
 

Invisible Anchors Trap Particles in Branching Junctions

David Oettinger,1 Jesse T. Ault,2 Howard A. Stone,3 and George Haller1,*
1Institute for Mechanical Systems, Department of Mechanical and Process Engineering,

ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
2Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

3Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 6 January 2018; published 3 August 2018)

We combine numerical simulations and an analytic approach to show that the capture of finite, inertial
particles during flow in branching junctions is due to invisible, anchor-shaped three-dimensional flow
structures. These Reynolds-number-dependent anchors define trapping regions that confine particles to the
junction. For a wide range of Stokes numbers, these structures occupy a large part of the flow domain.
For flow in a V-shaped junction, at a critical Stokes number, we observe a topological transition due to the
merger of two anchors into one. From a stability analysis, we identify the parameter region of particle sizes
and densities where capture due to anchors occurs.
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Branching junctions are building blocks of pipe flow
networks that are common in industrial applications [1] and
in the arterial system [2]. Because of their simple geometry,
one anticipates straightforward fluid behavior in these
configurations for moderate flow velocities. In particular,
during pumping of a particle-laden fluid into the inlet of a
branching junction [Fig. 1(a)], it is natural to expect that both
the fluid and the particles will exit through the two outlets.
Recent observations, however, reveal the possibility that
particles with density smaller than the continuous phase can
become trapped in the junction indefinitely [3]. The capture
leads to the formation of large particle clouds at the junction.
This phenomenon occurs for a significant range of large
but laminar flow Reynolds numbers, for several types of
particles, and for various junction angles [3,4].
Investigations of the fluid velocity field link the capture

mechanism to flow reversal caused by bubble-type vortex
breakdown structures near the junction [3,4,6]. The geom-
etry and stability of these vortical structures strongly
depend on the Reynolds number and the junction angle
[6,7]. While these flow features give strong indications of
trapping, here we focus on the fluid-particle interactions,
investigating the dynamics of individual inertial particles.
Thus, we answer detailed questions about the capture
mechanism, such as: How large are the particle-trapping
regions? How do particles accumulate within these trapping
regions?What properties of the particles and flow influence
the trapping?
We consider an experiment with hollow glass beads, less

dense than the continuous phase, in a stationary flow of
water through a T junction (see Ref. [4] for experimental
details). The Reynolds number is Re ¼ ðūL=νÞ ¼ 277,
where ū is the average inlet flow speed, L is the side
length of the square channel, and ν is the kinematic

viscosity. Experiments show that a number of particles exit
the junction [see Fig. 1(a) and Ref. [5] ]. Such particle paths
lead either directly to an outlet or show brief recirculation
near the vortices in the lower arms of the junction.

FIG. 1. Analysis of a T-junction experiment with hollow glass
beads in a steady flow of water (Re ¼ 277; cf. the video in the
SupplementalMaterial [5]).Thedensityof thebeads isρp ¼ 0.15ρf,
where ρf is the density of water. (a) Time-lapse image, with arrows
marking the inlet (top)and twooutlets (left, right).Beadsare released
at the inlet and exit through one of the outlets. The spiraling of
somebeadpaths (darkgraycurves) is due tovortexbreakdown in the
junction arms. The black box marks the subregion shown in
(c)–(f). (b) Illustration of the sequences S1–S4 shown in (c)–(f).
(c) A particle is at rest at a fixed point, while other particles pass by
quickly. (d)Theparticle isdisplacedbyanotherparticleandbegins to
move downstream. (e) After spiraling downstream, the particle
stops its downstream motion and shows damped oscillations
perpendicular to the downstream direction. (f) The particle slowly
creeps back to its starting position along a line (orange).
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As shown in Figs. 1(a) and 1(c), however, we find a
single particle at rest within the right vortical region. This
particle remains fixed until it is displaced by another
particle [Fig. 1(d)]. After briefly moving in the downstream
direction, the particle develops rapid spiraling and stops its
downstream motion [Fig. 1(e)]. The particle then slowly
creeps back to its original spot [Fig. 1(f)]. We summarize
the four sequences, S1–S4, in Fig. 1(b). The observations
suggest that the particle dynamics share important simi-
larities with the dynamics of the fluid: First, one of the fixed
points known for the fluid phase (cf. Ref. [4]) is preserved
and becomes attracting for the particles. Second, particle
trajectories resemble streamlines observed in bubble-type
vortex breakdown [3,4,6].
We consider particles as small—but finite—noninteracting

spheres and choose two representative pipe geometries, a T
junction at Re ¼ 320, and a V-shaped junction at an angle of
70° and Re ¼ 230. Rescaling lengths by L, velocities by ū,
and time by ðL=ūÞ, we model the particle motion by the
dimensionless inertial equation (cf. Refs. [5,8–11])

_x ¼ v ¼ uþ ε
Du
Dt

: ð1Þ

Here, x ¼ ðx; y; zÞ is the particle position, the dot denotes
the time derivative, v ¼ vðx; tÞ is the particle velocity,
ðD=DtÞ ¼ ∂t þ ðu · ∇Þ is the material derivative, and u
is the fluid velocity field. The small parameter ε in Eq. (1) is
given by

ε ¼ τðβ − 1Þ ¼ Stð1 − ρÞ ¼ 2

9
a2Reð1 − ρÞ; ð2Þ

where β ¼ 3=ð1þ 2ρÞ depends on the ratio ρ between the
densities ρp of the particles and ρf of the fluid, ρ ¼ ρp=ρf,
and τ is the dimensionless Stokes time. In terms of the
dimensionless particle radius a and Stokes number
St ¼ 2

9
a2Re, we have τ ¼ ð3=2βÞSt. Equation (1) was also

obtained by various authors for specific planar steady flows
via formal asymptotics [8–10]. Here, we rely on the results
of Ref. [11], who obtained this equation from an exact
slow-manifold reduction applicable to three-dimensional
unsteady flows.
For the fluid velocity field u required by Eq. (1), we use a

finite-volume solver from the OPENFOAM library [12] and
obtain steady solutions to the three-dimensional, incom-
pressible Navier-Stokes equations (see Ref. [6] for details).
As in the experiments, we consider hollow glass beads
(ρ ¼ 0.15, 5 × 10−4 ≲ a≲ 7 × 10−2) and gas bubbles
(ρ ¼ 10−3, 5 × 10−4 ≲ a ≲ 2.5 × 10−2) in water [3,4].
Equation (1) allows us to study the accumulation and

dispersion of particles over time using the compressible
velocity field v, which differs from the underlying incom-
pressible fluid velocity field u by a smallOðεÞ perturbation.
This is consistent with our experimental observations that

a fixed point for the particles exists, and that particle
trajectories are similar to the known streamlines.
We now investigate the regions within the flow that lead

to particle trapping. We define a trapping region (TR) as the
largest subdomain of the flow such that, for a fixed ε,
particles released within the TR remain inside the TR at all
times. To guarantee trapping, a TR must not intersect any of
the junction outlets. By definition, therefore, the boundary
of a TR is an invariant manifold of Eq. (1). That is, for a
fixed ε, particles cannot cross the surface boundary of a TR.
Such a surface, therefore, divides the flow domain into an
interior region, in which particles are trapped, and an
exterior region, from which particles leave the junction.
We choose the representative parameter value ε ¼ 0.05,

corresponding to hollow glass beads of radii near the
average of a ¼ 3 × 10−2 in the experiments [4]. From
the numerically computed velocity field v (1), we identify
four fixed points P1;2;3;4 in the T-junction flow at Re ¼ 320

[Fig. 2(b)]. Similar fixed points exist in the V-junction flow
at Re ¼ 230 [Fig. 2(c)]. With our investigations of repre-
sentative trajectories suggesting that P1;2;3;4 are the primary
capture locations as t → ∞ (cf. the Supplemental Material
[5], Fig. S1), we compute the domains of attraction of
P1;2;3;4. Our results (Fig. 2) show that these domains do not
intersect with the outlets and hence define TRs. Particles
released within a TR accumulate at P1;2;3;4 and remain
trapped in the junction forever. Specifically, in the T
junction at Re ¼ 320 [Figs. 2(a) and 2(b)], both P1;2 and
P3;4 define two separate TRs that touch at x ¼ 0, z ¼ 0.

FIG. 2. Primary trapping regions (TRs, colored yellow) in the
T- and V-junction flows for ε ¼ 0.05. This value of ε corresponds
to, e.g., hollow glass beads (ρ ¼ 0.15) with β ¼ 2.3078,
τ ¼ 0.0382, and St ¼ 0.0588 used in experiments [4], or gas
bubbles (ρ¼ 10−3) with β¼ 2.994, τ ¼ 0.0251, and St ¼ 0.0501.
Blue crosses mark the fixed points P1;2;3;4 and Q1;2;3;4. (a) T
junction at Re ¼ 320 (beads with a ¼ 2.9 × 10−2, bubbles with
a ¼ 2.7 × 10−2). (b) T junction viewed from the top. (c) V
junction at Re ¼ 230, with representative particle trajectories
(beads with a ¼ 3.4 × 10−2, bubbles with a ¼ 3.1 × 10−2). The
boundary of the TR separates trajectories that exit through the
outlet (red) and trajectories that remain inside the TR and spiral
onto the extended vortex axis (green).
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These TRs intersect with the inlet cross section, allowing
for incoming particles to be trapped.
Just as the vortex breakdown regions (cf. the

Supplemental Material [5], Fig. S1, shown in green) that
were used to predict particle capture previously [4], the TRs
end at fixed points Q1;2 and Q3;4 [Fig. 2(b)]. Comparing
Fig. S1 of the Supplemental Material [5] to Fig. 2(b),
however, we observe that the TRs occupy a much larger
part of the domain than the vortex breakdown regions. Each
TR has a shape resembling an “anchor” and contains one
vortex in each arm. We are unaware of prior descriptions of
such regions in the literature.
For hollow glass beads (ε ¼ 0.05) in the V-junction flow

at Re ¼ 230, we find similar TRs [Fig. 2(c)]. Their
boundaries impact the shape of nearby trajectories:
Passing trajectories are deformed by the TRs before exiting
the junction. Inside the TRs, particles spiral away from the
surface and quickly converge to a one-dimensional mani-
fold (cf. the Supplemental Material [5], Fig. S1). This fast
attraction within the TRs (occurring within time t≲ 2)
explains why previous dye experiments (cf. Fig. S8 in
Ref. [3]) did not reveal these regions. Despite their
significant impact on particle motion, the anchor-shaped
boundaries of TRs are effectively invisible surfaces.
For the V-junction flow at Re ¼ 230, we explore the

parameter dependence of the TRs by considering different
values of ε that correspond to the full range of particle sizes
in the experiments with gas bubbles (cf. Ref. [4]). For the
smallest bubbles (a ¼ 5.0 × 10−4, St ≈ ε ¼ 1.3 × 10−5),
we do not observe trapping. For slightly larger bubbles
[a ¼ 6.1 × 10−3, St ≈ ε ¼ 1.9 × 10−3; cf. Fig. 3(a)], we
find two well-separated TRs that reach into the inlet arm.
However, since their intersection with the inlet is small
[Fig. 3(a)], it is unlikely that these TRs will capture bubbles
entering at random inlet positions.
Increasing the particle size further [a ¼ 1.1 × 10−2,

St ≈ ε ¼ 6.6 × 10−3; cf. Fig. 3(b)], the TRs grow and their
separation decreases. For St ≈ εM ¼ 0.0161, the TRs are so

close to each other that, within the inlet cross section, their
minimum distance is equal to the particle diameter
[a ¼ 1.8 × 10−2; cf. Fig. 3(c)]. For consistency with our
model, which represents finite-size particles as points,
we view this as a merger of the separate TRs into a single,
larger TR. The critical value εM ¼ 0.0161, therefore,
defines a topological transition for the trapping of gas
bubbles in water for the V-junction flow at Re ¼ 230.
For the largest bubbles [a¼ 2.5×10−2, St ≈ ε ¼ 0.0319;

cf. Fig. 3(d)], the two TRs touch over a large distance and
form a single TR occupying a large portion of the inlet
cross section [cf. Fig. 3(d)]. Overall, the TR is so large that
it touches the domain boundary over significant areas.
Since the Stokes drag law is not valid close to walls, our
model is inconclusive in these regions. Thus, the size of the
TR shown in Figs. 3(c) and 3(d) is likely an overestimate
compared to the actual experimental dynamics [4].
Given that ε is the only parameter in Eq. (1), within our

approximation, the TRs for hollow glass beads are identical
to Fig. 3. The critical value εM for the merger of the two
TRs, however, depends on the radius a of the particles at a
given ε and hence, by Eq. (2), εM depends on the choice of
particle. Within our numerical accuracy, however, we find
that εM ¼ 0.0161 for beads is approximately the same as
for bubbles.
For the T junction, for ε > εM, we find that the TRs touch

along the line defined by x ¼ 0, z ¼ 0 [cf. Fig. 2(b)]. The
numerical values are εM ¼ 0.0226 for gas bubbles and εM ¼
0.0230 for hollow glass beads inwater at Re ¼ 320. Even for
ε ≫ εM, however, the TRs continue to touch only along that
line. Unlike for the V junction, therefore, we regard the TRs
as remaining separate here.Albeit theTRs remain technically
unmerged forT junctions,we still refer to the development of
the intersection between these two TRs along the line x ¼ 0,
z ¼ 0 as a transition. Indeed, experimental or numerical
observations of these regions via particle trajectories will
suggest a full merger because the particle size exceeds the
remaining small distances between them.

FIG. 3. Trapping regions in the V-junction flow at Re ¼ 230 for different Stokes numbers St representing the range of
experimentally observed bubble sizes (between a ¼ 5.0 × 10−4 and a ¼ 2.5 × 10−2 [4]). (a) St ≈ ε ¼ 1.9 × 10−3 (a ¼ 6.0 × 10−3).
(b) St ≈ ε ¼ 6.6 × 10−3 (a ¼ 1.1 × 10−2). (c) Critical case, merger of TRs: St ≈ ε ¼ εM ¼ 0.0161 (a ¼ 1.8 × 10−2).
(d) St ≈ ε ¼ 0.0319 (a ¼ 2.5 × 10−2). (Bottom-left panels) z − y views showing that, below the critical value St ≈ εM ¼ 0.0161,
the TRs are well separated. (Bottom-right panels) Intersections of the inlet cross section (y ¼ 3) with the TRs.
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Because of the symmetry of the fixed points P1;2;3;4, the
stability of P1 determines the existence of the TRs. By
Eq. (1), we monitor the signs of the real parts of the
eigenvalues of ∇vðxÞjx¼P1

: In both the T- and V-junction
flows, for ε < εC, the eigenvalue for the eigenvector
aligned with the vortex has positive real part, causing
instability and preventing trapping. For ε > εC, the eigen-
value becomes negative, turning P1 into an attracting fixed
point and leading to trapping. The numerical values are
εC ¼ 0.001 23 for the T junction and εC ¼ 0.001 83 for the
V junction. In contrast to εM, in our approximation the
value of εC does not depend on the particle type.
By Eq. (2), the condition ε ¼ Stð1 − ρÞ > εC defines a

parameter region of ρ, St, β, and a where particle capture in
the T and V junctions occurs [Figs. 4(a) and 4(b)]. Since the
values of εC for the T and V junctions are similar, these
regions are almost identical for both cases. Overall, Fig. 4
predicts that, for a high enough St, any light particle
(ρ < 1) becomes captured. This result differs from previous
work [3] which used a force balance of simplified fluid-
particle forces and estimated that capture is possible
only for ρ≲ 0.7. While recent experiments [4] did not
explore the capture limit on ρ, they did show capture at
ρ ¼ 0.72. As our model disregards flow distortions due to
other particles, we expect the actual capture limit to be
1.0 ≥ ρ ≥ 0.72 in the presence of such effects.
In addition, from ε ¼ Stð1 − ρÞ, we obtain a lower limit

on St: For St < εC, even the lowest density particles
(ρ → 0) are not captured. In particular, according to our
model, we do not expect capture for some of the smallest
bubbles and hollow glass beads appearing in the experi-
ments [4] (T junction, 5.0 × 10−4 ≲ a ≲ 4.5 × 10−3; V
junction, 5.0 × 10−4 ≲ a≲ 6.5 × 10−3). For the V junction
[Fig. 4(b)], the parameter region for capture is further
divided into two subregions where trapping occurs either in
two separate TRs [cf. Figs. 3(a) and 3(b)] or, for ε > εM, in
a single TR [cf. Fig. 3(d)]. As noted, however, the value of
εM has a minor dependence on the particle type.

To our knowledge, the anchor-shaped TRs discovered in
this Letter have not been recognized before. They are much
larger than the recirculation regions previously proposed to
predict particle capture in branching junctions [4]. For
applications where throughput of particles is crucial, it is
important to be aware of these transport barriers for the
particles.
Available limits on Re and the junction angle (cf. Fig. 5

in Ref. [4]) identify flow regimes where capture occurs.
Considering the great similarities between our results for
the T junction at Re ¼ 320 and the V junction at Re ¼ 230,
we believe that the mechanism we document is universal
within this class of flows. Our estimates on the ranges of St
and ρ leading to trapping (Fig. 4) hence complement the
known bounds on the fluid parameters.
Particle capture has been documented for unsteady flows

through branching junctions of different angles than are
considered here [3,4]. In the Supplemental Material [5], we
therefore introduce a Lagrangian Q criterion capable of
detecting TRs in flows with arbitrary time dependence.
This criterion shows that for Eq. (1), accumulation of
particles with ρ < 1 occurs only while they move in vortical
regions defined by the Q criterion [13]. Earlier work
suggested that regions of negative Eulerian divergence in
planar steady flow of inertial particles indicate areas of
particle accumulation [9,10]. However, in fact, these
regions imply only the shrinkage of the particle cloud
volume. By contrast, our Lagrangian Q criterion identifies
lower-dimensional, finite-time attractors that extremize the
backward-integrated Lagrangian divergence.
With the TRs directly linked to the presence of vortices,

we expect that similar regions exist in other channel flows
(cf. e.g., Ref. [14]). Our analysis provides a template for
investigations of the 3D geometry of such TRs. This
template is robust under small perturbations, given the
structural stability of slow manifolds and finite-time
attractors used in its construction [15–17]. Our conclusions
assume no interaction among particles and the fluid, which
no longer holds once particles accumulate on their finite-
time attractor. As this effect is secondary and localized to
the vicinity of the attractors, we expect limited deformation
relative to the identified TRs.
One important application of the detailed detection of

TRs is the control of particle trapping and, thus, the design
of microfluidic devices. Recent work [18], e.g., showed that
the vortical flow structures in the 70° V junction flow at
Re ¼ 230 enable the rapid, flow-driven fusion of lipid
vesicles. Producing large quantities of giant unilamellar
vesicles requires combining V junctions into larger devices.
We thus expect that computing the TRs will assist in
identifying efficient channel configurations for trapping
particles.
The Department of Energy will provide public access to

these results of federally sponsored research in accordance
with the DOE Public Access Plan [19].

FIG. 4. Parameter regions of St and ρ where capture occurs.
Vertical lines and squares mark St and ρ values of particles from
the experiments in Ref. [4]. Gas bubbles, blue; hollow glass
beads, magenta; and polystyrene beads, gray. Thin black curves
are level sets of ε [see Eq. (2)], indicating parameter regions
where we expect that Eq. (1) ceases to be valid. (a) T junction at
Re ¼ 320. (b) V junction at Re ¼ 230. Capture occurs either in
two TRs, or, for ε > εM ¼ 0.016, in a single TR.
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