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We introduce an approach to identify elliptic transport barriers in three-dimensional, time-aperiodic
flows. Obtained as Lagrangian Coherent Structures (LCSs), the barriers are tubular non-filamenting
surfaces that form and bound coherent material vortices. This extends a previous theory of elliptic
LCSs as uniformly stretching material surfaces from two-dimensional to three-dimensional flows.
Specifically, we obtain explicit expressions for the normals of pointwise (near-) uniformly stretch-
ing material surfaces over a finite time interval. We use this approach to visualize elliptic LCSs in
steady and time-aperiodic ABC-type flows. VC 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4944732]

Even complex flows tend to produce organized tracer
patterns. Designed as generalizations of invariant mani-
folds to finite-time dynamical systems with arbitrary time
dependence, Lagrangian Coherent Structures (LCSs) are
special material surfaces that act as transport barriers,
guiding the formation of these directly observable tracer
patterns. Notably, outermost elliptic LCSs demarcate the
boundaries of coherent material vortices in fluid flows.
Here, we extend a recent theory of elliptic LCSs from
two- to three-dimensional flows and use it to uncover
elliptic LCSs in steady and temporally aperiodic flow
models.

I. INTRODUCTION

Transport barriers provide a simplified picture of com-
plex time-aperiodic flows as surfaces underlying the forma-
tion of tracer patterns.16 Application areas include fluid
dynamics,6 geophysical flows,23,25 and chemical
reactions.21,24

An indirect approach to locating transport barriers is to
partition the flow into coherent sets.11 Obtained from a prob-
abilistic transfer operator, coherent sets exhibit minimal
leakage among each other. In contrast to the methods that we
outline in the following, set-based approaches3,11,14 identify
patches and volumes formed by coherent sets of trajectories.

Another, direct approach to transport barriers targets
evolving material surfaces with distinguished dynamical
behavior. These LCSs (see Ref. 16 for a review) can be
located as explicitly parametrized curves or surfaces using
recent variational methods.2,7,15,17 Three types of LCSs have
been introduced in these works: Parabolic LCSs for identify-
ing jet-type structures,7 hyperbolic LCSs as generalized nor-
mally hyperbolic invariant manifolds,15 and elliptic LCSs
capturing coherent Lagrangian vortices.17 The latter can be
envisioned as sharp material tubes that guide coherent
motion of matter over a prolonged interval of time, as often
observed, e.g., in tornadoes, steam rings, or ocean eddies. In

an idealized setting, similar objects exist in steady, incom-
pressible Euler flows,1,4 in the form of invariant tori or
cylinders.

All of the aforementioned variational LCS
approaches7,15,17 provide parametrizations of LCS surfaces.
These parametrized surfaces are obtained by solving differ-
ential equations, as opposed to merely thresholding scalar
fields. Moreover, the variational principles underlying the
methods in Refs. 7 and 17 explicitly define the global defor-
mation properties of the surfaces they highlight.

Methods for hyperbolic and elliptic LCSs have recently
been extended to three-dimensional flows.2 These local var-
iational techniques render LCSs as surfaces orthogonal to
directions of maximal normal repulsion (hyperbolic LCSs)
and maximal tangential shear (elliptic LCSs).

Strictly shear-maximizing elliptic LCSs,2 however, tend
to be difficult to locate in real-life data sets, such as the
Southern Ocean State Estimate.22 This is due to the idealized
nature of these LCSs, requiring pointwise maximal tangen-
tial shear at all points of the surface. This strict maximality
requirement may not yield tubular surfaces in complex and
noisy data sets.

Here, we propose a complementary approach to elliptic
LCSs in three-dimensional flows. Our method is an exten-
sion of the most recent global variational theory of elliptic
LCSs in two-dimensional flows,17 which has already been
applied to various numerical velocity fields.13,17,19,31 The
proposed approach replaces the requirement of pointwise
maximal tangential shear for elliptic LCSs2 with the require-
ment of near-uniform stretching along the LCSs. This allows
for small variations in the uniformity of the stretching,
thereby yielding numerically more robust elliptic LCS
surfaces.

After introducing the mathematical setting, we review
the theory of elliptic LCSs in two-dimensional flows from
Ref. 17. This approach identifies vortex boundaries as closed
material curves that, over a finite time interval, uniformly
stretch by a factor k near unity. By directly extending this
variational principle to three dimensions, we find that the
generalization of closed and uniformly k-stretching curves toa)georgehaller@ethz.ch
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k-stretching tubular surfaces is not straightforward. Our
considerations, however, suggest seeking pointwise near-
uniformly stretching surfaces. In contrast to the maximal-
shear method for elliptic LCSs in three dimensions,2 seeking
near-uniformly stretching surfaces yields a parametric family
of admissible normal fields for the LCSs. It turns out that, at
each point, all near-uniformly stretching surfaces necessarily
contain the intermediate eigenvector of the right Cauchy-
Green strain tensor. This observation simplifies the construc-
tion of elliptic LCSs as tubular near-uniformly stretching
surfaces. We finally apply this approach to steady and time-
aperiodic ABC-type flows.

II. SETUP AND NOTATION

We consider non-autonomous ordinary differential
equations of the form

_x ¼ uðx; sÞ; x 2 U; s 2 ½t0; t%; (1)

where the flow domain U & Rd is an open and bounded sub-
set with d¼ 2 or d¼ 3; [t0, t] is a finite time interval; and the
velocity field u : U ' ½t0; t%! Rd is assumed to be smooth.
In Sec. III, we consider d¼ 2, and from Sec. IV onwards, we
take d¼ 3. We denote trajectories passing through a point
x0 2 U at time t0 by x(s; t0, x0). For any time s 2 [t0, t], we
define the flow map as Fs

t0
ðx0Þ :¼ xðs; t0; x0Þ.

Consider a set of initial positions forming a
codimension-one surfaceMðt0Þ at time t0. Its time-s image,
MðsÞ, termed a material surface, is obtained under the flow
map, i.e., MðsÞ ¼ Fs

t0
ðMðt0ÞÞ. While any material surface

divides locally the extended phase space, only special mate-
rial surfaces with sustained coherence in time will act as
transport barriers.2

We proceed by defining the Cauchy-Green strain tensor
field

Ct
t0
ðx0Þ :¼ ½DFt

t0
ðx0Þ%TDFt

t0
ðx0Þ; (2)

with DFt
t0
ðx0Þ denoting the Jacobian matrix of Ft

t0
expressed

in the standard Euclidean basis, and the T-superscript refer-
ring to transposition (see Ref. 20 for the formulation on
Riemannian manifolds). At each x0, Ct

t0
ðx0Þ is a symmetric

and positive definite matrix. In two dimensions, Ct
t0
ðx0Þ has

two positive eigenvalues

0 < k1ðx0Þ ( k2ðx0Þ:

Unless the two eigenvalues are equal, the associated unit
eigenvectors n1,2(x0) form a well-defined, orthonormal basis.
In three dimensions, Ct

t0
ðx0Þ has three positive eigenvalues

k1,2,3(x0), which we order as

0 < k1ðx0Þ ( k2ðx0Þ ( k3ðx0Þ:

For incompressible flows, the product of the eigenvalues is
unity, i.e., k1ðx0Þ ) k2ðx0Þ ) k3ðx0Þ ¼ 1. Except at points x0 2
U where the eigenvalues of Ct

t0
ðx0Þ are repeated, i.e.,

k1(x0)¼ k2(x0) or k2(x0)¼ k3(x0), the unit eigenvectors
n1(x0), n2(x0), and n3(x0) again form an orthonormal basis.
Pointwise, we orient them so that n3ðx0Þ ¼ n1ðx0Þ ' n2ðx0Þ.

III. REVIEW OF ELLIPTIC LAGRANGIAN COHERENT
STRUCTURES IN TWO DIMENSIONS

Following the two-dimensional approach introduced in
Ref. 17, consider a closed material curve of initial particle
positions c(t0). Over the finite time interval [t0, t], the aver-
aged relative tangential stretching of c(t0) is given by the
strain functional

Q c t0ð Þ; tð Þ ¼
þ

c t0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx00 sð Þ; Ct

t0
x0 sð Þð Þx00 sð Þi

hx00 sð Þ; x00 sð Þi

s

ds; (3)

where x0(s) is a parameterization of cðt0Þ; x00ðsÞ ¼ dx0=ds is
the (non-unit) tangent vector to c(t0), and h:; :i denotes the
Euclidean inner product.

Stationary curves of the functional Q defined in (3) do
not, by definition, exhibit leading-order variation in the aver-
aged tangential strain. They are, therefore, non-filamenting
curves that can be used to define elliptic Lagrangian
Coherent Structures.17 Mathematically, these elliptic LCSs
solve the classic Euler–Lagrange equation associated with
the Lagrangian

q x0; x
0
0

# $
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx00; Ct

t0
x0ð Þx00i

hx00; x00i

s

:

The Lagrangian qðx0; x00Þ has no explicit dependence on the
curve parameter s and hence, by Noether’s theorem,12 pro-
duces a first integral I for the Euler–Lagrange equation asso-
ciated with the variational problem dQ(c,.)¼ 0. Evaluated on
stationary curves of Q, the first integral is of the form

I ¼ q* hx00; @x00
qi ¼ q ¼ const: : (4)

Denoting the constant in (4) by k, we obtain that q¼ k,
which we rewrite as

hx00ðsÞ;C
t
t0
ðx0ðsÞÞx00ðsÞi ¼ k2hx00ðsÞ; x

0
0ðsÞi: (5)

Expressing (5) in the eigenbasis of Ct
t0
ðx0Þ, one finds

that closed stationary curves of Q are closed integral curves
of the vector fields

g6
k x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x0ð Þ * k2

k2 x0ð Þ * k1 x0ð Þ

s

n1 x0ð Þ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 * k1 x0ð Þ

k2 x0ð Þ * k1 x0ð Þ

s

n2 x0ð Þ : (6)

As these curves satisfy (5) at each point, they are
guaranteed to stretch uniformly by a factor of k. For such
a curve, denoted by c(t0), the stretching factor k is a posi-
tive number between maxx02cðt0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx0Þ

p
and minx02cðt0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ðx0Þ
p

. In the particular case of k¼ 1, these stationary
curves of Q experience no stretching between the times t0
and t. We refer to this case of perfect coherence as neu-
tral stretching.
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IV. UNIFORMLY AND NEAR-UNIFORMLY STRETCHING
MATERIAL SURFACES IN THREE-DIMENSIONAL
FLOWS

A. Uniform stretching in three-dimensional flow

As outlined above, in two dimensions, elliptic LCSs are
non-filamenting, closed material curves that are infinitesi-
mally k-stretching. A straightforward generalization to three
dimensions is to seek two-dimensional tubular surfaces that
are uniformly stretching by a factor of k along all directions
in each of their tangent spaces. We now explore this idea in
detail.

Definition 1. A smooth material surface MðsÞ is point-
wise uniformly stretching if, under advection from time t0 to
t, all vectors in each tangent space Tx0

Mðt0Þ stretch uni-
formly by the same factor kðx0Þ 2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx0Þ

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3ðx0Þ

p
%.

We illustrate the basic idea of Definition 1 in Figure 1.
The definition translates to the explicit requirement that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv; Ct

t0
x0ð Þ vi

hv; vi

s

¼ k x0ð Þ; 8x0 2 M t0ð Þ; 8v 2 Tx0
M t0ð Þ:

(7)

Theorem 1. In three-dimensional flow, as given by (1)
with d¼ 3, any pointwise uniformly stretching material sur-
faceMðsÞ would have to satisfy kðx0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
.

Proof. Consider an arbitrary pointwise uniformly
stretching surfaceMðsÞ. At any point x0 2 Mðt0Þ where Ct

t0
has distinct eigenvalues, we examine the condition for point-
wise uniform stretching (7) by considering an arbitrary

tangent vector v 2 Tx0
Mðt0Þ. Dropping the position argu-

ment for brevity, we use the eigenbasis n1,2,3 to write
v ¼ an1 þ bn2 þ cn3. By orthonormality of the n1,2,3, (7)
then becomes a2k1 þ b2k2 þ c2k3 ¼ k2ða2 þ b2 þ c2Þ, or
equivalently

a2ðk2 * k1Þ þ b2ðk2 * k2Þ þ c2ðk2 * k3Þ ¼ 0: (8)

As shown in Table I, condition (8) only provides full linear
spaces of solutions for k ¼

ffiffiffiffiffi
k2

p
(case 3). Here, the solution

set of (8) consists of two planes (cf. Fig. 2(b)). For a generic
choice of k, on the other hand, the solution set of (8) is a dou-
ble cone (cases 2 and 4 in Table I). In the remaining two
cases of k ¼

ffiffiffiffiffi
k1

p
and k ¼

ffiffiffiffiffi
k3

p
, the solution set of (8) is a

line (cases 1 and 5 in Table I). The tangent plane Tx0
Mðt0Þ,

therefore, has to coincide with one of the two planes
obtained for k ¼

ffiffiffiffiffi
k2

p
(case 3). (For points where Ct

t0
has

repeated eigenvalues, see Appendix B.) !
Remark 1. As opposed to the neutral stretching k¼ 1 in

two dimensions, the three-dimensional analogue of neutral
stretching is kðx0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
, representing the only case

that allows for the construction of a pointwise uniformly
stretching surface MðsÞ. Viewed globally, however, these
surfaces cannot be expected to stretch uniformly, since their
pointwise stretching factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
generally varies in

space. The uniformity in stretching refers to their tangent
spaces only and should therefore be viewed as a local
property.

Remark 2. In order to construct a globally uniformly
stretching surface, by Theorem 1, we would need to find a

FIG. 1. Illustration of a tubular point-
wise uniformly stretching surface as
introduced in Definition 1.

TABLE I. Solution sets of (8) depending on the choice of k.

Case Values of k Geometry of solution set of (8)

1 k ¼
ffiffiffiffiffi
k1

p
n1-axis (cf. Fig. 2(a), Appendix A)

2
ffiffiffiffiffi
k1

p
< k <

ffiffiffiffiffi
k2

p
Elliptic double cone about n1-axis (cf. Fig. 2(a), Appendix C)

3 k ¼
ffiffiffiffiffi
k2

p
Two planes (cf. Fig. 2(b), Appendix A)

4
ffiffiffiffiffi
k2

p
< k <

ffiffiffiffiffi
k3

p
Elliptic double cone about n3-axis (cf. Fig. 2(c), Appendix C)

5 k ¼
ffiffiffiffiffi
k3

p
n3-axis (cf. Fig. 2(c), Appendix A)
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pointwise k(x0)-stretching surface whose intersection with a
particular level set of k2(x0) is still a two-dimensional sur-
face. There is generally no reason for this to hold, so we will
always consider material surfaces MðsÞ that are pointwise
uniformly stretching with a spatially dependent factor
kðx0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
. (In the following, for brevity, we therefore

sometimes omit the “pointwise” attribute.) Such surfaces are
of intrinsic interest, as pointwise uniform stretching imposes
observable coherence in the deformation of tracer blobs.

Remark 3. As we show in Appendix D, for a pointwise
uniformly stretching surface Mðt0Þ, all vectors within each
tangent space Tx0

Mðt0Þ keep their originally enclosed angle
when mapped from time t0 to time t. They are stretched
equally by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
, but are otherwise rotated by the same

angle. This means that there is no net material shear within the
tangent space of the surfaceMðt0Þ as it evolves intoMðt).

Remark 4. At any point x0 of a pointwise uniformly
stretching surfaceMðt0Þ where Ct

t0
ðx0Þ has distinct eigenval-

ues, we find that the surfaceMðt0Þ must be normal to one of
the two unit vectors

n6 x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x0ð Þ * k1 x0ð Þ
k3 x0ð Þ * k1 x0ð Þ

s

n1 x0ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 x0ð Þ * k2 x0ð Þ
k3 x0ð Þ * k1 x0ð Þ

s

n3 x0ð Þ

(9)

(cf. Appendix A). The vectors n6(x0) are precisely the unit
normals to the two planes obtained from (8) for the case
kðx0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
.

B. Pointwise near-uniformly stretching surfaces

Based on the considerations above, we seek elliptic
LCSs as tubular material surfaces built out of material curves
cðt0Þ & R3 that are stationary curves of the functional

S c t0ð Þ; tð Þ ¼
ð

c t0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx00 sð Þ; ~C

t
t0

x0 sð Þð Þx00 sð Þi
hx00 sð Þ; x00 sð Þi

s

ds : (10)

Here, the integrand measures how c(t0) stretches under the
normalized Cauchy-Green tensor

~C
t
t0

x0ð Þ ¼
1

k2 x0ð Þ
Ct

t0
x0ð Þ:

This normalization represents a slight modification of the
functional introduced earlier in (3), accounting for the fact
that the analogue of neutral stretching in three dimensions is
given by k ¼

ffiffiffiffiffi
k2

p
(see Remark 1).

By Noether’s theorem,12 the integrand in (10) is con-
served along stationary curves x0(s) of S. Therefore, on these
stationary curves, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx00 sð Þ;Ct

t0
x0 sð Þð Þx00 sð Þi

hx00 sð Þ; x00 sð Þi

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x0ð Þ 1þ dð Þ

q
¼: k x0ð Þ;

(11)

with the value of the conserved integrand in (10) being equal
to the constant value

ffiffiffiffiffiffiffiffiffiffiffi
1þ d
p

. Comparing (11) to (7), we see
that stationary curves of S stretch non-uniformly by k(x0).
The constant parameter d measures the deviation of stretch-
ing from the value of neutral stretching

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
.

For a given flow under consideration, one cannot expect
that there exists a tubular surface that is precisely pointwise
uniformly stretching everywhere (d¼ 0). Moreover, even if
such a surface existed, unavoidable numerical inaccuracies and
sensitivities would render it indetectable. We therefore extend
our considerations to surfaces built out of curves that stretch by
a factor close to

ffiffiffiffiffi
k2

p
ðjdj, 1Þ. In general, away from points

where Ct
t0
ðx0Þ has repeated eigenvalues, k-values satisfying

k2 x0ð Þ ¼ k2 x0ð Þ 1þ dð Þ;

d 2 *1þ
k1 x0ð Þ
k2 x0ð Þ

" !
[ *1þ

k3 x0ð Þ
k2 x0ð Þ

 #
;

yield elliptic cones of uniform stretching directions, and
therefore do not define possible tangent spaces for a
k-stretching surface (cf. Theorem 1). For jdj, 1, however,
these cones become elongated along the n2-axis, and hence
large subsets of them are C1-close to pairs of planes with re-
spective unit normals 6n6

d ðx0Þ, where

n6
d x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x0ð Þ 1þ dð Þ * k1 x0ð Þ

k3 x0ð Þ * k1 x0ð Þ

s

n1 x0ð Þ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 x0ð Þ * k2 x0ð Þ 1þ dð Þ

k3 x0ð Þ * k1 x0ð Þ

s

n3 x0ð Þ: (12)

FIG. 2. Directions of k-stretching for cases 2, 3, and 4 in Table I. (a) Case 2: k-stretching directions forming a double cone for k 2 ð
ffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k2

p
Þ. (b) Case 3:

Two planes formed by k ¼
ffiffiffiffiffi
k2

p
-stretching directions. (c) Case 4: k-stretching directions forming a double cone for k 2 ð

ffiffiffiffiffi
k2

p
;
ffiffiffiffiffi
k3

p
Þ.
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Unless needed, we omit the overall sign for the orientation
of the normal direction n6

d in the following. Expression (12)
is well-defined for all points x0 where the Cauchy-Green

strain tensor has distinct eigenvalues and d 2 *1þ k1ðx0Þ
k2ðx0Þ ;

h

*1þ k3ðx0Þ
k2ðx0Þ

i
. We illustrate the situation in Fig. 3 and give fur-

ther details in Appendix C. We point out that by setting
d¼ 0 in (12), we recover the pair of planes forming the solu-

tion set of (5) for the uniform case kðx0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
.

The vectors n6
d ðx0Þ from (12) turn out to be the optimal

choices as normals for surfaces with the smallest possible
stretching variations in their tangent spaces:

Proposition 1. At each point x0 with distinct eigenvalues
for Ct

t0
, and for any prescribed value k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð1þ dÞ

p
2

½
ffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k3

p
% of stretching, the planes normal to the vectors

6n6
k2=k*1

defined in (12) experience the smallest possible
inhomogeneity in stretching around the value k. The range
of stretching values attained within these planes is the inter-
val ½minfk;

ffiffiffiffiffi
k2

p
g;maxfk;

ffiffiffiffiffi
k2

p
g%.

Proof. See Appendix E. !
We now use the unit normals n6

d ðx0Þ (which are optimal
in the sense of Proposition 1) to define the most uniformly
stretching surfaces possible, along which the stretching of
tangent vectors varies by no more than a specified percentage
around

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
. To this end, we introduce a relative stretch-

ing variation D, 0(D< 1, such that for any d

ffiffiffiffiffi
k2

p
ð1* DÞ (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð1þ dÞ

p
(

ffiffiffiffiffi
k2

p
ð1þ DÞ:

Restricting ourselves to small D and allowing d to generally
vary along the surface, we introduce the following definition:

Definition 2. A smooth material surface MDðsÞ is point-
wise nearly uniformly stretching with stretching variation D,
0(D, 1, if for all x0 2 MDðt0Þ, either nþdðx0Þðx0Þ?Tx0

MDðt0Þ or n*dðx0Þðx0Þ?Tx0
MDðt0Þ holds, with dðx0Þ 2 ½*2D

þD2; 2Dþ D2%.
Remark 5. In the present study, we seek elliptic

Lagrangian Coherent Structures as pointwise near-
uniformly stretching surfaces (cf. Definition 2). We note that
the shear-maximizing material surfaces, used in a previous
approach to elliptic LCSs in three dimensions2 (cf. Sec. I),
can also be obtained from normals ~n6 of the general form
~n6 ¼ an16bn3.

Remark 6. Instead of considering variations of closed
material curves (10), it would be desirable to derive near-
uniformly stretching surfaces (cf. Definition 2) from a varia-
tional principle for two-dimensional manifolds with bound-
ary.30 We expect, however, that such a variational problem
would be significantly more difficult than the minimal sur-
face problem (see Ref. 26 for a review). Deriving a general
algebraic condition similar to the expression for the surface
normal (12) is out of reach here and hence would necessitate
a purely numerical approach.

V. NUMERICAL EXTRACTION OF NEAR-UNIFORMLY
STRETCHING SURFACES

A. Outline of the extraction procedure

Consider being given a three-dimensional velocity field
u (1) over a finite time interval [t0, t]. Our goal is to numeri-
cally locate elliptic LCSs by seeking time-t0 positions of
near-uniformly stretching material surfaces MDðsÞ. Their
admissible normals n6

d are given in (12), to be used in a
surface-extraction procedure similar to the one in Ref. 2.

The idea behind this procedure is to sample the flow
domain using an indexed family of N reference planes
ðPiÞi2f1;2;…;Ng, and then assemble each elliptic LCS by
computing its intersections with each reference plane
P 2 fPig. Such intersection curves x0(s) have tangent vec-
tors that are normal to both n6

d and the normal nP of P.
Consequently, the intersection curves are limit cycles of
the vector field

x00 ¼ g6
d;iðx0Þ :¼ nPiðx0Þ ' n6

d ðx0Þ: (13)

Because n6
d are continuous families of direction fields parame-

trized by d, we need to scan the interval d 2 ½*2Dþ D2;
2Dþ D2% to find limit cycles of (13). This procedure typically
yields a large number of limit cycles in each reference plane
Pi. The challenge is to combine single limit cycles from each
Pi into a smooth tubular surfaceMDðt0Þ. Moreover, using the
Frobenius integrability theorem, one can show that a necessary
condition for the existence of a smooth surfaceMðt0Þ normal
to a smooth vector field n is that the helicity Hn of n vanishes
for all points in the surface Mðt0Þ.2 In our case, with n ¼
6n6

d andMðt0Þ ¼MDðt0Þ, the helicity condition reads

Hn6
d
¼ hr' n6

dðx0Þ; n
6
dðx0Þi ¼ 0: (14)

FIG. 3. Elongated elliptic double cones formed by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð1þ dÞ

p
-stretching directions collapse onto a pair of planes for d! 0. As long as d is small, the double

cones are well approximated by two planes tangent to them, colored purple and orange here. In Proposition 1, we show that these planes define tangent spaces
of surfaces that are pointwise most uniformly stretching, as described in Definition 2. We give the expression for their unit normals n6

d in (12).
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Such a helicity condition has already been considered by
others27,29 for the visualization of surfaces approximately
perpendicular to an imposed normal field.

We remark that the procedure outlined above requires
computing the flow map Ft

t0
and hence the normals n6

d (12)
as fields over the domain of initial positions. In applications
where the velocity field u (1) is given numerically (from ei-
ther an experiment or a numerical simulation), the resolution
of the velocity data therefore needs to be sufficiently high in
both space and time.

B. Selecting closed orbits for the construction of
elliptic LCSs

We now explain how to select the closed orbits of g6
d;i

needed for constructing an elliptic LCS MDðt0Þ.
Specifically, for a sequence of reference planes Pi0;Pi0þ1

;…,
in each plane Pi, we need to identify a single optimal limit
cycle of g6

d;i (labeled ci). We do this by introducing an auxil-
iary surface Sðt0Þ, and, for each plane Pi, selecting ci as the
closed orbit closest to the intersection curve Sðt0Þ \Pi.

Considering (12), we first observe that at each point
x0 2 MDðt0Þ, we would need to have MDðt0Þ k n2. Now
consider that, in an initial reference plane P1, we have com-
puted a curve c1 as a closed orbit of g6

d;1. Away from points
with repeated eigenvalues of Ct

t0
, advecting c1 under the n2-

field then yields a smooth tubular surface Sðt0Þ that is tan-
gent to n2, just asMDðt0Þ should be. We then compute inter-
sections of Sðt0Þ with the remaining reference planes
Pi¼2,3,… In each reference plane Pi, from the set of all avail-
able closed orbits of g6

d;i (denoted by Ci), select the orbit ci

minimizing the min-distance to the intersection curve
Sðt0Þ \Pi. That is, for each ~c 2 Ci evaluate

dð~c;Sðt0Þ \PiÞ ¼ min
q2~c;p2Sðt0Þ\Pi

jj q* p jj; (15)

and take the orbit ~c that minimizes the above expression as
ci. At the end, interpolate the surface MDðt0Þ from the col-
lection of closed orbits ci k g6

d;i.
The surfaceMDðt0Þ obtained from the above procedure

(cf. Fig. 4) will generally not satisfy the helicity condition
(14), because it will not be exactly tangent to n2. The surface
Sðt0Þ is, however, tangent to n2. In addition, locally, Sðt0Þ
has a smooth normal field of the general form 6n6

dðx0Þ (see

(12)), and therefore satisfies a helicity condition of the type
(14) (see Appendix F); dðx0Þ 2 ½*1þ k1ðx0Þ

k2ðx0Þ ;*1þ k3ðx0Þ
k2ðx0Þ% is

unknown on Sðt0Þ and possibly exceeds the range
½*2Dþ D2; 2Dþ D2%. The above observations thus render
the surface MDðt0Þ as close to a surface Sðt0Þ that satisfies
both tangency to n2 and a helicity condition of the intended
functional form (14).

For the examples we study in Sec. VI, we find that it is
not necessary to construct a full two-dimensional surface
Sðt0Þ by advecting the entire orbit c1 under the n2-field. It
turns out that data points obtained from very few integral
curves of n2, launched from arbitrary points on c1 (cf. Fig.
4), already lead to robust assessments of the min-distance
(15). This discretization of Sðt0Þ will therefore barely affect
the selection of closed orbits c2;3;… for building a near-
uniformly stretching material surfaceMDðt0Þ.

C. Summary of the extraction procedure

Here, we briefly summarize the numerical extraction
procedure for elliptic LCSs, MDðt0Þ (see Appendix G for
details).

Part 1 (computation of closed orbits): Sample the flow
domain by defining a parallel stack of reference planes Pi.
For each reference plane Pi, compute the Cauchy-Green
strain tensor Ct

t0
on a square main grid. Using bilinear inter-

polation of the Cauchy-Green eigenvectors n1,2,3 and eigen-
values k1,2,3, compute closed integral curves of gr

d;i, looping
over both r¼þ, * and d 2 [*2DþD2, 2DþD2].

Part 2 (interpolation of closed orbits to an elliptic LCS
surface): Consider the first reference plane Pi0 containing at
least one closed orbit of g6

d¼0;i0
in the region of interest. For

visualizing the vortex boundary, pick the outermost closed
orbit of g6

d¼0;i0
, denoted by ci0 . Starting from points on ci0 ,

integrate curves tangent to the n2-line field (n2-lines) until
each reference plane containing closed orbits of g6

d;i is inter-
sected at least once. Iterate through the following reference
planes Pi ði ¼ i0 þ 1; i0 þ 2;…Þ, and, in each, select the
closed orbit of g6

d;i, labeled ci, closest to the intersection
points between Pi and the n2-line(s) (in the sense described
in Sec. V B). At the end, use the data points given by the col-
lection of closed orbits {ci} of the g6

d;i-fields to interpolate a
smooth surfaceMDðt0Þ.

VI. EXAMPLES

A. Steady ABC flow

We consider the steady ABC flow, a stationary solution
of the Euler equations. In Cartesian coordinates (x, y, z), its
velocity field is given by

uðx; y; zÞ ¼
A sinðzÞ þ C cosðyÞ
B sinðxÞ þ A cosðzÞ
C sinðyÞ þ B cosðxÞ

0

B@

1

CA; (16)

where we select A ¼
ffiffiffi
3
p

; B ¼
ffiffiffi
2
p

; C ¼ 1. For these parame-
ter values, the ABC flow is known to contain several distinct
vortical regions in the midst of a bulk of chaotic trajectories.4

The flow domain is the three-torus T3 or, equivalently, a

FIG. 4. Identifying the best candidate orbit of g6
d;2 in the P2-plane as the one

with minimal distance to points of Sðt0Þ \P2. Instead of computing the
entire surface Sðt0Þ, only few integral curves tangent to the n2-field (n2-
lines) may already indicate a useful candidate orbit.
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cube of [0, 2p]3 with periodic boundary conditions imposed
on each face.

We sample the flow domain using a family of 100 uni-
formly spaced reference planes perpendicular to the z-axis,
each of them given by

Pi ¼ fðx; y; zÞ 2 ½0; 2p%3j z ¼ ði* 1Þ ) 2p=100g ;

i ¼ 1;…; 100:

Choosing the extraction window as [t0, t]¼ [0, 40], we ana-
lyze the vortical region located around (x- 3.7, y- 4.7,
z- 0.0), seeking the largest elliptic LCS as a nearly uni-
formly stretching surface MDðt0Þ with pointwise relative
stretching deviation up to D¼ 0.1 (see Appendix H for the
remaining numerical details).

We scan the parameter window d 2 [*0.19, 0.21]
using 80 uniformly spaced d-values, and in addition run
d¼ 0 to identify closed orbits of g6

d;i on all reference
planes. In Fig. 5, we visualize part of the flow in lowest
reference plane P1 using the Finite-time Lyapunov
Exponent (FTLE) field ½2ðt* t0Þ%*1 log k3 and superimpose
the closed orbits of g6

d;1. The procedure described in part 2
of Appendix G then leads us to building the outermost
elliptic LCS starting from the orbit c1 indicated in Fig. 5.
For the selection of the remaining closed orbits c2,…,100,
we integrate one trajectory of n2 from ðx - 4:34; y -
4:19; z ¼ 0:0Þ 2 c1 to ðx-3:17; y-5:11; z-6:22Þ2P100.
We show the arclength and d-value of each orbit c1,…,100

in Figs. 6(a) and 6(b). These provide qualitative insight
into smoothness and stretching variation of the tubular sur-
face MDðt0Þ that we then create from the orbits c1,…,100 by
interpolation. For better visualization of MDðt0Þ, we use
toroidal coordinates ð"x;"y;"zÞ

"x ¼ ðx* xcðzÞ þ R1Þ cosðzÞ;
"y ¼ ðx* xcðzÞ þ R1Þ sinðzÞ;
"z ¼ R2ðy* ycðzÞÞ;

with xc(z), yc(z) parametrizing the vortex center (extracted
heuristically by local FTLE minima), and R1¼ 2, R2¼ 1. In
Fig. 7(a), we show the final result for the elliptic LCS surface
MDðt0Þ in red. We place a toroidal cloud of tracers closely
aroundMDðt0Þ (purple dots), and then advect these together
with MDðt0Þ over the time-window of extraction, as shown
in Fig. 7(b). With the elliptic LCS at the final time MDðtÞ
displayed in green, we observe that MDðtÞ preserves its co-
herence, while the purple tracer cloud disperses into a com-
plex geometric structure.

For a longer extraction window [t0, t]¼ [0, 250], we
also want to verify whether invariant tori of the steady ABC
flow are well approximated by the elliptic LCSs we extract.
In Fig. 8, we show a Poincar#e map indicating all the invari-
ant tori together with closed orbits of g6

d;1 in the P1-reference
plane. Here, the relative stretching deviation we allow is
again D¼ 0.1, with the same sampling of d-values as above.
Compared with Fig. 5, more closed orbits with d¼ 0 are visi-
ble, indicating that there are more elliptic LCSs than for a
shorter extraction time. As expected, the invariant tori are
closely aligned with the elliptic LCSs. We show a represen-
tative elliptic LCS in Fig. 9.

B. Time-aperiodic ABC-type flow

We consider a time-aperiodic modification of the ABC
flow

uðx; y; z; sÞ ¼
A0 sinðzÞ þ ðC0 þ CðsÞÞ cosðyÞ
ðB0 þ BðsÞÞ sinðxÞ þ A0 cosðzÞ

ðC0 þ CðsÞÞ sinðyÞ þ ðB0 þ BðsÞÞ cosðxÞ

0

B@

1

CA;

(17)

with A0 ¼
ffiffiffi
3
p

; B0 ¼
ffiffiffi
2
p

; and C0 ¼ 1. The added time-
dependent perturbations are

BðsÞ ¼ B0k0 tanhðk1sÞ cosððk2sÞ2Þ;
CðsÞ ¼ C0k0 tanhðk1sÞ sinððk2sÞ2Þ;

where k0¼ 0.15, k1¼ 0.05, and k2¼ 0.12. We plot B(s) and
C(s) in Fig. 10. The time-dependence we have selected for
these functions models how the steady ABC flow, a locally
unstable solution to the Euler equations,10 develops

FIG. 5. Steady ABC flow, time-window [0, 40]: Closed orbits of g6
d;1 with d

2 [*0.19, 0.21] in the plane P1, displaying curves with d¼ 0 in strong red
and with d 6¼ 0 in light red. The red cross indicates the approximate vortex
center. The curve c1 is used as the initial orbit in the assembly of the elliptic
LCS. Background visualization: Finite-time Lyapunov exponent field.

FIG. 6. Steady ABC flow, time-window [0, 40]: Properties of the closed
orbits c1,…,100 used to build an elliptic LCS. (a) Arclengths of the closed
orbits ci selected on each reference plane. (b) Values of d of the closed orbits
ci selected on each reference plane.
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oscillations followed by saturation into another ABC-type
flow with aperiodic time-dependence.

Like for the steady ABC flow, we consider the time-
interval [0, 40] and analyze the vortical region located
around (x- 3.7, y- 4.7, z- 0.0). We allow a pointwise
stretching variation D¼ 0.15 for constructing the barrier,
sampling the interval of d 2 [*0.2775, 0.3225] with 160 uni-
formly spaced values and, in addition, d¼ 0 (see Appendix

H for the remaining numerical details). We show the closed
orbits of g6

d;1 in the lowest reference plane P1 at z¼ 0 in Fig.
11. The integral curve of n2 used for the selection of the
remaining closed orbits c2,…,100 connects (x- 3.64, y- 4.15,
z¼ 0.0) 2 c1 and (x- 3.32, y- 4.88, z- 6.22) 2 P100. The
arclengths and d-values of these orbits c1,…,100 constituting
the LCSMDðt0Þ are shown in Figs. 12(a) and 12(b).

For t0¼ 0, we visualize this largest elliptic LCSMDðt0Þ
as the red surface in Fig. 13(a), together with purple dots
indicating a toroidal cloud of tracers placed closely around
it. In comparison to the green surface MDðtÞ in Fig. 13(b),
we see that the elliptic LCSMDðsÞ does move under advec-
tion over [0, 40], but keeps its coherence. The purple tracer
cloud, on the other hand, starts to develop two filaments.

Comparing Fig. 13(b) to Fig. 7(b), we see that the steady
ABC flow spreads tracers outside the elliptic LCS more than

FIG. 7. Steady ABC flow, time-window [0, 40]: Advecting the elliptic LCS from t0¼ 0 to t¼ 40, in comparison to nearby tracers, which spread incoherently.
(a) Red: elliptic LCS MD¼0:1ðt0 ¼ 0Þ, extracted for the time-interval [0, 40]. Purple: locations of tracers placed closely outside the LCS surface. (b) Green:
time-40 advected image of the elliptic LCS in Fig. 7(a). Purple: tracers advected from the locations in Fig. 7(a).

FIG. 8. Steady ABC flow, time-window [0, 250]: Closed orbits of g6
d;1 with

d 2 [*0.19, 0.21] in the plane P1, displaying curves with d¼ 0 in strong red
and with d 6¼ 0 in light red. The red cross indicates the approximate vortex
center. Black: Poincar#e map obtained from the long-time behavior of multi-
ple trajectories of (16).

FIG. 9. Steady ABC flow, time-window [0, 250]: Representative 3D elliptic
LCS and Poincar#e map from Fig. 8.
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the time-aperiodic version. This phenomenon arises as fol-
lows: The LCS we obtain for the steady ABC flow is the out-
ermost structure of a large family of nested tori that are
going to advect coherently. Parts of the tracer cloud placed
around the LCS are already in the chaotic region and
undergo large stretching. Including time-aperiodic functions
in the coefficients of the ABC flow, on the other hand, lets a
large number of the outermost tori disappear. Consequently,
the LCS we obtain in the aperiodic case is much smaller and
far away from the hyperbolic structures. In comparison to
the steady case, tracers initialized along the LCS we obtain
in the time-aperiodic ABC type flow thus experience less
dramatic stretching over the time interval considered here.

The vortices in the two ABC-type flows analyzed here
have a simpler spatial structure than the ones analyzed in
other works (e.g., Ref. 28). Here, our focus is to describe a
new method and provide a proof of concept in a simpler set-
ting. Analyzing a time-aperiodic version of the time-periodic
flow considered in Ref. 28 would be a worthwhile applica-
tion of the approach derived here.

VII. CONCLUSIONS

We have extended the construction of elliptic LCSs as
uniformly stretching material surfaces from the two-
dimensional setting of Ref. 17 to three-dimensional unsteady
flows. With this approach, we obtain near-uniformly stretch-
ing tubular material surfaces that do not filament under the
flow. This is in contrast to the 3D elliptic LCS approach

FIG. 12. Aperiodic ABC-type flow, time-window [0, 40]: Properties of the
closed orbits c1,…,100 used to build an elliptic LCS. (a) Arclengths of
the closed orbits ci selected on each reference plane. (b) Values of d of the
closed orbits ci selected on each reference plane.

FIG. 10. Time-dependence of the coefficients of the unsteady ABC-type
flow (17).

FIG. 11. Aperiodic ABC-type flow, time-window [0, 40]: Closed orbits of
g6

d;1 with d 2 [*0.2775, 0.3225] in the plane P1, displaying curves with
d¼ 0 in strong red and with d 6¼ 0 in light red. The red cross indicates the ap-
proximate vortex center. The curve c1 is used as the initial orbit in the as-
sembly of the elliptic LCS. Background visualization: Finite-time Lyapunov
exponent field.

FIG. 13. Aperiodic ABC-type flow, time-window [0, 40]: Advecting the elliptic LCS from t0¼ 0 to t¼ 40, in comparison to tracers. (a) Red: elliptic LCS
MD¼0:1ðt0 ¼ 0Þ, extracted for the time-interval [0, 40]. Purple: locations of tracers placed closely outside the LCS surface. (b) Green: time-40 advected image
of the elliptic LCS in Fig. 13(a). Purple: tracers advected from the locations in Fig. 13(a).
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from Ref. 2, which imposes a strict point-wise maximum
shear principle. For the steady ABC flow, we have shown
that our elliptic LCS construction identifies invariant tori
revealed also by the Poincar#e map. In an aperiodically driven
ABC-type flow, we have located temporally aperiodic non-
filamenting tori. The two-dimensional version17 of the pres-
ent ideas has proven effective in locating material boundaries
of Agulhas rings in the South Atlantic,17,31 of the Great Red
Spot of Jupiter,13 and of coherent Lagrangian vortices in the
wake of swimming fish.19 Our method offers a similar tool
for locating coherent material vortex boundaries in three-
dimensional numerical and experimental, highly resolved ve-
locity data.

Recent work18 has identified rotationally coherent (and
not necessarily uniformly stretching) LCSs using the
Lagrangian-Averaged Vorticity Deviation (LAVD). This
approach, therefore, targets flows with non-vanishing vortic-
ity. The present approach makes no such assumption and
hence is of general relevance for 3D dynamical systems that
are not necessarily fluid flows.

Another recent approach identifies elliptic LCSs in two-
and three-dimensional flows from tubular level sets of the
polar rotation angle (PRA).9 The PRA measures the total
rotation of the Cauchy-Green eigenbasis under the deforma-
tion gradient. The PRA is obtained from the polar decompo-
sition of the deformation gradient into a rotation tensor and a
right stretch tensor. The latter has the same eigenvalues and
eigenvectors as the Cauchy-Green strain tensor and thus con-
tains all the quantities needed to define the surfaces we use
here (cf. Definition 2). Defining the PRA, on the other hand,
requires the rotation tensor only. The PRA approach can
hence be viewed as dual to the present method and is appli-
cable beyond fluid flows as well. In contrast to extracting
near-uniformly stretching surfaces, however, identifying
structures from PRA level sets is not an objective (frame-
invariant) method in three-dimensional flows. The present
approach overcomes this limitation.
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APPENDIX A: DETAILS ON SOLVING (8) IN THE
PROOF OF THEOREM 1

We examine why the solution set of (8) in the case of
k ¼

ffiffiffiffiffi
k2

p
consists of two planes, while k ¼

ffiffiffiffiffi
k3

p
and k ¼ffiffiffiffiffi

k1

p
yield lines.
For k ¼

ffiffiffiffiffi
k2

p
, (8) can be written as

a2ðk2 * k1Þ þ c2ðk2 * k3Þ ¼ 0: (A1)

Rearranging this equation, we obtain

c ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 * k1

k3 * k2

s

a:

The solution set of (8) for k ¼
ffiffiffiffiffi
k2

p
is therefore given by two

planes. (These planes are normal to the unit vectors n6

defined in (9).)

For k ¼
ffiffiffiffiffi
k3

p
, (8) can be written as

a2ðk3 * k1Þ þ b2ðk3 * k2Þ ¼ 0: (A2)

This equation is similar to (A1), but, since both (k3 * k1)> 0
and (k3 * k2)> 0, the only solution of (A2) is given by a ¼
b ¼ 0; c 2 R (which is exactly the n3-axis). For k ¼

ffiffiffiffiffi
k1

p
, we

similarly conclude that the n1-axis is the solution set of (8).
The reasoning leading to double cones for the remaining

two cases of k 2 (k1, k2) and k 2 (k2, k3) will appear in
Appendix C. We hence omit it here for brevity.

APPENDIX B: REPEATED EIGENVALUES IN THE
PROOF OF THEOREM 1

Given the initial position Mðt0Þ of a pointwise uni-
formly stretching material surface MðsÞ, we show that
kðx0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
holds for all points x0 2 Mðt0Þ where the

Cauchy-Green strain tensor has repeated eigenvalues:

• For any point x0 2 Mðt0Þ where k1ðx0Þ 6¼ k2ðx0Þ
¼ k3ðx0Þ, we may repeat the procedure as for points with
distinct eigenvalues. For the expansion of v 2 Tx0

Mðt0Þ,
pick any two orthogonal vectors ~n2;3 in the plane normal
to n1(x0), and write v ¼ an1 þ b~n2 þ c~n3. The k-stretching
condition is then identical to (8) with k2¼ k3, that is

a2ðk2 * k1Þ þ ðb2 þ c2Þ ðk2 * k2Þ ¼ 0: (B1)

Here, three cases are possible: If k ¼
ffiffiffiffiffi
k1

p
, then the solution

set of (B1) is the n1-axis (see case 1 in Table I). If
k 2 ð

ffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k2

p
Þ, then the solution set of (B1) is a circular

double cone about the n1-axis (see case 2 in Table I). If
k ¼

ffiffiffiffiffi
k2

p
, then directions satisfying (B1) form a plane per-

pendicular to n1. (This corresponds to case 3 in Table I, with
the two planes collapsed into one.) This implies that the tan-
gent plane Tx0

Mðt0Þ is normal to n1(x0). Vectors tangent to
Mðt0Þ therefore stretch by kðx0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3ðx0Þ

p
.

• For any point x0 2 Mðt0Þ where k1ðx0Þ ¼ k2ðx0Þ
6¼ k3ðx0Þ, repeating the argument from above shows that
there exists a plane of uniformly stretching directions per-
pendicular to n3(x0). With the tangent plane Tx0

Mðt0Þ
therefore being perpendicular to n3(x0), we conclude that
all vectors from Tx0

Mðt0Þ stretch by kðx0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx0Þ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p
.

• For any point x0 2 Mðt0Þ where k1ðx0Þ ¼ k2ðx0Þ
¼ k3ðx0Þ, the surface Mðt0Þ may be perpendicular to any
unit normal nðx0Þ 2 S2. All elements of its tangent space
Tx0
Mðt0Þ then stretch by kðx0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx0Þ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3ðx0Þ

p
.

APPENDIX C: GEOMETRY OF ELLIPTIC CONES
AND PLANES

In order to motivate the expression for n6
d ðx0Þ given in

(12), consider k2ðx0Þ ¼ k2ðx0Þð1þ dÞ with positive d 2

ð0;*1þ k3ðx0Þ
k2ðx0ÞÞ (case 4 in Table I), and examine Equation (8)

of k-stretching directions. After rearranging and again omit-
ting the position arguments, we find
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a2

a2
þ b2

b2
¼ 1; (C1)

where

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 * k2 1þ dð Þ
k2 1þ dð Þ * k1

c2

s

; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 * k2 1þ dð Þ

k2d
c2

s

:

For any fixed c, and recalling that a, b, c are the coordinates
along n1, n2, n3, we recognize (C1) as the equation of an
ellipse with minor axis n1 and major axis n2. This explicitly
shows that the k-stretching directions form elliptic double
cones about the n3-axis (Table I). Considering small d, we
have that b. a, confirming that these cones are indeed elon-
gated along the n2-axis. We therefore approximate these
cones using the two planes shown in purple and orange in
Fig. 14. Setting b¼ 0 in (C1), we find that such cones satisfy

c ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1þ dð Þ * k1

k3 * k2 1þ dð Þ

s

a;

and hence the two planes are perpendicular to the unit vectors
n6

d given in (12). We omit repeating the argument for d< 0.

APPENDIX D: ANGLE PRESERVATION WITHIN
UNIFORMLY STRETCHING SURFACES

As shown in Appendix A, at any initial position x0, a
uniformly stretching surface Mðt0Þ will be perpendicular to
one of the two possible unit normals

n6
0 x0ð Þ ¼ n6

d¼0 x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x0ð Þ * k1 x0ð Þ
k3 x0ð Þ * k1 x0ð Þ

s

n1 x0ð Þ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 x0ð Þ * k2 x0ð Þ
k3 x0ð Þ * k1 x0ð Þ

s

n3 x0ð Þ: (D1)

The tangent space Tx0
Mðt0Þ is therefore spanned by n2(x0)

and

n6
0 x0ð Þ:¼6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 x0ð Þ*k2 x0ð Þ
k3 x0ð Þ*k1 x0ð Þ

s

n1 x0ð Þ*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x0ð Þ*k1 x0ð Þ
k3 x0ð Þ*k1 x0ð Þ

s

n3 x0ð Þ:

(D2)

With these definitions, we have n6
0 ðx0Þ ' n2ðx0Þ ¼ n6

0 ðx0Þ.
Consider two arbitrary vectors u; v 2 Tx0Mðt0Þ, see Fig. 15.
We expand them in the orthonormal basis defined above,
dropping the position label

u ¼ u0n
6
0 þ u2n2;

v ¼ v0n
6
0 þ v2n2:

By the singular-value decomposition of DFt
t0

(cf. Ref. 20),
one obtains that under advection from time t0 to time t, the
eigenvectors of Ct

t0
are mapped according to

DFt
t0
ni ¼

ffiffiffiffi
ki

p
hi; i ¼ 1; 2; 3; (D3)

where h1,2,3 are orthonormal eigenvectors of the left Cauchy-
Green strain tensor Bt

t0
¼ DFt

t0
ðDFt

t0
ÞT . Applying these rela-

tions after fully writing out u and v in terms of the ni-vectors,
we obtain

hDFt
t0

u; DFt
t0
vi ¼ k2ðu0v0 þ u2v2Þ / k2hu; vi;

jjDFt
t0

ujj ¼
ffiffiffiffiffi
k2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0Þ2 þ ðu2Þ2

q
¼

ffiffiffiffiffi
k2

p
jjujj;

jjDFt
t0
vjj ¼

ffiffiffiffiffi
k2

p
jjvjj:

Combining these expressions yields

hDFt
t0

u; DFt
t0
vi

jjDFt
t0

ujj ) jjDFt
t0
vjj
¼ hu; vi
jjujj ) jjvjj

; (D4)

which means that, under advection from time t0 to time t, the
angle between u, v is indeed preserved.

APPENDIX E: PROOF OF PROPOSITION 1

Consider an arbitrary unit normal n 2 S2 and the plane
Pn perpendicular to it, Pn ¼ fv 2 R3jhv; ni ¼ 0g. We intro-
duce an orthonormal basis ijk of R3 such that i and j lie in Pn

and k:¼ i' j/ n. We parametrize directions g 2 S2 \Pn by

g ¼ gð/Þ ¼ i cosð/Þ þ j sinð/Þ; / 2 ½0; 2pÞ: (E1)

FIG. 14. Small d> 0: The elliptic double cones of k-stretching directions
can be approximated by a pair of planes.

FIG. 15. Set-up to evaluate the change of angle between two arbitrary-
vectors u; v 2 Tx0

Mðt0Þ under advection by DFt
t0

.
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The stretching within Pn can then be mapped out by intro-
ducing a function

qnð/Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hgð/Þ;Ct

t0
gð/Þi

q
: (E2)

(See Fig. 16 for an illustration of the set-up.) We evaluate
(E2) explicitly in terms of the Cauchy-Green invariants.

Lemma 1. Using the above definitions, choosing

hi; n2i ¼ 0; sgnðhi; n1iÞ ¼ sgnðn3Þ if n 6¼ 6n2;

i ¼ n1; j ¼ *n3 if n ¼ 6n2;

8
<

:

and expanding n ¼ n1n1 þ n2n2 þ n2n3, we find

qn /ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 n3 cos /* n1n2 sin /ð Þ2 þ k2 n2

1 þ n2
3

# $2
sin2/þ k3 n1 cos /þ n2n3 sin /ð Þ2

n2
1 þ n2

3

s

; if n 6¼ 6n2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 þ k1 * k3ð Þ cos2 /ð Þ

p
; if n ¼ 6n2:

8
>><

>>:
(E3)

In particular

q6n6
d
ð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð1þ d cos2/Þ

p
; (E4)

q6n1
ð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðk3 * k2Þ cos2ð/Þ

p
; (E5)

q6n3
ð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðk1 * k2Þ cos2ð/Þ

p
: (E6)

Proof. If n 6¼6n2, writing out the equations hi; ni ¼ 0 and
hi; n2i ¼ 0 while requiring i 2 S2 allows two coordinate
expressions for i with opposite orientation, from which we
pick

i ¼ n3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
3

p n1 *
n1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
1 þ n2

3

p n3:

From j¼ k' i¼ n' i, we get that

j ¼ * n1n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
3

p n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
3

q
n2 *

n2n3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
3

p n3:

Plugging these expressions into (E1) and then (E2) yields the
first equation in (E3). !

Proof. [of Proposition 1] For any given k, first consider
n ¼ 6n6

d with d ¼ k2=k2 * 1. Equation (E4) shows that the
range of stretching values attained in P6n6

d
is the interval

½minfk;
ffiffiffiffiffi
k2

p
g;maxfk;

ffiffiffiffiffi
k2

p
g% : (E7)

We compare this to what an arbitrary n 2 S2 can provide
for any prescribed k: If k> k2, consider that Pn \Pn3

6¼1
always holds, and thus by Eq. (E6) there exists a /0 such
that qnð/0Þ 2 ½

ffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k2

p
%. The smallest range of stretching

values within Pn that one could possibly obtain is therefore
½
ffiffiffiffiffi
k2

p
; k%. But this is exactly what we have already achieved

above by taking n ¼ 6n6
d , see (E7), rendering it the optimal

choice. If k <
ffiffiffiffiffi
k2

p
, repeat the argument considering

Pn \Pn1
6¼1, which by Eq. (E5) means that there exists a

/0 such that qnð/0Þ 2 ½
ffiffiffiffiffi
k2

p
;
ffiffiffiffiffi
k3

p
%, and therefore the smallest

possible range is ½k;
ffiffiffiffiffi
k2

p
%. This can again be achieved with

n ¼ 6n6
d . !

APPENDIX F: CONNECTION BETWEEN SURFACES
TANGENT TO n2 AND THE n6

d FIELDS

We consider an arbitrary smooth surface tangent to n2

and relate its normal field to the normal fields 6n6
d (see (12),

taking into account orientation here).
Lemma 2. Consider a surface Sðt0Þ that is normal to

the vector field

m/ ¼ cos / n1 þ sin / n3; (F1)

with / : x0 7!/ðx0Þ 2 ½0; 2pÞ denoting a scalar field on
Sðt0Þ. Then for each x0 2 Sðt0Þ, there exists an injective
function F from / to (d, r1, r2), the parameters of the vector
field nr1;r2

d . Here, n
r1;r2

d is related to n6
d (12) via

nr1;r2

d ¼ r2nr1

d , i.e., we define

nr1;r2

d ¼ r2 adn1 þ r1cdn3ð Þ; ad ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1þ dð Þ * k1

k3 * k1

s

;

cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 * k2 1þ dð Þ

k3 * k1

s

; r1;2 2 *1; 1f g:

Proof. Solving either ad ¼ cos / or cd ¼ sin / for d yields

d ¼ f /ð Þ :¼ k1 * k2 þ k3 * k1ð Þ cos2/
k2

:

We thus define the function F asFIG. 16. Mapping out the stretching within Pn, see also (E1) and (E2).
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F :

0; p½ Þ ! *1þ k1

k2
;*1þ k3

k2

& '
' *1; 1f g' *1; 1f g ;

/ 7!ðF0 /ð Þ;F1 /ð Þ;F2 /ð ÞÞ :¼

f /ð Þ; 1; 1ð Þ; if / 2 0; p=2½ Þ ;
f /ð Þ;*1; 1ð Þ if / 2 p=2; p½ Þ ;
f /ð Þ; 1;*1ð Þ if / 2 p; 3p=2½ Þ ;
f /ð Þ;*1;*1ð Þ if / 2 3p=2; 2p½ Þ : !

8
>><

>>:

8
>>>>>>><

>>>>>>>:

Now consider an arbitrary smooth surface Sðt0Þ tangent
to n2. Since Sðt0Þ does not contain points where Ct

t0
has

repeated eigenvalues, locally, the direction fields n1 and n3

can be oriented into smooth vector fields. The normal field
of Sðt0Þ is therefore given by a smooth vector field m/ of the

form (F1). Allowing d 2 *1þ k1

k2
;*1þ k3

k2

h i
to vary in

space, we choose ðd; r1; r2Þ ¼ ðF0ð/Þ;F1ð/Þ;F2ð/ÞÞ and
identify

m/ ¼ nF1ð/Þ;F2ð/Þ
F0ð/Þ ¼ n

r1;r2

d ¼ r2nr1

d :

The surface Sðt0Þ therefore satisfies the helicity condition

hr' m/;m/i ¼ hr' nr1

d ; n
r1

d i ¼ 0:

APPENDIX G: DETAILED SUMMARY OF THE
EXTRACTION PROCEDURE

Here, we summarize the numerical extraction procedure
for elliptic LCSs,MDðt0Þ, in detail:

Part 1: Using a parallel stack of square grids, each of
them corresponding to one reference plane Pi, define a 3D
main grid in the flow domain. For each reference plane Pi,
compute closed orbits of g6

d;i. The steps listed below are simi-
lar to the procedure for (elliptic) LCS computations in two
dimensions:8,17

(1) Compute an approximation to the Cauchy-Green
strain tensor Ct

t0
: Along each of the three coordinate

axes defined by the 3D Cartesian grid, place two par-
ticles with displacements *d and þd relative to each
main grid point of the current reference plane. Obtain
their flow maps by integration of the velocity field.
Using finite-differencing,16 approximate DFt

t0
and

thus Ct
t0

.
(2) Use an eigensolver to compute the Cauchy-Green invari-

ants n1,2,3 and k1,2,3 on each main grid point.
(3) Using bilinear interpolation for k1,2,3 and the components

of n1,2,3, compute closed integral curves of gr
d;i; looping

over both r¼þ, * and d 2 [*2DþD2, 2DþD2]. This
is easiest to do using a one-dimensional Poincar#e section
within Pi as a secondary one-dimensional grid of initial
conditions for candidate orbits of gr

d;i. We then detect
closed orbits of gr

d;i from changes in the spiralling behav-
iour of the candidate orbits, refining the result by the
bisection method.

Part 2: Select closed orbits {ci} and interpolate to obtain
an elliptic LCS surfaceMDðt0Þ:

(1) Consider the first reference plane Pi0 containing at least
one closed orbit of g6

d¼0;i0
in the region of interest. For

the purpose of visualizing the vortex boundary, we pick
the outermost closed orbit, which we refer to as ci0 .

(2) Construct (parts of) Sðt0Þ: Starting from points on ci0 ,
integrate curves tangent to the n2-line field (n2-lines)
until each reference plane containing closed orbits of g6

d;i
is intersected at least once. When integrating n2-lines,
for each integration step, we recompute n2 by placing 6
particles at distances 6d from the current point of the
trajectory (see part 1, steps 1 and 2).

(3) In the following reference plane Pi0þ1, select the closed
orbit of g6

d;i0þ1, labeled ci0þ1, closest to the intersection
points between Pi0þ1 and the n2-line(s) (in the sense
described in Sec. V B).

(4) Keep repeating step 3, going through all reference planes
that contain closed orbits of g6

d;i. At the end, use the data
points given by the collection of closed orbits {ci} of the
g6

d;i-fields to interpolate a smooth surfaceMDðt0Þ. If this
is not possible, go back to Pi0 and repeat the selection
procedure from another available closed orbit of g6

d¼0;i0
.

For both the steady and the time-aperiodic ABC-type
flow analyzed here (cf. Sec. VI), the elliptic LCS traverses the
entire flow domain along the z-direction, and we find closed
orbits of g6

d;i on all the reference planes Pi. The extraction
algorithm listed here can, however, handle the more generic
case. That is, if the LCS does not span across the whole flow
domain, our procedure terminates and produces a shorter
LCS: By the end of part 1, for all the reference planes
Pi¼1,2,3,…, we have computed a collection of closed orbits of
the g6

d;i vector fields. Assume that for some index i*, no
nearby closed orbit of the vector field g6

d;i0 in the plane Pi0 is
available. This prevents us from carrying out step 3 of part 2
for i*, and hence our LCS construction procedure terminates.

Overall, the method described here is computationally
costly. It is therefore not suitable for running quick diagnos-
tics, but designed to yield results at a very high level of
detail. The computational cost is, however, not vastly greater
than the cost of computing the FTLE field (part 1, step 2):
The extra effort is mostly required by the handling of the
data produced by the algorithm, rather than by the additional
computational steps.

APPENDIX H: NUMERICAL DETAILS FOR THE
EXAMPLES

The numerical settings listed here apply to all three
examples: the steady ABC flow over [t0, t]¼ [0, 40] and
[0, 250], and the time-aperiodic ABC-type flow over [0, 40].
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For the computation of Ct
t0

, in each reference plane Pi,
we define a square main grid of 1000' 1000 points and
place initial conditions with relative spacing d¼ 10*5. For
searching closed orbits of g6

d;i, in each plane Pi, we use a
Poincar#e section parallel to the x-axis at y¼ 4.73 and place
initial conditions for g6

d;i-orbits at a uniform spacing
Dx¼ 0.002. We allow for up to 10 bisection iterations, with
an absolute error bound of 10*4. All integrations of differen-
tial equations are performed by a Runge-Kutta (4,5) method5

combined with an adaptive stepper whose absolute and rela-
tive error tolerances we set to 10*8.

For the steady ABC flow analyzed over [0, 40], we
obtain 591 closed orbits of g6

d;1 in P1. We identify these
closed orbits of g6

d;1 (cf. Fig. 5) by their intersection points
with the Poincar#e section at y¼ 4.73 and plot their d-values
in Fig. 17. In our scans of the remaining reference planes
P2,…, P100, we find between 547 and 775 closed orbits.
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FIG. 17. Steady ABC flow analyzed over [t0, t]¼ [0, 40]: Values of d for the
closed orbits of g6

d;1 shown in Fig. 5, plotted over the x-coordinate of their
intersections with the Poincar#e section (x * xc, 4.73, 0.0), where xc¼ 3.73.
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