between forcing and measurement is 90°

This was show for: synchronous motions and linear damping

Peeters, G. Kerschen, & Golinval (2011), Renson, Gonzalez-Buelga, Barton & Neild (2017), Peter, Scheel, Krack, & Leine (2018)



Experimental Applications

Testing for backbone curve extraction

- S —

Phase-lag quadrature criterion: forcing is exactly balancing the

damping if the phase lag between forcing and measurement is 90°

Using our Melnikov analysis one can show that this is valid,

when forcing is mono-harmonic, for arbitrary motions and damping

shapes, but only for co-located measurements!



Summary and Future Directions

® An energy balance is sufficient to establish the existence of
weakly forced-damped vibrations from the conservative limit,

while their stability can be studied with nonlinear damping rates

® [hese analytical results matches with available ones for single-

degree-of-freedom oscillators and with real life observations

® Qur approach offers significant advantages both for numerical

and experimental studies

* \What about the survival of tori?




