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Vortex boundaries as barriers to diffusive vorticity transport
in two-dimensional flows
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We put forward the idea of defining vortex boundaries in planar flows as closed
material barriers to the diffusive transport of vorticity. Such diffusive vortex boundaries
minimize the leakage of vorticity from the fluid mass they enclose when compared to
other nearby material curves. Building on recent results on passive diffusion barriers, we
develop an algorithm for the automated identification of such structures from general, two-
dimensional unsteady flow data. As examples, we identify vortex boundaries as vorticity
diffusion barriers in two flows: an explicitly known laminar flow and a numerically
generated turbulent Navier-Stokes flow.
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I. INTRODUCTION

Vortices in turbulent flows are omnipresent yet difficult to define unambiguously. As argued
by [1], however, two common expectations for vortices have emerged in the literature: material
invariance and high levels of vorticity.

Regarding material invariance, Lugt [2] expects a vortex to be formed by material particles
rotating around a common center, while McWilliams [3] requires a vortex to “persist under passive
advection by the large-scale flow.” Chong et al. [4] view vortices as sets of instantaneously spiraling
particle motions. Provenzale [5] emphasizes small material dispersion within vortex cores [6].
Chakraborty et al. [7] argue that both swirling motion and small particle dispersion are important
features of a vortex core. Haller [8] views vortices as sets of nonhyperbolic trajectories and Chelton
et al. [9] postulate that nonlinear eddies trap and carry fluid in their interior. In a similar setting,
Mason et al. [10] seek vortices that are “efficient carriers of mass and its physical, chemical, and
biological properties.”

Regarding vorticity in a vortex, McWilliams [3] and Hussein [11] expect high vorticity in vortices
compared with the background flow. In contrast, Okubo [12], Hunt et al. [13], Weiss [14], Hua and
Klein [15], and Hua et al. [16] require vorticity to dominate strain inside a vortex. Others compare
vorticity to strain in the rate-of-strain eigenbasis [17–19]. Further variants of these ideas have been
developed in the scientific visualization community, as reviewed in [20].

Formulating these guiding principles into a simple vortex definition has been a major challenge.
At a conceptual level, the required material nature of the vortex necessitates an approach that truly
targets material behavior. A litmus test for self-consistent material description is independence of
the observer (or objectivity), which has long been enforced in continuum mechanics [21–23] for
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any theory purporting to describe material response. Objectivity was also identified as a basic
requirement for flow feature detection in fluid mechanics already in the 1970s [2,24,25], yet
objective Lagrangian criteria for material vortex boundaries in two-dimensional (2D) flows have
only appeared in recent years [1,26,27]. Of these approaches, only [1] involves the vorticity as a
kinematic measure of rotational coherence. Seeking material regions from which vorticity transport
is minimal, however, requires the involvement of the Navier-Stokes equations, an element that has
been missing in the purely kinematic vortex criteria survived above.

More generally, finding theoretically optimal barriers to the transport of diffusive quantities in
fluid flows has been an elusive problem (see, e.g., [28]). As a recent advance in this area, [29]
formulated and solved a precise variational problem for material surfaces that inhibit the transport
of weakly diffusive, passive scalar fields more than neighboring surfaces do in an incompressible
flow. These results have subsequently been extended to compressible flows and to scalar fields with
a known (and hence constrained) initial concentration [30].

Once a two-dimensional incompressible velocity field is known, its associated vorticity transport
equation becomes a scalar advection-diffusion equation for the scalar vorticity. The initial condition
of the equation, however, is constrained to be the plane-normal component of the curl of the velocity
field at the initial time. Therefore, the general constrained transport barrier results of [30] apply
to vorticity transport in incompressible, planar Navier-Stokes flows. We exploit this fact here and
invoke the results of [30] to define and locate closed material curves that inhibit the leakage of
vorticity from their interior most effectively.

We construct diffusive vortex boundaries as outermost periodic orbits of an explicit ordinary
differential equation (ODE) family arising from the exact solution to the minimal vorticity leakage
problem. This automated algorithm is now publicly available [31] in the MATLAB package entitled
BARRIERTOOL. We illustrate this algorithm first on an explicitly known solution of the planar Navier-
Stokes equations, then on a two-dimensional decaying turbulence simulation.

II. CONSTRAINED MATERIAL BARRIERS TO VORTICITY TRANSPORT

As mentioned in the Introduction, Haller et al. [30] have derived the criteria for locating material
barriers to diffusive transport in compressible flows. These results are applicable to arbitrary passive
scalar fields in arbitrary spatial dimensions and with arbitrary diffusion tensors that possibly depend
on space and time. Concentration sinks and sources, as well as spontaneous concentration decay,
are also allowed. Here we recall these results specifically formulated for the two-dimensional scalar
vorticity field ω(x, t ) of an incompressible, two-dimensional Navier-Stokes velocity field v(x, t )
whose kinematic viscosity is ν � 0.

In this context, if v(x, t ) is known, then ω(x, t ) satisfies the two-dimensional, linear advection-
diffusion equation

∂tω + ∇ω · v = ν�ω, ω(x, t0) = ω0(x), (1)

where � is the Laplacian operator and ∇ denotes the gradient operation with respect to the spatial
variable x ∈ U ⊂ R2 on a compact domain U . We denote the flow map generated by the trajectories
x(t ; t0, x0) of the velocity v(x, t ) by Ft

t0 (x0) := x(t ; t0, x0). Consider an evolving material curve
M(t ) = Ft

t0 (M0) with initial position M(t0) = M0. Let s ∈ [α, β] denote a parametrization of
M0, let n0(s) denote a smooth unit normal vector field along M0, and let �

t1
t0 (M0) denote the total

normed transport of ω through the material curve M(t ) over the time interval [t0, t1]. By normed
transport we mean the time integral of the normed instantaneous flux, which therefore sums up all
the leakage of ω through a curve without cancellations. The quantity �

t1
t0 (M0) is ideal for assessing

the permeability of a curve for transport, whereas the unnormed (signed) vorticity transport may be
small due to cancellations even for a highly permeable material curve. Note that both the normed
and the unnormed vorticity transport are purely diffusive (i.e., vanish for ν = 0), given that M(t ) is
a material curve and hence blocks all advective transport of a passive scalar field.
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We are interested in finding initial curves M0 that extremize the normed and normalized vorticity
transport functional

�̃t1
t0 (M0) := �

t1
t0 (M0)

ν(t1 − t0)
∫
M0

ds
,

where we have normalized the normed transport by the diffusivity, the length of the time interval,
and the length of the material curve M0. As shown by [30], �̃

t1
t0 (M0) can be rewritten as

�̃t1
t0 (M0) =

∫
M0

∣∣〈q̄t1
t0 (x0(s)), n0(s)

〉∣∣ ds∫
M0

ds
,

where x0(s) denotes the parametrization of M0 (s ∈ [α, β]) and the transport vector field q̄t1
t0 (x0) is

given by

q̄t1
t0 (x0) = 1

t1 − t0

∫ t1

t0

[∇0Ft
t0 (x0)

]−1[∇ω
(
Ft

t0 (x0), t
)]

dt, (2)

where ∇0 denotes the derivative with respect to x0.
Material curves, M(t ), that extremize �̃

t1
t0 have initial positions for which the variational

derivative of �̃
t1
t0 vanishes:

δ�̃t1
t0 (M∗

0 ) = 0. (3)

Haller et al. [30] have obtained that the most observable class of solutions of this variational
problem, uniform vorticity barriers, satisfy the conservation law∣∣〈q̄t1

t0 (x0(s)), n0(s))
〉∣∣ = T0, 0 � T0 � max

x0∈U

∣∣q̄t1
t0 (x0)

∣∣, (4)

for some constant T0, which measures the pointwise constant, uniform transport density along such
barriers. This conservation law gives an implicit differential equation for curve families x0(s) that
span initial positions of uniform material barriers to the diffusive transport of ω. Haller et al. [30]
also show that an explicit differential equation family equivalent to the implicit one in (4) is given
by

x′
0 = (

T0� ±
√∣∣q̄t1

t0 (x0)
∣∣2 − T 2

0 I
) ∫ t1

t0

[∇0Ft
t0 (x0)

]−1∇ω
(
Ft

t0 (x0), t
)
dt, � :=

(
0 1

−1 0

)
. (5)

Finally, Ref. [30] obtains a scalar diagnostic field, the diffusion barrier strength (DBS) field, that
measures the local strength of transport barriers. This barrier strength is equal to the leading-order
change in the local transport under small, localized normal perturbations to a transport barrier. The
DBS field can simply be computed as

DBSt1
t0 (x0) = ∣∣q̄t1

t0 (x0)
∣∣, (6)

with its ridges delineating the most influential vorticity transport extremizers. Both the exact
differential equation (5) and the diagnostic field DBSt1

t0 are objective, as shown by [30].

III. DIFFUSIVE VORTEX BOUNDARIES AS CLOSED MATERIAL BARRIERS
TO VORTICITY TRANSPORT

The general equation (5) for planar vorticity barriers enables us to give a precise mathematical
definition and a computational algorithm for diffusive vortex boundaries as the most observable
material inhibitors of vorticity leakage from a closed fluid region.
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FIG. 1. Family of limit cycles of Eq. (5). Each material curve has the same pointwise vorticity transport
density T0. The outermost member of this family serves as the diffusive vortex boundary.

Definition 1. A diffusive vortex boundary over a time interval [t0, t1] is a closed material curve
M∗(t ) whose initial position M∗

0 = M∗(t0) is the outermost member of a closed orbit family in the
differential equation family (5).

Each member of a periodic orbit family in (5) is technically a closed transport extremizer within
its class. The orbit family as a whole provides an internal stratification of a vortical region into curves
with the same uniform vorticity transport through them. The outermost member of such a family
is the practically observed boundary of a region from which the leakage of vorticity is minimal, as
shown in Fig. 1. The material curve M∗(t ) = Ft

t0 (M∗
0 ) in Definition 1 is fully determined by its

initial position M∗
0, and hence the definition yields evolving material vortex boundaries M∗(t ) over

the whole time interval [t0, t1]. The pointwise strength of such a diffusive vortex boundary can then
be assessed by computing DBSt1

t0 (x0) along its points.
Given that n0(s) = �x′

0(s)/
√〈x′

0(s), x′
0(s)〉 is a smooth unit normal vector along any curve x0(s),

parametrized curves satisfying the conservation law (4) are also contained in the zero level set of
the function family

L(x0, x′
0; T0) =

√〈
q̄t1

t0 (x0),�x′
0

〉2 − T0

√
〈x′

0, x′
0〉, (7)

which also turns out to be the Lagrangian associated with the variational problem (3) (cf. Ref. [30])
To locate closed zero-level curves of L, we adapt an idea originally developed in [32] for the
automated computation of null-geodesics. First, we observe that the conservation law (4), and
accordingly the zero level set of L, is invariant under reparametrizations of the curve x0(s). This
enables us to parametrize the yet unknown M∗

0 by arc length; i.e., for an appropriate angle ϕ(s), we
can set

x′
0(s) = eϕ (s) :=

(
cos ϕ(s)
sin ϕ(s)

)
⇒ x′′

0 = eϕ + �T eϕϕ′. (8)
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Thus, by (7), curves in the zero level set of L satisfy√〈
�q̄t1

t0 (x0(s)), eϕ (s)
〉2 − T0 = 0. (9)

Differentiating this last identity with respect to the parameter s and using the expression for x′′
0 from

(8) gives 〈
�∇x0

(
q̄t1

t0 (x0)
)
eϕ, eϕ

〉 + 〈
q̄t1

t0 (x0), eϕ

〉
ϕ′ = 0. (10)

Therefore, the definition of eϕ in (8) and Eq. (10) together yield an explicit, three-dimensional
system of differential equations,

x′
0 = eϕ, ϕ′ =

〈
�∇x0

(
q̄t1

t0 (x0)
)
eϕ, eϕ

〉
〈
q̄t1

t0 (x0), eϕ

〉 , (11)

defined on the set V = {(x0, ϕ) ∈ U × S1 : 〈q̄t1
t0 (x0), eϕ〉 	= 0}. Initial positions of closed material

barriers to vorticity transport are closed projections of trajectories of (11) to the plane of the x0

variable.

IV. NUMERICAL ALGORITHM FOR DIFFUSIVE VORTEX-BOUNDARY DETECTION

Geometrically, the original variational problem (3) leads to a four-dimensional system of ODEs
in the space of the (x0, x′

0) variables. The conservation law (4) enables us to reduce this four-
dimensional ODE to the three-dimensional system (11). Note that if a trajectory of (11) projects
to a closed curve x0(s), then for any angle ϕ0 ∈ S1, there will be at least two points along the curve
where x′

0 = eϕ0 = (cos ϕ0, sin ϕ0)T . Therefore, for any choice of ϕ0, the set

CT0 = {
(x0, ϕ) ∈ U × {ϕ0} :

∣∣〈q̄t1
t0 (x0), eϕ0

〉∣∣ = T0
}
, (12)

is a set of curves that all periodic orbits of (11) must cross. We can, therefore, use the set CT0 as a
Poincaré section within each two-dimensional level set |〈q̄t1

t0 (x0), eϕ〉| = T0 to locate periodic orbits
of (11). The trivial choice for the angle ϕ0 is ϕ0 = 0, in which case 〈q̄t1

t0 (x0), eϕ0〉 is simply the
first component [q̄t1

t0 (x0)]1 of the vector q̄t1
t0 (x0) in the coordinate system selected for the analysis.

These considerations lead to the numerical Algorithm 1 for locating diffusive vortex boundaries in
a two-dimensional Navier-Stokes flow.

Algorithm 1 Computing diffusive vortex boundaries.

1. Input the 2D velocity field v(x, t ) defined over the spatial domain U and time interval [t0, t1].
2. Compute trajectories x(t ; t0, x0) of v(x, t ) over [t0, t1], starting from an initial grid G0 ⊂ U .
3. Calculate the deformation gradient ∇0Ft

t0
(x0 ) for x0 ∈ G0 from finite differencing. Also, compute the vorti-

city gradient ∇ω(x, t ) from finite differencing along each trajectory x(t ; t0, x0 ). Subsequently, compute the
transport vector field q̄t1

t0 (x0) and its gradient from finite differencing to obtain the right-hand side of (11)
over the grid G0.

4. Fix a unit vector eϕ0 and set up a loop over values of the transport density constant T0 falling in the interval
given in (4).

5. For each T0 value, calculate the initial condition set CT0 defined in (12) by computing the level set
|〈q̄t1

t0 (x0), eϕ0 〉| = T0. Launch trajectories of the ODE (11) from CT0 . For off-the-grid points in G0, use bi-
linear interpolation to evaluate the right-hand side of Eq. (11) for trajectory integration.

6. Once the full loop of T0 is complete, identify diffusive vortex boundaries as the outermost members of the
closed trajectory families obtained from the above procedure.
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In our examples, we will use a MATLAB implementation of the above algorithm, which is
publicly available [31]. This MATLAB package, BARRIERTOOL, is in fact a more general software
tool that allows for the computation of elliptic Lagrangian coherent structures (LCSs) [26], closed
unconstrained diffusion barriers [29], and objective Eulerian coherent structures [33].

We note that a more technical, alternative approach to solving such variational problems involves
a reduction of the original variational problem to a two-dimensional direction field family [30].
Locating closed curves of this direction field family involves the identification and analysis of
direction field singularities. The associated challenges are described in [32,34]. Recent progress
on addressing some of these challenges is reported in [35].

V. EXAMPLES

A. Periodic array of recirculation cells

A spatially periodic, steady solution of the 2D Euler equations is given by [36]

vE (x) = 2

(
−2 sin(2πx + 4πy) − sin(4πx + 2πy) + sin(4πx − 2πy) + 2 sin(2πx − 4πy)

sin(2πx + 4πy) + 2 sin(4πx + 2πy) + 2 sin(4πx − 2πy) + sin(2πx − 4πy)

)
.

(13)

This Euler solution gives rise to the following spatially periodic, unsteady solution of the 2D Navier-
Stokes equations:

v(x, t ) = e−20π2νt vE (x), (14)

whose vorticity field

ω(x, t ) = 20πe−20π2νt [cos(2πx + 4πy) + cos(4πx + 2πy) + cos(4πx − 2πy)

+ cos(2πx − 4πy)]

satisfies the advection-diffusion Eq. (1) with viscosity ν.
The topology of the streamlines of the steady, inviscid velocity field vE (x) is depicted in

Fig. 2. The streamline geometry of the unsteady solution v(x, t ) remains the same. The central
feature of this flow is delineated by the heteroclinic connections between the hyperbolic fixed
points located at (0, 0.5), (0.5, 0), (0,−0.5), (−0.5, 0). This heteroclinic network encompasses
an array of vortical recirculation regions around the elliptic fixed points located at (0,0) and
(e, 0), (−e, 0), (0, e), (0,−e) with e = 1

π
arccos (

√
6

4 ). Furthermore, these vortical domains are sep-
arated from each other and from the outer heteroclinic network by an inner collection of heteroclinic
connections among the hyperbolic fixed points located at (h, h), (−h, h), (h,−h), (−h,−h) with

h = 1
π

arccos (
√√

6/3 + 2/2).
All closed, periodic streamlines in the vortical regions are perceived as structures hindering the

spread of high absolute vorticity from the centers of the vortical regions. Moreover, the periodic
streamlines between the inner and the outer heteroclinic network should also be deemed barriers to
the transport of vorticity.

To verify this, we use Algorithm 1 to detect diffusive vortex boundaries based on Eq. (14) for
two different integration times. As we observe in Fig. 3, as the integration time t1 − t0 increases, the
extracted diffusive vortex boundaries grow in number and size in the central elliptic region of high
vorticity, whereas they become tighter around the four cores of high negative vorticity. Moreover,
our algorithm captures larger diffusive vortex boundaries that closely align with both the inner and
outer heteroclinic networks. Finally, we note the high correlation between the extracted diffusive
vortex boundaries and the ridges of the ln (DBS) field.
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FIG. 2. Streamlines of Eq. (14) with ν = 0.001 at t = 0 overlaid on the initial vorticity field.

B. Two-dimensional turbulence

We use a standard pseudospectral code to solve the two-dimensional, incompressible Navier-
Stokes equations,

∂t v + v · ∇v = −∇p + ν�v, ∇ · v = 0,

The domain is [0, 2π ] × [0, 2π ] with periodic boundary conditions. At Reynolds number Re =
ν−1 = 5 × 104, the spatial coordinates are resolved using 10242 Fourier modes with 2/3 dealiasing.
To construct the transport vector field, we advect trajectories from an initial grid of 1024 × 1024

FIG. 3. Barriers to vorticity transport (blue) superimposed on the ln [DBSt1
t0 (x0 )] field inside a vortex array

of Eq. (14). The analysis was performed for t0 = 0 and t1 = 1 (left) and t1 = 5 (right). In both cases, we set the
kinematic viscosity ν = 0.001.
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FIG. 4. Lagrangian and Eulerian vortex identification methods on a decaying turbulence simulation with
integration time t1 = 50. (a) Diffusive vortex boundaries (red) and material diffusion barriers (yellow)
superimposed with the ln [DBS50

0 (x0)] field. (b) Diffusive vortex boundaries (red) and black-hole eddies
(yellow) overlaid on the FTLE(x0) field. (c) Diffusive vortex boundaries (red) and LAVD vortices (yellow)
superimposed with the LAVD(x0) field. (d) Diffusive vortex boundaries (red) overlaid on the negative Okubo-
Weiss parameter field. All panels show the entire computational domain [0, 2π ] × [0, 2π ].

points over the time interval [0,50]. The Runge-Kutta algorithm of MATLAB (i.e., ode45) is used
for the numerical integration. This algorithm uses an adaptive time stepping such that the relative
and absolute errors are below 10−6.

Figure 4 shows different Lagrangian and Eulerian vortex identification methods for this com-
putational experiment. In the entirety of Fig. 4, we denote with red color the extracted diffusive
vortex boundaries. For reference, we have also used BARRIERTOOL to compute outermost material
barriers to passive scalar diffusion [29], which are shown in yellow in Fig. 4(a) as well as black-hole
eddies [26], which are shown in yellow in Fig. 4(b). Moreover, in Fig. 4(c) we have identified
Lagrangian-averaged vorticity deviation (LAVD) eddies using the parameter values described in [1].
For each of these plots the overlaid scalar fields correspond to the diagnostic field tied to the type
of barriers that we have extracted [ln (DBS), finite-time Lyapunov exponent (FTLE), and LAVD,
respectively]. For all the Lagrangian vortex identification methods of Fig. 4 we observe a clear
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FIG. 5. Final position at time t1 = 50 of advected diffusive vortex boundaries (red) and black-hole eddies
(yellow) overlaid on the advected position of a uniform grid of 500 × 500 tracers color coded with their
DBS50

0 (x0) value. Close-ups: Tangential filamentation of the diffusive vortex boundaries in contrast to the
unstretched black-hole eddies.

correlation between all types of barriers, yet there are regions that only admit one kind of barrier
and none of the others.

In addition, Fig. 4(d) shows the negative Okubo-Weiss (OW) parameter field. The OW parameter
is defined as

OW(x, t ) = s2
2(x, t ) − ω2(x, t ), (15)

where s2 is the largest eigenvalue of the symmetric part of the velocity gradient. This quantity is
broadly used in the literature to locate instantaneous vortical regions at domains where it attains
negative values [12,14].

Figure 5 shows the final positions of the extracted diffusive vortex boundaries (red) and black-
hole eddies (yellow) against the positions of an initially uniform grid of points color-coded with
their DBS value (see Supplemental Material [37] for the full movie). Black-hole eddies show
no filamentation in agreement with their construction as locally minimally stretching coherent
structures [26]. In contrast, diffusive vortex boundaries, constructed as extremizers to the transport
of vorticity, manifest tangential stretching in some cases (blown up figures in Fig. 5). However,
transport is still efficiently hindered by closed material curves that filament in tangential directions
without a global breakaway that creates smaller scales. Moreover, the existence of this extra lobe
is a feature that seems to be missing from other vortex identification methods. Whether this is a
precursor to a vortex breakup is a question that needs further investigation. Finally, the apparent
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FIG. 6. Left: Extracted diffusive vortex boundary (red) overlaid on level sets of the Okubo-Weiss (OW)
parameter. Right: Advected image of the diffusive vortex boundary and a set of tracers lying initially on the
black level set of the OW parameter superimposed with the final position of an originally uniform grid of points
color coded with their vorticity value.

dissimilarity in the detection of barriers in some regions is explained by the initial vorticity
distribution (a constraint in our calculus of variations problem) which may tip the scales in favor
of or against the detection of diffusive vortex boundaries irrespective of the existence of black-hole
eddies.

The level curves of the OW parameter are often viewed as coherent structures in the flow [38].
We investigate this claim in Fig. 6, which depicts a zoomed-in region close to the center of the
computational domain along with an extracted diffusive vortex boundary, overlaid on level sets of
the Okubo-Weiss (OW) parameter. In this region, OW(x, t0) signals two different vortical regions,
while our algorithm only locates a material vortex boundary (as outermost barrier to vorticity
transport) in one of these regions. To examine this prediction more closely, we compare the advected
image of a set of tracers seeded along a level set of the OW(x, t ) parameter against the final position
of the diffusive vortex boundary. We observe that the material region obtained from our algorithm
remains a coherent vortex that keeps vorticity concentrated. Over the same time interval, the material

FIG. 7. Evolution of |ω̂(x0, t )|, the vorticity norm in Lagrangian coordinates. Left: Colored contours of
|ω̂(x0, 0)| with the diffusive vortex boundary extracted from our algorithm (red) and OW level set (black).
Right: Contours of |ω̂(x0, 50)| with the same red and black curves at t1 = 50.
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region surrounded by the OW level set completely falls apart, and hence this level set fails to prevent
vorticity from leaking out from a coherent core (see Supplemental Material [37] for the full movie).

Finally, the same image depicted in Lagrangian coordinates is shown in Fig. 7. More specifically,
the norm of vorticity is portrayed as a surface over the Lagrangian coordinates x0 for two different
configurations (t0 = 0 and t1 = 50). We observe that along the extracted diffusive vortex boundary
vorticity is diffused in a uniform fashion which is in agreement with the underlying variational
principle (minimal vorticity leakage) used in its construction. In contrast, the OW level set indicates
no such organizing role in the vorticity landscape showing preferential directions along which
vorticity diffuses more compared to the rest of the curve (see Supplemental Material [37] for the
full movie).

VI. CONCLUSIONS

We have proposed defining two-dimensional vortices as maximal regions enclosed by material
barriers to the viscous transport of vorticity in Navier-Stokes flows. With this approach, we have
been able to leverage the two-dimensional version of recent results of Haller et al. [30] on strongest
material barriers to diffusion of a general passive scalar. We have used the conservation law
provided by that theory to derive a three-dimensional, autonomous system of ODEs. Outermost
closed projections of the orbits of this ODE onto the space of Lagrangian positions mark material
curves satisfying our diffusive vortex boundary definition. Although not a part of the current work, a
similar definition involving open solutions to the constrained barrier equations can be used to reveal
signatures of material jet cores and fronts in the vorticity field. An extension of the present results to
three dimensions, however, will require major modifications since three-dimensional vorticity is a
vectorial quantity and no longer satisfies a linear advection-diffusion equation for a known velocity
field.

We have also introduced a numerical algorithm that automatizes the proposed vortex identifica-
tion procedure. Upon comparing our algorithm with different Lagrangian vortex detection methods
(geodesic theory of LCSs, LAVD, polar rotation angle [27]) we find the present algorithm to be
more computationally expensive owing to the need for computing the flow map gradient and the
spatial derivatives of vorticity. At the same time, the proposed algorithm is objective (observer
independent), takes the Navier-Stokes vorticity dynamics into account, and requires no reliance on
user input or heuristic parameters. Our open source MATLAB package, BARRIERTOOL, provides a
full implementation of the present results, as well as implementations of other Lagrangian vortex
detection methods that are based on various material coherence principles.
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