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The most widely used definitions of a vortex are not objective: they identify different
structures as vortices in frames that rotate relative to each other. Yet a frame-indepen-
dent vortex definition is essential for rotating flows and for flows with interacting
vortices. Here we define a vortex as a set of fluid trajectories along which the strain
acceleration tensor is indefinite over directions of zero strain. Physically, this objective
criterion identifies vortices as material tubes in which material elements do not align
with directions suggested by the strain eigenvectors. We show using examples how
this vortex criterion outperforms earlier frame-dependent criteria. As a side result, we
also obtain an objective criterion for hyperbolic Lagrangian structures.

1. Introduction
The notion of a vortex is so widely used in fluid dynamics that few pause to

examine what the word strictly means. Those who do take a closer look quickly
realize the difficulty of defining vortices unambiguously.

Vortices are often thought of as regions of high vorticity, but there is no universal
threshold over which vorticity is to be considered high. More alarmingly, vorticity
may also be high in parallel shear flows where no vortices are present.

Definitions requiring closed or spiralling streamlines for a vortex are also
ambiguous, because streamline topology changes even under simple Galilean trans-
formations such as constant speed translations. Other definitions postulating pressure
minima at vortex centres are readily refutable by counterexamples. Problems with
all these definitions have been exposed by several authors, including Lugt (1979),
Jeong & Hussain (1995), and Cucitore, Quadrio & Baron (1999).

1.1. Galilean invariant vortex definitions

Jeong & Hussain (1995) stress the need for Galilean-invariant vortex criteria, i.e.
criteria that remain invariant under coordinate changes of the form y = Qx + at ,
where Q is a proper orthogonal tensor and a is a constant velocity vector. For a
three-dimensional smooth velocity field v(x, t), available Galilean-invariant vortex
criteria use the velocity gradient decomposition

∇v = S + Ω, (1.1)

where S = 1
2
[∇v + (∇v)T ] is the rate-of-strain tensor, and Ω = 1

2
[∇v − (∇v)T ] is the

vorticity tensor.
In historical order, the first three-dimensional vortex criterion using (1.1) is the

Q-criterion of Hunt, Wray & Moin (1988) which defines a vortex as a spatial region
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(a) (b)

Figure 1. Instantaneous streamlines in a z = const. plane for (a) the velocity field
(1.5), (b) the transformed velocity field (1.6).

where

Q =
1

2
[|Ω |2 − |S|2] > 0, (1.2)

i.e. where the Euclidean norm of the vorticity tensor dominates that of the rate of
strain. For two-dimensional flows, the same criterion has been known as the elliptic
version of the Okubo–Weiss criterion, derived independently by Okubo (1970) and
Weiss (1991). Hua & Klein (1998) and Hua, McWilliams & Klein (1998) propose a
higher-order correction to the Okubo–Weiss criterion by including acceleration terms.

Another well-known Galilean-invariant definition is the ∆-criterion of Chong,
Perry & Cantwell (1990), who define vortices as regions with

∆ =

(
Q

3

)3

+

(
det ∇v

2

)2

> 0. (1.3)

In these regions, the velocity gradient ∇v admits complex eigenvalues, thus local
instantaneous stirring is a plausible assumption.

Finally, according to the λ2-criterion of Jeong & Hussain (1995), vortices are regions
where

λ2(S
2 + Ω2) < 0, (1.4)

where λ2(A) denotes the intermediate eigenvalue of a symmetric tensor A. Under
appropriate adiabatic assumptions, this last criterion guarantees an instantaneous
local pressure minimum in a two-dimensional plane for Navier–Stokes flows.

1.2. Is Galilean invariance enough?

In an unsteady flow, as Lugt (1979) notes, there is no distinguished frame of reference.
An ideal vortex definition, therefore, should not depend on one’s choice of frame.
Galilean-invariant criteria give consistent results in frames that move at constant
speeds relative to each other. The same criteria, however, fail to be invariant under
more general changes of frame such as rotations.

Consider, for instance, the linear velocity field

v(x, t) =


 sin 4t 2 + cos 4t 0

−2 + cos 4t − sin 4t 0
0 0 0


 x, (1.5)

whose instantaneous streamlines are sketched in figure 1(a). The criteria (1.2)–(1.4)
all predict that any point x lies in a single infinite vortex.

Now pass to the rotating frame

x̃ =


 cos 2t sin 2t 0

− sin 2t cos 2t 0
0 0 1


 x
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to obtain the transformed velocity field

ṽ(x̃) =


0 1 0

1 0 0
0 0 0


 x̃. (1.6)

The latter flow is a steady planar strain field (see figure 1b), in which the criteria
(1.2)–(1.4) find no vortices. The discrepancy between the two results – an infinite
vortex in one frame and no vortex in the other frame – is striking.

But why should vortex definitions give the same result in different rotating frames?
Because in rotating flows and in flows with interacting vortices, there are several
natural choices for a frame of reference: the lab frame, the frame co-rotating with
the boundary, or the frames co-rotating with individual vortices. Obtaining different
vortices in different frames from the same criterion is unsatisfactory at best, unphysical
at worst.

Another related shortcoming of the Galilean-invariant criteria (1.2)–(1.4) is their
direct dependence on the vorticity tensor Ω . As a result, these criteria will pronounce
the whole fluid a single vortex in a fast enough rotating tank, missing all coherent
structures in the flow.

1.3. Objectivity

In continuum mechanics, a quantity or principle is called objective if it remains
invariant under coordinate changes of the form

x̃ = Q(t)x + b(t), (1.7)

where Q(t) is a time-dependent proper orthogonal tensor, and b(t) is a time-dependent
translation vector (see Truesdell 1979 or Ottino 1989). Because (1.7) embodies all
plausible changes of frame, we propose this notion of objectivity as a basic requirement
for any consistent vortex definition.

Lugt (1979) takes an objective view when requiring a vortex to be a mass of
fluid moving around a common axis. As indicators of such a Lagrangian vortex, he
proposes closed or spiralling pathlines. Closed pathlines, however, are atypical even in
steady three-dimensional flows, and the notion of spiralling pathlines is not objective.

Cucitore et al. (1999) describe vortices as material tubes of low particle dispersion.
Relative dispersion as a diagnostic tool also appears in the earlier work of Elhmäıdi,
Provenzale & Babiano (1993) on two-dimensional vortices. Such regions of low
dispersion can also be inferred from finite-time Lyapunov-exponent studies (see,
e.g., Pierrehumbert & Yang 1993). When formalized properly, dispersion-based vortex
definitions are objective, but offer no connection between vortices and familiar physical
quantities. In addition, low dispersion is also the hallmark of jets, and hence does not
uniquely label vortices.

Tabor & Klapper (1994) offer a more systematic approach to vortices by studying
the stability of fluid particles in the eigenbasis of the rate of strain S. From this
approach, they obtain a version of the Q-criterion in strain basis: they call a region
rotation dominated if

Qs =
1

2
[|Ω − Ω s |2 − |S|2] > 0, (1.8)

where Ω s is a matrix containing the time derivatives of the unit eigenvectors of S
in the Lagrangian frame. Lapeyre, Klein & Hua (1999) re-derive and test the same
criterion for two-dimensional tracer gradient evolution. Lapeyre, Hua & Legras (2001)
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discuss the advantages of using Qs < 0, as opposed to Q < 0, in detecting regions of
stretching in two-dimensional flows (see also Haller 2001b).

The Qs-criterion is objective and can be turned into a mathematically exact vortex
definition for two-dimensional flows. Specifically, fluid particles satisfying Qs > 0 for
long enough times are proven to form impenetrable swirling regions (Haller 2001b and
Koh & Legras 2002). Unfortunately, as Tabor & Klapper (1995) note, the principle
used in deriving (1.8) is two-dimensional, leaving the mathematical meaning of (1.8)
unclear in three dimensions.

1.4. Results

In this paper, we describe vortices through the stability of fluid trajectories in three-
dimensional incompressible flows. We first prove that a trajectory is hyperbolic
(saddle-type) as long as the strain acceleration tensor

M = ∂tS + (∇S)v + S(∇v)+(∇v)T S

remains positive definite over a zero strain cone Z that travels with the trajectory.
Hyperbolic trajectories form stable and unstable manifolds that are responsible for
stretching, folding, and tracer filamentation in the flow.

Because MZ , the restriction of M to Z, turns out to be either positive definite or
indefinite at a generic point, the above hyperbolicity result motivates us to define
vortices as sets of fluid trajectories with indefinite MZ . Unlike previous vortex defini-
tions, this MZ-criterion is objective, giving the same result in frames that translate or
rotate relative to each other.

Physically, the MZ-criterion defines a vortex as a material region where material
elements do not align with subspaces that are near the positive eigenspaces of the
rate of strain. In other words, the long-term evolution of material elements defies the
trend suggested by the instantaneous rate-of-strain tensor.

Our vortex definition is derived from Lagrangian considerations, but uses Eulerian
quantities. This enables us to rewrite the MZ-criterion in terms of pressure and viscous
terms for Navier–Stokes flows (see § 5).

To test the MZ-criterion, we consider three-dimensional examples of rotating flows
and interacting vortices. The examples include a steady Stokes flow (spherical drop
flow), a steady Euler flow (ABC flow), and an unsteady flow (perturbation of the ABC
flow). For all three examples, the MZ-criterion outperforms earlier vortex criteria.

2. Linearized velocity and the rate of strain
Consider a three-dimensional incompressible velocity field

v(x, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))T , ∇ · v = 0,

with the corresponding fluid trajectories x(t) starting from x(t0) = x0 at time t0. In
the Lagrangian frame, an infinitesimal perturbation ξ to the initial condition x0 is
advected by the linearized flow

ξ̇ = ∇v (x(t), t) ξ , (2.1)

the equation of variations associated with the trajectory x(t). The stability of the ξ = 0
solution of (2.1) determines the linear stability of the underlying fluid trajectory.

To study the stability of ξ = 0 in (2.1), we consider the Lyapunov function

V (ξ , t) =
1

2

d

dt
|ξ |2 = 〈ξ , S(x(t), t)ξ〉 , (2.2)
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Figure 2. The elliptic cone Z in strain basis, and the behaviour of solutions inside Z
for s3 < 0 and s3 > 0.

where S(x, t) is the rate-of-strain tensor defined in (1.1). To exclude degenerate flows
from our discussion, we shall assume

detS(x, t) �= 0 (2.3)

throughout this paper. Two-dimensional flows violate this assumption, but they are
nonetheless amenable to a simplified version of the present approach (see Haller
2001c).

A negative value of V along a vector ξ implies instantaneous decay for |ξ |, while
positive V values indicate growing |ξ |. By incompressibility, the symmetric tensor S
has zero trace, and hence out of its three eigenvalues, s1, s2, and s3, at least one is
positive and at least one is negative. We index these eigenvalues so that

sign s1 = sign s2 �= sign s3, |s1| � |s2| , (2.4)

thus s1 and s2 have the same sign.

3. Instantaneous Lagrangian flow geometry
By incompressibility and by (2.3), the tensor S is indefinite; the Lyapunov

function V , therefore, takes both positive and negative values in an arbitrary small
neighbourhood of ξ = 0. The domains of positive and negative V values are separated
by the zero set

Z(x, t) = {ξ |〈ξ , S(x, t)ξ〉 = 0},
whose geometry is best understood in the basis of eigenvectors ei corresponding to
the strain eigenvalues si .

Defining the coordinates (η1, η2, η3) through

ξ = η1e1 + η2e2 + η3e3,

we find that Z satisfies

η2
3 = aη2

1 + (1 − a)η2
2, a(x, t) = −s1(x, t)

s3(x, t)
∈ (0, 1), (3.1)

which defines an elliptic cone in the strain basis, as shown in figure 2. Depending on
the sign of s3, solutions of (2.1) that lie instantaneously inside Z approach the origin
(s3 < 0) or leave the origin (s3 > 0).

The global geometry of solutions of (2.1) depends on how they cross the cone Z.
Because V has different signs inside and outside Z, the direction of crossing can be
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Figure 3. Instantaneous flow geometry near the trajectory (now at η = 0) when M is positive
definite on Z. Dots on the trajectories refer to their point of entry (exit) into (out of) Z.

s3 < 0 s3 > 0
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Figure 4. Same as figure 3 for the case when M is positive semidefinite on Z.

identified from the instantaneous growth or decay of V at the crossing point. Such
growth or decay of V along solutions of (2.1) may be deduced from the derivative

d

dt
V (ξ (t), t) = 〈ξ , M(x(t),t)ξ〉 ,

where

M = Ṡ + S (∇v) + (∇v)T S (3.2)

denotes the strain-acceleration tensor, and Ṡ = ∂tS + (∇S)v denotes the material
derivative of S. Inflow or outflow through Z, therefore, depends on the sign of
the quadratic form 〈ξ , Mξ〉 on Z.

In continuum mechanics terms, M is an objective material derivative, the Cotter–
Rivlin rate of S (see Cotter & Rivlin 1955). The trace of M is

Tr M = Tr Ṡ + 2 |S|2 ,

where |S| =
√

Σi,jS
2
ij denotes the Euclidean norm of S. Because S has zero trace, we

have Tr Ṡ = 0, thus

Tr M = 2|S|2 > 0 (3.3)

holds for incompressible flows by assumption (2.3). Consequently, 〈ξ , Mξ〉 is either
positive definite, positive semidefinite, or indefinite over the cone Z. The corresponding
instantaneous flow geometries are shown in figures 3–5.
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Figure 5. Same as figure 3 for the case when M is indefinite on Z.

The zero lines of 〈ξ , Mξ〉 on Z are intersections of the zero-strain-acceleration cone

ZM(x, t) = {ξ |〈ξ , M(x, t)ξ〉 = 0}
with the zero-strain cone Z. Figures 4 and 5 show cases when Z consists of one and
two such lines, respectively; three or four zero lines are also possible.

We call M positive definite, positive semidefinite, or indefinite on the cone Z if the
quadratic form 〈ξ , Mξ〉 is positive definite, positive semidefinite, or indefinite on Z.
As shorthand notation, we shall use MZ = M|Z for the restriction of the tensor field
M(x, t) to the zero-strain cone field Z(x, t).

We note that Klein, Hua & Lapeyre (2000) derived a scalar multiple of the tensor M
in studying passive tracer evolution in two-dimensional turbulence. They found that
the eigenvectors of that tensor govern tracer gradient alignment in certain regions of
the flow.

4. Hyperbolicity, ellipticity and vortices: an objective view
What can we infer from the instantaneous flow geometries of figures 3–5 about

the stability of the trajectory x(t)? This question is non-trivial to answer for two
reasons. First, the equation of variations is a time-dependent linear ODE, and hence
instantaneous features of its right-hand side (such as eigenvalues) are unrelated to the
true asymptotics of its solutions (see e.g. Verhulst 1990). Second, the linear stability
type of the origin ξ = 0 may only reflect the linear stability of the trajectory x(t), and
not its actual nonlinear stability.

Using dynamical systems techniques, we shall overcome the above difficulties for
trajectories of saddle-type stability. The result is a sufficient criterion (Theorem 1) that
guarantees saddle-type behaviour in the Lagrangian frame as long as the trajectory
remains in an appropriately defined hyperbolic domain of the Eulerian frame. We
then define vortices as sets of trajectories that remain in the complement of this
Eulerian hyperbolic domain.

To state Theorem 1, we use an objective partition of the three-dimensional space
into hyperbolic and elliptic domains. The hyperbolic domain H(t) is the set of x
points at which MZ is positive definite. We further partition the domain H(t) into
two subdomains by letting

H(t) = H−(t) ∪ H+(t),

with the subscript of each subdomain referring to the sign of s3(x, t) in that
subdomain.
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The elliptic domain E(t) is the set of x points at which MZ is indefinite. The
hyperbolic and elliptic domains are typically three-dimensional open sets separated
by two-dimensional boundaries. One may call the union of all these boundaries the
parabolic domain P(t).

4.1. Lagrangian hyperbolicity from Eulerian quantities

Lagrangian hyperbolicity (saddle-type behaviour) is the stability type of trajectories
in regions of sustained material stretching and folding. In the language of nonlinear
dynamics, these trajectories form stable and unstable manifolds that drive advective
mixing in the fluid. Below we give a result that relates Lagrangian hyperbolicity to
the Eulerian hyperbolic domain H(t).

Theorem 1. Fluid trajectories staying in the domain H−(t) or H+(t) are Lagrangian-
hyperbolic. More specifically:

(i) For any fluid trajectory that stays in H−(t), there is a one-dimensional material
curve S(t) of fluid particles that converge to the trajectory while it stays in H−(t). At
the same time, there is a two-dimensional material surface U(t) of fluid particles that
converge to the trajectory in backward time while it stays in H−(t).

(ii) For any fluid trajectory that stays in H+(t), there is a two-dimensional material
surface S(t) of fluid particles that converge to the trajectory while it stays in H+(t).
At the same time, there is a one-dimensional material curve U(t) of fluid particles that
converge to the trajectory in backward time while it stays in H+(t).

We prove the above theorem in Appendix C.
Theorem 1 implies that along trajectories staying in the hyperbolic region H(t),

material elements align with time-varying subspaces that are close to the eigenvectors
or eigenplanes of positive strain (V > 0). Thus, in hyperbolic regions, long-term
material alignment conforms to what is suggested by the eigenvalue configuration of
the rate of strain.

To apply Theorem 1, we need to evaluate the definiteness of the tensor M along
the cone field Z, a costly undertaking at first sight. The following result of Appendix
A, however, brings considerable simplification: MZ is positive definite if and only if
the quartic equation

p4 + Ap3 + Bp2 + Cp + D = 0, (4.1)

with its coefficients defined in (A 7), has no zeros in the [−1, 1] interval. The coefficients
A, B , C and D only depend on M and S, and hence are objective.

The positive definiteness of MZ also follows if M is a positive-definite tensor, which
is the case if and only if

(4|S|4 − |M|2)|S|2 > det M > 0, (4.2)

as we show in Appendix B. A positive definite M forces solutions of (2.1) to cross
all level surfaces of the Lyapunov function V from lower towards higher values. This
leads to strong hyperbolicity, a more uniform saddle-type behaviour compared to the
case when M is only positive definite on Z.

Under certain conditions, Lagrangian hyperbolicity can also be inferred rigorously
from the Lagrangian version of the Q-criterion (Haller 2001a). This latter approach,
however, is not objective, and assumes the velocity field to be slowly varying.

4.2. An objective vortex definition

Motivated by our Lagrangian hyperbolicity result in Theorem 1, we define a vortex
to be a bounded and connected set of fluid trajectories that remain in the elliptic
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Figure 6. The linearized flow generated by the velocity gradient (4.3): (a) in the original
basis (b) in strain basis.

region E(t), thereby avoiding the hyperbolic domain H(t). Equivalently, a vortex is
a set of fluid trajectories along which MZ is indefinite. We shall refer to this definition
as the MZ-criterion.

By Theorem 1, the above definition identifies a vortex as a set of fluid trajectories
along which material surface elements do not align with subspaces near the
eigenspaces of positive strain. This is because in the elliptic domain E(t), there
are always solutions of (2.1) that cross from the positive (V > 0) side of the zero-
strain cone Z to the negative (V > 0) side. As a result, material alignment is either
absent or inconsistent with the trend suggested by the eigenvalues of the rate of
strain.

On a more qualitative note, the MZ-criterion identifies vortices as regions of objective
Lagrangian stirring. By contrast, the Galilean-invariant definitions surveyed earlier
identify vortices as regions of instantaneous Eulerian stirring, a feature inferred from
non-objective quantities.

As a kinematic example, let us consider a fluid trajectory x(t), along which the
linearized flow ξ̇ = ∇v(x(t), t)ξ admits the constant velocity gradient

∇v(x(t), t) =


−1 9 0

−1 −1 0
0 0 2


. (4.3)

This linearized flow produces a tornado-type vortex with inward spiralling parallel to
the (ξ 1, ξ 2)-plane and stretching along the ξ 3-axis (see figure 6a).

With the ordering (2.4), the strain eigenvalues for the above vortex are

s1 = 3, s2 = 2, s3 = −5,

with the corresponding strain eigenvectors

e1 =




−
√

2/2

−
√

2/2

0


, e2 =


0

0
1


, e3 =




−
√

2/2
√

2/2

0


.

Figure 6(b) shows the trajectories of the linearized flow in strain basis. Note that
trajectories near the invariant plane η2 = 0 (ξ 3 = 0) enter and leave the zero-strain cone
Z repeatedly before aligning with the intermediate strain axis e2. The quadratic form
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V (ξ ) and the strain acceleration tensor M are, therefore, indefinite on Z. Consequently,
the underlying fluid trajectory x(t) is contained in a vortex by the MZ-criterion.

5. Hyperbolicity and vortices in Navier–Stokes flows
Along a trajectory x(t) generated by a Navier–Stokes velocity field, the rate of

strain S satisfies the differential equation

Ṡ = −(S2 + Ω2) − 1

ρ
P + ν∆S, (5.1)

where Ω is the vorticity tensor defined in (1.1), and Pij = ∂2p/∂xi∂xj is the pressure
Hessian (see Tabor & Klapper 1994 and Jeong & Hussein 1995). Substituting (5.1)
into (3.2) yields

M = (S − Ω)(∇v) + ν∆S − 1

ρ
P, (5.2)

whose restriction to the zero-strain cone field is[
(S − Ω)(∇v) + ν∆S − 1

ρ
P

]
Z

. (5.3)

Thus, for Navier–Stokes flows, trajectories on which the tensor (5.3) is positive
definite form hyperbolic material lines and surfaces (stable and unstable manifolds).
Accordingly, our vortex definition for three-dimensional Navier–Stokes flows can be
phrased as follows: A vortex is a set of fluid trajectories along which the tensor (5.3)
is indefinite.

Replacing the kinematic formula for M (4.2) with (5.2), we find that strong
hyperbolicity holds over regions where

4|S|4 − Tr

[
(S − Ω)(∇v)+ν∆S − 1

ρ
P

]2

>

det

[
(S − Ω)(∇v) + ν∆S − 1

ρ
P

]

|S|2 > 0. (5.4)

As opposed to our earlier kinematic formulae, the dynamic formulae (5.3) and
(5.4) contain no time derivatives. Thus (5.3) and (5.4) extend to velocity fields that
are non-differentiable in time, as long as they are twice continuously differentiable
in space. To obtain similar expressions for hyperbolic and elliptic domains in Euler
flows, one simply sets ν =0 in (5.3) and (5.4).

6. Numerical examples
In this paper, we consider three analytic velocity fields of increasing complexity to

illustrate the use of the MZ-criterion. All three examples involve rotating frames or
interacting vortices.

To compare the MZ-criterion to other vortex criteria, we use finite-time Lyapunov
exponent distributions as objective benchmarks. KAM-type regions of low particle
dispersion show up as domains of minima for Lyapunov exponents. Such regions are
arguably considered vortices in agreement with Elhmäıdi et al. (1993) and Cucitore
et al. (1999). Still, we prefer not to define vortices via Lyapunov exponents, because
(i) these exponents have no direct relation to Eulerian features of the velocity field
(ii) Lyapunov exponents also admit low values in parallel shear flows with no vortices.

Two remarks are in order about the numerical implementation of the MZ-
criterion. First, significant numerical errors may accumulate from long-term trajectory
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integration, and from the second-order numerical differentiation involved in com-
puting M and Z. As a result, the computation will erroneously place some fluid
particles outside E(t), even if they are actually inside E(t). No matter how short,
such an excursion would disqualify the trajectory from being in a vortex. In a fluid
flow with Lagrangian chaos, most trajectories will temporarily leave a vortex for this
reason.

To address the above computational difficulty, we employ a numerically more robust
version of the MZ-criterion: a vortex is a set of fluid trajectories along which MZ is
indefinite for much longer times than along nearby trajectories. In other words, we
require the time of indefiniteness of MZ to admit a local maximum over trajectories
contained in a vortex. This relaxed definition allows for short excursions outside E(t).

Second, while the number of zeros of equation (4.1) can be determined analytically
by Sturm’s theorem (Barbeau 1989), we prefer to use an equivalent result for the
definiteness of MZ from Appendix A. Specifically, MZ is positive definite if and only
if the quantity m(α) defined in (A 2) is positive for all α ∈ [0, 2π ]. Testing the sign
of m(α) over [0, 2π ] is simpler than computing the quantities appearing in Sturm’s
theorem.

6.1. Spherical drop in a Stokes flow

Stone, Nadim & Strogatz (1991) showed that in the Stokes limit, the velocity field of
a spherical drop immersed in an external strain field takes the form

u(x) =
1

2

[
(5|x|2 − 3)

x

1 + a
− 2x

(
x2

1 + a
+

ay2

1 + a
− z2

)]
+

1

2
(ωyz − ωzy),

v(x) =
1

2

[
(5|x|2 − 3)

ay

1 + a
− 2y

(
x2

1 + a
+

ay2

1 + a
− z2

)]
+

1

2
(ωzx − ωxz) ,

w(x) =
1

2

[
−(5|x|2 − 3)z − 2z

(
x2

1 + a
+

ay2

1 + a
− z2

)]
+

1

2
(ωxy − ωyx).




(6.1)

Here a is the ratio of the first two eigenvalues of the rate of strain of the linear
background flow, and ω = (ωx, ωy, ωz) is the angular velocity vector of the drop. Stone
et al. showed that the particle motion generated by (6.1) is integrable for ωx = ωy = 0,
and is typically chaotic otherwise. Here we shall study vortices in the integrable limit
to illustrate that frame invariance of vortex extraction is a crucial requirement even
in that limit.

For ω = 0, as Stone et al. (1991) discuss, the drop stands still with a vortex ring
in each of its hemispheres. These upper and lower vortices correspond to low values
of the finite-time Lyapunov exponents shown in figure 7(a). The high values of the
exponents mark the two-dimensional stable manifold of the origin in the (x, y)-plane,
and the one-dimensional unstable manifold of the origin in the z-axis. Lighter colours
in this figure mark regions of small dispersion.

Figure 7(b–e) shows the vortices obtained from the ∆-, λ2-, Q-, and Qs-criteria for
ω =0. All four criteria succeed in giving the rough location of the four intersections
of the upper and lower vortex rings with the (y, z)-plane. The best result, however, is
figure 7(f ), the numerical implementation of the MZ-criterion. Here larger times spent
in the elliptic region E correspond to darker colours; initial conditions remaining
in E over the whole simulation interval [0, 10] are coloured black. Note how the
MZ-criterion captures the vortices the most faithfully, correctly reproducing their
confinement to the interior of the spherical drop.
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Figure 7. Evaluation of different vortex criteria on the (y, z)-plane of the spherical drop flow
with ω = 0 and a = 1. (a) Finite-time Lyapunov exponents over the time interval [0, 10], with
darker colours indicating higher values. (b) ∆ > 0 (black region). (c) λ2 < 0 (black region).
(d) Q > 0 (black region). (e) Qs > 0 (black region). (f ) Time spent in the domain where MZ

is indefinite, with darker colours indicating longer times.

To consider the case of a rotating drop, we now set ωx = ωy = 0 and ωz = 3. This
change in ω is not a change of frame, because it leaves the background strain field
unaffected. As a result, fluid trajectories change, even though the flow geometry
remains qualitatively similar (see figure 8a). Figure 8(b–d ) shows how the the ∆-, λ2-,
and Q- criteria fail to capture vortices: two of them even suggest that every point in
the physical space is part of a single vortex. This illustrates our earlier point that in
rotating flows, frame-dependent criteria will view the whole space as a single vortex
if the speed of rotation is high enough.

The Qs-criterion in figure 8(e) still indicates bounded vortex regions, but fails to
capture the basic shape and location of vortex rings. By contrast, the MZ-criterion
evaluated in figure 8(f ) gives the correct vortex locations and physically reasonable
vortex shapes.



An objective definition of a vortex 13

1

0

–1
–1 0 10

z

1

0

–1

1

0

–1
–1 –1

–1

–1

0 10

z

1

0

–1

1

0

–1
–1

1

1

10 10

z

y y

1

0

–1

(a) (b)

(c) (d)

(e) ( f )

Figure 8. Same as figure 7, but with ω = (0, 0, 3).

6.2. ABC flow

The classic ABC flow is given by the velocity field

u(x) = A sin z + C cos y,

v(x) = B sin x + A cos z,

w(x) = C sin y + B cos x,


 (6.2)

which we consider with the parameter values A=
√

3, B =
√

2, and C = 1. This
parameter configuration generates chaotic streamlines as described by Dombre et al.
(1986), providing a more complex flow than the integrable Stokes example considered
in § 6.1.

The ABC flow is known to have KAM-type elliptic regions that are arguably
called vortices, as they display swirling particle behaviour and small dispersion
values. These regions have different sizes and spatial orientations, as the finite-time
Lyapunov exponent distribution in the x = 2π plane reveals (see figure 9a).

The black regions in figure 9(b–e) mark points of the x = 2π plane where the
∆-criterion, the λ2-criterion, the Q-criterion, and the Qs-criterion are satisfied. These
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Figure 9. Visualization of the intersection of vortices with the x = 2π plane in the ABC
flow. (a) Finite-time Lyapunov exponents over the time interval [0, 10], with darker colours
indicating higher values. (b) ∆ > 0 (black region). (c) λ2 < 0 (black region). (d) Q > 0 (black
region). (e) Qs > 0 (black region). (f ) Time spent in the domain where MZ is indefinite, with
darker colours indicating larger times; if the time is the entire simulation interval [0, 10], the
trajectory is coloured black.

criteria all miss most vortices indicated by figure 9(a), with the exception of the single
vortex that extends in the vertical direction of the left half of figure 9(a). The basic
shape of this vortex, however, is incorrectly predicted by all these criteria: they all fail
to capture how the vortex first bends to the right and then to the left for increasing
z values.

By contrast, figure 9(f ) shows the numerical implementation of the MZ-criterion.
Note the close correlation between the black regions of this figure and the regions
of low particle dispersion in figure 9(a). Specifically, out of the five vortices visible
in 9(a), four are captured unambiguously by the MZ-criterion. The fifth vortex, with
its centre located approximately at (y, z) = (4.5, 3), is also recognizable in figure 9(f ),
but its core is blurred. The quality of this core improves if one marks all trajectories
black that spend 90% of their time in the elliptic region (see figure 10.)
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Figure 10. Visualization of the intersection of vortices with the x = 2π plane in the ABC
flow. (a) Finite-time Lyapunov exponents over the time interval [0, 10], with darker colours
indicating higher values. (b) Time spent in the domain where MZ is indefinite; if the time is at
least 90% of the entire simulation interval [0, 10], the trajectory is coloured black.

6

4

2

0 2 4 6

6

4

2

0 2 4 6

z

z

y y

(a) (b)

6

4

2

0 2 4 6
y

(c)

Figure 11. The rough location of vortices (marked by rectangles) as inferred from the
Lyapunov exponent plot (a), then superimposed on the elliptic region shown in (b), and
on the λ2 < 0 region shown in (c).

While figure 9(f ) reveals trajectories that stay in the elliptic domain E, figure 11(b)
shows fluid particles on the x = 2π plane that are instantaneously in E. Interestingly,
the latter figure already suggests the rough location of some of the vortices, as
the rectangles marking the approximate vortex locations confirm. For comparison,
the reader may wish to consider the same rectangles superimposed on the vortex
candidates provided by, say, the λ2-criterion (see figure 11c).

Figure 12 gives a three-dimensional comparison of the vortex candidates obtained
from different criteria. As seen in the figure, the objective vortex criterion (figure 12f )
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Figure 12. Evaluation of different vortex criteria on the faces of the [0, 2π]3 cube in the ABC
flow. (a) Finite-time Lyapunov exponents over the time interval [0, 10], with darker colours
indicating higher values. (b) ∆ > 0 (black region). (c) Q > 0 (black region). (d) Qs > 0 (black
region). (e) λ2 < 0 (black region). (f ) Time spent in the domain where MZ is indefinite, with
darker colours indicating larger times.

proposed in this paper provides the closest match for the vortices revealed by
Lyapunov exponents.

Finally, figure 13 compares the three-dimensional Lyapunov exponent distribution
with the elliptic set E shown in black. This comparison confirms that E itself already
serves as a rough approximation for some of the vortices in the ABC flow.

6.3. Unsteady ABC-type flow

The ABC flow is an unstable solution of Euler’s equation, displaying high-frequency
instabilities under perturbation (see Friedlander & Vishik 1991 and Lifschitz 1991).
To model these instabilities, we consider the unsteady velocity field

u(x, t) = A(t) sin z + C cos y,

v(x, t) = B sin x + A(t) cos z,

w(x, t) = C sin y + B cos x,
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Figure 13. (a) Finite-time Lyapunov exponents (with lighter colours indicating larger values)
and (b) the elliptic set E for the ABC flow.
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Figure 14. Evaluation of different vortex criteria on the faces of the [0, 2π]3 cube in the
unsteady ABC-type flow. (a) Finite-time Lyapunov exponents over the time interval [0, 10],
with darker colours indicating higher values. (b) Qs > 0 (black region). (c) Time spent in the
region where MZ is indefinite, with darker colours indicating larger times. (d) Time spent in
the domain where M is not positive definite, with darker colours indicating longer times.

where A(t) = A0 + (1 − e−qt ) sinωt represents the effect of a growing and saturating
unstable mode. This third example, therefore, adds unsteadiness to the already
complex flow geometry of our second example.

For A0 =
√

3, q =0.1, ω = 2π , B =
√

2, and C = 1, we again compare results from
different vortex definitions using the Lyapunov exponent calculation of figure 14(a)
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as an objective Lagrangian benchmark. For t = 0, the results from the ∆-criterion, the
Q-criterion, and the λ2-criterion are the same as in the steady case (see figure 12b, c, e),
and are omitted here. While the Qs-criterion (figure 14b) fails to capture any of the
vortices indicated by Lyapunov exponents, the MZ-criterion (figure 14c) does identify
these vortices accurately.

For the present example, we also plot trajectories along which M is not positive
definite for long times. Shown in figure 14(d ), these are the trajectories that consistently
violate the inequalities (4.2), or in other words, stay away from the domain of strong
hyperbolicity. The vortices emerging from this relaxed vortex definition (M-criterion)
are even sharper than those in figure 14(c). The performance of the M-criterion,
however, is problem dependent: Haller (2001c) gives an example in which the two-
dimensional version of the M-criterion gives weaker results than the two-dimensional
MZ-criterion.

7. Conclusions
In this paper, we propose an objective vortex definition for three-dimensional

incompressible flows. We first proved that a given fluid trajectory is hyperbolic in
a strict mathematical sense as long as M, the Cotter–Rivlin derivative of the rate
of strain, is positive definite along the zero set Z of the quadratic form 〈ξ , Sξ〉. By
hyperbolicity, we mean a saddle-type instability in the Lagrangian frame that leads
to exponential stretching and folding of nearby material surfaces. Our hyperbolicity
criterion is objective, because both M and Z are objective.

For incompressible flows, M may only be positive definite, indefinite, or positive
semidefinite on Z, with the latter case occurring on the boundary of hyperbolic
regions. This prompted us to define vortices as sets of fluid trajectories along which
M is indefinite on Z, or, for short, MZ is indefinite.

For two-dimensional flows, our MZ-criterion simplifies to the Lagrangian version of
the Qs-criterion described in Haller (2001c). For three-dimensional flows, however, the
MZ-criterion has no such relation to the Qs-criterion; figures 12(d) and 13(b) show
the difference between instantaneous evaluations of the two criteria in a concrete
example.

We tested the MZ-criterion in three examples that involved rotating frames, interact-
ing vortices, and growing instabilities. In all three examples, the MZ-criterion revealed
sharp vortices that coincided with those suggested by Lyapunov exponent plots. By
contrast, prior vortex definitions, such as the Q-, Qs-, ∆-, and λ2-criteria, typically
gave an incorrect indication of the location and shape of vortices.

As the MZ-criterion is based on Lagrangian stability considerations, it shows close
correlation with regions of low particle dispersion. While such regions are best
captured by low values of finite-time Lyapunov exponents, these exponents do not
provide clues about Eulerian features of vortices. By contrast, the MZ-criterion is
based on objective invariants of the velocity field, and hence yields a link between
vortices and the governing equations (see § 5).

We believe that further work is necessary to explore the implementation of the MZ-
criterion in direct numerical simulations of unsteady flows. One numerical difficulty is
already apparent from the present work: because of numerical errors, MZ may appear
positive definite for short times even on trajectories inside vortices. A way around
this difficulty is to define vortices, for numerical purposes, as trajectories that spend
most of their time in the region where MZ is indefinite. Testing of this principle in
direct numerical simulations is currently underway and will be reported elsewhere.
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Appendix A
Here we give a sufficient and necessary criterion for the positive definiteness of M

on Z. Letting η1 = l1 cos α, η2 = l2 sinα in (3.1), denoting M in strain basis by

M̂ = [e1 e2 e3]
T M [e1 e2 e3],

and substituting the expression (3.1) for η3 into 〈η, M̂η〉 gives

m(α) = l21(M̂11 + aM̂33) cos2 α + l22(M̂22 + (1 − a)M̂33) sin2 α

+ 2

√
l21a cos2 α + l22(1 − a) sin2 α(l1M̂13 cos α + l2M̂23 sinα)

+ l1l2M̂12 sin 2α, (A 1)

the restriction of 〈η, Mη〉 to the ellipse

(
l1 cos α, l2 sin α,

√
l21a cos2 α + l22(1 − a) sin2 α

)
on the upper half of the cone Z.

For l1 =
√

1 − a and l2 =
√

a, formula (A 1) takes the simpler form

m(α) = M̂11 (1 − a) cos2 α + M̂22a sin2 α + M̂33a(1 − a)

+
√

a(1 − a)(2M̂13

√
1 − a cos α + 2M̂23

√
a sinα + M̂12 sin 2α). (A 2)

The strict positivity of m(α) over the interval [0, 2π ] is, therefore, equivalent to the
positive definiteness of M on Z. Note that m(α) cannot be strictly negative on [0, 2π ],
because M cannot be negative definite on Z. Consequently, to establish the positive
definiteness of M, we need to guarantee that m(α) has no real zeros.

Rewriting (A 2) as

m(α) = [M̂11(1 − a) − M̂22a] cos2 α + M̂12

√
a(1 − a) sin 2α

+ 2M̂13

√
a(1 − a) cos α + 2M̂23a

√
1 − a sinα + M̂33a(1 − a) + M̂22a

shows that zeros of m(α) satisfy the equation

± 2
√

a (1 − a)
√

1 − cos2 α(M̂12 cosα +
√

aM̂23)

= −[M̂11(1 − a) − M̂22a] cos2 α − 2M̂13

√
a (1 − a) cos α

−M̂33a(1 − a) − M̂22a, (A 3)

with the sign of the left-hand side given by the sign of sin α. Letting p = cos α and
taking the square of both sides, we obtain

4(1 − p2)a(1 − a)(M̂12p +
√

aM̂23)
2 = [(M̂11(1 − a) − M̂22a)p2

+ 2M̂13

√
a(1 − a)p + a(M̂33(1 − a) + M̂22)]

2,

(A 4)
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where we have selected the positive sign for 1 − p2 to ensure that the norm of any
real root of (A 4) is less than unity. As a result, any real root yields a corresponding
zero for equation (A 3).

If

S0 = [M̂11(1 − a) − M̂22a]2 + 4M̂2
12a(1 − a) �= 0, (A 5)

then equation (A 4) is equivalent to

p4 + Ap3 + Bp2 + Cp + D = 0, (A 6)

with

A = 4
√

a(1 − a)
M̂13[M̂11(1 − a) − M̂22a] + 2aM̂12M̂23

S0

,

B = 4a
M̂2

13(1 − a)2 + (1 − a)
(
aM̂2

23 − M̂2
12

)
S0

+ 2a
[M̂11(1 − a) − M̂22a][M̂33(1 − a) + M̂22]

S0

,

C = 4
√

a3(1 − a)
M̂13[M̂33(1 − a) + M̂22] − 2M̂12M̂23

S0

,

D = a2 [M̂33(1 − a) + M̂22]
2 − 4(1 − a)M̂2

23

S0

.




(A 7)

Therefore, the tensor M is positive definite on the cone Z if and only if (A 6) has no
real roots in the [−1, 1] interval.

Appendix B
Here we derive formula (4.2) for the positive definiteness of the tensor M. The

characteristic equation of M is

λ3 − TrMλ2 + I2(M) λ − det M = 0,

where

I2(M) =
1

2
[(Tr M)2 − TrM2] (B 1)

is the second scalar invariant of M. We change to the new variable ζ = −λ to obtain
the transformed characteristic equation

ζ 3 + TrMζ 2 + I2(M) ζ + det M = 0. (B 2)

By the symmetry of M, (B 2) has real roots, and all these real roots need to be negative
for M to be positive definite. By the Routh–Hurwitz criterion (Barbeau 1989), all roots
of (B 2) are negative if and only if

detM > 0, I2(M) > 0,

∣∣∣∣∣
I2(M) det M

1 TrM

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣
I2(M) detM 0

1 TrM I2(M)

0 0 1

∣∣∣∣∣∣∣
> 0,

or, equivalently,

detM > 0, I2(M) > 0, I2(M) · TrM > det M. (B 3)
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Using (3.3) and (B 1), we summarize these inequalities as

(4|S|4 − |M|2)|S|2 > detM > 0,

where we used the identity Tr M2 = |M|2 for the symmetric matrix M.

Appendix C
Here we prove statement (i) of Theorem 1. The proof of statement (ii) of the

theorem then follows by a reversal of time.
Assume that a trajectory x(t) stays in the hyperbolic region H−(t) over the time

interval I =[t0, t1]. Let

ξ̇ = A(t)ξ , TrA(t) = 0, (C 1)

be a linear system whose coefficient matrix A(t) coincides with ∇v(x(t), t) over the
time interval I , and becomes a constant matrix outside a slightly larger time interval

I ε = [t0 − ε, t1 + ε] (C 2)

for some small constant ε > 0. There are infinitely many choices for such an A(t); we
shall make our choice more specific below.

We define the rate-of-strain tensor S(t) = 1
2
[A(t)+AT (t)] and the strain acceleration

tensor

M(t) =
d

dt
S(t) + S(t)A(t) + AT (t)S(t),

as well as the zero-strain set

Z(t) = {ξ | 〈ξ , S(t)ξ〉 = 0} .

By assumption, x(t) is in the hyperbolic region H−(t) for all t ∈ I . Over this time
interval, therefore, S(t) is indefinite with a single negative eigenvalue s3(t); the set
Z(t) is non-empty, and the tensor M(t) is positive definite on Z(t).

We want to select the matrix family A(t) in such a way that the above properties
of S, Z, and M hold for all times. To this end, we select A(t) so that the function

ν(t) = min
|e(t)|=1

e(t)∈Z(x(t),t)

〈e(t), M(x(t), t)e(t)〉 (C 3)

and the single negative eigenvalue, s3(t), of S(t) satisfy

ν(t) � νmin
def.
= min

t∈I
ν(t)−ε > 0, s3(t) � smax

def.
= max

t∈I
s3(t)+ε < 0, t ∈ �, (C 4)

for small enough ε > 0. Then, by the continuity of 〈e, Me〉 in e, for all small enough
ε > 0, we also have

min
|e(t)|=1,

dist [e(t),Z(t)]<ε

〈e(t), M(t)e(t)〉 >
νmin

2
. (C 5)

For more details on constructing a smooth matrix function A(t) that satisfies (C 3)–
(C 5), see Haller (2000).

We shall establish infinite-time Lagrangian hyperbolicity of solutions of the linear
system (C 1). From that, we obtain finite-time Lagrangian hyperbolicity for (2.1) while
x(t) is in H−(t), because (2.1) coincides with (C 1) for t ∈ I .

(a) Solutions staying in the cone converge to the origin
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Figure 15. The set Ψ (t) for the construction of (a) the stable manifold Es(t)
and (b) the unstable manifold Eu(t).

By (C 4), the quadratic form V (ξ , t) = 〈ξ , S(t)ξ〉 takes negative values in the interior
of the cone Z(t) for all times. Let

Ψ (t) = {|ξ | � 1 | V (ξ , t) � 0, η3 � 0}
denote the solid half-cone bounded by Z(t) and by the unit sphere, as shown in
figure 15(a). While in Ψ (t), any solution ξ (t) of (C 1) approaches the origin
monotonically by the estimate

d

dt
|ξ |2 = 2 〈ξ , Sξ〉 = 2V (ξ , t) < 0. (C 6)

It remains to show that

lim
t→∞

ξ (t) = 0 (C 7)

for any solution ξ (t) that stays in Ψ (t) for all t ∈ [t0, ∞). This last statement, however,
follows from the same argument given in Haller (2001c) for the two-dimensional case.

(b) Solutions staying in the cone leave the unit ball in backward time
In backward time, all solutions starting in Ψ (t) − {0} must leave Ψ (t). We obtain

this by assuming the contrary for a trajectory ξ (t), and establishing that for such a
bounded trajectory,

lim
t→−∞

dist [ξ (t), Z(t)] = 0 (C 8)

must hold. This would mean that Z(t) attracts the solution ξ (t) in backward time,
whereas Z(t) attracts all nearby solutions in Ψ (t) in forward time. Thus, we conclude
that all solutions starting in ψ(t) − {0} must leave Ψ (t).

(c) There exist solutions that stay inside the cone
Consider an infinite sequence of closed curves {Cn(t)}∞

n=1 with Cn(t) ∈ Ψ (t) ∩
Z(t), such that each Cn(t) encircles the η3-axis, and limn→∞ Cn(t) = 0, as shown in
figure 15(a). In the extended phase space of the (ξ , t) variables, each family of circles,
Cn(·), appears as an infinite cylinder,

Cn = {(ξ , t) | ξ ∈ Cn(t), t ∈ �},
as shown schematically in figure 16.

There exists a finite time Tn > 0 such that at time t − Tn, all solutions (ξ (t), t)
starting on the cylinder Cn are outside Ψ , forming a deformed cylinder En. (The
existence of a finite Tn follows from the compactness of Cn ∩ (�3 × I ), and from the
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Figure 16. The cylinders Cn, Dn, and En shown schematically in the four-dimensional space
of the (η, t) variables.

constancy of A(t) outside the time interval Iε.) All trajectories evolving from Cn into
En in backward time intersect the boundary of Ψ , delineating another cylinder Dn,

as shown in figure 16. Similarly, the cylinder Cn+1 gives rise to a cylinder Dn+1 ⊂ Dn

on the boundary of Ψ . By construction, any solution starting from Dn − Dn+1 exits
Ψ somewhere between the circles Cn and Cn+1.

The infinite sequence of cylinders, D1 ⊃ D2 ⊃ . . . ⊃ Dn ⊃ . . . , is a nested sequence
of non-empty closed set, and hence

D∞ =
⋂
n�1

Dn

is a non-empty curve by Cantor’s theorem. Observe that a point (ξ ∗
, t∗) ∈ D∞ will

never exit Ψ because there is no index N for which (ξ ∗
, t∗) ∈ DN −DN+1. For any time

t∗, therefore, we have found an initial condition ξ ∗ ∈ Ψ such that the corresponding
solution ξ ∗(t) stays in Ψ (t) for all t > t∗.

(d) Finite-time stable manifold in the equation of variations
By (C 7), ξ ∗(t) will converge to zero. For a linear system such as (C 1), one initial

condition converging to the origin implies the existence of a subspace Es(t) of initial
conditions with the same property. Because Es(t) must lie entirely inside the cone
Z(t), Es(t) must be a one-dimensional subspace: any two- or three-dimensional
subspace would also have points outside Z(t). Furthermore, Es(t) is a continuously
differentiable function of t by the smoothness of solutions of (C 1).

Following the arguments given in Haller (2001c), we obtain that for some fixed
constant a > 0, all solutions ξ (t) with ξ (t0) ∈ Es(t0) satisfy the decay estimate

|ξ (t)| � |ξ (t0)|e−a(t−t0) (C 9)

for any t, t0 ∈ I ε .
(e) Finite-time unstable manifold in the equation of variations
To prove the existence of an unstable manifold for equation (C 1), we now consider

the time-dependent set

Ψ (t) = {|ξ | � 1 | V (ξ , t) � 0},
the part of Z(t) and its exterior that lies within the unit sphere (see figure 15b). As in
section (a) above, we obtain that any solution staying in Ψ (t) for all backward times
must converge to the origin as t → −∞.
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We now show that there are non-zero solutions of (C 1) that stay in Ψ (t) for all
t � t0. Figure 15(b) helps in verifying the following properties of the set

Ψ = {(ξ , t) | ξ ∈ Ψ (t), t ∈ �}, (C 10)

the family of Ψ (t) viewed in space–time:
(i) On the boundary component

∂Ψ 1 = {(ξ , t) ∈ Ψ | | ξ | = 1} (C 11)

of Ψ , the vector field (ξ̇ , ṫ) points strictly inwards in backward time.
(ii) On the boundary component

∂Ψ 2 = {(ξ , t) ∈ Ψ | ξ ∈ Z(t) − {0}} (C 12)

of Ψ , the vector field (ξ̇ , ṫ) points strictly outwards in backward time
(iii) The remaining boundary component ∂Ψ 3 = ∂Ψ − ∂Ψ 1 − ∂Ψ 2 of Ψ is just the

invariant line {ξ = 0} in the (ξ, t)-space.
(iv) As a consequence of (i)–(iii), the set of points immediately leaving Ψ in

backward time is W im = ∂Ψ 2.

(v) Let W evdenote the set of points eventually leaving Ψ in backward time. By
definition, W im ⊂ W ev. Because ∂Ψ 3 is not in W ev, we conclude that W im is relatively
closed in W ev, i.e. any Cauchy sequence in W im that does not have a limit in W im will
not have a limit in W ev either.

(vi) Ψ is a closed set in the (ξ , t) space.
The properties (iv)–(vi) of Ψ are the defining properties of a backward-time

Wasewsky set (see Hale 1980). For any Wasewsky set, the Wasewsky map

Γ : W ev → W im, (C 13)

that maps initial conditions in W ev to the point where they leave Ψ in backward time,
is continuous.

Suppose that all non-zero solutions leave Ψ eventually in backward time. Then
W ev =Ψ −∂Ψ 3, and hence Γ (Ψ −∂Ψ 3) = ∂Ψ 2. But a continuous map cannot map the
connected set Ψ − ∂Ψ 3 into the disconnected set ∂Ψ 2, thus we obtain a contradiction.
Therefore, there exist solutions that stay in Ψ (t) for all backward times, and these
solutions then converge to the ξ = 0 solution of (C 1) as t → −∞. This gives the
existence of an unstable manifold Eu(t) for the origin of system (C 1).

The unstable manifold Eu(t) is again a subspace for any fixed t by the linearity
of (C 1). It cannot be a one-dimensional subspace, because that would still leave W ev

a connected set, thereby violating the continuity of the Wasewsky map (C 13). Eu(t)
cannot be three-dimensional either, because that would violate the incompressibility
of the linear flow (C 1). Thus Eu(t) must be a two-dimensional subspace for each t ,
depending continuously on t by the smoothness of solutions of (C 1).

Just as in the case of Es(t), the above construction gives a finite-time unstable
manifold for the linearized flow (2.1). This unstable manifold is not unique, but
becomes practically unique if the solution x(t) spends long enough time in the
hyperbolic region H−(t).

In analogy with (C 9), solutions in Eu(t) obey the growth estimate

|ξ (t)| � |ξ (t0)|eb(t−t0) (C 14)

with a positive exponent b <a. (This relation between b and a follows from
incompressibility.)
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(f ) Stability of the trajectory x(t)
Under conditions (C 9) and (C 14), Haller (2001a) showed the existence of smooth

finite-time stable and unstable manifolds S(t) and U(t) that are tangent to Es(t) and
Eu(t), respectively, along the trajectory x(t). These manifolds are just the material
line and material surface described in statement (i) of Theorem 1.
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