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Lagrangian coherent structures (LCSs) are material surfaces that shape the finite-time tracer pat-

terns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic

and hyperbolic LCSs have been identified from different variational principles, solving different

equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are

invariant manifolds of the same autonomous dynamical system, generated by the intermediate

eigenvector field, n2ðx0Þ, of the Cauchy-Green strain tensor. This n2-system allows for the detection

of LCSs in any unsteady flow by classical methods, such as Poincar�e maps, developed for autono-

mous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use

their dual n2-system to uncover both hyperbolic and elliptic LCSs from a single computation.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4965026]

Tracer patterns, such as the funnel of a tornado, suggest

the emergence of coherence even in complex unsteady

flows. As a mathematical tool for analyzing the dynamics

behind time-evolving tracer patterns, Lagrangian coher-

ent structures (LCSs) represent a generalization of classic

invariant manifolds to non-autonomous systems. In three

dimensions, the available LCS types (hyperbolic and

elliptic) have been identified from different principles.

Here we observe that for any unsteady flow in three

dimensions, there is a single autonomous dynamical sys-

tem capturing all LCSs. Specifically, this dynamical sys-

tem is given by the intermediate eigenvector field of the

Cauchy-Green strain tensor. Our observation enables the

identification of LCSs in any unsteady flow by standard

numerical methods for autonomous systems.

I. INTRODUCTION

Lagrangian coherent structures (LCSs9) are exceptional

surfaces of trajectories that shape tracer patterns in unsteady

flows over finite time intervals of interest. By their sustained

coherence, LCSs are observed as barriers to transport. In

autonomous or time-periodic dynamical systems, classic

codimension-one invariant manifolds play a similar role

(e.g., Komolgorov-Arnold-Moser (KAM) tori1). In the time-

aperiodic and finite-time setting, this role is taken over by

LCSs as codimension-one invariant manifolds (material sur-
faces) in the extended phase space.

Material surfaces are abundant, yet most impose no

observable coherence. LCSs are distinguished material surfa-

ces that have an exceptional impact on nearby material surfa-

ces. Since various distinct mechanisms producing such

impacts are known,9 no unique mathematical approach has

been available to locate all the LCSs in a given flow. Instead,

separate mathematical methods and computational algorithms

exist for the three main LCS types: hyperbolic LCSs as gener-

alizations of stable and unstable manifolds;2,8 elliptic LCSs as

generalizations of invariant tori;2,10,20 and, in two dimensions,

parabolic LCSs as generalized jet cores.4

Several works2,4,8,10,20 have implemented properties that

distinguish LCSs from generic material surfaces by requiring

the LCSs to yield a critical value for a relevant quantity of

material deformation. The criticality requirement defining, for

instance, repelling hyperbolic LCSs (generalized stable mani-

folds) is that these material surfaces exert locally strongest

repulsion.2 Elliptic LCSs in two dimensions, on the other hand,

can be obtained as stationary curves of an averaged stretching

functional.10 For the remaining LCS types in two and three

dimensions, similar variational theories are available.2,4,8,20

All the variational LCS theories2,4,8,10,20 provide partic-

ular direction fields to which initial LCS positions must be

either tangent (in two dimensions) or normal (in three dimen-

sions). Later LCS positions can then be constructed by for-

ward or backward advection under the flow map.

In two dimensions, LCSs are simply material curves.4,9,10

Initial LCS positions can thus be identified by computing inte-

gral curves of (time-independent) direction fields defined in

the two-dimensional phase space. Obtaining initial-time LCS

surfaces in three dimensions,2,20 on the other hand, is signifi-

cantly more complicated: One has to construct entire surfaces

perpendicular to a given three-dimensional direction field.

The presently available approach to extracting these surfaces

is to sample the flow domain using two-dimensional reference

planes, and then, within each plane, integrate direction fields

that are perpendicular to the imposed LCS normal field. This

procedure typically yields a high number of integral curves,

which are candidates for intersection curves between

unknown LCSs and the respective slice of the flow domain.

As a second step, from this large collection of candidate

curves, one has to identify smaller families of curves that can

be interpolated into surfaces. Moreover, since the normal

fields depend on the type of LCS, one has to repeat this com-

plicated analysis for each LCS type.2,20a)georgehaller@ethz.ch
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Here we observe that initial positions of all available

variational LCSs in three dimensions share a common tan-

gent vector field: the intermediate eigenvector field, n2ðx0Þ,
of the right Cauchy-Green strain tensor. This allows us to

seek all LCSs in three dimensions as invariant manifolds of

the autonomous dynamical system generated by the n2-field.

The evolution of the n2-system takes place in the initial con-

figuration of the underlying non-autonomous system, but

contains averaged information about the non-autonomous

flow. The autonomous n2-system is hence dual to the original

unsteady flow. Equivalently, LCS final positions are invari-

ant manifolds of the intermediate eigenvector field, g2ðx1Þ,
of the left Cauchy-Green strain tensor.

Instead of identifying LCSs in three dimensions from

various two-dimensional direction fields,2,20 we therefore

need to consider only a single three-dimensional direction

field. We then locate LCSs by familiar numerical methods

developed for autonomous dynamical systems.

II. SET-UP FOR LAGRANGIAN COHERENT
STRUCTURES IN 3D

Here we briefly review the mathematical foundations for

Lagrangian coherent structures in three dimensions.9 We

consider ordinary differential equations of the form

_x ¼ uðx; tÞ; x 2 U; t 2 I; (1)

where U is a domain in the Euclidean space R3; I is a time

interval; u is a smooth mapping from the extended phase

space U� I to R3. The setting in (1) includes time-

aperiodic, non-autonomous dynamical systems for which

asymptotic limits are undefined.

We consider a finite time interval ½t0; t1� � I and denote

a trajectory of (1) passing through a point x0 at time t0 by

xðt; t0; x0Þ. For points x0 where the trajectory xðt; t0; x0Þ is

defined for all times t 2 ½t0; t1�, we introduce the flow map

Ft
t0
ðx0Þ :¼ xðt; t0; x0Þ: Denoting the support of Ft

t0
by D, the

flow map is a diffeomorphism onto its image Ft
t0
ðDÞ. Hence

the inverse ðFt
t0
Þ�1

exists, and, in particular, ðFt
t0
Þ�1 ¼ Ft0

t :

Definition 1 (Material surface). Consider a set of initial

positions forming a two-dimensional surface Mðt0Þ at time

t0 in U. Its time-t image, MðtÞ, is obtained under the flow

map as

MðtÞ ¼ Ft
t0
ðMðt0ÞÞ: (2)

The union of all time-t images, [t2½t0;t1�MðtÞ, is a hypersur-

face in the extended phase space U� I, called a material sur-
face. Unless we consider a specific time-t� image Mðt�Þ by

fixing time to a certain value t� 2 ½t0; t1�, we refer to the

entire material surface simply by the notationMðtÞ.
Any material surface is an invariant manifold in the

extended phase space U� I and, hence, cannot be crossed by

integral curves ðxðt; t0; x0Þ; tÞ. Only special material surfaces,

however, create coherence in the phase space U and hence

act as observable transport barriers. Such material surfaces

are generally called Lagrangian coherent structures (LCSs).

Quantifying material coherence in a general non-

autonomous system requires considering (1) for a fixed time

interval ½t0; t1�. This reflects the observation that coherent

structures in truly unsteady flows are generally transient (see

also Ref. 9). Accordingly, any LCS is defined with respect to

the fixed time interval ½t0; t1�. (Thus, in applications where

multiple time intervals ½t0; t1� are relevant, the LCSs need to

be determined separately for each time interval.)

Viewed in the phase space U, LCSs are time-dependent

surfaces, even if the underlying dynamical system (1)

is autonomous. LCS positions at different times are related

via (2).

In applications, even if the flow map Ft
t0

is available for

all t 2 ½t0; t1�, it remains challenging to detect and parameter-

ize all the a priori unknown LCSs. This, fortunately, need

not be done in the extended phase space: Since the flow map

applied to any LCS position Mðt�Þ uniquely generates any

required time-t imageMðtÞ, we can fix the time t� to an arbi-

trary value in ½t0; t1� and parameterize Mðt�Þ in the phase

space U. For simplicity, we generally choose t� ¼ t0. (For

attracting hyperbolic LCSs, however, it is advantageous to

parameterize Mðt1Þ instead of Mðt0Þ, see Sec. V C.) The

difficulty remains in that almost any conceivable surface

from the domain D evolves incoherently under the flow, and

hence does not define an LCS MðtÞ (cf. Fig. 1). We there-

fore need additional properties that, for any time-aperiodic

flow, distinguish LCSs from generic material surfaces.

III. REVIEW OF VARIATIONAL APPROACHES TO
LAGRANGIAN COHERENT STRUCTURES IN 3D

Within the general class of three-dimensional flows with

arbitrary time dependence (1), several types of material sur-

faces can be viewed as coherently evolving. Each of them

defines a distinct type of LCS. Three LCS types have so far

been identified: hyperbolic repelling and attracting LCSs

(generalized stable and unstable manifolds),2 and elliptic

LCSs (generalized invariant tori or invariant tubes).2,20

Hyperbolic LCSs are locally most repelling or attracting

material surfaces.2 To express this property mathematically,

FIG. 1. Schematic of an elliptic LCS MðtÞ, obtained as a toroidal surface

Mðt0Þ in the flow domain D at time t0. Up to rotations and translations, the

time-t1 image, Mðt1Þ, is only moderately deformed relative to Mðt0Þ and

does not display additional features, such as filaments. (In the context of

fluid dynamics, such an LCS could capture a coherently evolving vortex

ring in a three-dimensional unsteady flow.) Generic tori in D, on the other

hand, are expected to evolve incoherently under the flow Ft1
t0 and thus do not

yield LCSs.
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we introduce the normal repulsion q of a material surface

MðtÞ between times t0 and t1 (cf. Fig. 2). Specifically, at an

arbitrary point x0 in Mðt0Þ, we consider a unit surface nor-

mal n0ðx0Þ: Mapping n0ðx0Þ under the linearized flow

DFt1
t0ðx0Þ from t0 to t1 yields a vector v1ðx1Þ ¼ DFt1

t0ðx0Þ
n0ðx0Þ, where x1 ¼ Ft1

t0ðx0Þ is a point in Mðt1Þ. The vector

v1ðx1Þ will generally neither be of unit length nor perpendic-

ular to the surface Mðt1Þ. Denoting the unit normal of

Mðt1Þ at x1 by n1ðx1Þ, we introduce the normal repulsion

q as

q ¼ jjhv1; n1in1jj ¼ hv1; n1i; (3)

where h:; :i is the Euclidean scalar product, and jj:jj is the

Euclidean norm. A large value of q means that the compo-

nent of v1ðx1Þ normal to the surfaceMðt1Þ is large and, thus,

material elements that were initially aligned with n0ðx0Þ
appear repelled fromMðt1Þ. Similarly, if the normal compo-

nent of v1ðx1Þ is small, then the components of v1ðx1Þ tangent

toMðt1Þ must be large, corresponding to attraction of mate-

rial elements aligned with n0ðx0Þ to the surface Mðt1Þ.
Formally, we consider the normal repulsion as a function of

the initial position x0 and the surface normal n0ðx0Þ, i.e.,

q ¼ qðx0; n0Þ. With this convention, Mðt0Þ determines q.

We now use q to define hyperbolic LCSs as most repelling

or attracting material surfaces:

Definition 2 (Repelling and attracting hyperbolic
LCS2). A smooth material surface MðtÞ is a repelling (or
attracting) hyperbolic LCS if the unit normals n0ð:Þ of

Mðt0Þ maximize (or minimize) the normal repulsion func-

tion q among all perturbations n0ð:Þ 7! ~n0ð:Þ, with ~n0 :
Mðt0Þ ! S2 denoting an arbitrary unit vector field.

We additionally require q > 1 (q < 1) for repelling

(attracting) hyperbolic LCSs, which is automatically satisfied

for incompressible flows.

Motivated by KAM tori and coherent vortex rings in

fluid flows, we require elliptic LCSs to be tubular surfaces in

the phase space. By a tubular surface, we mean a smooth sur-

face that is diffeomorphic to a torus, cylinder, sphere, or

paraboloid. In order to capture the most influential tubular

surfaces, Fig. 2 suggests considering elliptic LCSs as surfa-

ces maximizing the tangential shear r under perturbations to

the surface normal.2 This Lagrangian shear r is defined as

r ¼ jjv1 � hv1; n1in1jj ¼ jjv1 � q n1jj (4)

(cf. Fig. 2). We consider the tangential shear r as a function

of the initial position x0 and the surface normal n0ðx0Þ, i.e.,

we write r ¼ rðx0; n0Þ.
Definition 3 ( Shear-maximizing elliptic LCS2). A tubular

material surface MðtÞ is an elliptic LCS if the unit normals

n0ð:Þ of Mðt0Þ maximize the tangential shear function r
among all perturbations n0ð:Þ 7! ~n0ð:Þ, with ~n0 :Mðt0Þ ! S2

denoting an arbitrary unit vector field.

As pointed out in Ref. 20, due to ever-present numerical

inaccuracies, it is difficult to construct entire tubular surfaces

that satisfy the strict requirement of pointwise maximal

shear. A less restrictive definition of elliptic LCSs has been

obtained recently by considering material surfacesMðtÞ that

stretch near uniformly under the flow.20 Considering any

point x0 inMðt0Þ, the linearized flow DFt1
t0 maps any vector

e0ðx0Þ from the tangent space Tx0
Mðt0Þ to a vector e1ðx1Þ in

Tx1
Mðt1Þ, where x1 ¼ Ft1

t0ðx0Þ. We defineMðtÞ as near uni-

formly stretching at x0 if all tangent vectors e0ðx0Þ satisfy

jje1ðx1Þjj ¼ kðx0Þ � jje0ðx0Þjj with

kðx0Þ 2 ½r2ðx0Þ � ð1� DÞ; r2ðx0Þ � ð1þ DÞ�; (5)

where r2ðx0Þ is the intermediate singular value of DFt1
t0ðx0Þ

(introduced below, cf. (6)); and D is a small stretching deviation

(0 � D	 1). As shown in Ref. 20, setting kðx0Þ ¼ r2ðx0Þ
(i.e., D¼ 0) is the only way to obtain a material surface that is

exactly uniformly stretching at x0 (cf. Fig. 3).

Definition 4 ( Near-uniformly stretching elliptic LCS20).
A tubular material surface MðtÞ is an elliptic LCS if it is

near-uniformly stretching at any point inMðt0Þ.
Remark 1. In Ref. 20, the stretching deviation D is cho-

sen to be constant onMðt0Þ. We could, however, let D vary

on Mðt0Þ and still obtain valid elliptic LCSs (as long as

0 � D	 1). Requiring exact uniform stretching (D¼ 0)

would be similarly restrictive as requiring maximal tangen-

tial shear (cf. Definition 3).

Remark 2. Since r2ðx0Þ is given by the problem and

generally not a constant function, the factor k ¼ kðx0Þ varies

within the surface Mðt0Þ even when D¼ 0. In two dimen-

sions, however, it is possible to construct elliptic LCSs that

stretch by a factor k that is constant onMðt0Þ.10

Remark 3. Other types of distinguished material surfa-

ces revealing elliptic LCSs are level sets of the polar rotation

angle6 and level sets of the Lagrangian-averaged vorticity.11

These approaches are based on the notion of rotational

FIG. 2. Definitions of normal repulsion q, cf. (3), and the tangential shear r,

cf. (4).

FIG. 3. Local deformation of a pointwise uniformly stretching surface (cf.

(5)): All tangent vectors based at x0 stretch exactly by the same factor of

kðx0Þ between times t0 and t1.
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coherence rather than stretching, and are hence not directly

related to the variational approaches we review here.

From the linearization of the flow map Ft1
t0 , we can

derive explicit geometric conditions for both hyperbolic and

elliptic LCSs (Definitions 2–4). These conditions are

expressible in terms of eigenvectors and eigenvalues of the

left and right Cauchy-Green strain tensors (cf. Remark 4

below). A fully equivalent, yet simpler picture is provided

by the singular-value decomposition (SVD) of the linearized

flow map DFt1
t0ðx0Þ: The linearized flow map DFt1

t0ðx0Þ (also

called deformation gradient) maps vectors from the tangent

space at x0 onto their time-t1 images in the tangent space at

the point x1 ¼ Ft1
t0ðx0Þ. (Since the flow domain U is in the

Euclidean space R3, each of these tangent spaces is simply

R3 as well.) In particular, DFt1
t0ðx0Þ maps its three right-

singular vectors n1;2;3ðx0Þ onto its three left-singular vectors

g1;2;3ðx1Þ, i.e.,

DFt1
t0
ðx0Þniðx0Þ ¼ riðx0Þ � giðx1Þ; i ¼ 1; 2; 3; (6)

see Fig. 4 and Ref. 21. The singular vectors n1;2;3ðx0Þ and

the g1;2;3ðx1Þ are unit vectors. Both the n1;2;3ðx0Þ and the

g1;2;3ðx1Þ define an orthonormal basis of R3. The stretch fac-

tors r1;2;3ðx0Þ in (6) are the singular values of DFt1
t0ðx0Þ,

which we assume to be distinct and ordered so that

0 < r1ðx0Þ < r2ðx0Þ < r3ðx0Þ: (7)

The available LCS definitions2,20 do not consider points

where two singular values are equal.

We illustrate the kinematic role of the right-singular

vectors n1;2;3ðx0Þ by considering the stretch factor of a vector

vðx0Þ, defined as

Kt1
t0

x0; v x0ð Þð Þ ¼
jjDFt1

t0 x0ð Þ v x0ð Þjj
jjv x0ð Þjj

: (8)

Since r1ðx0Þ < r2ðx0Þ < r3ðx0Þ, any vector vðx0Þ parallel

to n3ðx0Þ maximizes the stretch factor Kt1
t0
ðx0; :Þ among all vec-

tors from R3. The direction n1ðx0Þ, on the other hand, mini-

mizes Kt1
t0
ðx0; :Þ. We thus refer to the (right-) singular vector

n2ðx0Þ as the intermediate (right-) singular vector of DFt1
t0ðx0Þ.

In many applications, the flow Ft1
t0 is volume-preserving

(incompressible). Incompressibility means that r1r2r3 ¼ 1

holds everywhere. Together with 0 < r1 < r2 < r3, this

implies that r2 is the singular value closest to unity (cf.

Appendix A). Accordingly, n2 is the singular vector closest to

unit stretching (i.e., Kt1
t0
¼ 1).

The backward-time flow map Ft0
t1 yields a similar interpre-

tation for the left-singular vectors g1;2;3ðx1Þ: The backward-

time deformation gradient, DFt0
t1ðx1Þ, satisfies DFt0

t1ðx1Þ
¼ ½DFt1

t0ðx0Þ��1
. The right-singular vectors of DFt0

t1ðx1Þ are,

therefore, precisely the vectors g1;2;3ðx1Þ; the left-singular vec-

tors of DFt0
t1ðx1Þ are the n1;2;3ðx0Þ. In backward time, the

g1;2;3ðx1Þ hence play a similar role to n1;2;3ðx0Þ in forward

time. With the singular values of DFt0
t1ðx1Þ being ½r1;2;3ðx0Þ��1

,

it is, however, the vector g1ðx1Þ that maximizes Kt0
t1
: This

means, the direction of largest stretching in backward time is

g1ðx1Þ. Similarly, the vector g3ðx1Þ coincides with the direction

of least stretching in backward time; and g2ðx1Þ is the interme-

diate (right-) singular vector of DFt0
t1ðx1Þ.

Remark 4. By introducing the right Cauchy-Green strain

tensor

Ct1
t0
ðx0Þ ¼ ½DFt1

t0
ðx0Þ�TDFt1

t0
ðx0Þ ; (9)

where the T-superscript indicates transposition, we recover the

singular vectors n1;2;3ðx0Þ as eigenvectors of Ct1
t0ðx0Þ. The

associated eigenvalues of Ct1
t0ðx0Þ are k1;2;3ðx0Þ ¼ ½r1;2;3ðx0Þ�2:

Similarly, introducing the left Cauchy-Green strain tensor18 as

Bt1
t0
ðx1Þ ¼ DFt1

t0
ðx0Þ½DFt1

t0
ðx0Þ�T ; (10)

where x0 ¼ Ft0
t1ðx1Þ, the left-singular vectors g1;2;3ðx1Þ are the

eigenvectors of Bt1
t0ðx1Þ. The use of Ct1

t0 and Bt1
t0 is a common

approach in the LCS literature.9,12 As it is, however, numeri-

cally advantageous to use SVD instead of eigendecomposi-

tion,13,22 we will not use the Cauchy-Green strain tensors

here.

From the above it follows that the hyperbolic LCSs

introduced in Definition 2 can be specified in terms of the

vectors n1ðx0Þ; n3ðx0Þ (or g1ðx1Þ, g3ðx1Þ). (For a proof, see

Ref. 2, Appendix C.)

Proposition 1. A smooth material surface is a repelling
hyperbolic LCS if its time-t0 position is everywhere normal
to the direction n3 of largest stretching in forward time; or,
if its time-t1 position is everywhere normal to the direction
g3 of least stretching in backward time.

Proposition 2. A smooth material surface is an attract-
ing hyperbolic LCS if its time-t0 position is everywhere nor-
mal to the direction n1 of least stretching in forward time;
or, if its time-t1 position is everywhere normal to the direc-
tion g1 of largest stretching in backward time.

Elliptic LCSs (cf. Definitions 3 and 4) can be con-

structed similarly in terms of the n1;2;3ðx0Þ (or g1;2;3ðx1ÞÞ and

the r1;2;3ðx0Þ.
Proposition 3. A smooth material surface is pointwise

shear-maximizing if its time-t0 position is everywhere normal
to one of the two directions

~n6 ¼ ~aðr1; r2; r3Þ n16~cðr1; r2; r3Þ n3: (11)
FIG. 4. The deformation gradient DFt1

t0 mapping its right-singular vectors

n1;2;3 onto its left-singular vectors g1;2;3.
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Here ~a; ~c are positive functions of the singular values r1;2;3.
(See Ref. 2 for the specific expressions for ~a and ~c.)

Proof. See Ref. 2, Theorem 1. (
Proposition 4. A smooth material surface is near-

uniformly stretching if its time-t0 position is everywhere
normal to one of the two directions

n6
k ¼ aðr1; r2; r3; kÞ n16cðr1; r2; r3; kÞ n3: (12)

Here a; c are positive functions of the singular values r1;2;3,
and k 2 ½r2ð1� DÞ; r2ð1þ DÞ� with 0 � D	 1. (See Ref. 20

for the specific expressions of a and c.)
Proof. See Ref. 20, Proposition 1. (

IV. MAIN RESULT: AN AUTONOMOUS DYNAMICAL
SYSTEM FOR ALL LAGRANGIAN COHERENT
STRUCTURES IN 3D

As reviewed in Sec. III, all known LCSs in three dimen-

sions are geometrically constrained by the singular vectors

of the deformation gradient: Repelling hyperbolic LCSs are

normal to the largest singular vector n3 (Proposition 1);

attracting hyperbolic LCSs normal to the smallest singular

vector n1 (Proposition 2); elliptic LCSs can be obtained as

surfaces normal to certain linear combinations of n1 and n3

(Propositions 3 and 4). All these definitions, therefore, pick

out material surfaces MðtÞ which, at the initial time t0, are

perpendicular to a normal field n of the general form

n ¼ an1 þ cn3; (13)

with real functions a and c. In other words, any initial LCS

surfaceMðt0Þ is normal to a linear combination of the small-

est and largest singular vector of DFt1
t0 . Consequently, the

intermediate singular vector n2 must always lie in the surface

Mðt0Þ. This means, Mðt0Þ is necessarily tangent to the n2-

direction field. An integral curve of the n2-direction field

launched from an arbitrary point of the surface Mðt0Þ will,

therefore, remain confined toMðt0Þ upon further integration.

In the language of dynamical systems theory, we summarize

this observation as follows (cf. Fig. 5).

Theorem 1. The initial position Mðt0Þ of any hyper-
bolic LCS (Definition 2) or any elliptic LCS (Definitions 3
and 4) is an invariant manifold of the autonomous dynamical
system

x00 ¼ n2ðx0Þ: (14)

Similarly, final positions Mðt1Þ of hyperbolic and elliptic
LCSs are invariant manifolds of the autonomous dynamical
system

x01 ¼ g2ðx1Þ: (15)

We refer to the autonomous systems (14) and (15) as the

dual dynamical systems associated with the original, non-

autonomous system (1) over the time interval ½t0; t1�. The

dynamics of these dual systems are not equivalent to the

non-autonomous dynamical system (1). Rather, the dual sys-

tems allow locating the LCSs associated with (1) using clas-

sical methods for autonomous dynamical systems (e.g.,

Poincar�e maps).

Since we usually identify LCS surfaces at the initial

time t0 (cf. Sec. II), we will mostly discuss the n2-system

(14). Analogous results hold for the g2-system (15).

Remark 5. We refer to the right-hand side of (14) as the

n2-field, to its integral curves as n2-lines, and to its invariant

manifolds as n2-invariant manifolds. Calling (14) a dual

dynamical system guides our intuition, but requires some

clarification: For (14) to be well-defined, we need to locally

assign an orientation to the n2-direction field. Along integral

curves, once we assign an initial orientation, this can always

be done in a smooth fashion (cf. Appendix C). With this pre-

scription, the orientation of trajectories in the n2-system is

defined unambiguously. (Since the n2-vectors in (14) are unit

vectors, here, the evolutionary variable is arclength.)

Theorem 1 enables locating unknown LCSs of all types

using only one equation: Any two-dimensional invariant

manifold Sðt0Þ of the n2-system (14) is a surface that fulfills

a necessary condition (i.e., tangency to n2) required for the

initial positionsMðt0Þ of both hyperbolic and elliptic LCSs.

Since invariant manifolds of (14) are already exceptional

objects by themselves, any n2-invariant manifold Sðt0Þ that

we obtain for a given dynamical system (1) is a relevant can-

didate for an LCS surfaceMðt0Þ.
Since the LCS normals from Propositions 1–4 do not

encompass all linear combinations of n1 and n3, the converse

of Theorem 1 does not hold. In other words, a n2-invariant

manifold Sðt0Þ does not necessarily correspond to an LCS

Mðt0Þ. To fully determine whether Sðt0Þ does satisfy one of

the Definitions 2–4, therefore, one has to verify tangency to

a second vector field (cf. Appendix D). In applications, how-

ever, it is enough to categorize an LCS candidate qualita-

tively as either elliptic, hyperbolic repelling or attracting. As

seen in the examples below (cf. Sec. V), we can then omit

the procedure in Appendix D and examine both the topology

of an LCS candidate Sðt0Þ and its image under the flow map,

Sðt1Þ, to assess if the material surface SðtÞ belongs to any of

the three general LCS types: Any tubular surface Sðt0Þ is a

candidate for an elliptic LCS, any sheet-like surface Sðt0Þ is

a candidate for a hyperbolic LCSs. Mapping Sðt0Þ under the

flow map reveals if SðtÞ indeed holds up as an elliptic or

hyperbolic LCS.

As outlined in Sec. I, previous approaches2,20 locate

LCSs of all the types in three dimensions (Definitions 2–4)

using the expressions for their surface normals from

Propositions 1–4. Specifically, these methods sample the

FIG. 5. Schematic of an elliptic LCSMðtÞ, revealed as a toroidal invariant

manifold Mðt0Þ of the autonomous dual dynamical system (14), cf.

Theorem 1.
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flow domain using extended families of two-dimensional ref-

erence planes. Taking the cross product between the LCS nor-

mal and the normal of each reference plane then defines two-

dimensional direction fields to which the unknown LCS surfa-

ces need to be tangent. These two-dimensional fields depend

on the type of LCS; in particular, for the near-uniformly

stretching LCSs, by (12), there are two parametric families of

normal fields n6
k , which need to be sampled using a dense set

of k-parameters. Overall, therefore, one has to perform inte-

grations of a large number of two-dimensional direction fields.

(For example, Ref. 20 obtained elliptic LCSs in the steady

Arnold-Beltrami-Childress (ABC) from integral curves of

1600 distinct direction fields.) Accordingly, this procedure

typically produces a large collection of possible intersection

curves between reference planes and LCSs. As a second step,

these approaches require identification of curves from this col-

lection that can be interpolated into LCS surfaces. Despite

these efforts, the previous approaches2,20 do not enforce

Theorem 1 and hence cannot guarantee more accurate LCS

results than the present approach. An advantage is, however,

that these approaches2,20 inherently distinguish between the

specific normal fields given in Propositions 1–4 and hence do

not require further analysis to determine the LCS type.

Clearly, opposed to the previous methods2,20 described

above, analyzing the n2-system (14) is a conceptually sim-

pler approach to obtaining LCSs in three dimensions: First,

the n2-field is a single direction field suitable for all types of

LCSs. Second, as opposed to considering a large number of

independent two-dimensional equations, the n2-system (14)

is defined on a three-dimensional domain. In comparison to

the methods in Refs. 2 and 20, this eliminates the effort of

handling large amounts of unutilized data and eliminates

possible issues with the placement of reference planes. A full

determination of the LCS types, however, requires verifying

tangency to a second vector field (cf. Appendix D).

In two dimensions, initial positions of LCSs can be

viewed as invariant manifolds of differential equations simi-

lar to (14). There, however, the available LCS types (hyper-

bolic, parabolic, and elliptic LCSs4,8,10) do not satisfy a

single common differential equation: With only two right-

singular vectors ~n1;2 in two dimensions (and no counterpart

to the intermediate eigenvector n2 in three dimensions), the

initial positions of hyperbolic and parabolic LCSs are

defined by integral curves of either ~n1 or ~n2.4,8 Similarly,

elliptic LCSs are limit cycles of direction fields belonging to

a parametric family of linear combinations of ~n1 and ~n2.10

Therefore, there cannot be a counterpart to Theorem 1 in two

dimensions. Locating the LCSs in two dimensions requires

analyzing all these differential equations separately.

In four dimensions and higher, there are no suitable

extensions to the LCS definitions from Sec. III, and hence

there is no counterpart to Theorem 1 either (cf. Appendix B).

V. EXAMPLES

In this section, we consider several (steady and time-ape-

riodic) flows and locate their LCSs by finding invariant mani-

folds of their associated n2-fields. Our approach is to run

long n2-trajectories which may asymptotically accumulate on

normally attracting invariant manifolds of the n2-field (for

numerical details, see Appendix C). By Theorem 1, such

invariant manifolds are candidates for time t0-positions of

LCSs. Obtaining the LCSs as attractors in the n2-system

ensures their robustness, whereas this property does not gener-

ally hold for them in the original non-autonomous system.

(For incompressible flows, such as the examples in this sec-

tion, there are no attractors at all.)

For a generally applicable numerical algorithm, a more

refined method for obtaining two-dimensional invariant

manifolds in three-dimensional, autonomous dynamical sys-

tems needs to be combined with the ideas presented here (cf.

Sec. VI). We postpone these additional steps to future work.

We first consider steady examples where transport barriers

are known from other approaches, and hence the results

obtained from the n2-system are readily verified. We then move

on to an example with a temporally aperiodic velocity field.

A. Cat’s eye flow

In Cartesian coordinates (x, y, z), consider a vector field

uðx; y; zÞ ¼
�@ywðx; yÞ
@xwðx; yÞ

W 
 wðx; yÞ

0
B@

1
CA; (16)

where W, w are smooth, real-valued functions, and w is a

stream function, i.e., Dw ¼ FðwÞ for some smooth function

F. Any velocity field u satisfying (16) is a solution of the

Euler equations of fluid motion in three dimensions.17 We

consider the two-and-a-half-dimensional Cat’s eye flow,17

given by (16) with WðwÞ ¼ expðwÞ and

wðx; yÞ ¼ �log½c coshðyÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

cosðxÞ�; c ¼ 2: (17)

We assume that u ¼ uðx; y; zÞ is defined on the cylinder

S1 �R2, with x 2 ½0; 2pÞ. Because u only depends on the x,

y-coordinates here, i.e., u ¼ uðx; yÞ, any flow generated by a

velocity field u as in (16) is called two-and-a-half-dimensional.

Denoting the trajectory passing through ðx0; y0; z0Þ at

time t0 by ðxðtÞ; yðtÞ; zðtÞÞ, the flow map takes the form

Ft1
t0ðx0; y0; z0Þ ¼ ðx0; y0; z0ÞT þ

Ð t1
t0

uðxðsÞ; yðsÞÞds. Thus, the

flow map Ft1
t0 is linear in z0. Consequently, the deformation

gradient DFt1
t0 , its singular values r1;2;3, and singular vectors

n1;2;3 do not depend on z0.

Identifying the coordinates of the domain D of initial

positions ðx0; y0; z0Þ with (x, y, z), we cannot expect, how-

ever, that any of the n1;2;3-fields will have a vanishing z-com-

ponent, i.e., be effectively two-dimensional.

For the numerical integrations of the n2-field (14), we

choose 20 representative initial conditions p0 in the plane

z¼ 0 and, imposing the initial orientation such that the z-

component of n2ðp0Þ is positive, we compute n2-lines up to

arclength s¼ 500. As the time-interval, we consider

½t0; t1� ¼ ½0; 100�. We show the results in Fig. 6, together

with level sets of w that correspond to the values wðp0Þ.
Each level set of w defines a two-dimensional invariant man-

ifold of the Cat’s eye flow. The n2-lines are well-aligned

with the corresponding level sets of w, including the
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separatrix, showing consistency between the possible loca-

tions of LCSs and the invariant manifolds of the Cat’s eye

velocity field. (We note that full alignment would require

sampling the infinite-time dynamics of the Cat’s eye flow,

i.e., letting t1 !1.9) We observe that the x, y-projection of

each n2-line is a periodic orbit, and thus, each n2-line is con-

fined to a generalized (two-dimensional) cylinder.

B. Steady ABC flow

Our second steady example is a fully three-dimensional

solution of the Euler equations, the steady Arnold-Beltrami-

Childress (ABC) flow

uðx; y; zÞ ¼
A sinðzÞ þ C cosðyÞ
B sinðxÞ þ A cosðzÞ
C sinðyÞ þ B cosðxÞ

0
B@

1
CA; (18)

with A ¼
ffiffiffi
3
p

; B ¼
ffiffiffi
2
p

; C ¼ 1. The coordinates in (18) are

Cartesian, with ðx; y; zÞ 2 ½0; 2p�3 and periodic boundary

conditions imposed in x, y, and z.

Using the plane z¼ 0 as a Poincar�e section, and placing in

it a square grid of 20� 20 initial positions (cf. Fig. 7(a)), we

integrate trajectories of (18) from time 0 to time 2� 104.

Retaining only their long-time behavior from the time interval

½104; 2� 104�, we obtain a large number of iterations of the

Poincar�e map (cf. Fig. 7(b)). The plot reveals 5 vortical regions

surrounded by a chaotic sea. Each of the vortical regions con-

tains a family of invariant tori that act as transport barriers.

Here we want to obtain both elliptic and hyperbolic LCSs

using the dual n2-system (14) for ½t0; t1� ¼ ½0; 10�. The phase

space of the n2-system coincides with the domain of (18). In

contrast to trajectories of u, independently of the time interval

½t0; t1�, we can run n2-lines as long as we need. Choosing the

same Poincar�e section and the same grid of initial conditions

as above (cf. Fig. 7(a)), we integrate n2-lines (initially aligned

with (0, 0, 1)) up to arclength 5� 104. Retaining segments

from the arclength interval ½4� 104; 5� 104�, and intersect-

ing these segments with the z¼ 0 plane, we obtain iterations

of a dual Poincar�e map (cf. Fig. 7(c)). This Poincar�e map indi-

cates invariant manifolds of the dual n2-system. Specifically,

the principal vortices of the ABC flow correspond to families

of invariant tori of the n2-field (cf. Fig. 7(c)), which are candi-

dates for initial positions of elliptic LCSs. The tori of the

n2-system are similar to the invariant tori obtained from the

classical Poincar�e map (cf. Fig. 7(b)). In the region corre-

sponding to the chaotic sea, however, the n2-field is strongly

dissipative and thus reveals a candidate for a transport barrier

in the ABC flow that has no counterpart in the classical

Poincar�e map obtained from the asymptotic dynamics of the

incompressible system (18): We see a structure that has a

large basin of attraction in the dual dynamics of the n2-system

and, second, spans the entire domain. In Sec. V C, we will

examine a slightly perturbed version of this structure in detail,

finding that it is a hyperbolic repelling LCS.

We note that computing Poincar�e maps for the n2-sys-

tem does not imply applying the flow map Ft1
t0 repetitively.

FIG. 6. Cat’s eye flow: comparison between x, y-projections of n2-lines, dis-

played for arclength s 2 ½0; 500�, (solid red curves) and level sets of the

stream function w (dotted black curves). The n2-lines have nonzero z-com-

ponents and are confined to generalized cylinders. The initial conditions of

the n2-lines, p0, are marked by green crosses.

FIG. 7. Steady ABC flow: comparison of Poincar�e maps at z¼ 0. (a) Grid of 20� 20 initial positions in the z¼ 0-plane. (b) Poincar�e map of (18) obtained

from trajectories over ½104; 2� 104�, indicating invariant manifolds of the ABC flow; (c) Poincar�e map of the n2-field, obtained from n2-lines over the

arclength interval ½4� 104; 5� 104�, indicating initial positions of LCSs.
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Iterating a n2-based Poincar�e map simply serves to refine our

understanding of the LCSs associated with Ft1
t0 . Indeed, the

iterated Poincar�e map highlights intersections of fixed LCSs

with a given plane of the n2-system in more and more detail.

C. Time-aperiodic ABC-type flow

We next use the dual n2-system (14) to analyze a time-

aperiodic modification of the ABC flow, given by (18) with

the replacements

B 7! ~BðtÞ ¼ Bþ B � k0tanhðk1tÞ cos½ðk2tÞ2�;
C 7! ~CðtÞ ¼ Cþ C � k0tanhðk1tÞ sin½ðk3tÞ2�:

(19)

Neither a classical Poincar�e map nor any other method

requiring long trajectories are options here, due to the tempo-

ral aperiodicity of the system. In (19), we choose k0 ¼ 0:3;

k1 ¼ 0:5; k2 ¼ 1:5 and k3 ¼ 1:8. We show the functions ~BðtÞ
�B; ~CðtÞ � C in Fig. 8. Elliptic LCSs in similar time-

aperiodic ABC-type flows have been obtained in Refs. 2 and

20; hyperbolic repelling LCSs in Ref. 2, although only to a

small extent in the z-direction.

Considering the n2-system for the time interval ½t0; t1�
¼ ½0; 5�, we compute the dual Poincar�e map (cf. Fig. 9(a)).

The algorithm and numerical settings are the same as in Sec.

V B. Compared to Fig. 7(c), there are a few structures that per-

sist under the time-aperiodic perturbation (19) to the velocity

field (18): The large (presumably hyperbolic) structure span-

ning the flow domain is still present and barely changed. In

Fig. 9(b), we show n2-lines corresponding to this hyperbolic

LCS candidate (green). The n2-lines indicate a complicated

surface which they, however, do not cover densely. Regarding

elliptic structures, instead of entire families of n2-invariant tori,

we are left with three large elliptic structures, each with a siz-

able domain of attraction (cf. Fig. 9(a)). The n2-lines corre-

sponding to these elliptic structures yield tori, which we show

as tubular surfaces in Fig. 9(b) (red, blue, yellow). The dual

Poincar�e map (Fig. 9(a)) also shows that, inside two of these

tori, there are additional, smaller elliptic structures. By plotting

the n2-lines corresponding to these smaller objects (not

shown), we find that the surfaces they indicate are not tori and

thus ignore them in our search for LCS candidates.

In Fig. 10(a), we represent the yellow tubular surface

from Fig. 9(b) in toroidal coordinates

�x ¼ ðx� xcðzÞ þ R1Þ cosðzÞ;
�y ¼ ðx� xcðzÞ þ R1Þ sinðzÞ;
�z ¼ R2ðy� ycðzÞÞ;

(20)

with R1 ¼ 2; R2 ¼ 1. In (20), the functions xcðzÞ; ycðzÞ are

the x, y coordinates of the (approximate) vortex center. (For

evaluating xcðzÞ and ycðzÞ, we use our numerical values from

previous work.20) Mapping the resulting torus under the flow

map F5
0, we see that it does advect coherently over the inter-

val ½t0; t1� ¼ ½0; 5� (cf. Fig. 10(b)). Therefore, even though

this surface was just obtained from tangency to n2 (a neces-

sary condition for Definition 4), it renders a full-blown ellip-

tic LCS.

We next examine locally whether the complicated green

structure from Fig. 9(b) indeed corresponds to a hyperbolic

LCS (Definition 2): In Fig. 11(a), we take an illustrative part

of the domain and interpolate a surface from the n2-lines

(green). Centered around a point in the surface, we addition-

ally place a sphere of tracers (purple). Mapping the two

objects forward in time under the flow map F1
0, we see that

the tracers deform into an ellipsoid that is most elongated in

FIG. 9. Time-aperiodic ABC-type flow: Arc segments of n2-lines (corresponding to arclength s 2 ½4� 104; 5� 104�) reveal locations of elliptic and hyperbolic

LCSs. (a) Dual Poincar�e map, showing intersections between the Poincar�e section z¼ 0 and possible time-t0 locations of elliptic and hyperbolic LCSs. (b)

Possible time-t0 locations of elliptic and hyperbolic LCSs: The structure in green (indicating a hyperbolic LCS) consists of segments from several n2-lines. The

tubular surfaces (indicating elliptic LCSs) are fitted from point data of individual n2-lines. Here we use the periodicity of the phase space to extend the domain

slightly beyond ½0; 2p�3.

FIG. 8. Time dependence of the coefficient functions ~BðtÞ; ~CðtÞ in (19).
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the direction normal to the advected surface (cf. Fig. 11(b)).

Considering Proposition 1 and Fig. 4, we thus classify this

structure as a repelling hyperbolic LCS. (For an approach to

confirming this globally, see Appendix D.) Considering Fig.

9(b), we see that this structure is much larger than the hyper-

bolic LCS obtained for a similar time-aperiodic ABC-type

flow in the previous work (cf. Ref. 2, Fig. 15).

By Theorem 1, we can also take the direction field g2

and repeat the above analysis. Using the same algorithm and

numerical parameters as for the previous n2-Poincar�e map

(cf. Fig. 9(a)), except that we now take the backward-time

flow map F0
5 instead of F5

0, we obtain a Poincar�e map for the

dual dynamical system x01 ¼ g2ðx1Þ (cf. Fig. 12). This

Poincar�e map reveals possible time-t1 positions of LCSs.

The result is similar to the n2-Poincar�e map (cf. Fig. 9(a)),

showing again a large hyperbolic structure, and the time-t1
positions of the tori obtained earlier (cf. Fig. 9(b)).

We perform a local deformation analysis for the large

hyperbolic structure indicated by Fig. 12: From a sample

part of the g2-lines corresponding to this structure, we fit a

surface (cf. Fig. 13(b), colored green) and map it backward

in time under F4
5, obtaining a surface at time t¼ 4 (cf. Fig.

13(a), green). Then we place a small tracer sphere (purple) in

this part of the surface. Mapping both the time-4 surface and

the tracer sphere forward in time under F5
4, we find that the

tracers fully align with the surface (cf. Fig. 13(b)). By

Proposition 2 and Fig. 4, this suggests that the large hyper-

bolic structure from Fig. 12 belongs to the time-t1 position of

an attracting hyperbolic LCS. (For confirming this globally,

see Appendix D.)

Remark 6. With the present approach, for incompress-

ible flows, it is generally easier to obtain attracting hyper-

bolic LCSs Mðt1Þ at time t1, rather than at time t0: An

attracting LCS at time t0 is a surface Mðt0Þ parallel to n2

and n3 (cf. Proposition 2). Mapping Mðt0Þ to Mðt1Þ, the

area element changes by a factor of r2r3. Due to incompres-

sibility (r1r2r3 ¼ 1), any attracting LCS is guaranteed to

stretch in forward-time (r2r3 > 1). Since separation can,

e.g., grow exponentially in time (r3 / expðt1 � t0Þ), we

generally expect the stretching of an attracting LCS to be

substantial (r2r3 � 1). At the final time t1, we thus expect

that any attracting LCS of global impact,Mðt1Þ, traverses a

significant portion of the phase space. At time t0, on the

other hand, the surfaceMðt0Þ can still be very small. In this

sense, seeking LCSs as invariant manifolds of the g2-field is

generally easier than using the n2-field. For repelling LCSs,

which shrink between times t0 and t1, the converse holds.

(In two dimensions, the challenges of computing repelling

FIG. 11. Time-aperiodic ABC-type

flow: Local impact of the hyperbolic

repelling LCS surface (interpolated from

n2-lines). (a) Zoom-in on the hyperbolic

repelling LCS surface at time t0 ¼ 0

(green), shown together with a sphere

formed by tracers (purple). (b) Time-1

positions of the hyperbolic repelling

LCS surface and the deformed tracer

sphere (obtained under F1
0).

FIG. 10. Time-aperiodic ABC-type

flow: Mapping one of the tubular surfa-

ces obtained from the n2-lines (cf. Fig.

9(b), yellow) under the flow map F5
0,

we confirm that this surface is a useful

elliptic LCS. (a) Elliptic LCS surface

at time t0 ¼ 0. (b) Elliptic LCS surface

at time t1 ¼ 5.

FIG. 12. Dual Poincar�e map obtained from x01 ¼ g2ðx1Þ, showing intersec-

tions between the Poincar�e section z¼ 0 and possible time-t1 locations of

elliptic and hyperbolic LCSs.
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and attracting hyperbolic LCSs at different times t* are

similar.5,14)

In summary, compared to previous methods of identify-

ing LCSs from various two-dimensional direction fields,2,20

the advantage of the present approach is that it reveals both

hyperbolic and elliptic LCSs from integrations of a single

direction field. Instead of using multiple one-dimensional

Poincar�e sections,2,20 we can therefore search LCSs globally

by using two-dimensional Poincar�e sections (cf. Figs. 7(c),

9(a), and 12). Finally, as opposed to classical Poincar�e maps

that require autonomous or time-periodic systems, the dual

Poincar�e map is well-defined for any non-autonomous sys-

tem. We in fact treat autonomous, time-periodic and time-

aperiodic dynamical systems on the same footing, while still

benefiting from the advantages that a classical Poincar�e map

offers.

VI. CONCLUSIONS

We have presented a unified approach to obtaining ellip-

tic and hyperbolic LCSs in three-dimensional unsteady

flows. In contrast to prior methods based on different direc-

tion fields for different types of LCSs,2,20 we obtain a com-

mon direction field, the intermediate eigenvector field,

n2ðx0Þ, of the right Cauchy-Green strain tensor. Initial posi-

tions of all variational LCSs in three dimensions are neces-

sarily invariant manifolds of this autonomous direction field.

Equivalently, LCS final positions are invariant manifolds of

the intermediate eigenvector field, g2ðx1Þ, of the left Cauchy-

Green strain tensor. We can thus identify LCS surfaces glob-

ally by classical methods for autonomous dynamical sys-

tems. While the n2- and g2-systems by themselves do not

discriminate between LCS types, the procedure from

Appendix D outlines how to numerically assess the LCS

type if needed.

Overall, the present approach is significantly simpler than

the previous numerical methods,2,20 and reveals larger hyper-

bolic LCSs in the time-aperiodic ABC-type flow than seen in

a comparable example from previous work.2 An important

advantage of our approach is that LCSs are attractors of the

generally dissipative n2-system, which is not the case in the

original, typically incompressible system. Obtaining the LCSs

as attractors of the dual n2-system also guarantees their struc-

tural stability, implying that these structures will persist under

small perturbations to the underlying flow. Our approach is

restricted to three-dimensional systems, which is, however,

highly relevant for fluid mechanical applications.

With the examples of Sec. V, we have illustrated the

ability of the n2-system to reveal LCSs. For a broadly appli-

cable numerical method, further development is required.

Computing two-dimensional invariant manifolds of the n2-

field by simply running long integral curves is not always

efficient. General approaches for growing global stable and

unstable manifolds of autonomous, three-dimensional vector

fields are, however, available in the literature (cf. Ref. 15 for

a review). We expect that a general computational method

for obtaining LCSs from the n2-system (14) can be most eas-

ily developed by transferring one of these available

approaches to computing invariant manifolds from the set-

ting of vector fields to direction fields. For a given dynamical

system, one would first compute the n2-field on a grid, and

then apply the most suitable method for growing invariant

manifolds to construct LCSs globally in the dual n2-system.

APPENDIX A: FOR INCOMPRESSIBLE FLOWS, r2 IS
THE SINGULAR VALUE OF DF t1

t0
CLOSEST TO UNITY

We clarify our statement that 0 < r1 < r2 < r3 and

incompressibility (i.e., r1r2r3 ¼ 1) imply that r2 is the sin-

gular value of DFt1
t0 closest to unity. We first note that

r1 ¼
ffiffiffiffiffi
r3

1
3
p

<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2r3

3
p ¼ 1, and, similarly, r3 > 1. In general,

it is unclear whether r2 < 1; r2 ¼ 1, or r2 > 1. Due to the

inequalities

r1 < min r2;
1

r2

� �
� 1 � max r2;

1

r2

� �
< r3; (A1)

however, we consider r2 as the singular value closest to

unity. Eq. (A1) follows from a more general statement:

Lemma 1. Given any three real numbers a, b, and c sat-
isfying 0 < a < b < c, denoting their geometric mean by

m ¼
ffiffiffiffiffiffiffi
abc3
p

; (A2)

we have

a

m
< min

b

m
;
m

b

� �
� 1 � max

b

m
;
m

b

� �
<

c

m
: (A3)

Proof. Denoting the natural logarithm by log , we intro-

duce M ¼ logðmÞ, A ¼ logðaÞ; B ¼ logðbÞ; and C ¼ logðcÞ.
Taking the logarithm of (A2), we then obtain

3M ¼ Aþ Bþ C: (A4)

FIG. 13. Time-aperiodic ABC-type

flow: Local impact of the hyperbolic

attracting LCS surface (fitted from g2-

lines). (a) Zoom-in on the hyperbolic

attracting LCS surface at time t¼ 4

(green), shown together with a sphere

formed by tracers (purple). (b) Time-t1
positions of the hyperbolic attracting

LCS surface and the deformed tracer

sphere (obtained under F5
4).
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Furthermore, since a ¼
ffiffiffiffiffi
a33
p

<
ffiffiffiffiffiffiffi
abc3
p

¼ m; we have

M � A > 0; (A5)

and, similarly

C�M > 0: (A6)

(1) For the first inequality in (A3), we show that a=m
< m=b. By strict monotonicity of the logarithm, this is

equivalent to log a
m

� �
< log m

b

� �
; which we verify as follows:

log
a

m

� �
¼ A�M ¼ðA4Þ

3M � B� C�M

¼ M � Bð Þ � C�Mð Þ <
ðA6Þ

M � B ¼ log
m

b

� �
:

For the last inequality in (A3), we can similarly show

that m=b < c=m (using (A5) instead of (A6)).

(2) We show that minf log b
m

� �
; log m

b

� �
g � 0, which is equiv-

alent to min b
m ;

m
b

	 

� 1. To verify the former inequality,

we use that the minimum of any two real numbers r1 and

r2 satisfies min r1; r2f g ¼ r1þr2

2
� jr1�r2j

2
: We obtain

min log
b

m

� �
; log

m

b

� �( )
¼ 1

2
B�Mð Þ þ M � Bð Þ½ �

� 1

2
j B�Mð Þ � M � Bð Þj;

and, thus

min log
b

m

� �
; log

m

b

� �( )
¼ �jB�Mj � 0:

Similarly, we can use max r1; r2f g ¼ r1þr2

2
þ jr1�r2j

2
and

show that 1 � max b
m ;

m
b

	 

: (

Setting a ¼ r1; b ¼ r2; c ¼ r3 and m¼ 1, Lemma 1 implies

(A1).

APPENDIX B: THEOREM 1 AND HIGHER DIMENSIONS

We discuss the possibility of a counterpart to our main

result, Theorem 1, in higher dimensions. We start with four

dimensions, where there are four singular vectors n1;2;3;4. As

in Sec. III, we label them such that the corresponding singu-

lar values r1;2;3;4 are in ascending order.

Example. As a prerequisite, we would need to extend,

e.g., the notion of a hyperbolic repelling LCS (cf. Definition 2)

from three to four dimensions. As in Proposition 1, we would

need a three-dimensional hypersurfaceMðt0Þ in R4 which is

normal to n4 and hence tangent to n1;2;3 everywhere. It is not a

priori obvious whether such a geometry is possible or not.

Consider a small open ball B � R4 where the singular

values r1;2;3;4 are distinct. Within B, we may assume that the

n1;2;3;4-fields are smooth vector fields. We denote the Lie

bracket between two such vector fields v and w by ½v;w�.
We want to construct a three-dimensional hypersurface

Mðt0Þ such thatMðt0Þ \ B is normal to n4. This is possible

only if the fields n1;2;3 satisfy

½n1; n2�; ½n1; n3�; ½n2; n3� 2 spanfn1; n2; n3g; (B1)

for all points in Mðt0Þ \ B (cf. e.g., Ref. 16). Conditions

(B1) are equivalent to the Frobenius conditions

h½n1; n2�; n4i ¼ 0; h½n1; n3�; n4i ¼ 0; h½n2; n3�; n4i ¼ 0: (B2)

(In the context of LCSs, such conditions have already been

considered in Ref. 2.) Unless 0 is a critical value, by the

Preimage Theorem,7 each of the three conditions in (B2)

defines a codimension-one submanifold in B. Now there are

two main possibilities:

Case 1: We suppose that 0 is a regular value for all condi-

tions in (B2). Since the conditions (B2) are generally inde-

pendent from each other, the subset S of B where all three

conditions are satisfied simultaneously is codimension-

three, i.e., a line. For Mðt0Þ to be a well-defined repelling

LCS, we need Mðt0Þ \ B to be a subset of S. By our

assumption, however, Mðt0Þ \ B is a three-dimensional

hypersurface. Since S is only one-dimensional, we have

reached a contradiction.

Case 2: The remaining possibility is that 0 is a critical value

for at least one of the conditions in (B2). Then there is no

general restriction on the geometry of the corresponding

zero-level sets from (B2). In particular, if 0 is critical value

for at least two of the three conditions in (B2), then the sub-

set S of B where all three conditions are satisfied simulta-

neously can be a three- or four-dimensional manifold. In

this case, S can contain a three-dimensional surface

Mðt0Þ \ B and, thus, locally allow for a repelling LCS

Mðt0Þ. The catch is, however, that the set of critical values

for each of the conditions in (B2) has measure zero in R.

(This is due to Sard’s Theorem.7) Because of the inevitable

numerical inaccuracies and imprecisions, with probability

1, the collection of practically available n1;2;3;4-fields will

hence produce a regular value for each of the Frobenius

conditions in (B2). This brings us back to case 1.

We conclude that only case 1 is relevant in practice.

(Unless, of course, a special symmetry of the flow map Ft1
t0

implies that the Frobenius conditions (B2) are not indepen-

dent to begin with.) Straightforwardly extending Definition 2

and, therefore, seeking hyperbolic repelling LCSs as surfaces

normal to n4 is not a useful approach for general dynamical

systems _x ¼ uðx; tÞ in four dimensions.

The above discussion holds in any dimension N 2 f4;
5; :::g and for any LCS type: From a collection of N � 1 vec-

tor fields, we can pick f ¼
�

N � 1

2

�
pairs, yielding precisely

f Frobenius conditions (cf. (B2)). For useful and general LCS

definitions in the spirit of Sec. III, we would generally need

f¼ 1, but this is only achieved for N¼ 3. This precludes

straightforward extensions of Theorem 1 from three to

higher dimensions.

APPENDIX C: NUMERICAL DETAILS FOR THE
EXAMPLES

Here we describe the details of our numerical approach.

These apply to all the examples in Sec. V.
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In order to evaluate n2, we need to compute both the

flow map Ft1
t0 and its derivative DFt1

t0 . Here we do not use

finite differencing in order to obtain DFt1
t0 from Ft1

t0 (cf. e.g.,

Ref. 9), but we explicitly solve for DFt1
t0 . Since the flow map

Ft
t0

satisfies

d

dt
Ft

t0
x0ð Þ ¼ u Ft

t0
x0ð Þ; t

� �
; (C1)

we differentiate (C1) with respect to x0, and conclude that

DFt
t0
ðx0Þ evolves according to the well-known equation of

variations

d

dt
DFt

t0
x0ð Þ ¼ Du Ft

t0
x0ð Þ; t

� �
DFt

t0
x0ð Þ: (C2)

Written out in coordinates, (C2) is a system of nine equations

that is coupled to the three equations in (C1) and, therefore,

both (C1) and (C2) need to be solved simultaneously as a

system of 12 variables. We can thus obtain DFt1
t0 and n2 to a

very high accuracy level, which we need for running long

integral curves of (14).

Once DFt1
t0 is available, rather than using the Cauchy-

Green strain tensor,9 we obtain n2 by SVD (cf. Remark 4 and

Ref. 22). (For g2, we use the backward-time deformation gra-

dient DFt0
t1 .)

We do not compute the n2-field on a spatial grid, but just

along the n2-lines that we integrate. This ensures that we can

locate both small and highly modulated LCSs, instead of

risking to accidentally undersample the unknown structures.

At each point of the curve, we assign the orientation of n2 to

be the same as it was at the previous point on the curve. For

the initial point, one has to make a manual choice; e.g., in

Cartesian coordinates (x, y, z), impose alignment with the

ð0; 0; 1)-direction.

We perform all the integrations using a Runge-Kutta

(4,5) method,3 with an adaptive stepper at absolute and rela-

tive error tolerances of Tol ¼ 10�8.

Finally, we obtain all the Poincar�e maps from trajecto-

ries (of either u, n2, or g2) by plotting the (x, y)-point data

corresponding to z-values from ½0; �� [ ½2p� �; 2p�, with

� ¼ 2� 10�3.

For the steady ABC flow (cf. Sec. V B), we evaluate

how the equation of variations (C2) improves the results for

n2 compared to finite differencing of Ft1
t0 (cf. Ref. 9). We

define a uniform rectangular grid of 500� 500 initial

conditions x0 in the plane given by fðx; y; 0Þ : x; y 2 ½0; 2p�g,
for which we evaluate DFt1

t0 and thus n2 using these two

methods. We perform finite differencing as described in Ref.

9, Eq. (9), with d1;2;3 ¼ 10�5e1;2;3 and e1;2;3 denoting the unit

vectors in the x, y, z coordinate directions. In Fig. 14(a), we

show the angle between n2 obtained using (C2) and n2

obtained from finite differencing of Ft1
t0 . The former method

can be considered practically exact here, with the only

numerical parameter being Tol ¼ 10�8 (checked for conver-

gence). The largest error we find in Fig. 14(a) is approxi-

mately 88:35
. Since n2 is only defined up to orientation, the

largest possible error would be 90
. Hence we conclude from

Fig. 14(a) that finite differencing can cause arbitrarily large

errors in n2. Even though errors are confined to locations of

exceptionally large separation, as indicated by the finite-time

Lyapunov exponent (FTLE) field (cf. Fig. 14(b)), these loca-

tions belong to ridges of the FTLE field, a widely used indi-

cator of hyperbolic LCSs.9 Since we want to globally detect

hyperbolic LCSs by integrating the n2-field, we use (C2) to

determine n2.

We note that even when the velocity field (1) is only

available through data from experiments and simulations,

the equation of variations (C2) has been used to obtain

numerically accurate results for the flow map and its

gradient.19

APPENDIX D: PERTURBATIONS TO THE n2-FIELD

In Figs. 11(a) and 11(b), we place a tracer sphere in an

LCS candidate surface, finding that it stretches most in the

direction normal to the surface. Based on this local prop-

erty, in Sec. V C, we conclude that the entire surface

should be a repelling LCS. Even though we expect any

hyperbolic LCS obtained from a forward-time computation

to be repelling (cf. Remark 6), it is desirable to have a

global approach to assessing the LCS type of a candidate

surface.

If we consider, e.g., a repelling LCSMðt0Þ, at any point

x0 2 Mðt0Þ, the tangent space Tx0
Mðt0Þ is the subspace of

R3 spanned by n2ðx0Þ and n1ðx0Þ (cf. Proposition 1). By

repeating the reasoning that leads to Theorem 1, we conclude

that any repelling LCSMðt0Þ must be an invariant manifold

of any dynamical system of the form

x00 ¼ p n2ðx0Þ þ ð1� pÞn1ðx0Þ; p 2 ½0; 1�:

FIG. 14. Steady ABC flow: Error due

to finite differencing. (a) Angle in

degrees between n2 obtained from finite

differencing of Ft1
t0 (cf. Ref. 9) and n2

obtained using the equation of varia-

tions (C2). (b) FTLE ðt1 � t0Þ�1
log r3

obtained using the equation of varia-

tions (C2).
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By Propositions 2–4, we can make similar observations

for the remaining LCS types. In summary:

Proposition 5. For any parameter value p 2 ½0; 1�, the
initial position Mðt0Þ of any hyperbolic or elliptic LCS
(Definitions 2–4) is an invariant manifold of the autonomous
dual dynamical system

x00 ¼ p n2ðx0Þ þ ð1� pÞ~nðx0Þ ; (D1)

with ~n ¼ n3 for attracting hyperbolic LCSs; ~n ¼ n1 for repel-

ling hyperbolic LCSs; and ~n ¼ 7~cn1 þ ~an3 or ~n ¼ 7cn1

þan3 for elliptic LCSs (cf. (11) and (12)).

Remark 7. Replacing the n1;2;3 by r1;2;3 � g1;2;3,

Proposition 5 applies verbatim to final LCS positionsMðt1Þ.
This means that for each LCS type, there is a specific

family of dual dynamical systems that yields the respective

LCS initial positions as invariant manifolds. The dual

dynamical system associated with n2 remains exceptional

though, because this is the only dual dynamical system

shared by all LCS types (cf. Proposition 5).

We now demonstrate how these observations help to

determine the LCS type of a candidate surface: For the hyper-

bolic LCS candidate in the time-aperiodic ABC-type flow (cf.

Sec. V C), it turns out that only a single long n2-line is enough

to indicate the surface (cf. Fig. 15(a)). Specifically, among the

n2-lines that get attracted to the hyperbolic LCS candidate sur-

face in the dual Poincar�e map (cf. Fig. 9(a)), we have ran-

domly picked the n2-line with an initial condition

approximately equal to ð5:03; 3:14; 0:00Þ. Other choices of

n2-lines yield similar results.

We next add a small perturbation to the n2-field, i.e.,

consider the dual dynamical system

x00 ¼ n2ðx0Þ þ �n1ðx0Þ; (D2)

with � ¼ 0:01. Using the same initial condition and numeri-

cal settings as above, we compute an integral curve of (D2).

The result indicates virtually the same surface as obtained

from the n2-field (cf. Fig. 15(b)). This suggests that this sur-

face is invariant for the entire family of direction fields

pn2 þ ð1� pÞn1. By Proposition 5, the entire structure

should hence be a repelling LCS.

If we, on the other hand, repeat the above computation

for the dual dynamical system

x00 ¼ n2ðx0Þ þ �n3ðx0Þ; (D3)

where � ¼ 0:01, then the entire structure disappears, and the

attractor for this initial condition remains unclear (cf. Fig.

15(c)). Even though the perturbation �n3 is small, the dynam-

ics of (D3) is completely different than for (D2). This is con-

sistent with our conclusion that the structure from Figs. 15(a)

and 15(b) is a repelling hyperbolic LCS.
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