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Abstract

We study the transport of particles in a general, two-dimensional, incompressible flow in the presence of a transient eddy,
i.e., a bounded set of closed streamlines with a finite time of existence. Using quantities obtained from Eulerian observations,
we provide explicit conditions for the existence of a hyperbolic structure in the flow, which induces mixing between the eddy
and its environment. Our results can be used directly to study finite-time transport in numerically or experimentally generated
vector fields with general time-dependence. © 1998 Elsevier Science B.V.

1. Introduction

The transport of fluid in two-dimensional, unsteady, incompressible flows is a much studied problem. Besides
experimental and numerical studies, theoretical results are also available for certain classes of flows. These classes
include time-periodic flows (see, e.g., [7,19,26-29,33,35]) and quasiperiodic flows (see, e.g., [4,5,8,33]), where the
transport problem can be reformulated in terms of appropriately defined two-dimensional Poincaré maps. If these
maps admit hyperbolic fixed points whose stable and unstable manifolds intersect transversely, then the chaotic
mixing of initial conditions between the interior and the exterior of the resulting homoclinic or heteroclinic tangle
can be studied via lobe dynamics. The long term evolution of lobes (i.e., the “building blocks” of the tangle) can be
traced using the topological approximation method of Rom-Kedar [26,27]. The idea of chaotic transport through
lobes can be generalized to adiabatic flows (see [15,16]), almost periodic flows (see [20,301), flows with infinite
time hyperbolicity and bounded velocity [1], three-dimensional, incompressible flows (see [10,14,17,18,21], and
general, higher-dimensional Hamiltonian systems (see [2,3,32]).

While these results provide very efficient tools for the study of flows with special time-dependence or special
structure, their application becomes difficult or impossible in the case of general fluid flows given in terms of
experimentally or numerically generated vector fields. First, “real-life” flows have general time-dependence and
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hence their evolution cannot be captured through the iteration of Poincaré maps. More importantly, while the
formation of infinitely many lobes is generic in periodic, quasiperiodic and almost periodic flows with intersecting
stable and unstable manifolds, hyperbolic structures in aperiodic flows need not admit any lobes at all, which prevents
the application of lobe dynamics. Second, existing analytic transport calculations are usually based on some version
of the Melnikov method, which requires the presence of an infinitesimally small perturbation parameter in the flow.
This means that the flow must be very close to an integrable, steady limit in all spatial domains and for all times.
Such uniform near-integrability cannot be expected in most applications. Besides, there is no general strategy for
extracting a uniformly small perturbation parameter from a given experimental or numerical data set. Third, all the
above results assume that the flow admits a hyperbolic structure and lobes for all times. This assumption is very
hard to satisfy, as hyperbolic structures in most real life flows are of transient nature. In summary, while the concept
of mixing due to the interaction of stable and unstable manifolds is very useful in interpreting complicated data
sets from fluid flows (see, e.g., [22,23,25]), the existing analytical tools for the description of Lagrangian transport
cannot be applied to all such data sets.

In addition to the technical difficulties cited above, there is also a conceptual difficulty with the application of
Lagrangian transport ideas to large-scale fluid motions, such as those in oceanography and atmospheric science.
The fact is that most data sets provide Eulerian information, such as contour plots of a streamfunction, height
field, temperature, salinity, i.e., a scalar quantity, while the Lagrangian information, and the existence of stable and
unstable manifolds, tangles, and lobes, remains hidden. This necessitates further numerical treatment of the data
(i.e., integration of a numerically generated vector field), which introduces additional errors in the study of the flows
that are approximately known to begin with. For flows with long time scales, these errors coupled with the lack of
special time-dependence make it virtually impossible to identify hyperbolic structures with the detail needed for
existing mixing theories.

Our main goal in this paper is to develop tools for the study of Lagrangian mixing in general, aperiodic, two-
dimensional Hamiltonian systems. We are interested in cases when the available Eulerian data, i.e., the time-
dependent contour plot of the Hamiltonian, contains a saddle-type stagnation point on a finite time interval. Using
Perron’s method for the construction of invariant manifolds, we derive a set of three conditions involving Eulerian
quantities under which the flow contains a solution with “finite-time hyperbolicity”. Our conditions basically express
the requirement that the speed of the Eulerian stagnation point and the attached Eulerian stable and unstable sets
should be below a critical value over which Eulerian data and Lagrangian dynamics become uncorrelated. We note
that for analytic examples with a small parameter €, Theorem 3.1 can be used to estimate the maximal value of €
for which the flow admits a hyperbolic solution.

Next, we assume that the time-dependent, Eulerian stable and unstable sets of the stagnation point form a loop,
which we consider a kinematic eddy (see, e.g., [34] for a similar definition of an eddy). For the finite time in
question, we construct finite-time stable and unstable manifolds for the hyperbolic solution that can be used to
define a dynamic eddy in the three-dimensional extended phase space. Solutions inside the dynamic eddy exhibit
swirling, while solutions outside the eddy show translational motion. The invariant manifolds marking the boundary
of the dynamic eddy are non-unique, but they are exponentially unique with respect to the lifetime of the eddy. This
means, e.g., that two possible stable manifolds must be within a distance which is exponentially small in the time
of existence of the stagnation point.

We consider the transport of fluid between the interior and the exterior of the dynamic eddy. In most cases, the
invariant manifolds described above do notintersect (i.e., do not form lobes), which means that the eddy continuously
emits or absorbs initial conditions. In some cases a finite number of lobes is formed by the intersecting manifolds,
which means that the flux into the eddy changes its sign in time. In either case, we are able to estimate the flux in
terms of Eulerian quantities associated with the streamline plots. We derive a bound for the error in our estimates
in terms of Eulerian quantities. This error is small if the growth of the kinematic eddy is small.
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We apply our theory to a kinematic eddy—jet interaction model due to Dutkiewitz and Paldor [9]. This analytic
model has periodic time-dependence, but we restrict our study to the time of existence of the kinematic eddy within
one period, hence periodicity is not used in our analysis. For physically relevant parameter configurations, we use
the Eulerian streamline plots to show that our conditions for the existence of finite-time hyperbolicity in the flow are
satisfied. We construct a solution with transient hyperbolicity numerically to illustrate our main result. We also show
the non-existence of hyperbolicity in the flow in some cases when our basic conditions are not satisfied. Finally,
we study the finite-time transport between the eddy and the jet, and demonstrate the accuracy of our Eulerian flux
estimates by computing the actual Lagrangian flux numerically. We end the paper with some concluding remarks.

2. Hyperbolic stagnation points

Let us consider a two-dimensional, incompressible flow given by the velocity field:

LI 23 y= falx,y,0) = Wy
ay 0x

X = filx,y.0) = (1
Here the streamfunction i plays the role of a Hamiltonian and is assumed to be smooth in all its arguments. The
level curves of ¢ can be used to define coherent structures in the flow. For instance, a set of closed level curves
bounded by a separatrix defines a “kinematic eddy”, and a set of open level curves can be thought of as a jet.

Assume that for any fixed t € [, 7], the contour plot of ¥ (x, y, t) contains a hyperbolic (i.e., saddle-type)
stagnation point

u(t) = (ui(2), u2(2)),
as shown in Fig. 1. For later convenience we assume that ¢, t™ > 0. Our assumption implies that
V), =0,  detD’¥u(),n] <0, 2)

where D%y denotes the Hessian matrix of second spatial derivatives of 1. The second equation expresses the
hyperbolicity of the stagnation point and immediately implies that the function u«(¢) is smooth by the implicit
function theorem. This enables us to estimate the magnitude of the speed of the stagnation point as |a(7)| < u,
where

p=max_([D*Y17' V@) p=ue)- (3)

teft—.tt]

We note that the hyperbolicity of the stagnation point implies that for any fixed 5 € [¢~, t T}, the phase portrait of the
velocity field f(x, y, to) contains a saddle point with one-dimensional stable and unstable subspaces. Considering
the union of these lines for all # € [t~, rT], we obtain two, two-dimensional surfaces S(u) and U (), respectively,
which are attached to the curve u(¢) in the space of the variables (x, y, t). We will refer to S(«) and U (u) as Eulerian
stable and unstable bundles, respectively (see Fig. 2).

We are interested in finding conditions under which the Eulerian observation of the saddle-type stagnation curve
u(r) implies the presence of an actual saddle-type particle path in the extended of (x, y, ¢) phase space of Eq. (1).
In general, one expects such a relationship only if the motion of the stagnation point is not too fast compared to
typical particle velocities, i.e., the discrepancy between streamlines and particle paths develops on relatively long
time scales near u#(¢). Such long (but finite) time scales are typical in oceanographic and atmospheric problems.

WEe first pass to the moving frame of the stagnation point by introducing the change of coordinates

z={(x,y) —u(),
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Fig. 2. Eulerian stable and unstable bundles.

which transforms Eq. (1) to
2=Vf@),)z+ F(z,t) —u(t)
with
F(z,0) = f@+u(), 1) = V), Nz =0(z).
The smoothness of F implies the estimate
|F@z, Dl < Cplzf
fort € [+, t"]and |z|] < C,, where

Cr= max max 3||D*f(z+u@), 1l
te[t—.at]1zI<C; =

Furthermore, for all |z|, |z| < C, and ¢t € [+, tT], we have
|F(z,t) - F(z.)| < Lflz —ZI,

where

2
Lr= max max |V fi(z +u(t), 1) — V fiu(), nl.

~tefr—. ") zi<C
i=1

I=t-
u(t)>@ u(t

Fig. 1. Transient hyperbolic stagnation point.
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By the hyperbolicity of the stagnation point, the matrix V( fu(z), ¢) admits two eigenvalues A(¢) > Oand —A(¢) < 0,
which are both smooth functions of time. We introduce the notation
Amax = max A(f), Amin = min  A(t A = AU
max te[{‘,t'*‘] ( ) min ‘e [t t+] ( ) max t t ]‘ ( )|

We also introduce the matrix T () € R?*? with det T(z) = 1, whose columns are the eigenvectors corresponding
to —A(¢) and A(¢), respectively. We will use the constants

d
—T()

Cr = max, ||T(t)||, Cr = max P I

teft—, te[r 1]

®)

The change of variables

w = T—l(t)z
puts Eq. (4) to the form

w=A)w+Mw,t)+ Nw,1¢), &)
where

A@t) =diag(-A(1), A1), Mw,0) =T 'OFT@®w,t), Nw,0)=-T" %”[ ZE)

o]
(10)
The following estimates hold:

IM(w, )| < C3Crlw?,  |N(w, 0| < CrlChiw| + ul, (11

where we used formulas (3), (5), and (8). Formulas (7) and (10) also give the following Lipschitz constants for the
functions M and N:

Ly =CiLr, Ly=CrCj. (12)

Note that without the terms M and N, w = 0 is a solution of (9) for z € [+, t1]. This solution also admits stable
and unstable subspaces given by w; = 0 and w;| = 0, respectively.

3. Invariant manifolds

In this section we study the survival of invariant structures near w = 0 in Eq. (9) after we add the terms M and
N. In particular, we want to construct a one-dimensional, normally hyperbolic invariant manifold with stable and
unstable manifolds for Eq. (9). The manifolds we construct will differ from those commonly used in the geometric
theory of dynamical systems (see, e.g., [11]) because of the finite time of existence of the stagnation point.

3.1. The derivation of the integral equation

We fix a small number § > 0 and select a C* bump function b with the properties

1 ifs < CrC.(1 - 8)/v2,
bi(s) = .
0 ifs>CrC,/v2,
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and with 0 < bi(s) < 1 fors € (CrC (1 — 8)/\/5, CTCZ/ﬁ). We also need author C* bump function by with
the properties

1 ift (148 <s<tT(1-8),
0 ifs<t” or s>t

ba(s) = {

and with 0 < b1 (s) < 1fors € (¢, 17 (1 +8) U (¢T(1 — 8), 1T). We use these functions to smoothly modify the
vector field (9), so that for (w;| > CrC,/ +/2 and for ¢ ¢ [t~ t™], it coincides with the vector field w = A()w.
We first extend the definition of M and N for all times by letting

Mw,t)=Nw,t)=0, 1¢[t, ]
‘We then extend the definition of A(¢) = diag(—A(¢), A(z)) for all times in a C* fashion such that

MO € [Amins Amax],  AM)] < Ao (13)
forall t € [z, t*]. Then the modified vector field

w=A@w+ Mw, 1)+ Nw, 1), (14)
with

M(w, 1) = by(Jwi Dby (w2 b2 (M (w, 1), N(w, 1) = by (jwi by (Jw2))b2(t)N (w, 1),

is smooth for all w € R? and r € R. Eq. (14) coincides with Eq. (9) for |w;| < (1 — 6)CTCZ/~/§ and t €
[t~ (1+8), tT(1 — 8)]. Furthermore, our estimates (11), the definition of b;, and the extension (13) imply the global
estimates

min < A < Amaxs MO < Apags s
IM(w, )| < C3CrClwl, [N, 1| < Criu+ Crlwl|l.

Introducing the notation
w=(ws, w)), M=, M), N=(N,N),

then dropping the tildes, we can rewrite Eq. (14) as an integral equation of the form

t

S8 ) + f S OS2, 1) + Ne(wie), 7l d,

ws(t) =e

ts
t (16)

wa®) = el * P ) + f e A8 (@), T) + Na(w(@), D] dr.

tu

We fix a number ¢ with 0 < g < 1, and define the stable manifold W* as

WS = lwolsup[lw(t; wo)le'qfo AMrydry o oo} )

>0

In other words, W contains the set of initial conditions which never leave the box |w;| = C7C,/~/2 in forward
time. (If they left this box, they would grow as exp( fot A(t)dr), and hence the supremum in the definition of W3
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would not be bounded.) Note that W* is a positively invariant set by definition, and for any solution w(z) € W* and
for any fixed r € R, we have

r . ' u

. A(r)dr . AMz)dt . —

lim |f3fru ® wy(ty)| < lim ef'u ) Keqfo MOAT _ im Kerma(—t) g@hmaty — (.
ty—>0C ty— 00 fy—>00

Therefore, taking the limit £, — oo in Eq. (16), setting t; = 0 and ws(¢5) = ws, we obtain that solutions in W
satisfy the integral equation

!

we(?) = e‘fJ*‘f’d’ws + /e‘frl MY (w(t), ) + Ne(w(r), 7)]d,
( 0 17)
wu(7) = f e MO (), 7) + Nuw(r), 1)) dr.

We will show that W* is a non-empty set by proving that this integral equation has a unique solution w(¢) with
ws(0) = w;.

3.2. The contraction mapping argument

We can recast the integral Eq. (17) in the form
w(t) = F(w()),

which shows that a solution of (17) is a fixed point of the map F. Let us introduce the weighted norm

13
— A(n)d
lwlly = supe S X0 o)1,
[ 2

with some 0 < g < 1. We also define the function space
By x = {w(®):[0, 00] — R*|w e C°[0, 00), [lwlly < K}.

It is easy to see that B, x is a complete metric space in the norm || - ||;. We want to show that F is a contraction
mapping on this space. We will make use of the estimate

b
. . ’ t
/ Ie”fr A(s)ds|dr < ‘2P|)\mm / |ep‘/;) Ms)ds epj; /\(s)dsl (18)
e lp'kmin - )"max

forany a < b and p € R with | pl)»ilm — Aax > 0. This estimate follows easily after integration by parts.

First we have to show that 7 (B, k) C By x.From the integral Eq. (17) we obtain the estimate

t
IF @) < e Jo M09 ) 4 / e S OB w(e). 1) + INs(w(D). 7)1de
0

4+ f e OB a1 (w (1), ) + INu(w (@), )] dT
t
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B LN f e /e KOS CrC,w| + Cr[Chlw] + ) dT

oo
+ feﬁ MOBC3 CpCw] + CrICHw] + ] de. (19)

Multiplying by expl—¢g fOr A(s) ds], taking the supremum of both sides in ¢, and using ||wil, < K along with the
estimate (18) gives

2CT Amin[K(CECFC, + Ch) + pll(1 — ¢%) — ]

mm ~ Mnax

[ =22 — Al + A2 — AL

min

IFw®)lly < CrC./v2+

»

where we assumed that
(1 - q))\mm )\.:nax. (20)
Therefore, || F(w(t))|l; < K and hence F(w(¢)) € B, g will hold for K sufficiently large provided

2CT Amin(C2CFC, 4+ C)[(1 — ) — A2 — Aloy]

min max

[(1- q)kmm max][(1 + q))‘mm — Amax]

< 1. 21

Next we have to argue that F is a contraction mapping on the space By k. For any two functions w, w € By g
with ws(0) = ws(0), the integral Eq. (17) holds, and an estimate similar to (19) leads to
2C7 Amin(CrLF + C’T)[(l — 4%~ Mnaxd

min

[ = QA% = M+ QAT — a\,(]

[F(w@) — Flwt)llg < lw(z) — w(n)llq-

This inequality shows that F is a contraction mapping whenever

2CT Amin L 2 1 - Y5 Ay
TAmin(CTLF + CPI = gF)A00 — Mmax] -1 (22)
(1= @)AZ = Muax I + @5 = Aai]

As a result, Eq. (17) has a unique solution for any ws(0) = ws. The derivative of the solution with respect to ws
obeys the same estimates, hence we obtain that the solution of (17)isa C ! function of w*, i.e., the set WSis a C!
manifold. A similar argument establishes the existence of C! manifold of solutions W defined as

Alrydr

t
= {w"lsupnw(z; w0yle 1o M09 < o

<0

Both W" and W* are C!-close to the stable and unstable subspaces of the equation w = A(t)w, therefore they must
intersect transversely in a one-dimensional curve I which is C I_close to the curve w = 0,7 € R in the extended
phase space of the (x, y, t) variables. The curve I" admits local stable and unstable manifolds, and we have

Wp (M) = W°, Wieo(IN) =

Note that for ¢t ¢ [t,tT], I'(t) = 0 holds since I must coincide with the trivial solution of the equation
w = A(t)w (see Fig. 3). By the continuity of I"(¢), this implies that I"(¢) is globally bounded and hence we can
select ¢ = 0 in all our previous estimates.
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=t~

Fig. 3. Local invariant manifolds for the bumped vector field.

3.3. The size estimate

We have to make sure that the invariant manifolds found above also exist for the original, unmodified Eq. (9)
as locally invariant manifolds. Although they are C!-close to the curve u(¢), their C? distance from u(?) may be
such that they leave the box in which the modified system is related to (9). To avoid this, we have to ensure that the
solution I"(¢) on the curve I" obeys the estimates |[;(¢)| < (1 — B)CTCZ/\/Q fort e [t~,t7].

Since I"(¢) lies in the intersection of W* and WU, it solves the integral Eq. (17), which yields the following
expression for I"(¢):

na = f e~ [ HOB 41 (P (r), 1) + No(I(2), D)]dr,
0: 23)
r®) = f e S OB (@), 7y + No(I(D), 7] dr

Let us fix a constant time ¢ > 0 and let

= sup | ().
tef0,1]

Then (23) together with (11) and (18) gives the estimate
CT1Amin

2 ’
)‘mjn - )‘max

r

[A

2 [CECFT + CpT + ),

which can be rewritten as

_ A2 =N -
C%CFFZ— Zmin___max _C’T F'+up>0. (24)
2CT)\m‘m
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If

2
1 A;Zm'n - )‘;nax ’
I’L < - CT [}
4C %-C F 2CT Amin
then inequality (24) is equivalent to
0<I<I. or [>Ty,

where 0 < I'_ < [ are the zeros of the right-hand-side of (24). These estimates are independent of the time ¢
and I" is a continuous function of 7, therefore I < I_ must hold since for f = 0 we have ' = 0.Hence I' (t)
is a locally invariant curve for the original, unmodified system if I < (1 — §)CrC;. This holds for § > 0 small
enough, provided I'_ < CrCq,ie,

AL —
< [ngﬂ_max - c}} CrC; — C3CCp. (25)
min

3.4. The decay estimate

We now want to show that solutions that start close enough to I"(¢) within the manifolds WS(I") and W¥(I")
approach I'(¢) at an exponential rate in forward and backward time, respectively, as long as t € [t7,¢T]. We
describe the argument for the stable manifold only, since the unstable manifold can be dealt with similarly.

Consider a solution X (¢) = (x(¢), y(¢)) € W3(I"). Using the integral equations (17) and (23), we can write

X0 - ro)l <e Fo™ % x0) - Mt

t
. d
+fe Jo MO 3 pe, + Creplix (@) - Pl de
L44]

t
+ fefxm)ds[c;chz +CrCHIX (1) — I'(1)| de.
o

Introducing the quantity

ft A(s)ds
A(T)= sup |X(1)—T'(t)|e’® )
telty,T]

and combining the above estimate with (18) we obtain that

2C7[CECFC; + Crlhmin

2
)‘mjn - )‘;nax

A(T) = A(to) +

A(T).

If (22) holds with g = 0, then this last inequality implies

(Ax = *ma)IX(W0) = CUO — [ misrds
A2 — My — 2C7[C3CEC, + ChlAmin

max

|X@) — @)l < (26)
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3.5. Non-uniqueness of invariant manifolds

It is important to note that the locally invariant manifolds we have constructed are not unique. The non-uniqueness
comes from the fact that in our contraction mapping argument we modified the original vector field (1) outside the
time interval + € [¢~, tT], and this modification can be chosen in different ways. In this section we want to argue
that if the time of existence for the stagnation point is long enough (i.e., + — ¢~ is a large number), then all possible
“finite-time” stable and unstable manifolds are exponentially close to the “master” manifolds W"(I") and W*(T)
near 1. This fact also implies that I" is uniquely determined up to exponentially small errors. The significance of
this result is that I” and its stable and unstable manifolds will appear to be unique in numerical simulations, if the
time scale of interest is long enough.

We start by defining the finite-time invariant manifolds

Wﬁ)c(l‘_,t"L): {z(t), Diz(t: 20) — T (1) < |z(t7520) — F )t e ¢, t7 ),
We . 1T ={(z(t). Dllz(t; zo) — T ()| < |25 z20). =T ¢ )t € [17, 1))

Note that the finite-time stable manifold Wlsoc(t_, 1) contains solutions z(z) whose distance from the solution
I"(r) does not exceed the initial distance |z(t; z9) — £ (t7)| for times ¢t € [¢t™,t*]. Similarly, the finite-time
unstable manifold Wl‘(’)C (¢, t1) is the set of solutions whose distance from I" () does not exceed the final distance
|z(¢t; zg)— " (¢t1)|. The definition of these finite-time manifolds is motivated by how one would try to locate possible
stable and unstable manifolds numerically in a finite-time data set. By the smoothness of the flow with respect to
the initial conditions, both of the above sets are closed and their boundaries are piecewise smooth. Furthermore,
both W,ﬁ)c(t‘, t*) and Wl‘(‘)c(t‘, 1) have non-zero volume in the (x, y, t).
The master stable manifold W*(I") near I” is given by a function w, = gu(ws, ). Introducing the new coordinate
Uy = Wy — gu(st t)#
we obtain the equation
Uy = Wy — aw_\guu.)s — 08y = Avy +Agy — awggu(_Aws + M5+ Ns) — d:8u.
The local invariance condition vy |,,—0 = 0 implies that the above equation can be rewritten as
vy = [A(t) + Gu(ws, vy, 1)]vy, (27)
where the function G, is of order O(u, C;). Then (27) implies the estimate

[ M0-O.C.)dr

lva ()] = [va(t7)le (28)

This inequality gives that v,(t*) > CrC; holds if

+

t
lvu(t7)] > CrC;exp —f[?»(f) — O, C)1dr
h

Therefore, any point z € W _(¢7, tT) must necessarily satisfy the estimate

Pt
- w(0)—0u.C)1d
dist(z, W2 (I")) < CrCye” Jim HO700ENT

A similar argument yields that points in W (7, tT) are exponentially close to the master unstable manifold
Wt ().
loc
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Let us assume now that there exists a two-dimensional invariant manifold Wﬁ)c # W" (I') and K > 0 such that

loc
any solution X (t) € W}

o T € [t7, 7] satisfies the decay estimate

X() - I < Re S 2%,

Then inequality (28) implies that for this solution we have
()| < Re f{_ 24(5)=O(u.Co) ds.

In summary, other two-dimensional, locally invariant, unstable manifolds asymptotic to hyperbolic solutions will
in general coexist with the master manifolds we constructed, but will be exponentially close to I", Wi _(I"), and
W (I"), respectively.

3.6. The main theorem
Here we collect all the conditions that are needed for the existence of the normally hyperbolic solution " (¢) for
tefr—, 4]
2 ’
’\min > )‘max’
A'ﬁ"nin > A‘;nax + 2CT)\min(C%‘CFCz + C}),
A‘?nin > A‘;'na)( + 2CT)"min (C%LF + C,T)’

, 2 29
1 }"rznin - )"max ’ ( )
m < 5 -Cr i
4C7Cr 2CT Amin
Az —
Q< [%‘g—ri—?& - C’T:| CrC, -~ C3C*Cp.
mil
If we define
C = max(C¢C;, LF), (30)

then the inequalities in (29) simplify to

Az — _
C/ min max C2 C,
7= 2C}")\min T
2
2 1
A
< 1 )"mm max C/T , 31)
4C%CF 2CT Xmin
AL — N
CrC, || =min_"max o~} _c3ceC,|.
p==r Z[[ 2 hmn T TFTE

We summarize our result in the following theorem:

Theorem 3.1. Suppose that conditions (31) are satisfied for system (1). Then, there exists a solution I"(¢) with the
following properties:
(i) Forr e [t—,tT],
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2
1 Az — A Az — A
Ft —u)| < min max_cl _ min max_C/ _
| () ()l 2C%~CF |: 2CT}\-min T] J[ 2CT}\m'm T] #
,lLCT)\ i
S / min : +O(;L2).
)”min — Amax — 2C1 CTA-min
(ii) |7 (1) — a()| < O(w).

(iii) The solution I"(¢) has two-dimensional, locally invariant stable and unstable manifolds, W*(I'") and W*(I"),
which are locally C! close to the Eulerian stable and unstable bundles S (1) and U (u) in the extended phase
space (x, y, t).

(iv) There exists a constant C > 1 such that for any two solutions £(¢) € W*(I") and ¢(z) € WY(I"), and for any
time ¢t € [+, tT], with

|EC-) =) <C, [E0)—-T ) =<C;

we have
F@) —£0) < Ce I O ramy —eam), M@ - ¢ < Cele MO Pty Z ey,

(v) If two manifolds Wl‘;c(l") and WISOC(F) also satisfy the properties listed in statements (i)—(iv), then

o+
dist(We W (1)), dist(W,, Wi (1)) < Cele- 12H0)-Otu.Colde.

as shown in Fig. 4.

Fig. 4. Non-uniqueness of the invariant manifolds.
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4. Kinematic and dynamic eddies

In this section we assume that the instantaneous stagnation points studied in Section 3 are contained in a closed
level curve of the streamfunction. This means that the equilibrium point u(#g) of the vector field f(x, y, to) has at
least one homoclinic or heteroclinic loop ¢, attached to it. We assume for simplicity that ¢, is homoclinic, which
indicates the presence of a kinematic eddy in the flow for t € [t~,t+]. The t = 1y slices of the two-dimensional
surface

® = {(x,y,00)|(x,y) € ¢y, to €[t 171}

serve as instantaneous boundaries for the kinematic eddy. For this reason, we refer to the two-dimensional homoclinic
set @ as the kinematic eddy boundary.

The global geometry of the stable and unstable manifolds of the solution I" can be quite complicated or rather
simple. We are interested in cases when they separate a bounded set from the rest of the phase space. In this bounded
set we see swirling motion, whereas outside the bounded set the basic nature of motion is translational. We will call
such a bounded set a dynamic eddy, and will define its boundary as the union of pieces of W*(I") and WY(I") with a
“gate” surface through which initial conditions are exchanged (see Section 5 for a precise definition). We emphasize
that we leave out vorticity consideration from our definitions of kinematic and dynamic eddies: kinematic eddies
are objects identified from purely Eulerian observations, while dynamic eddies are directly linked with the actual
Lagrangian dynamics of particles.

We are interested in locating dynamic eddies based on the Eulerian observation of kinematic eddies. In particular,
we want to see how well the eddy boundary & approximates pieces of the locally invariant manifolds W"(I")
and WS(I'). To this end, we first estimate the distance of these manifolds and the eddy boundary within the C,-
neighborhood of the stagnation point, then use the solutions of system (1) to “propagate™ our distance estimate
outside this neighborhood.

In the local coordinates (ws, w,) used in the previous section, & can be written as

ws = hs(wy; 1), wy = hy(ws; 1)

with 5(0; f0) = hy(0; tg) = h((0; 10) = h{,(O; tg) = 0. (Here the prime refers to differentiation with respect to the
first argument.) This just expresses the fact that the eddy boundary is tangent to the Eulerian stable and unstable
bundles S(u) and U (u) of the curve u(r). We now introduce the change of coordinates

Su = wy — hu(ws; 1), $s = ws — hs(wy; 1),

which “straightens out” the pieces of the kinematic eddy boundary that fall in the C,-neighborhood of the stagnation
curve u(¢). In particular, the “incoming” piece of the eddy boundary @ is locally given by ¢, = 0, while the
“outgoing” piece of @ locally satisfies ¢ = 0. From Eq. (1) we obtain that

s = =) — M)hs(wys 1) + M(w, 1) + Ny(w, 1),

— hi(wy; HAwy + My(w, 1) + Nu(w, D] — dchs(wy; 1),
Lo =A% + A(Ohu(ws; 1) + My(w, 1) + Nu(w, 1),

— hi(ws; DH—Aws + Ms(w, 1) + Ns(w, 1)] — dhu(ws; 1),

Using the fact that kinematic eddy boundary is locally flat in the new coordinates, we can rewrite the above equation
as

¢ =[A@) + AL DI + B, 1), (32)
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A({,t):(aS(;’t) 0 )’

0 a($, 1)

Here the components of A and B obey the estimates

b= (500 ).

BU(C’ t)

las| < C%,  laul < Cy, |Bs| = C. |Bul <Cp,

with the constants defined as

CS = max max |y, My — h) 0y, M,
A teft—,tt] 1w|5CTCZ| Wu U uTt Sl
CY= max max |3y Ms— hidu My,

re[r— %) |lw|=Cr;

Ch = 18, 25, INe = e = bl .
OB = o0 wfEEe, 1M e Bl
Again, solutions of (32) that lie in the stable manifold W*(I") satisfy the integral equation
A t
Sult) = f eJ MO ay (¢ (1), DL () + BuE (@), DI (34)
oo

Since the kinematic eddy boundary near Wfoc(F ) satisfies ¢, = 0, its distance from the local stable manifold of I
can be defined as

ds = sup sup  [&u(D)].
te[t 112 0eWs (I

loc

Using the integral Eq. (34), and the estimates (33) and (18), we obtain that

p-
dq min u

Ch. 35
Aiﬁn - C/ux)‘min — A ? G

max

Similarly, the distance of manifold Wl‘(‘)C (") from the eddy boundary can be defined as

dy = sup sup (&),
telt—.1F)1 (0w (I

which in turn can be estimated as

;\min s

d, < C%. (36)
’ Alznin - Ci)"min - )":'nax i

using a similar argument.

As a second step, we now extend the local estimates to global estimates for the distance of the manifolds Ws(I™)
and W (I") from the eddy boundary ®. Let At (1) denote the time that an “Eulerian” solution v(r; fo) = (x (1), y(1))
on ¢y, spends outside a C .-neighborhood of the stagnation point u (). (Note that v(t; f) is the general not a solution
of the original Eq. (1), but it does give a parametrization of the kinematic eddy boundary in terms of the parameters
t and #g). Let C, > 0 be such that the orbit ¢, is contained in the C,-neighborhood of u(zg) for every #o. Since the
velocity field (1) is smooth, for |v|, |v] < C, we can write

|f,0) — f(@,D] = Lilv = 0| + La|t — |,

with the Lipschitz constants
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Ly =2max max max |Vfi(v, )|,
i ore[rat) vi=Cy

Lry=2max max max |9 f;(v,1)|.
iote[r ] v|=Cy

Let us now consider a solution X (r) = (x(¢), y(t)) € W*(I"), t € [t tT]. The distance of this solution from a
solution v(#; tp) on the homoclinic set @ obeys the estimate

t
X () — v(t: )] < 1X(t0) —v(to;zo>|+f|f<xm, r) — F(u(x: 10), 10)) de
fo
t
s|X(to)—v(zo;zo)|+f FX @), 1) = Fo(T: 10), )] dr
o

t
+ / [f(u(z;t0), ) — f(v(T; o), to)|dr
fo

t
<X (to) — vto; 10)] + La(t — to) +/L1|X(z> — v(z; )] dr,
Io

which, by Gronwall’s inequality, implies that for any ¢ € [19, to + AT (¢0)],
1X (1) — v(t; 10)] < [1X (t0) — v{to; t0)| + L2 At(tg)]et 147, 37

This means, e.g., that if we start an actual solution X (¢) 8-close to the homoclinic loop ¢,. then it stays within a
distance of

286L]A1.'(10)

from the homoclinic loop outside a C,-neighborhood of the stagnation point u(#y) provided the time-dependence
of the vector field is “slow enough” so that L, < §/A7(#) holds.

Let I(#g) denote the arclength of the part of the homoclinic loop ¢y, that falls outside the C, neighborhood of the
stagnation point u(#), and let

I(#
AT = max (f0)

max ———.
to€lt= 1} Ip—uto)|=Cz. pedy, |V (p, tp)]

It is easy to see that AT provides a uniform upper estimate for the Eulerian “flight times” At (#y). Then using the
estimates (36), (37), we can conclude the following:

Theorem 4.1. Outside the C,-neighborhood of the stagnation curve u(z), the CY distances of the manifolds wwir)
and WS(I') from the kinematic eddy boundary & obey the estimates

)&minc%
A2 — CS hmin — A

min max

dist(WY(I"), ®) < Dy = [ + LZAT:| el1aT

kminc%
A2 = CYAmin — A,

min max

dist(WS(I"), ) < Dy = [ + L2AT] el1aT
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Note that the above estimates yield small numbers if the explicit time dependence of the vector field (1) is slow
in a neighborhood of the kinematic eddy boundary &.

5. Lagrangian transport from Eulerian observations

We are now in the position to relate the shape of the kinematic eddy boundary (i.e., the deformation of the loops
¢, asthetimerp € [t tT] varies) to the transport of particles between an unbounded and a bounded subset of the
physical space (x, y). More precisely, let us assume that the conditions of Theorem 1 hold and hence the locally
invariant manifolds I", W*(I"), and W*(I") exist. For every 7y € [r~, 7], define the point p;, € ¢,, which divides
the homoclinic loop ¢;, into two connected components of equal arclength. Let N (py,) denote the normal space to
@1, at py, embedded in R2. Out of individual normal spaces we can build the normal surface

N(@) = {(x. y, 00)|(x, ) € N(pyy), |(x,¥) = py,| <2max(Dy, Ds), to € [t,tT1}.

Let y" denote the first intersection of the unstable manifold W¥(I") with N (u) in backward time, and let y* denote
the first intersection curve of the stable manifold W*(I") with N () in backward time. According to our estimates
in Theorem 4.1, the two curves " and y* are C°-close to the intersections of the kinematic eddy boundary ¢ with
N (u). Define the gate surface G to be the set of points on N (u) that lie between W*(I") and W¥(I"), i.e., between
the two curves y" and y®. (Note that " and y® may intersect, in which case the surface G locally shrinks to a point
at the time of intersection.) Also, consider the surface S* C W"(I") which is bounded by the curves I" and y", and
the surface S ¢ W*(I") bounded by I" and y5. Then the cylindrical surface

B=S'UGUS®

is a two-dimensional surface in the extended phase space with a uniquely defined exterior and interior Ext (13) and
Int B. We define the dynamic eddy £ associated with the kinematic eddy & as

& = In(B).

The geometry of this construction is shown in Fig. 5. The set B is referred to as the dynamic eddy boundary. We
will use the notation

&y = EN{t =10}

for the constant time slices of the dynamic eddy. Initial conditions that enter £ = Int(53) at some point in the time
interval [t~, 7] exhibit swirling motion for + < ¢*. Initial conditions that remain in Ext(B) for all t € [t—, ]
move differently as they simply pass by the dynamic eddy. In what follows, we are interested in the flux of initial
conditions between these two qualitatively different regions of behavior.

Assume first that the curves " and y* do not interested each other. Then the vector field points either inwards or
outwards on the entire gate surface G, and hence the dynamic eddy is locally invariant in forward or backward time
on the time interval [t ~, tT7]. Restricting to the former case, we observe that if F t’_ () denotes the solution operator
based at zp = ¢~ for system (1), then the local invariance of £ implies

Fl.(§-) C& (38)
forall ¢ € [+, t"). Now the map F t’, is area preserving by the Hamiltonian nature of (1), which gives

Area[F/_(,-)] = Area[€,-]. (39)
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Fig. 5. Kinematic and dynamic eddies.

Formulas (38) and (39) then show that on the time interval [t~ £*], the flux of initial conditions into £ obeys the

equation

Area[&;] — Area[f,-]
t—1t- '

Let L(tp) denote the arclength of the homoclinic loop ¢y, and let A(zg) = Area[Int(¢,)] (see Fig. 5). Then

Theorem 4.1 and (40) imply the estimate

AN —AC)| _ LO+LEY)

| s TS ——ID 4 Dil. @1

Flux(¢) =

(40)

Flux(z) —

A similar argument yields the same formula for the case when the dynamic eddy is locally invariant in backward
time, in which case the flux Flux(¢) is a negative number.

Assume now that the curves y" and y? intersect topologically transversely at the times ¢1, t, . . ., #,. Then between
two adjacent times of intersection #; and #;1 an argument identical to the above can be used to establish the estimate

AW = A@) | _ L® + L)
t—t t—

Flux(¢) — Flux(z;) — [Ds + Dy]

for any ¢ € [#, tx+1]. This in turn implies that formula (41) is still valid for the net, signed flux of initial conditions
between the times ¢~ and ¢ with £ € [t~, tT]. We summarize our results in the following theorem.

Theorem 5.1. Fix atime t € [t~ tT]. Then the net, signed flux of particles through the dynamic eddy boundary
obeys the estimate

Flux(r) — A0 =40 _,LO +LET) AinC 4+ LoAT |el1a?
= 2~ Calmin — 2 :

r—t- t—1- L

min

where Cp = max(C%, Cg) and C4 = max(C}, CY).

The above theorem says that the flux into the dynamic eddy is equal to the rate of change of the area of the
kinematic eddy plus a correction term. This correction term is small if the rate of change of the eddy size is small.
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In the limit of infinitesimally slow eddy deformation, the above theorem simplifies to the adiabatic transport results
given in [15], where the Melnikov method and Fenichel’s invariant manifold theory was used in the calculations.
We note that our results do not assume adiabaticity for the flow, and hence do not require the identification of a
small parameter in the data set. As we noted in Section 1, the presence of a uniformly small parameter for the entire
field (1) usually cannot be expected in real-life flows.

6. A kinematic eddy—jet interaction model

In order to show how the presence of an isolated eddy (Gulf Stream Ring) effects the cross stream mixing of
particles in a eastward flowing, two-dimensional jet, Dutkiewicz and Paldor [9] proposed a simple kinematic model
for the process. For oceanographically reasonable parameter values, this model produces a transient hyperbolic
stagnation point which lies on the boundary of a kinematic eddy. We will use our results from earlier sections to
predict the presence of a dynamic eddy in the flow and also give estimates for the Lagrangian flux associated with
the transport between the eddy and the jet. Although the model is given analytically in terms of a streamfunction,
we will compute the necessary Eulerian quantities on a grid as one would do for a numerically or experimentally
generated Eulerian field. Our study is a continuation of that of Haller and Poje [13] where the adiabatic limit of the
same problem was considered with parameter values producing a permanent kinematic eddy.

In the model of Dutkiewicz and Paldor, the meandering jet flow of Bower [6] is superimposed on a Gaussian eddy
and, while the resulting velocity field is a purely kinematic approximation, the model provides an explicit oceano-
graphic example in which the accuracy and applicability of the preceding mathematical ideas can be illustrated.
Using the notation of [9], the eddy—jet interaction model results from the the superposition of two streamfunctions
which can be written as

Yier(x, ¥, 1) = J tanh{ %(y — Asin[k(x — ct)])l ,
| (42)
Yeddy (X, ¥, 1) = Eexp[—g[u T N uy>21] :

We choose the parameters to model typical Gulf Stream observations:

J = 6.0km?/min, E = 4.5km*/min,
L=50km, A=60km, o%=6250km? k=0.0157km™".

Varying the meander speed c, allows us control over the time rate of change of the Eulerian stagnation point and
its linearization. We study the Lagrangian dynamics for three different values of ¢: (Case 1) ¢ = 60 km/day, (Case
2) ¢ = 12(km/day) and (Case 3) ¢ = 6km/day. For the Gulf Stream, we have ¢ & 10km/day. In this particular
example, the topology of the Eulerian snapshots is unchanged by the magnitude of ¢; only the value of time at which
the snapshot is taken is effected.

Fig. 6 shows the combined streamfunction at four different values of the time index t = L, /c with the constant L,
to be defined later. In Fig. 7 the location of the Eulerian stagnation point (crosses) and the shape of the instantaneous
kinematic eddy boundaries are shown for times during the period of interest.

We note that while the flow is temporally periodic, we are only concerned with the dynamics during a specific
part of the period and make no use of the periodicity in the calculations.
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Fig. 6. Combined streamfunction, je + Veddy, at four different times during the period.
6.1. Verification of inequalities
The velocity fields generated by (42) were discretized in space on a square grid with resolution Ax = 0.25km.
Centered difference approximations of the flow produced (see (30))
C=Lp=CCr~15x10"*km™! min~",

where the radius C; = 5km around the Eulerian stagnation point was chosen to satisfy the above approximation.
The values of the Eulerian quantities (A, A, 1, ...) were calculated at 12 times in the interval, and we selected

t-=1L,/c, ty=t+L:/2c

with the constant L, =~ 166 km,

We verified the conditions in (31) of Theorem 3.1 for three different values of the meander speed, the results are
shown in Figs. 810 as functions of time after three initial times in the interval ¢ € [t—, #4].

We rewrite two of the three inequalities (31) as

325 > Moy + 2CT Anin(C2C + C) = Amax,
A2 — (43)
. — min max _ C/ — U
2| max u < [————2CTXmin T

We found numerically that the second inequality in (31) is always satisfied if the third one is satisfied, therefore
we will only be concerned with the inequalities listed in (43). The first of these places a limit on the time rate of
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Fig. 7. Location of stagnation point, (+), and shape of the kinematic eddy at different times in the period.

change of the eigenvalues and eigenvectors. The second limits the speed of the Eulerian stagnation point compared
to a measure of the strength of the hyperbolicity. We plot both sides of the inequalities as functions of time take the
running maximum or minimum of the indicated quantities.

In the first case (see Fig. 8), where the Eulerian structures move at unrealistically high speeds, there exist some
initial times after which the first set of estimates are satisfied; |it|max iS, however, always greater than U. We do not
expect to be able to construct meaningful Lagrangian hyperbolic structures in this case.

As the meander speed is reduced, the estimates for both A and p = |it|max are satisfied on open intervals of time
for the proper choice of initial time. Without doing any extensive optimization, the results in Fig. 9 prove that a
hyperbolic Lagrangian trajectory exists for at least several days during the period of interest. Further reduction in
the meander speed (see Fig. 10) increases the length of the time interval in which the estimates are satisfied.

6.2. Invariant manifolds

We compute numerical approximations to the local stable and unstable manifolds using the “straddling” techniques
of Miller et al. [22]. Using the appropriate time slice of the kinematic eddy boundary as a template, a short segment
of initial conditions is aligned in the unstable direction straddling the stagnation point. These initial conditions are
iterated forward in time under the full flow starting from time ¢ = ¢_ and, as time progresses, new points are added
to maintain a constant density of points on the growing line. An approximation to the local stable manifold is arrived
at in a similar way; initializing a short line segment in the stable direction at time ¢ = .. and evolving these initial
conditions backward in time. Depending on the strength of the local saddle dynamics, this method has been shown
to be a robust numerical technique for 2D manifold computations (see [25]).
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Fig. 8. Estimates at three different initial times for Case 1: ¢ = 60Km/day. On the left, }\fmn(t) solid, Amax (t) dashed. On the right,
= pfimax (2) solid, U(t), dashed.

We show the time slices of manifolds computed in this way in Fig. 11 at three different times for each of the three
values of the meander speed. In the case of fast structure speed, Fig. 11(a), the time scale of the saddle dynamics is
comparable to the total time of interest. The resulting manifolds remain short line segments revealing little about
the underlying Lagrangian dynamics. For the more realistic meander speeds shown in Figs. 11(b) and (c), the
conditions of Theorem 3.1 are satisfied and we expect to compute meaningful approximations to the finite-time
stable and unstable manifolds. These manifolds do not exhibit homoclinic tangles and the resulting lobes associated
with chaotic dynamics. Instead, since the size of the kinematic eddy is growing monotonically during the time of
observation, the stable and unstable manifolds intersect only at the hyperbolic solution I"(¢); the exchange of fluid is
unidirectional from the jet into the eddy. At any given time, the initial conditions in the jet that eventually find their
way into the recirculating dynamic eddy are given by those points that lie within the “mixing channel” bordered by
the two segments of the finite-time stable manifold.

The nature of the Lagrangian dynamics in the eddy neighborhood is most easily viewed in the extended three-
dimensional phase space where time z = 1, is the third dimension. In this space, the approximate manifolds are
two-dimensional, invariant sheets as shown in Fig. 12, where for clarity, only clipped segments of W*(I") and
WY(I") are shown. Particles initiated within the tubular region defined by WS(I") evolve (the time axis is positive
down) into the recirculating region given by the spiraling sheet of W"(I™). All other initial points bypass the dynamic
eddy.

The relation between the approximate location of the Lagrangian hyperbolic trajectory, I"(t) and the fixed time
Eulerian stagnation point is shown in Fig. 13. As we stated in Theorem 3.1, the Eulerian picture provides an
increasingly accurate indicator of the distinguished Lagrangian orbit as the speed of the Eulerian structures is
reduced.
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Fig. 9. Estimates at three different initial times for Case 2: ¢ = 12km/day. Legend as in Fig. 8.

To illustrate the non-uniqueness of finite-time invariant manifolds, we perturb the position of the initial line
segment used to compute the unstable manifold. The approximate W*(I")’s shown in Fig. 14 were computed using
a line of initial conditions with endpoints,

(x1, y1) = (407.0, —67.0), (x2, y2) = (429.0, —58.0).

We expect that the shape of the manifolds should, in the case of sufficiently strong hyperbolicity, be insensitive to
the exact form of the initial conditions. Statement (v) of Theorem 3.1 shows that the manifolds are unique up to an
exponential factor given by exp(—At) where X is the time averaged eigenvalue of the stagnation point during the
time of interest T = ¢+ — ¢~ The robustness of the manifolds with respect to initial conditions is a requirement for
“real”, numerically generated data sets which are typically noisy and spatially under-resolved. Fig. 14 shows time
slices WS(I") resulting from the above initial line segment and a perturbed line segment with endpoints,

(x1. J1) = (407.0, =57.0), (x2, ¥2) = (429.0, —48.0).

The upper plots of Fig. 14 show two time slices of the original W*(I") (solid) and the perturbed W“(l") (dot—
dashed) for the case where ¢ = 120km/day. For this high meander speed, the conditions of Theorem 3.1 are
not satisfied and hence we cannot conclude that a distinguished hyperbolic trajectory exists in the Lagrangian
flow. W*(I") and W"(I") remain well separated throughout the time period indicating weak hyperbolicity and
lack of uniqueness. Table 1 gives the “uniqueness” parameter for different meander speeds. It is apparent that, for
oceanographically reasonable structure speeds, the computed manifolds are unique up to an immeasurably small
error. This is illustrated in the lower two plots of Fig. 14 for the case where ¢ = 12km/day. Here WU (I") and
(W)U(I") are visually identical in the region near the hyperbolic point r().
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Fig. 10. Estimates at three different initial times for Case 3: ¢ = 6 km/day. Legend as in Fig. 8.
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Fig. 11. Time slices of the stable and unstable manifolds for the three meander speeds at three different times. Top, Case 1. Middle, Case

2. Lower, Case 3.
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Fig. 12. The stable and unstable manifolds of I"(z) in the extended phase space.

6.3. Transport

Once the finite-time invariant manifolds bounding the dynamic eddy are computed, the flux of fluid particles into
the eddy is easily calculated. Fig. 15 shows the geometry of the transport calculations. A constant time segment
of the gate surface G introduced in Section 5 is shown in Fig. 15. This line segment, a vertical line at x = 400
in Fig. 15, along with the computed manifolds defines an enclosed area. The time rate of change of this area then
determines the flux of fluid into or out of the dynamic eddy.
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Fig. 13. Location of hyperbolic trajectory, I"(¢) and the stagnation point for Case 1, upper and Case 3, lower.
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Fig. 14. Non-uniqueness of approximate W". Top: ¢ = 120km/day attimes ¢ = 183km/c (left), t = 208 km/c. Bottom: ¢ = 12km/day.
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Table 1 _
Uniqueness parameter, A7 for different meander speeds ¢

Meander speed km/day) T = (¢* — 1~ )(min) At exp[—At]
120 1000 3.0 0.052
60 2000 6.0 0.0027
12 10000 30.0 1.3 x 10713
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Fig. 15. Mixing geometry for the finite time ‘eddy’: (—), W*, (.. .), kinematic ‘eddy’; (-), WY, dynamic eddy area shown shaded.

Table 2
Eulerian versus Lagrangian fluid flux. (The initial and final times were chosen as t; = 183.333km/c, t3 = 225km/c)
Meander speed (km/day) Fl3(sv) Fr3(sv) Difference (%)
30 103 109 5.5
12 4.20 4.36 37
6 2.14 2.18 1.8
3 1.08 1.09 0.9

Table 2 compares the Lagrangian flux, Fi, calculated from the computed manifolds to the flux Fg calculated
from area differences of the time slices of the kinematic eddy boundary. In order to standardize the units, we assume
a layer depth of 500 meters and define the flux between two times (a, b) as

A(tp) — Alta)

F%b =500 %
(tb - ta)

in a oceanographic units of Sverdrups, 1Sv = 10°m3/s.
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We conclude from this table that the Eulerian calculation given in Theorem 5.1 provides a very good approximation
for the rate of Lagrangian into the dynamic eddy. As stated in Theorem 5.1, the difference in fluxes computed from
the Eulerian and Lagrangian structures becomes negligible as the speed of the structures approaches zero.

7. Conclusions

In this paper we developed a theory of Lagrangian mixing for two-dimensional Hamiltonian systems with general
time-dependence. Theorem 3.1 gives conditions under which a finite-time kinematic eddy in the contour plot of
the Hamiltonian gives rise to a dynamical eddy in the actual flow. The dynamical eddy is encircled by the stable
and unstable manifolds of a solution, which is hyperbolic on a finite-time interval. In Theorem 5.1 we gave an
estimate for the flux of initial conditions between the eddy and its environment based on quantities computed from
the Hamiltonian . Although our results do not assume the presence of a small parameter in the Hamiltonian, they
can be used in near-integrable or adiabatic problems to estimate the maximal value of the perturbation parameter for
which the flow still admits a hyperbolic solution with stable and unstable manifolds. Furthermore, the flux estimate
given in Theorem 5.1 simplifies to that given in [15] in the case of adiabatic systems. In this sense, earlier results on
two-dimensional flows with small parameters and special time-dependence can be derived as special cases of our
theory. The exception is the flux calculation for near-integrable Hamiltonians of the form vo(x, y) + ey (x, y, 1),
where the flux estimate of Theorem 5.1 may be crude compared to an exact Melnikov calculation for lobe areas.
(Note that for periodic and quasiperiodic flows, our definition of the flux in (40) is just the same as the one used
in lobe dynamics, since the invariant manifolds of the appropriate Poincaré maps are just ¢ = const. slices of our
invariant manifolds.)

We note that our results also apply to three-dimensional unsteady flows with a continuous, volume-preserving
symmetry. As shown in [12], such flows can be reduced to two-dimensional Hamiltonian systems, and hence the
theory in this paper can be applied.

Finally, we point out that based on Theorems 3.1 and 5.1, it is straightforward to design numerical algorithm
that identify potential Lagrangian mixing regions in a given data set, estimate the location and lifespan of the
underlying hyperbolic structures and the flux of initial conditions. Such calculations will appear in [24], where the
ideas developed in this paper are applied to the numerically generated vector field of a barotropic, double gyre ocean
model.
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