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Lagrangian structures and the rate of strain in a partition
of two-dimensional turbulence

G. Haller
Division of Applied Mathematics, Lefschetz Center for Dynamical Systems, Brown University, Providence,
Rhode Island 02912

~Received 22 February 2001; accepted 20 June 2001!

We derive analytic criteria for the existence of hyperbolic~attracting or repelling!, elliptic, and
parabolic material lines in two-dimensional turbulence. The criteria use a frame-independent
Eulerian partition of the physical space that is based on the sign definiteness of the strain
acceleration tensor over directions of zero strain. For Navier–Stokes flows, our hyperbolicity
criterion can be reformulated in terms of strain, vorticity, pressure, viscous and body forces. The
special material lines we identify allow us to locate different kinds of material structures that
enhance or suppress finite-time turbulent mixing: stretching and folding lines, Lagrangian vortex
cores, and shear jets. We illustrate the use of our criteria on simulations of two-dimensional
barotropic turbulence. ©2001 American Institute of Physics.@DOI: 10.1063/1.1403336#
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I. INTRODUCTION

A goal in this paper is to provide mathematically exa
and frame-independent criteria for the identification ofLa-
grangian coherent structuresin two-dimensional turbulence
Roughly speaking, such structures are special material l
that have a major influence on the kinematics of mixing o
finite time intervals. We aim to classify these structures a
provide computable criteria that can be used to locate th
in numerical or experimental velocity data.

Lagrangian coherent structures have long been rec
nized in models of two-dimensional chaotic advection: sta
and unstable manifolds and KAM tori are all material lin
that either enhance or inhibit mixing~see, e.g., Aref and E
Naschie1 for a recent review and Rom-Kedar2 for further
developments!. These structures have first been studied
the nonlinear dynamical systems literature and then ado
to explain features of fluid flows with periodic or quasipe
odic, i.e., regular time dependence. It turns out, however,
assuming exact periodicity for a flow field is a more fa
reaching assumption than one might first think. Being able
generate the flow forall times from a one-period velocity
sample is crucial in order to define classical stable and
stable manifolds. In this sense chaotic advection, with
attendant homoclinic tangles and lobes, has a solid foun
tion only for regularly repeating velocity fields defined ov
infinite time intervals. While such velocity fields are releva
in a number of applications and first-order models, turbul
flows admit general time dependence, a fact that prevents
extrapolation from a finite-time velocity sample to infini
times. As a result, all traditional definitions of stability, in
stability, or neutral behavior are naturally lost. The proble
however, is not just a matter of definitions: complicated g
metric structures such as chaotic tangles or KAM tori that
typical in infinite-time periodic or quasiperiodic velocit
fields~cf. Ottino3! simply do not exist in finite-time turbulen
3361070-6631/2001/13(11)/3365/21/$18.00
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data sets, as they are ‘‘artifacts’’ of the periodic or quasipe
odic assumption on the underlying velocity field. One c
still seek such structures in special infinite-time, nonperio
flows with certain uniformly recurrent features~see Malhotra
and Wiggins4!. However, it appears that understanding t
Lagrangian dynamics of real-life nonperiodic flow data r
quires new approaches.

Two-dimensional turbulent flows clearly admit Lagran
ian organizing structures, as evidenced by the existenc
vortex cores and material filaments in detailed numeri
simulations~see, e.g., Elhmaı¨di et al.5 and Ziemniaket al.6!.
As a first attempt, one may try to infer the location of the
Lagrangian coherent structures from instantaneous stre
line configurations. In particular, one may release trial ma
rial lines near ‘‘Eulerian’’ unstable manifolds found in in
stantaneous plots of the velocity field, and expect that t
converge to actual Lagrangian coherent structures. This t
nique was apparently first employed in Ridderinkhof a
Loder7 for a numerically generated periodic velocity fiel
followed by several works on more general velocity fiel
~see Miller et al.,8 Rogersonet al.,9 Koh and Plumb,10 and
Coulliette and Wiggins11!. Studying this approach, Halle
and Poje12 gave a mathematical criterion under which Eu
rian unstable manifolds indeed indicate a multitude of nea
finite-time unstable manifoldsfor the Lagrangian dynamics
~see Poje and Haller13 and Velasco Fuentes14 for applications
of the criterion!. They also showed how violating the crite
rion may lead to ‘‘phoney’’ Lagrangian structures. To avo
the frame-dependent nature of the stagnation point-based
proach, Bowman15 has suggested relative dispersion~‘‘finite
strain’’! as a diagnostic tool to find finite-time unstable ma
folds in atmospheric flows with no stagnation points~see
also Jones and Winkler16 and Winkler17!. This approach is
essentially a quick and smooth way of approximating fini
time Lyapunov exponent plots that tend to reveal simi
structures~see, e.g., Pierrehumbert18 and Pierrehumbert and
5 © 2001 American Institute of Physics
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3366 Phys. Fluids, Vol. 13, No. 11, November 2001 G. Haller
Yang19!. As a further step in this direction, Joseph a
Legras20 have recently employed finite-size Lyapunov exp
nents in the detection of finite-time invariant manifolds
atmospheric flows. The connection between Lagrangian
erage velocities~Malhotraet al.21 and Mezićand Wiggins22!
and finite-time Lagrangian structures in turbulence was s
ied numerically in Pojeet al.23

In an effort to locate Lagrangian coherent structu
~LCS! rigorously without the use of stagnation point
Haller24 proved a Lagrangian version of the Okubo–We
criterion ~cf. Sec. V A! that identifies finite-time invarian
manifolds in a Galilean-invariant way. Haller and Yuan25

simplified this ‘‘a2b criterion’’ for incompressible flows
and showed how Lagrangian coherent structures~LCS! can
be defined and found rigorously in general turbulent flow
They identify attracting LCS~distinguished finite-time un-
stable manifolds! and repelling LCS~distinguished finite-
time stable manifolds! in general velocity fields. This ap
proach is Galilean-invariant, but still frame-dependent, i
gives different results in different rotating frames. Exploitin
this frame dependence, Lapeyreet al.26 suggested that fo
better results, thea2b criterion should be applied in a
frame co-rotating with the eigenvectors of the rate of str
~cf. Sec. V B!. A three-dimensional extension of thea2b
criterion appears in Haller,27 where attracting and repellin
material surfaces and lines are located for time-depen
three-dimensional flows.

A shortcoming of the above analytic approaches to L
is their dependence on the coordinate frame. This make
difficult to locate regions of intense Lagrangian mixing in
variety of flows that admit a nonzero and spatially nonu
form mean velocity. Since such flows rarely display clos
streamfunction contours and stagnation points, one does
quite know where to look for regions of distinguished L
grangian behavior. Passing to an appropriate moving fra
will generally introduce stagnation points and closed c
tours. However, one can create such structures in any de
nated flow region via appropriate time-dependent coordin
changes, a fact that questions the distinguished role of
Eulerian coherent structure created by a change of fra
Several important flows of geophysical fluid dynamics po
related challenges, including those with meandering jets s
as the Gulf Stream, or wave breaking events such as th
observed on the edge of the stratospheric polar vortex.
this calls for a new approach to LCS that is fully fram
independent, i.e., invariant under time-dependent rotat
and translations.

Motivated by the above need, in this paper a new fram
independent way of locating Lagrangian coherent structu
in two-dimensional turbulence is offered. Taking a Lyapun
function approach to the stability of individual fluid traject
ries, we obtain a partition of the physical space into ellip
parabolic, and hyperbolic regions~EPH! based on the defi
niteness of the strain acceleration tensor over direction
zero strain. When viewed instantaneously, these regions
out to coincide with those that one would infer from th
application of a nonrigorous Eulerian principle, the Okub
Weiss criterion in the strain basis~cf. Sec. V B!. However,
we extend these regions in space-time over a time intervI,
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
-

v-

d-

s

s

.

.,

n

nt

S
it

-
d
ot

e
-
ig-
te
ny
e.
e
ch
se
ll

s

-
es
v

,

of
rn

and prove properties of material lines that spend longer tim
in the corresponding elliptic, parabolic, and hyperbolic se
E(I ), P(I ), and H(I ). In particular, attracting or repelling
material lines either stay inH(I ) or stray into the elliptic
regions for short times that we can estimate from abo
Elliptic material lines stay inE(I ) for longer times that we
can estimate from below, and parabolic lines stay inP(I ).
This approach gives a fully frame-independent way of loc
ing Lagrangian coherent structures~LCS!, the locally most
robust hyperbolic, elliptic, and parabolic material lines. H
perbolic LCS are responsible for advective mixing ov
finite-time intervals: in particular,stretch linessplit up fluid
blobs that in turn are attracted tofold lines. We define elliptic
LCS as Lagrangianvortex coresthat inhibit mixing, and
parabolic LCS asshear jets.

As an interesting side-result, we derive a version of o
criteria that predicts Lagrangian finite-time hyperbolici
purely in terms of strain, vorticity, pressure, viscous, a
body forces for incompressible Navier–Stokes flows~cf.
Sec. IV C!. This result offers hope that the approach we p
pose in this paper will ultimately lead to an understanding
physical causes behind increased mixing in specific regi
of a turbulent flow.

We also propose and test different ways to visualize
above Lagrangian structures in finite-time velocity data.
apply these techniques to extract Lagrangian coherent s
tures from numerical simulations of barotropic turbulen
~cf. Provenzaleet al.28!. We conclude the paper with a sum
mary of our results and a list of open questions.

II. RATE OF STRAIN, ZERO STRAIN SET, AND STRAIN
ACCELERATION

Consider a two-dimensional velocity fieldv(x,t) defined
on some finite time intervalI. For simplicity, we shall as-
sume that the flow generated byv is incompressible, i.e.
¹•v[0. We shall use the notation

S5 1
2 „¹v1~¹v!T

…,

for the rate-of-strain tensor. Note that by incompressibil
either det(S)Þ0 or S50 holds for anyx andt. We also recall
that for an infinitesimal line elementj(t) advected along a
fluid particle, we have

1

2

d

dt
uju25^j,Sj&, ~1!

where ^","& denotes the usual Euclidean inner product.
incompressibility, ifS is nonsingular, then it admits a pos
tive and a negative eigenvalue that add up to zero. In su
case the zero strain set,

Z5$ju^j,Sj&50%, ~2!

is a set of two orthogonal lines. In a general turbulent flo
the diagonal elements ofS are typically nonzero, in which
caseZ is spanned by the vectors

j2~x,t !5S s22

2s122uSu/A2D , j1~x,t !5S s22

2s121uSu/A2D , ~3!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3367Phys. Fluids, Vol. 13, No. 11, November 2001 Lagrangian structures in turbulence
with si j denoting the entries ofS anduSu5A( i , j si j
2 referring

to the Euclidean matrix norm ofS.29 Note thatZ depends on
x and t, but we suppress this for notational simplicity. Th
length of the vectorsj6 will play no role in our analysis so
they can be normalized to one. In the expressions above
omitted this normalization for simplicity.

A further important quantity will be the symmetri
matrix30

M5Ṡ12S¹v, ~4!

whereṠ5v"¹S1(]/]t) S is the material derivative ofS.31,32

We shall refer toM as thestrain accelerationtensor, since
for the line elementj introduced above,

1

2

d2

dt2
uju25^j,Mj&. ~5a!

In continuum mechanical terms,M is a physically objective
material derivative ofS, sometimes called the Cotter–Rivli
derivative ofS ~see Cotter and Rivlin33 or Béda et al.34!.

We shall denote the restriction of the tensorM to the
zero strain setZ by MZ , i.e., we let

MZ5M uZ . ~5b!

We callMZ positive/negative definite, semidefinite, or inde
nite if ^j,Mj& is a positive/negative definite, semidefinite,
indefinite quadratic form forjPZ. Incompressibility turns
out to imply the following property ofMZ .

Proposition 1: If S is nonvanishing, thenMZ is either
positive definite, positive semidefinite, or indefinite.

This proposition will follow from a result in Sec. III B
~cf. the discussion after Proposition 2!.

III. LOCAL FLOW GEOMETRY NEAR A FLUID
TRAJECTORY

A. Linearized flow

Let x(t) be a trajectory generated by the velocity fie
v(x,t). The linearized velocity field alongx(t) can be writ-
ten as

j̇5A~ t !j, ~6!

whereA(t)5¹v(x(t),t), andj is a two-dimensional vector
If SÞ0 at some timet, then the zero strain set defined in~2!
divides the phase plane of~6! into four quadrants, as show
in Fig. 1. Inside the regions formed by two facing quadran
the quadratic form,

C~j,t !5^j,S„x~ t !,t…j&,

assumes negative values, whereas in the remaining
quadrants it takes positive values. By~1!, this means that
vectors in the former quadrants shrink instantaneously, w
vectors in the latter two quadrants expand. LetC denote the
unit circle of thej-plane, and letC2(t) andC1(t) denote
the two closed sectorial regions insideC that are bounded by
the linesj2 andj1 ~see Fig. 1!. By the above discussion, a
time t solutions of~6! penetrate intoC2(t) and leaveC1(t)
along the perimeter of the unit circle.
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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While the behavior of solutions relative to the circleC is
clear both for zero and nonzero rate of strain, it is not imm
diately clear whether solutions lying instantaneously on
zero strain setZ cross fromC1(t) to C2(t) or the other
way around. However, a simple Lyapunov function-type
gument can be used to decide which way the solutions cr
trajectories along the vectorj6 are instantaneously crossin
from the sectorC2(t) to C1(t) if the function C(j,t) is
instantaneously increasing alongZ, i.e.,

d

dt
C~j6~ t !,t !5^j6,Mj6&.0, ~7!

or from C1(t) to C2(t) if

d

dt
C„j6~ t !,t…5^j6,Mj6&,0. ~8!

Trajectories are instantaneously tangent to the boundarie
the above sectors whenever

d

dt
C„j6~ t !,t…5^j6,Mj6&50. ~9!

By incompressibility, the possible sign combinations
^j1,Mj1& and^j2,Mj2& are limited: only one of them can
be nonpositive at a time, as we stated more formally
Proposition 1.

The observations made in this section imply that the
cal instantaneous flow geometry near thej50 solution of~6!
falls in one of the four categories shown in Fig. 2. Note th
these pictures show the behavior of particles in a frame
is co-rotating withj1(t) andj2(t) ~whenever these vector
are nonzero!. The indexing ofj1(t) and j2(t) has no sig-
nificance and hence can be interchanged.

Despite the fact that we have information about the
stantaneous velocity field geometry from Eqs.~7!–~9!, one
cannot immediately guess the actual stability type of the
derlying trajectoryx(t) in cases~a! and ~c!, since the exact
solutions of~6! are not available. However, if the trajector
stays in regions whereSÄ0 @Fig. 2~d!# or whereMZ is posi-
tive semidefinite@Fig. 2~b!# over aperiod of time, the exact
linearized dynamics can be explicitly calculated.

In case~d!, a direct integration of~6! yields the solution

FIG. 1. The sectorsC1(t) andC2(t) of the unit circleC.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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j~ t !5S cosE
t0

t

v~t! dt 2sinE
t0

t

v~t! dt

sinE
t0

t

v~t! dt cosE
t0

t

v~t! dt
D j0 ,

where 6v(t) denote the off-diagonal elements ofA(t).
This reveals an elliptic stability type for~6! over any finite
time interval. In case~b!, one can pass to a frame co-rotatin
with the vectorsj1 and j2. Denoting the new coordinate
by (x1,x2), respectively, and using the facts thatẋ1ux150

50 andẋ2ux1.0,0, we can rewrite~6! in the new basis as

S ẋ2

ẋ1D 5S 0 2n2~ t !

0 0 D S x2

x1D ,

which admits the solution

x2~ t !5x0
22x0

1E
t0

t

n2~t!dt, x1~ t ![x0
1 . ~10!

Therefore, in the original basis one obtains a parallel sh
flow co-rotating with the set of zero strainZ.

B. Local flux

Back to the full nonlinear velocity fieldv(x,t), we want
to introduce a quantity that characterizes the rate of lo
stirring near the trajectoryx(t). Assume that the trajectory i
at the pointx0 at timet. We first defineSe(x0) as the circle of
radiuse centered at the pointx0 , then define thelocal fluxat
x0 as

w~x0 ,t !5 lim
e→0

1

2e2ESe(x0)
u~v~x,t !2v~x0 ,t !!•nuds, ~11!

where n denotes the inward unit normal at any point
Se(x0…. Note thatw(x0 ,t)>0 by definition.

FIG. 2. Instantaneous linearized flow geometry nearx(t) for the four basic
cases:~a! Saddle-type flow, i.e.,̂ j1,Mj1&.0 and ^j2,Mj2&.0. ~b!
Shear-type flow, i.e.,̂j1,Mj1&.0 and^j2,Mj2&50. ~c! Elliptic rotation,
i.e., ^j1,Mj1&.0 and^j2,Mj2&,0. ~d! Pure rotation, i.e.,S50.
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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To interpret the above definition, we first note th
v(x,t)2v(x0 ,t) is the relative velocity of the fluid particle a
x in the frame co-moving withx(t), the trajectory currently
at x0 . Thus, without thee2 normalizing factor, the integral in
~11! gives the relative flux into the ball bounded bySe(x0).
This quantity is then normalized bye2, a factor proportional
to the area of thee-circle. Accordingly, the dimension o
(x0 ,t) is @1/s#. Sincew is defined at any point of the phys
cal space, from now on we shall omit the 0 subscript from
spatial argument.

It turns out that the local flux is directly related to th
eigenvalues ofS„x,t). Moreover, it can be written as the su
of two frame-independent quantities that will be very use
later.

Proposition 2:
~i! We have

w~x,t !5A2uS~x,t !u.

~ii ! Assume thatS(x,t)Þ0. Then

w~x,t !5w1~x,t !1w2~x,t !,

where

w65
1

2

^j6,Mj6&

uj6uuSj6u
. ~12!

This proposition is proved in Sec. 1 of the Append
Note that by statement~i! the local flux is simply a scala
multiple of the norm of the rate-of-strain tensor.

From the proof of Proposition 2 one can see the phys
meaning ofw6: they give the~normalized! instantaneous ne
flux through the appropriate componentj6 of the zero strain
set. They are positive for fluxes from the sectorC2(t) into
C1(t). Statement~ii ! implies that eitherw1 or w2 must be
non-negative sincew is non-negative by definition. Thus e
ther ^j1,Mj1& or ^j2,Mj2& must be non-negative, which
proves Proposition 1. As we shall see later, the fluxesw6

will have a fundamental role in identifying the exact stabili
type of the linearized velocity field~6!.

IV. A MIXING-BASED PARTITION OF TWO-
DIMENSIONAL TURBULENCE

We consider the velocity fieldv(x,t) and seek to con-
struct a partition of the physical space at a given timet into
regions that exhibit qualitatively different Lagrangian mixin
properties. Based on our discussion in Sec. III A~cf. Fig. 2!
and Proposition 2, at any timet we can uniquely partition the
physical space into the following three regions.

Theelliptic regionE(t): the set of points whereMZ(x,t)
is indefiniteor S(x,t) vanishes.

The parabolic region P(t): the set of points where
MZ(x,t) is positive semidefinite.

The hyperbolic regionH(t): the set of points where
MZ(x,t) is positive definite.

For a fixed time intervalI, we then define the elliptic
parabolic, and hyperbolic setsE(I ), P(I ), andH(I ) as do-
mains in space–time that are spanned by the above t
dependent regions over the time intervalI:
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



i-
th
t

e
-
n
ee
e
o

is
er

ca

ar
nl
e
f
n

-
ry
it

s

ti-
i-
id

ve

s
ht
ve

a-

out

or
n-
rts.
in

-
rian
ian

l

ite
v-

gi-
lies
e-
e

er-
-

ry
e

e

y

he

er

e

3369Phys. Fluids, Vol. 13, No. 11, November 2001 Lagrangian structures in turbulence
E~ I !5$~x,t !uxPE~ t !,tPI %,

P~ I !5$~x,t !uxPP~ t !,tPI %,

H~ I !5$~x,t !uxPH~ t !,tPI %.

In a general two-dimensional flow the elliptic set is typ
cally a union of tubes, the parabolic set is the union of
cylinders bounding these tubes, and the hyperbolic set is
region outside the tubes~see Fig. 3!.

For brevity, we shall refer to the above partition of th
physical space as theEPH partition, with the acronym stand
ing for Elliptic–Parabolic–Hyperbolic. As opposed to insta
taneous Eulerian partitions of turbulent flows that have b
suggested previously~cf. Sec. V!, the quantities used in th
EPH partition will allow us to deduce Lagrangian features
fluid trajectories in a mathematically rigorous fashion.

A. Frame independence of the EPH partition and the
local flux

An important feature of the EPH partition is that it
frame-independent~objective!, i.e., remains unchanged und
time-dependent transformations of the form

x5Q~ t !y1a~ t !, ~13!

wherey denotes the new spatial variables,Q(t) is a proper
orthogonal tensor, anda(t) is a smooth function of time. We
show this, along with the frame independence of the lo
flux andw6, in Sec. 2 of the Appendix.

We recall that frame independence is a stronger inv
ance property than Galilean invariance, which would o
require the partition to remain unchanged for tim
independentQ and linear-in-timea(t). As a consequence o
full frame independence, the EPH partition will remain u
changed even if one transforms the velocity fieldv from the
fixed ‘‘lab frame’’ to a frame co-moving with the eigenvec
tors of S or other distinguished directions along a trajecto
x(t). Previous attempts to capture Lagrangian hyperbolic
did not have this feature and hence gave different result
different coordinate systems~cf. Sec. V!.

B. EPH partition and Lagrangian particle dynamics

In order to illuminate the significance of the EPH par
tion for Lagrangian mixing, we first need to fix some defin
tions about material structures in two-dimensional flu
flows. In the present context, amaterial line is a smooth
time-dependent curve of fluid particles advected by the

FIG. 3. A sketch of the elliptic, parabolic, and hyperbolic sets in spac
time.
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locity field v(x,t). In a turbulent flow most material line
keep changing their stability type: for some time they mig
attract or repel particles, while at other times they may ha
a neutral stability type. In what follows we seek to find m
terial lines that display the same stability type over a~poten-
tially short! but fixed time intervalI 5@ t0 ,t1# with t1.t0 .

We call a material linerepellingover I if all infinitesimal
perturbations transverse to it strictly increase throughoutI.35

A material line is said to beattractingover I if all infinitesi-
mal perturbations transverse to it strictly decrease through
I. We call a material linehyperbolic over I if it is either
attracting or repelling overI. We will define two further
classes of nonhyperbolic material lines~elliptic and para-
bolic! after we list our main theorems on hyperbolicity.

Note that the Lagrangian notions of hyperbolicity
nonhyperbolicity over a whole time interval are fundame
tally different from their instantaneous Eulerian counterpa
Lagrangian hyperbolicity may remain completely hidden
instantaneous Eulerian snapshots of the velocity field~see,
e.g., the examples in Sec. VI!. Our main results below ex
plore the relationship between frame-independent Eule
features observed over an interval of time and Lagrang
hyperbolicity.

Theorem 1 „Sufficient condition for Lagrangian hy-
perbolicity…: Suppose that a trajectoryx(t) does not leave
the setH(I ). Thenx(t) is contained in a hyperbolic materia
line over I.

The proof of the above statement turns out to be qu
technical. One needs to employ a finite-time Lyapuno
function argument, combined with a lesser known topolo
cal technique, the Wasewsky principle. The proof also re
heavily on recently proven finite-time invariant manifold r
sults from Haller.24 Details can be found in Sec. 3 of th
Appendix.

We stress that the above criterion for finite-time hyp
bolicity is only sufficient. It may very well happen that hy
perbolic material lines exist in the elliptic regionE(t) ~cf.
Example 3 in Sec. VI!. The result below describes necessa
properties of hyperbolic material lines that ‘‘stray’’ out of th
hyperbolic regionH(I ). To state this result, we define

w0~x,t !5min ~w1~x,t !,w2~x,t !!.

Note thatw0 is positive in the hyperbolic region, zero in th
parabolic region, and negative in the elliptic region.

Theorem 2 „Necessary condition for Lagrangian hy-
perbolicity…: Suppose that a trajectoryx(t) is contained in a
hyperbolic material line over I. Then

~i! x(t) can only intersectP(I ) at isolated time in-
stances.

~ii ! If I E denotes a time interval that the trajector
spends inE(I ), then

E
IE

uw0~x~ t !,t !udt,
p

2
.

The proof of this result can be found in Sec. 4 of t
Appendix. Motivated by Theorem 2, we defineelliptic ma-
terial lines over I as nonhyperbolic material lines that eith

–

P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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stay inE(I ) or stay in regions of zero strain overI @cf. Fig.
2~d!#. Our next theorem is concerned with the existence
such material lines.

Theorem 3 „Sufficient condition for Lagrangian ellip-
ticity …: Suppose that a trajectoryx(t) is contained in the se
E(I ) and

E
I
uw0„x~ t !,t…udt>

p

2
. ~14!

Thenx(t) is contained in an elliptic material line over I.
The proof of this theorem can be found in Sec. 5 of t

Appendix.
We call a material lineparabolic over I if S(t) is non-

vanishing along it and all infinitesimal perturbations tran
verse to it stay constant in length throughout the intervaI.
The requirement of nonvanishing strain is meant to excl
elliptic material lines that simply rotate without any she
like those shown in Fig. 2~d!. One can think of parabolic
material lines as those imbedded in a shear layer, displa
the neutral stability type. Based on our discussion at the
of Sec. III A, the only case in which this can happen is wh
MZ remains positive semidefinite over a period of tim
Therefore, we see the following result.

Theorem 4 „Sufficient and necessary condition for
Lagrangian parabolicity…: A trajectoryx(t) is contained in
a parabolic material line over I if and only if it does no
leave the setP(I ).

C. A dynamic condition for Lagrangian hyperbolicity

Our discussion of Lagrangian hyperbolicity and nonh
perbolicity has been purely kinematic: no use of the eq
tions governing the evolution of the velocity field has be
made. However, it would undoubtedly be of interest to int
pret the criteria of Sec. IV B in dynamic terms that involv
quantities from the governing equations. Here we cons
the simplest case when the governing equations are jus
two-dimensional incompressible Navier–Stokes equatio
In that setting, we are able to obtain a mixed kinema
dynamic sufficient condition for the existence of finite-tim
hyperbolic material lines.

The key idea is to describe the hyperbolic regionH(I ) in
dynamical terms and then reformulate Theorem 1 in th
new terms. To this end, let us consider the Navier–Sto
equation

]v

]t
1~v•¹!v52

1

r
¹p1n¹2u1f,

wherer denotes the density,p is the pressure,n is the kine-
matic viscosity, andrf contains divergence-free body force
We recall that for the Navier–Stokes equation, the mate
derivative of the rate of strain tensor satisfies the equatio

Ṡ52~S21V2!2
1

r
P1n¹2S1G, ~15!

where V5 1
2(¹v2¹vT) is the vorticity tensor, Pi j

5]2p/(]xi]xj ) denotes the pressure Hessian, andG5 1
2(¹f

1¹fT) is the symmetric part of the body force gradient32
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
f

e

-

e
,

ng
d

n
.

-
-

-

er
he
s.
-

e
s

al

Let s(x,t)>0 denote the largest eigenvalue ofS(x,t), and
let v(x,t)5„¹Ãu(x,t)…z denote thez-component of the vor-
ticity. Furthermore, letk(x,t) denote the largest eigenvalu
of P(x,t), and lets(x,t)>0 andg(x,t)>0 denote the larg-
est eigenvalues of¹2S(x,t) and G(x,t), respectively. We
can then prove the following result.

Theorem 5 „Sufficient dynamic condition for La-
grangian hyperbolicity…: Suppose that over a time interval
a fluid trajectoryx(t) stays in the time-dependent physic
region satisfying

S s2
uvu
2 D 2

.
1

r
k1ns1g. ~16!

Thenx(t) is contained in a hyperbolic material line over I
We prove this theorem in Sec. 6 of the Appendix. A

inspection of the proof shows that Theorem 5 is a sligh
weaker form of Theorem 1: its main condition may not
satisfied for some hyperbolic material lines that would n
mally be identified by Theorem 1. At the same time, it do
offer a simple frame-independent relation between import
kinematic and dynamic quantities that should be importan
specific problems. For instance, in many applications, s
as active flow control, one needs to go beyond identify
Lagrangian structures in a given velocity field: one actua
aims to create, destroy, or shape such structures by alte
dynamic features of the velocity field. According to the the
rem above, mixing can be enhanced in a given region if
Eulerian condition~16! is satisfied on a large subset of th
region for extended times. We shall not pursue this appro
here but note that Theorem 1 should provide a good star
point.

In the following we discuss how our criteria on Lagran
ian coherent structures can be used to isolate distinguis
material structures in space–time that have a major imp
on particle mixing. A class of theseLagrangian coherent
structures (LCS)will act as barriers to mixing, while other
will act as enhancers of mixing.

D. Hyperbolic LCS: Stretch and fold lines

Theorem 1 guarantees that all trajectories that remai
the hyperbolic setH(I ) are contained in attracting and repe
ling material lines over the time intervalI. The attracting

FIG. 4. Attracting and repelling material lines~finite-time unstable and
stable manifolds! containing a trajectoryx„t) that lies in the hyperbolic set
H(I ).
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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material lines act as finite-time unstable manifolds for
trajectory, while the repelling ones act as finite-time sta
manifolds~see Fig. 4!. As discussed in Haller,24 such mani-
folds are not unique over finite time intervals: in gener
there will be infinitely many material lines containingx(t),
all behaving as stable and unstable manifolds forx(t). How-
ever, the distance between two possible finite-time stabl
unstable manifolds tends to zero exponentially nearx(t) as
the length of the time intervalI increases. Therefore, th
stable and unstable manifolds of trajectories spending lon
times in H become well-defined up to exponentially sm
uncertainties.

Trajectories lying inside the hyperbolic setH(I ) will not
be isolated: they will typically form open sets in space–tim
Accordingly, there will beinfinitely manyrepelling and at-
tracting material lines~finite-time invariant manifolds! in the
hyperbolic region. Out of this infinitely many, the most i
fluential ones can be defined as hyperbolic Lagrangian
herent structures. One can quantify the influence of a hy
bolic material line on neighboring particles in at least thr
different ways, as we describe below. The first two of the
definitions have already been suggested in relation with
lier frame-dependent approaches to Lagrangian hyperb
ity, and here we will only adjust them to our current settin

Stretch linescan be defined as repelling material lin
that stay inH for locally the longest or shortest time in th
flow. Similarly, fold linescan be defined as attracting mat
rial lines that stay inH for locally the longest or shortes
time in the flow. In practical terms, one identifies such lin
at t5t0 as local extremum curves of the hyperbolicity tim
field ~cf. Haller and Yuan25!

th~ t0 ,x0!5E
$tPIux(t)PH(t)%

dt. ~17!

Alternatively, stretch and fold lines can be defined
material lines along which the time integral of the local fl
is maximal or minimal. By~ii ! of Theorem 1, one can locat
hyperbolic LCS att5t0 by looking for local extremum
curves of the scalar field,

s~ t0 ,x0!5E
$tPIux(t)PH(t)%

uS„x~ t !,t…udt. ~18!

In the context of a possible improvement to the result
Haller and Yuan,25 this scalar field was proposed by Lapey
et al.26 as a relevant indicator of hyperbolic Lagrangian c
herent structures. We note that if the largest strain eigen
tor along x(t) were tangent to the folding line containin
x(t), then s(t0 ,x0)/t would coincide with the finite-time
Lyapunov exponent field calculated for the initial conditio
x0 . However, such a special orientation of the strain eig
vectors occurs with probability zero due to the presence
shear and rotation in the flow~see, e.g., Pierrehumbert an
Yang19!.

The difference between the two scalar fields above
that th will be sensitive to all stretch and fold lines regar
less of their strength of hyperbolicity, whiles will effec-
tively capture the strongest such structures, i.e., the ones
correspond to high levels of strain. When implemented
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merically, both scalar fields are locally maximized bystretch
lines in forward time calculationsandfold lines in backward
time calculations.The reason is that particles near stretchi
lines spend longer time in hyperbolic regions that those n
folding lines. As a simple analogy, one can picture a sad
point: along its stable manifold, i.e., a stretch line, partic
spend a long time before they leave the vicinity of the sad
along its unstable manifold, a fold line.

A third way to localize stretch and fold lines turns out
be plotting the following time-dependent field:

m~ t,t0 ,x0!5H uS~x~ t !,t !u, if x~ t !PH~ t !,

0, if x~ t !¹H~ t !.

Note thatm is nothing else but the instantaneous value of
local flux for instantaneously hyperbolic particles, while it
zero for instantaneously elliptic particles. As we show in S
VII, this field is particularly effective in reconstructing
stretching and folding lines from short-time velocity dat
The lines will appear as localminimizersof this field as
particles very close to stretching lines tend to accumu
near folding lines and then spiral into an elliptic region of
nearby eddy~see Fig. 4!. Since this scenario is typical in
two-dimensional turbulence,m(t,x0) appears to be a fast
converging indicator of long-lived stretching lines in forwa
time and folding lines in backward time.

We finally note that stretching and folding lines will gen
erally have finite thickness as they can only be expected
be unique curves in infinite-time velocity fields. Howeve
just as attracting or repelling material lines, the more tim
they spend in the hyperbolic region the thinner they beco

E. Elliptic LCS: Vortex cores

A consequence of Theorem 3 is the following: whi
trajectories in a finite-time hyperbolic material line can en
the elliptic setE(I ), they can only stay there for short time
What ‘‘short time’’ means locally in the flow is determine
by the inequality~14!. The length of the time interval for
which the inequality turns into an equality can be conside
an upper estimate forT* /4, whereT* denotes the local eddy
turnover time.

By our results, elliptic material lines do not experien
exponential stretching or folding over the time intervalI.
Picking the maximal~smooth! closed material line that stay

FIG. 5. Mixing barrier formed by a closed, material line that stays in
elliptic set for a long enough time.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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in a given component of the elliptic setE(I ), we therefore
obtain a barrier to mixing. In the extended phase space
(x,t), this barrier can be pictured as an invariant cylind
~see Fig. 5!. While the t5const cross section of such a cy
inder may deform, its area is preserved by incompressibi
The existence of these cylinders explains the old observa
that vortices in two-dimensional turbulence admit impe
etrable vortex cores~see, e.g., Elhmaı¨di et al.5!.

The above cylinders are the generalizations of KAM t
from time-periodic velocity fields. Note that the existence
invariant cylinders in an arbitrary velocity field is a trivia
result:anysmooth closed material line generates an invari
cylinder in the extended phase space. What is special a
time-periodic velocity fields is that certain closed mater
curves give rise to cylinders that are actuallyperiodic in
time: such time-periodic cylinders form the well-know
KAM tori when time is viewed as a periodic variable.

In a velocity field with general time dependence o
cannot expect to find periodic-in-time cylinders in the e
tended phase space. A randomly picked closed material c
will generate a cylinder, but its cross section will typical
undergo exponential stretching and folding. The cylinders
identified above do not stretch intensely, and hence keep
ticles confined to their interiors, the vortex cores.

In practical terms, elliptic LCS att5t0 can be defined as
open sets on which theellipticity time field,

te~ t0 ,x0!5E
$tPIux(t)PE(t)%

dt,

is locally maximal. The scalar fieldte(t0 ,x0) can be com-
puted and then interpolated from a grid of initial conditio
for any fixed initial timex0 .

It remains to note that in very special velocity field
some elliptic material lines can become unstable due to r
nances. Such a situation is atypical in turbulent flows
would require sustained near-periodic and near-resonant
dependence around trajectories forming the material lin
However, even if such flow conditions arise, the result
instability generically remains contained.36 For complete-
ness, we discuss a related example~originally proposed by
Pierrehumbert and Yang19! in Sec. VI.

F. Parabolic LCS: Shear jets

The third kind of basic Lagrangian coherent structure
can identify from our theorems is ashear jet:a set of fluid
trajectories that travel in the parabolic regionP(I ) over some
time intervalI. Material lines in this set may ‘‘slide’’ on each
other, but they do not repel or attract fluid particles a
noticeable rate over finite time intervals. While the mater
lines forming the jet are locally parallel, the jet as a who
may rotate~see Fig. 6!. As an example one can think of
two-dimensional, inviscid channel flow where the chan
rotates within thex2y plane. As we noted earlier, the occu
rence of such a structure in a general turbulent flow is
likely since there is noa priori reason why the strain acce
eration tensor would admit a single zero eigenvalue ove
whole region. A notable exception would be a laminar sh
flow near a boundary with no-flow boundary condition.
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
of
r

y.
n

-

i
f

t
ut
l

-
ve

e
ar-

o-
it

e
s.

e

a
l

l

-

a
r

V. RELATIONSHIP TO EULERIAN PARTITIONS OF 2-D
TURBULENCE

Here we compare the EPH partition to two instantane
partitions of two-dimensional turbulence that have been s
gested and used in the literature. Both partitions are es
tially based on short-time approximations of particle dyna
ics and assume slowly varying properties of the veloc
field.

A. The Okubo–Weiss partition

The Okubo–Weiss partition identifies elliptic regions f
the velocity fieldv(x,t) at time t as spatial domains satisfy
ing det„¹v(x,t)….0 ~see Okubo37 and Weiss38!. Hyperbolic
regions are defined as those where det„¹v(x,t)…,0. Using
the positive eigenvalues of S and the vorticityv5u¹Ãvu,
the above criterion can be phrased ass22v2/4,0 for the
elliptic region, ands22v2/4.0 for the hyperbolic region.
This criterion is essentially an attempt to decide whether
jÄ0 solution of the linearized equation~6! is hyperbolic
~i.e., of saddle type! or elliptic ~i.e., of center type!. The
Okubo–Weiss criterion would give the exact answer to t
question if A(t)5¹v(x(t…,t… were a time-independent ma
trix: in that case the sign of det(A… could indeed be used to
find the stability type ofj50.39 However,A(t) has explicit
time dependence even for steady flows, in which case
eigenvalues ofA(t), in general, do not have any meaning f
the stability type ofx(t) ~see, e.g., Verhulst40 or Hale41 for
counterexamples and further references!. One still hopes that
if A(t) is slowly varying then its eigenvalues remain releva
indicators of stability. This was found to be the case n
stagnation points in numerical simulations by Basdevant
Philipovitch.42

Recently, Haller and Yuan25 gave a rigorous bound fo
the speed of rotation of the eigenvectors ofA(t) below
which det„¹v(x,t)…,0 indeed implies finite-time hyperbo
licity for x(t). This ‘‘a2b criterion ’’ gives a Galilean in-
variant but frame-dependent partition of 2-D turbulence in
regions that are known to be exactly hyperbolic and regi
whose stability type remains undecided. A three-dimensio
extension of this result was given in Haller.27 More recently,
Lapeyreet al.26 proposed that applying thea2b criterion in
a strain basis would give an improved sufficient condition
finite-time hyperbolicity. However, the frame dependence
the a2b criterion combined with the numerical errors du

FIG. 6. Schematic view of material lines forming a shear jet in space–ti
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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to the calculation¹v in a rotating frame actually gives sim
lar or somewhat weaker results in a strain basis for most fl
fields ~see Haller43!.

B. The Okubo–Weiss partition in strain basis

A more refined way to study the exact stability type
the origin in ~6! is to factor out the part of the time depe
dence ofA(t) that comes from the rotation of the eigenve
tors of its symmetric part, the rate-of-strain tensor. This
proach was first pursued by Dresselhaus and Tabor,44 who
derive the analog of Eq.~6! in the strain basis~see also
Dritschelet al.45 for a similar approach in the framework o
a specific problem!. In terms of our notation, the resultin
equation can be written as

j̇5Astrain~ t !j, ~19!

with

Astrain5QTAQ2QTQ̇5S1~QTVQ2QTQ̇!. ~20!

HereS(t) is a diagonal matrix containing the eigenvalues
S(t), V(t) denotes the skew-symmetric part ofS(t), and
Q(t) is a proper orthogonal matrix containing the normaliz
eigenvectors ofS(t). Taking this approach further, Tabor an
Klapper32 propose to assess the instantaneous stability
~19! by applying the Okubo–Weiss criterion to it. More co
cretely, using the notation6(v2v8)/4 for the off-diagonal
terms of the skew-symmetric part ofAstrain, they distinguish
between ‘‘local rotation domination’’ characterized by

s22~v2v8!2,0⇔det~Astrain!.0, ~21!

and ‘‘local strain domination’’ characterized by

s22~v2v8!2.0⇔det~Astrain!,0. ~22!

Of course, this criterion is still formal sinceAstrain remains
time dependent and hence its eigenvalues cannot be
directly to argue about the stability ofx(t) ~see, however,
Dresselhaus and Tabor44 for a few simple cases when the
can be!.

The above partition will only be relevant to the actu
stability of fluid trajectories if one assumes thatAstrain„t), the
velocity gradient expressed in the strain basis, is slo
varying in some sense.46 This view is taken by Lapeyre
et al.47 in an equivalent derivation of the same partition~see
also Kleinet al.48!. This latter derivation aims to find align
ment directions for tracer gradients and vorticity in tw
dimensional turbulence. Along a trajectory the gradient o
nondiffusive passive tracer,¹q„x„t),t…, solves the linear dif-
ferential equationḣ52AT

„t…h. Lapeyre et al. transform
this equation to the strain basis then consider the ‘‘adiab
limit,’’ i.e., ignore the time dependence of the transform
coefficient matrix2Astrain

T (t). They then proceed to find th
asymptotic direction of any initial tracer gradient by forma
solving the resulting constant-coefficient ODE. Howev
one can actually predict the result without solving the OD
an adiabatic alignment direction will exist precisely ifh50
is a saddle point for the ‘‘frozen-time’’ ODE. In that case a
initial tracer gradient will approach the unstable manifold
the saddle exponentially fast. Thus a formal alignment dir
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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tion can be found whenever2Astrain
T has real eigenvalues

which amounts to the requirement that det(2Astrain
T ),0.

Since

det~2Astrain
T !5det~Astrain

T !5det~Astrain!,

a formal alignment direction exists precisely when~22! is
satisfied. Lapeyreet al. call the region of the flow obeying
~21! and ~22! ‘‘effective rotation dominated,’’ and ‘‘strain
dominated,’’ respectively, and refer to the boundary betwe
the two regions (detAstrain50) as ‘‘strain-effective rotation
compensated’’ region. In the recent work of Lapeyreet al.49

the significance of this partition for the alignment of diffu
sive tracer gradients is explored.

Inferring actual Lagrangian stability or tracer gradie
alignment from the partition~21!–~22! is not a rigorous pro-
cedure: it is based on a somewhat vague ‘‘frozen-time’’
sumption. Even if writingAstrain(et) were correct for some
small parametere, the lack of periodic time dependence fo
Astrain would prevent one from applying classic averagi
techniques to justify a passage to the adiabatic~frozen-time!
limit. Nevertheless,~21!–~22! turn out to be formally related
to the EPH partition that we derived in the previous secti
In particular, the instantaneous elliptic regionE(t) coincides
with the set defined as det„2Astrain

T (t)….0, and the region
H(t) coincides with the set defined as det„2Astrain

T (t)…,0.
This can be seen from Fig. 2: the geometry depicted in F
2~a! implies that origin is an instantaneous saddle point
the linearized equation~6! in strain basis, while the geometr
of Fig. 2~b! is only possible if the origin is an instantaneo
center for the linearized flow. The difference between o
approach and formal derivations of~21!–~22! is that ours
leads to rigorous analytic criteria for Lagrangian hyperbol
ity or nonhyperbolicity withoutassuming adiabatic featur
or passage to a different basis.

VI. EXAMPLES

The examples below show the use of our theorems
hyperbolic and nonhyperbolic material surfaces for line
time-dependent velocity fields. In Examples 1–3 we selec
velocity fields that are exactly solvable and hence the pre
tions of Theorems 2–4 can be verified. Even these sim
examples, however, highlight the difference between inst
taneous Eulerian predictions and actual Lagrangian hype
licity. Example 4 is a time-dependent velocity field propos
by Pierrehumbert and Yang19 for which explicit solutions are
not known.

Example 1:The first example below shows how the EP
partition can rigorously identify Lagrangian hyperbolic b
havior when the Okubo–Weiss criterion or thea2b crite-
rion of Haller and Yuan25 fail to indicate hyperbolicity.

Consider the incompressible velocity fieldv(x,t)
5A(t)x with

A~ t !5S sin 2vt v1cos 2vt

2v1cos 2vt 2sin 2vt D .

This is just the velocity field of a uniform strain fieldẋ
5y, ẏ5x transformed to a frame that is uniformly rotatin
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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with angular velocityv. As a result, we know that the origi
x50 is finite-time hyperbolic on any finite time interval.

However, applying the Okubo–Weiss principle or its ri
orous Lagrangian version from Haller and Yuan,25 we cannot
recover the hyperbolicity of the origin if det(A…Äv221
.0, i.e., the speed of the rotation for the frame reachesv*
51.

The explicit evaluation of the Okubo–Weiss criterion
strain basis is computational: it requires the calculation of
derivatives of the eigenvectors of the symmetric part
A(t). In contrast, the strain acceleration tensor is ea
found to be

M5Ṡ12SA5S 2 0

0 2D .

SinceM is positive definite on the whole plane, its restrictio
MZ to the zero strain setZ must also be positive definite
thusx50 lies in the hyperbolic setH(I ) for any time inter-
val I. Then Theorem 1 guarantees the finite-time hyperbo
ity of the origin over any finite time interval.

Example 2:The following example shows that the pos
tive definiteness ofMZ cannot be replaced by the positiv
definiteness ofM in the definition of the hyperbolic region
H(t).

Let us consider a linear velocity field of the form
v„x,t)5A(t)x with

A~ t !5S l~ t ! 0

0 2l~ t !
D ,

where l(t).0 for all t. Direct integration shows that th
origin is linearly unstable, and hence it is finite-time hyp
bolic on any finite time interval. The strain acceleration te
sor is of the form

M5S l̇12l2 0

0 2l̇12l2D .

Note thatM will only be a positive definite matrix forul̇u
,2l2, i.e., if l changes slowly enough. However, Theore
1 only requiresM to be positive definite on the zero setZ of
^j,Sj& for the origin to lie in an attracting~as well as on a
repelling! material line. In this example we have

j6~ t !5S 1

61D ,

and hence

MZ~j!5^j,Mj&uZ54l2uju2.

Therefore,MZ is positive definite and Theorem 1 correct
predicts the finite-time hyperbolicity of the origin for an
smooth functionl(t).0.

Example 3:This example shows how Theorem 3 can
used to exclude finite-time Lagrangian ellipticity even if t
formal application of the Okubo–Weiss criterion in stra
basis incorrectly suggests ellipticity~or ‘‘effective rotation
domination’’!.

Consider the incompressible velocity fieldv(x,t)
5A(t)x with
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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A~ t !5S 21 2a~ t !

0 1 D ,

where the functiona(t) is to be specified later. One ca
directly integrate the ODEẋ5v(x,t) to obtain the solution

x~ t !5S e2(t2t0) 2E
t0

t

e2t2t2t0a~t! dt

0 et2t0
D x0 ,

where x0 is the initial position of the trajectoryx(t)
5(x(t),y(t))T at time t0 . The x50 trajectory is clearly
finite-time hyperbolic for all times and is contained in th
repelling material line~stable manifold! y50. Below will
show how different approaches to detecting Lagrangian
perbolicity bear on this example.

Applying the Okubo–Weiss criterion gives detA(t)
521, i.e., all trajectories are instantaneously Okubo–We
hyperbolic. To confirm actual Lagrangian hyperbolicity
the ‘‘lab frame’’ rigorously, we use thea2b criterion of
Haller and Yuan.25 This criterion ensures finite-time hype
bolicity on a finite-time intervalI if

almin.~21A2!b, ~23!

wherelmin denotes the minimum of the positive eigenval
of A(t) over I, a denotes the minimum of the norm of th
determinant of a matrixT„t) containing the normalized
eigenvectors ofA(t) overI, andb denotes the maximum o
the normṪ(t) overI. One calculates these quantities to fin
that ~23! takes the form

min
tPI

1

Aa211
.max

tPI

~21A2!A@ ȧ~a211!2a2#21a2

A~a211!3
.

~24!

Therefore, ifa(t) varies slowly enough to obey the abov
bound on its derivative, finite-time hyperbolicity is guara
teed by thea2b criterion.

To evaluate the Okubo–Weiss criterion in strain bas
we would have to evaluate the formula~20! to determine the
sign of det„Astrain(t)…. This calculation is a tedious exercis
and will be omitted here. Instead, the two components of
zero strain set and the strain acceleration tensor@cf. ~3! and
~4!# are easily found to be

j65S 1

2a6Aa211
D , M5S 2 ȧ22a.

ȧ22a 4a212
D .

This in turn gives

^j1,Mj1&521~a1Aa211!@2~2a2ȧ!12~2a211!

3~a1Aa211!#,

^j2,Mj2&521~a2Aa211!@2~2a2ȧ!12~2a211!

3~a2Aa211!#.

According to our discussion in Sec. V B,

det~Astrain!.0⇔^j1,Mj1&^j2,Mj2&,0, ~25!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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det~Astrain!,0⇔^j1,Mj1&^j2,Mj2&.0.

We now selecta(t)5(sin 50t)2 which violates the finite-
time hyperbolicity condition obtained in~24!. For this choice
of a(t), we show^j1,Mj1&^j2,Mj2& as a function of time
over one period ofa(t) in Fig. 7. Note that^j1,Mj1&
3^j2,Mj2& is predominantly negative apart from bare
visible short positive intervals. By~21!–~22! and ~25!, the
Okubo–Weiss criterion in the strain basis predicts predo
nant ellipticity near the trajectoryx50. In a fully numerical
calculation of the criterion one would likely discount th
short and weak Okubo–Weiss hyperbolic intervals as
merical errors. This is an example of how the origin
Okubo–Weiss criterion might accidentally perform mu
better in the lab frame than in the strain basis. This furt
underlines the fact that both versions of the criterion
based on nonrigorous calculations and hence can pro
misleading results.

To evaluate the mathematically exact results we h
derived in this paper, we first note that Theorem 1 imme
ately guarantees finite-time hyperbolicity over the sh
negative intervals where trajectories travel inH(t). For the
rest of the time, trajectories are travelling in the elliptic r
gion E(t), with the exception of the isolated times when th
hit the parabolic regionP(t) upon passing betweenH(t) and
E(t). To avoid finite-time hyperbolicity, trajectories woul
have to spend long enough times inE(t) by Theorem 3. The
two intervals over which trajectories are inE(t) are given by

I 15@0.0040, 0.0295#, I 25@0.0317, 0.0624#.

Figure 8 shows the graphs of the local flux componentsw1

and w2, as well as that of the total local fluxw, over one
period ofa(t). We used high-precision numerical integratio
to obtain

E
I 1

uw1
„x~ t !,t…u 1u w2

„x~ t !,t…udt50.7528,p,

E
I 2

u w1
„x~ t !,t…u1uw2

„x~ t !,t…udt50.8157,p,

FIG. 7. The product^j1,Mj1&^j2,Mj2& as a function of time for
Example 3.
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for all trajectories, which implies* I i
u w0(x(t),t)u,p/2.

Therefore, trajectories always leave the elliptic regionE(t)
well before finite-time ellipticity would follow from Theo-
rem 3. Thus true Lagrangian ellipticity cannot be conclud
over the intervalsI 1 and I 2 in spite of the fact that it is
~incorrectly! suggested by the Okubo–Weiss criterion
strain basis.

Example 4:As our final example, we consider a time
dependent linear velocity field proposed by Pierrehumb
and Yang.19 This velocity field will illustrate the power of
our results on a problem in which explicit solutions for flu
trajectories are not available.

Consider the incompressible velocity fieldv„x,t)
5A(t)x with

A~ t !5S a~ t ! 1

21 2a~ t !
D ,

with some smooth functiona(t). If a(t) is not constant in
time, the nonzero solutions of this system are not know
Since detA(t)512a2(t), the Okubo–Weiss criterion pre
dicts elliptic stability for the fixed pointx50 for ua(t)u,1,
and then hyperbolic stability type forua(t)u.1.

To obtain rigorous statements about Lagrangian hyp
bolicity or nonhyperbolicity in this example, we first not
that

S~ t !5S a~ t ! 0

0 2a~ t !
D ,

M ~ t !5S ȧ~ t !12a2~ t ! 2a~ t !

2a~ t ! 2ȧ~ t !12a2~ t !
D ,

j6~ t !5S 1

61D ,

which give

^j1,Mj1&^j2,Mj2&516a2~ t !@a2~ t !21#.

Then our Theorem 1 guarantees finite-time hyperbolicity
the origin~and for all other trajectories! over a time interval

FIG. 8. The local fluxw and its two componentsw1 andw2 for Example 3.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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I if ua(t)u.1 for all tPI . Note that this is a highly nontrivia
result since the trajectories of this time-dependent velo
field are not known explicitly.

If a(t) is such thatua2(t)u,1 holds on a finite-time
interval I, then all trajectories are contained in the ellip
regionE(I ). The two local flux components are given by

w6~ t !5~a26a!/uau ~26!

along all trajectories. Recall that Theorem 2 only allows
origin to be finite-time hyperbolic overI if * I uw0(t)udt
,p/2, or equivalently,

E
I
12ua~ t !udt,p/2.

This last condition can be rewritten as

E
I
ua~ t !udt,I 2p/2, ~27!

so we obtain that the origin~or any other trajectory of the
velocity field! is automatically finite-time hyperbolic ove
time intervals that are shorter thanp/2. However, no small
perturbation to the fixed pointx50 can grow monotonically
over longI intervals. A more precise estimate for the adm
sible length of finite-time hyperbolicity intervals can be o
tained by evaluating the integral in~27! for a given choice of
a(t).

Using Theorem 3 and Eq.~26!, we also conclude that fo
ua2(t)u,1, all material lines are elliptic over time intervalsI
satisfying

E
I
ua~ t !udt<I 2p/2.

By definition, elliptic material lines are contained in th
elliptic region E(I ), i.e., the basic flow geometry aroun
them is rotational. Also by definition, they are not finite-tim
hyperbolic overI: infinitesimal perturbations to them ma
grow monotonically over subintervals ofI, but the growth
periods will be followed by periods of decay. Using th
method of averaging, Pierrehumbert and Yang19 showed that
if a(t) is periodic and small enough in norm, then the grow
periods may dominate on average and lead to an overal
stability of the origin. This occurs if the period ofa(t) is
nearly commensurate with 2p, i.e., a resonance occurs b
tweena(t) and the periodic orbits of thea(t)[0 limit. This
case gives an example of the resonant elliptic material li
mentioned at the end of Sec. IV E. The unbounded growth
perturbations to thex50 trajectory is the result of the inter
play between two degenerate features that do not occu
general turbulent velocity fields. The first one is the perio
time dependence of the velocity field.50 The second one is
the linear nature ofv that ‘‘locks’’ all trajectories in reso-
nance for all times. In contrast, generic nonlinear veloc
fields admit resonance regions that are localized in spac36

VII. NUMERICAL EXPERIMENTS ON BAROTROPIC
TURBULENCE

In this section we reconsider the numerical experime
performed in Haller and Yuan25 and show how a complet
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
y

e

-

n-

s
f

in
c

y

ts

map of stretching lines, folding lines, and regions of no m
ing can be extracted from the data set with high precisi
We consider the quasigeostrophic vorticity equation,

]q

]t
1@c,q#52n4¹4q, ~28!

with hyperviscosityn45531027. The quasigeostrophic po
tential vorticityq is defined asq5¹2c2g2c, with c(x,y,t)
denoting the nondimensionalized free surface~stream func-
tion!. The constantg is the scaled inverse of the Rossb
deformation radius. Following Provenzaleet al.,28 we select
g510 to ensure the presence relatively robust cohe
structures. Equation~28! is solved on the square doma
(0,2p)2, with 1283128 resolution and with a random
Gaussian distribution of vorticity, using the pseudo-spec
code employed in Provenzaleet al.28 After an initial start-up
period, robust Eulerian coherent structures emerge, as
denced by the contour plots ofq shown in Fig. 9. For our
analysis below we saved snapshots of the velocity field
wereDt50.1 apart over the time intervalI5@5,9#. We also
saved the position of particles released from a uniform ini
grid of 2563256. The Okubo–Weiss criterion and its La
grangian version, thea2b criterion, were evaluated in
Haller and Yuan25 for this simulation and will be omitted
here. Instead, we use the EPH partition and our theor
from Sec. IV B to search for different Lagrangian cohere
structures. In this open turbulent flow parabolic structures
nongeneric, thus our discussion will be limited to stretchi
and folding lines and vortex cores.

As we noted in Sec. IV D, Lagrangian coherent stru
tures can be defined as material lines that are locally the m
influential in mixing. This influence can be quantified in se
eral ways. We first plot the hyperbolicity time fieldth(5,x0)
and the ellipticity time fieldte(5,x0) in Fig. 10 based on a

FIG. 9. Instantaneous contour plots of the potential vorticity showing rob
~Eulerian! coherent structures.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 10. ~a! The hyperbolicity time fieldth(5,x0). ~b! The ellipticity time fieldte(5,x0).
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forward time calculation over the time interval@5,9#. Recall
that stretching lines are local maximizing lines in the fi
plot, being the material lines that repel nearby fluid partic
for locally the longest time in the flow. Vortex cores fille
with elliptic material lines are local maximizing ‘‘patches’’ i
the second plot. Figure 11 shows the calculation of the fi
s(5,x0) over the same time interval. As we noted earlier,
strongest stretching lines are also local maximizers of
field. Note, however, that weaker stretching lines are s
pressed by this approach. Finally, we show the instantane
local flux plot m(t,5,x0) for t56.5 andt57.5 in Fig. 12.
This technique converges very fast and displays all stretch
lines as local minimizing curves with great clarity. Note th
there is a local increase in the value ofm before it drops to
its minimum, a feature that renders the minimizing curv
more visible. A backward time calculation of the same fie
with t54 andt52.5 is shown in Fig. 13. Again, a very fas
convergence to the folding lines~local minimizing curves!
leads to great clarity and detail in these plots.

The sharp minimizing nature of stretching and foldi
lines also results in a loss of detail for longer times, since
thickness of the lines quickly falls below grid resolutio
Here we did not address this numerical issue and only
culated the plots for intermediate times. This was poss
because of the fast convergence of this approach: in on
few time steps the main hyperbolic LCS emerge and th
thickness decreases quickly. This ‘‘thinning’’ of hyperbol
LCS is consistent with the predictions of Poje and Halle13

who proved that the inherent nonuniqueness of finite-ti
invariant manifolds decreases exponentially as their lifeti
increases.

The stretching and folding lines in this simulation ha
already been approximated in different ways in Pojeet al.,23

Haller and Yuan,25 and Haller.43 However, none of these
methods produced the level of detail and clarity obtain
here, and they all needed longer times to converge. It app
that the theoretical framework we developed here captu
the essence of these structures.

We finally note that the numerical data set we have st
ied here does not admit parabolic Lagrangian structures,
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
t
s

ld
e
is
-
us

g
t

s

e

l-
le
a

ir

e
e

d
rs

es

-
e.,

shear jets. Our primary goal here was not to explore all p
sible structures, but illustrate the power of a fram
independent approach on a data set that had been stu
previously via other methods. Even in this somewhat sim
data set the Eulerian elliptic regions identified from t
Okubo–Weiss criterion or potential vorticity plots~cf. Haller
and Yuan25! differ significantly in size and shape from th
actual Lagrangian-elliptic regions we located here. As for
hyperbolic LCS we found here, they remain completely h
den in instantaneous Eulerian calculations~cf. Haller and
Yuan25!.

VIII. CONCLUSIONS

In this paper we have derived a set of frame-independ
criteria to locate finite-time hyperbolic, elliptic, and par
bolic material lines from general finite-time velocity dat
These material lines can in turn be used to identify Lagra
ian coherent structures that have a key impact on finite-t
advective mixing. We extracted these structures from sim
lations of two-dimensional turbulence using different wa

FIG. 11. The scalar fields(5,x0).
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 12. ~Color! The local flux fieldm(t,5,x0) for ~a! t56.5; ~b! t57.5.
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of implementing our theorems. Other implementations of
results are clearly possible and may lead to numerical
provements.

In comparison with the earlier analysis of the veloc
field in Haller and Yuan,25 the stretching and folding line
located via the techniques of the current paper are more
herent and better resolved, and the vortex cores are
better identified and understood. In fact, out of all the dia
nostic tools that have been proposed~cf. the Introduction!,
the scalar fieldm(t,x0) appears to produce the sharpest
sults in the shortest time on Lagrangian coherent struct
in 2-D turbulence. It reveals a stunning set of stretching a
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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folding lines that connect different mesoscale eddies. Th
structures are markedly different from the lobes and tang
found in chaotic advection, and their dominance sugge
that the primary source of complexity in barotropic turbule
mixing is spatial, not temporal.

If one wishes to locate stretching and folding lines fro
available particle data, the direct Lyapunov exponent te
nique proposed in Haller27 may be the most expedient tool t
use. While this ‘‘infinitesimal dispersion’’ calculation con
verges somewhat slowly and produces extra ‘‘ghost’’ str
tures of maximal shear, it is fairly easy to implement. At t
same time, it is diagnostic in nature and says nothing ab
FIG. 13. ~Color! The local flux fieldm(t,5,x0) for ~a! t54; ~b! t52.5.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the features of the velocity field that give rise to Lagrang
structures. It is to be contrasted with the dynamic hyper
licity criterion ~16! that gives a direct link between the tim
history of important Eulerian quantities and Lagrangian m
ing. This may ultimately enable one to predict the types
coherent structures that emerge in a particular solution of
Navier–Stokes equation, and the amount of mixing they g
erate. Knowing the exact Eulerian signatures of intense
grangian mixing or lack thereof is also of central importan
in a number of applications~see Chate´ et al.51!.

Several further questions remain unanswered. One
them is the possible role of the eigenvectors ofM in La-
grangian mixing. In a recent study Kleinet al.48 observed a
statistical alignment of tracer gradients with the eigenvec
of a tensor that is simply a scalar multiple ofM . Making use
of the framework we introduced here, one should be abl
study this question and find conditions under which the p
nomenon occurs. A further question would be how the re
we derived here could be extended to three-dimensional
bulence. The 3-D extension of thea2b criterion in Haller43

certainly offers hope that this is possible, although the to
logical approach we used here needs to be combined
new ideas to extend to higher dimensions. Finding the ana
of the dynamic hyperbolicity condition~16! for velocity
fields governed by the quasigeostrophic equations would
of great interest in geophysical applications. A more deta
analysis of elliptic coherent structures should also be p
sible, making more use of the local flux and its two comp
nents. Finally, while the types of shear jets we identified h
do occur in laminar flows, a more general approach to th
is clearly needed. For instance, one could define them as
most ‘‘near-parabolic’’ regions in the flow, i.e., regions whe
one of the eigenvalues of the strain acceleration tenso
close to zero. Such a relaxed definition would certainly
useful in the exploration of geophysical data sets with je
All these issues are planned for further study and will
reported elsewhere.
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APPENDIX

1. Proof of Proposition 2

To prove statement~i!, we start by introducing a loca
coordinater defined asxÄx01r. In terms of this new coor-
dinate, the expression~11! for the local flux can be rewritten
as
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w~x0 ,t !5 lim
e→0

1

2e2ESe(0)
u~v~x01r ,t !2v~x0 ,t !!•nuds

5 lim
e→0

1

2e2ESe(0)
u@¹v~x0 ,t !r¿O~ uju2!#•nuds

5 lim
e→0

1

2e2 H ESe(0)
u¹v~x0 ,t !r "nu ds

1E
Se(0)

uO~ ur u2!•nudsJ . ~A1!

Since

lim
e→0

1

2e2ESe(0)
uO~ ur u2!•nuds< lim

e→0

1

e2
Ce2ep50,

the limit of the second integrand in~29! is zero. Lettingr
5ej, we can therefore rewrite~A1! as

w~x0 ,t !5
1

2EC
u¹v~x0 ,t !j•nuds,

with the integral taken over the unit circleC introduced in
Sec. III A.

To evaluate the above integral, recall that the veloc
field points inwards onC within the time-dependent secto
C2(t) and outwards in the sectorC1(t). Since the total flux
of the incompressible velocity field is zero over the circleC,
we can write

w~x0 ,t !5E
C 2(t)

¹v~x0 ,t !j"nds, ~A2!

whereC 2(t) denotes the boundary ofC2(t) that falls on the
circle C. While this region rotates in time, its area is consta
and equalsp/2. Let Z1 denote the part ofZ that bounds
C2(t) alongj1, and letZ2 denote the part ofZ that bounds
C2(t) along j2. Applying the Green’s theorem toC2(t)
and using incompressibility, we obtain that

E
C 2(t)

¹v~x0 ,t !j"nds52E
Z1(t)

¹v~x0 ,t !j"ndr

2E
Z2(t)

¹v~x0 ,t !j"ndr, ~A3!

wheren denotes the unit normal pointing intoC2(t) in all
these integrals, andr is a radial coordinate. Now along
Z1(t) we let j5re1(t) ~with ue1u51), which leads to

2E
Z1(t)

¹v~x0 ,t !j"ndr522E
0

1

r¹v~x0 ,t !e1
•e2dr

52^¹ve1,e2&.

A similar calculation gives

2E
Z2(t)

¹v~x0 ,t !j"ndr52^¹ve2,e1&,

which, when combined with~A2! and ~A3!, gives
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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w52[ ^¹ve1,e2&1^¹ve2,e1&]

522^Se1,e2&522K S
~e11e2!

A2
,
~e11e2!

A2
L

5A2uSu.

Here we used the facts that (e11e2)/A2 is precisely the
compressional eigenvector ofS, and the norm of the com
pressional eigenvalue is just the square root ofuSu/2. This
completes the proof of statement~i!.

To prove statement~ii !, we first recall thatC2(t) has
constant area. As a result, the instantaneous net flux of
linearized velocity field¹v(x0 ,t)j into it is zero.52 This im-
plies thatpw(x0 ,t) is equal to the outward flux through th
lines Z1 andZ2. If w6(t) denotes the flux in the linearize
velocity field ~6! out of B throughZ6, then~A2! gives

w~x0 ,t !5w1~ t !1w2~ t !. ~A4!

It is this last equation that we shall use below to evaluate
local flux.

The instantaneous net flux of the linearized velocity fie
throughZ1 can be written as

w1~ t !5E
Z1

S j̇2r
d

dt
~e1! D •dn,

where the integrand is just the inner product of the relat
velocity of the fluid throughZ1 and the unit outward norma
n to Z1 at the pointj5re1(t) ~with ue1u51). Noting thatn
points in the direction of¹^j,Sj&uj1,we can rewrite the
above integral as

w1~ t !52E
0

1S j̇2r
d

dt
„e1~ t !…D • Sj1

uSj1u
dr.

Differentiating formula~2! in time and using the fact tha
j̇uj15Aj15rAe1, we can further rewrite this last expre
sion in the form

w1~ t !5E
0

1 r

uSe1u
@^2SAe1,e1&1^e1,Ṡe1&#dr

5E
0

1 r

uSe1u
^Me1,e1&dr

5
1

2

^e1,Me1&

uSe1u
5

1

2

^j1,Mj1&

uj1uuSj1u
. ~A5!

An identical argument establishes the result

w2~ t !5E
Z2

S j̇2r
d

dt
~e2! D •dn5

1

2

^j2,Mj2&

uj2uuSj2u
. ~A6!

By ~A4!–~A6!, we have

w~x0 ,t !5
1

2 S ^j1,Mj1&

uj1uuSj1u
1

^j2,Mj2&

uj2uuSj2u
D ,

as claimed in statement~ii ! of Proposition 2.
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2. Proof of frame independence for the EPH partition,
w, and wÁ

Let us first assume thatS(x,t)Þ0. Note that by~1! and
~5a!, we have

d

dt
ujuj5j650, ^jÁ,Mj6&5

1

2

d2

dt2
ujuj5j6

2 .

The first equation shows that the orientation ofj6 is frame-
independent since it is the zero set of the frame-indepen
function (d/dt)uju.53 This fact combined with the secon
equation shows that the sign of^jÁ,Mj6& is also indepen-
dent of the frame, since it is given by the sign
(d2/dt2)uju2, a frame-independent quadratic form, along t
directions j6. But then ~12! implies that the signs of
w1(x,t) andw2(x,t) are frame independent.

Assume now thatS„x,t…50, i.e., the pointx belongs to
the setE(t). Performing the change of frame~13!, one ob-
tains that in the new frame the gradient of the transform
velocity u(y,t) is of the form

¹u5QT¹vQ2QTQ̇.

Since Q is proper orthogonal,QTQ̇ is skew-symmetric, as
one verifies by direct calculation. As a result, at the pointx at
time t we have

1

2
~¹u1¹uT!5QTSQ50,

i.e., the rate of strain also vanishes in the new frame. C
sequently, the pointx will belong to the elliptic regionE(t)
even after the change of coordinates~13!. This completes the
argument from the frame independence of the EPH partit

As for the frame independence ofw1(x,t) andw2(x,t),
note that their value only depends on the orientation and
on the magnitude ofj6, as one sees from the formula~12!.
Then the argument we gave above implies that frame in
pendence ofw6 and hence that ofw.

3. Proof of Theorem 1

We give a proof that combines a Lyapunov function-ty
argument with a topological technique, the Wasewsky pr
ciple, and with the finite-time invariant manifold results d
veloped in Haller24 and Haller and Yuan.25

Let us consider a trajectoryx(t) generated by the veloc
ity field v(x,t), and the associated linearized system,

j̇5A~ t !j, ~A7!

whereA(t)5¹v„x(t),t…, and the vectorj is taken from the
two-dimensional spaceX5R2. The extended phase space
the (j,t) variables will be denoted byX3R. By assumption
the trajectoryx(t) stays in the hyperbolic regionH(I ). As a
consequence, the strain acceleration tensorMZ is positive
definite and the rate-of-strain tensorS is nondegenerate fo
all tPI .

We now restrict the linear velocity field~A7! to I, then
extend it smoothly to the whole time axisR in a way that
A(t) @and henceS(t) and M (t)] become constant matrice
outside a slightly larger interval,
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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I e5@ t02e,t01e#, ~A8!

for some small constante.0. This can be done in a fashio
that the function

n~ t !5 min
ue(t)u51,
e(t)PZ

^e~ t !,M ~ t !e~ t !&.0, ~A9!

andl(t), the negative eigenvalue ofS(t), satisfy

n~ t !>nmin5
def.

min
tPI

n~ t !2e,

~A10!

l~ t !>lmin5
def.

min
tPI

l~ t !2e, tPR.

~For the details of this construction, see Haller.!24 We select
e.0 small enough so that

nmin.0, lmin,0.

We also note that by the continuity of^e,Me& in e, for all
small enoughe.0, we have

min
ue(t)u51,

dist (e(t),Z),e

^e~ t !,M ~ t !e~ t !&.
nmin

2
. ~A11!

We will now establish several properties of the smoot
extended linear system. For simplicity, we keep the sa
notation for the extended system, i.e., keep referring to~A7!
when we discuss the properties of its infinite-time extensi

(a) j50 has a stable manifold Es. Since the rate-of-
strain matrix S is indefinite, the quadratic formC(j,t)
5^j,Sj& takes both positive and negative values in any op
neighborhood of the originj50. Also by assumption, the
derivative ofC along solutions,

Ċ~j,t !5^ j̇,Sj&1^j,Sj̇&1^j,Ṡj&

5^SAj,j&1^j,SAj&1^j,Ṡj&5^j,Mj&, ~A12!

is positive definite for alljPZ, and tPI @and hence for all
tPR by ~A10!#. It then follows from~A12! that

Ċ~j,t !>nminuju2, jPZ, tPR. ~A13!

Next, we want to argue that the extended system~A7!
admits a solution that converges to the origin. SinceC is
indefinite, there exists a regionC2 in the extended phas
space such that

C25$~j,t !PX3Rzuju<1, C~j,t !<0%. ~A14!

We denote the boundary ofC2 by ]C2, and the interior of
C2 by i (C2)5C22]C2. @We also recall that thet
5const slice ofC2 is denoted byC2(t), with its boundary
denoted by]C2(t).] Let us consider a trajectoryj(t) which
satisfiesj(t0)5j0PC(t0). Observe that as long asj(t)
P i „C2(t)…, its norm uj(t)u decreases monotonically by th
estimate

d

dt
uju25

d

dt
^j,j&52^ j̇,j&52^j,Sj&52C~j,t !,0,

~A15!
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where we used~A14! from above. We claim that ifj(t)
P i (C2(t)) for all t>t0 , thenj(t) tends to the origin ast
→`.

Assume the contrary, in which case, by~A15!, there ex-
ists a positive numberd<uj(t0)u such that

uj~ t !u.d, t.t0 . ~A16!

Consider then an unbounded, monotone sequence of t
$tk%k50

` . By ~A15!, uj(tk)u is a bounded, monotone sequen
and hence it converges to somes.0. By the continuity of
j„t…, this implies

lim
t→`

uj~ t !u5s. ~A17!

By the monotonicity of uj(t)u, we must then have
limt→`uj̇(t)u50, which together with~A16!, ~A17!, and
~A15! implies that

lim
t→`

dist„j„t),Z…50. ~A18!

Then selectinge.0 small enough in~A11!, formulas~A18!
and ~A11! imply

^j„t !,M ~ t !j~ t !&.
nmin

2
uj~ t !u2, t.T* , ~A19!

for some finiteT* .t0 . Using~A16! and~A19!, we can then
write

0.C„j~ t !,t…5C„j0 ,t0…1E
t0

T*
Ċ„j~t!,t…dt

1E
T*

t

Ċ„j~t!,t…dt>C„j0 ,t0)

1E
t0

T*
Ċ„j~t!,t) dt1

nmin

2
d2~ t2T* !,

~A20!

for all t.T* , which is a contradiction fort large enough,
since the first two terms on the right-hand-side of this
equality are bounded. Therefore, we indeed have

j~ t !P i „C2~ t !…, t>t0⇒ lim
t→`

j~ t !50. ~A21!

Now we want to argue that there are solutions of t
extended system~A7! that actually stay ini „C2(t)… for all
t>t0 . Showing the instantaneous linear flow geometry in
strain eigenbasis$ĵ1 ,ĵ2%. Figure 14 helps in verifying some
general properties of]C2.

(a) On the boundary componentV15]C2ù$uju51%
the vector field points inwards by~A15!.

(b) On the boundary componentV25]C2ùZ2$j
50% the extended vector field~A7! points strictly outwards.
This follows by observing that onV2 we haveC[0, while
on any nontrivial trajectory we haveĊ.0, by ~A13!.

(g) The boundary componentV35]C22V12V2 is
just the invariant line$j50%.

(d) As a consequence of (a)2(g), the set of points
immediately leavingC2 is given byWim5V2.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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(«) Let us denote the set of points eventually leavi
C2 by Wev. By definition, Wim,Wev. SinceV3 is clearly
not contained inWev, we conclude thatWim is relatively
closed inWev.54

(w) C2 is a closed set.
By definition, the properties (d)2(w) make C2 a

Wasewsky set~see, e.g., Hale41!. As a consequence, the fo
lowing result ~the Wasewsky principle! holds for C2: The
map

G:Wev→Wim ~A22!

that maps initial conditions inWev to the point where they
leaveC2, is continuous.

We now use the Wasewsky principle to argue that th
are nontrivial solutions that stay inC2 for all times. Sup-
pose the contrary, i.e., suppose that all nonzero solut
leaveC2 eventually. As a result,Wev5C22V3 and hence
G(C22V3)5V2. But a continuous map cannot map th
connected setC22V3 onto the disconnected setV2, thus we
have established a contradiction. We can therefore conc
that there exists a solutionj* (t) that stays inC2 for all
times. By ~A21!, j* (t) must necessarily converge to zer
i.e., the j50 solution of the extended system~A7! has a
stable manifold, which we denote byEs.55

For later use, we now estimate the rate at which so
tions inEs converge to the trivial solution. LetEt

s denote the
t5const section ofEt

s , and lete(t) be a unit vector inEt
s .

Note thate(t) can be chosen as a continuous function ot.
For that reason the function̂e(t),S(t)e(t)& is continuous in
t and hence admits a maximum over the compact intervaI.
SinceEs lies in the interior of the sectorC2, this maximum
is less than zero. Selectinge.0 small enough in the defini
tion of I e @cf. ~A8!#, we can therefore ensure that

a5
def.

2max
tPI e

^e~ t !,S~ t !e~ t !&52max
tPR

^e~ t !,S~ t !e~ t !&.0.

Combining the definition ofa with the inequality~A15!, we
obtain that for anyj(t)PEt

s ,

FIG. 14. Instantaneous flow geometry and the set]C2(t) under the as-

sumption that the matrixM (t) is positive definite. The coordinatesĵ i are
defined relative to the eigenbasis ofS.
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dt
uju252^j,Sj&52uju2^e~ t !,S~ t !e~ t !&

<2uju2max
tPR

^e~ t !,S~ t !e~ t !&

<22auju2.

Integrating this inequality yields

uj~ t !u<uj~ t0!ue2a(t2t0), ~A23!

for all solutions withj„t0…PEt0
s .

(b) j50 has an unstable manifold Eu. This follows by
repeating the argument given in~a! in backward time over
the intervalI u . That is possible since reversing time in th
extended equation~A7! gives

j̇52A~2t !j,

and hence the strain matrixŜ„t…52 1
2„A(2t)2A(2t)…

52S(2t) remains indefinite andM̂ „t)5M (2t) remains
positive definite onZ. As a result, we can conclude the e
istence of an unstable manifoldEu,X3R for the trivial so-
lution of the extended system~A7!. In analogy with~A23!,
solutions inEu obey a growth estimate,

uj~ t !u>uj~ t0!uea(t2t0).

The exponenta in this estimate is the same as in~A23!,
which follows from incompressibility and Liouville’s theo
rem. @Since tr(A)50, the determinant of any fundament
matrix of ~A7! is constant in time.#

(c) The dimension of Es and Eu. The dimension ofEs

and Eu can be found by invoking the continuity of th
Wasewsky mapG defined in~A22!. In particular, consider
Fig. 14 and note that forG to be continuous,Vt

1ùWev must
be a union of two open sets, separated byEt

sù$uju51%.
Since this latter set is a point, by the continuity ofG we
conclude that dimEt

s51, which implies that dimEs52 in
the extended phase spaceX3R. Since the dimensions ofEt

s

and Et
u add up to the dimension ofX, we obtain that

dim Eu52.
(d) x(t) is contained in a repelling material line.Since

Et
s andEt

u are lines, we can ‘‘flatten’’ out the invariant man
folds Es and Eu by introducing a linear change of coord
nates,

j5R~ t !h. ~A24!

For any t, the columns ofR(t) are chosen to be a linearl
independent set of unit vectors taken fromEt

søEt
u . In theh

coordinates the extended system~A7! takes the form

ḣ5S qs~ t ! 0

0 qu~ t !
D h, ~A25!

with two scalar functionsqs(t) andqu(t)52qs(t). We par-
tition h accordingly intoh5(hs,hu). The solution compo-
nents can be written as

hs~ t !5Fs~ t !hs~ t0!, hu~ t !5Fu~ t !hu~ t0!,

with the estimates

iFs~ t !i<e2a(t2t0), iFu~ t !i>ea(t2t0), ~A26!

for all tPI .
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Now let us return to the underlying trajectoryx(t) and
let j5x2x(t) denote a new local coordinate along the t
jectory. Differentiating this change of variables with respe
to t, Taylor expandingv„x(t)1j,t… in j, and then switching
to the variableh introduced in~A25!, we obtain the differ-
ential equation

ḣ5S qs~ t ! 0

0 qu~ t !
D h1f~h,t !,

where, for any fixedtPI we have f(h,t)5O(uhu2). For
equations of this form satisfying decay estimates of the t
~A26!, we showed in Haller24 the existence of smooth finite
time stable and unstable manifoldsWs(0) andWu(0) in the
extended phase.56 Here dimWs(0)5dim Es52 and
dim Wu(0)5dim Eu52, and the manifolds are tangent toEs

andEu, respectively, along the solutionh[0, i.e., along the
trajectoryx(t) for tPI . @These invariant manifolds are no
unique, but the distance of, say, two unstable manifolds i
the orderO(e2K(t22t1)), i.e., decays exponentially as th
length of the intervalI increases.# We can, therefore, con
clude that x(t) is contained in a repelling material lin
~finite-time stable manifold!. We note thatx(t) is also con-
tained in an attracting material line~finite-time unstable
manifold!.

4. Proof of Theorem 2

Statement~i! follows from an inspection of the solution
of ~6! in the casex(t)PP(J), whereJ is any subinterval
within I. Indeed, no material lines formed by the solutio
given in ~10! are finite-time hyperbolic. Therefore, hype
bolic material lines cannot spend a whole interval of timeJ
in the parabolic region.

The proof of statement~ii ! will follow immediately from
the proof of Theorem 3 given below. In particular, see f
mula ~A28!.

5. Proof of Theorem 3

Since the trajectoryx(t) is assumed to stay in the ellipti
regionE(I ),MZ is indefinite for alltPI . As a result, on pre-
cisely one of the sides of the sectorc2(t) the flux is nega-
tive, i.e., fluid is flowing into the interior ofc2(t). We as-
sume that this happens on the side spanned byZ2, if not, we
simply change the indices ofj1 andj2 in our notation.

Assume the contrary of the statement of the theore
i.e., assume that the trajectoryx(t) is finite-time hyperbolic.
By definition, this implies that thej50 solution of the lin-
earized equation~6! is finite-time hyperbolic. In that case
must admit finite-time stable and unstable manifolds over
interval I. These manifolds are actually vector bundles~i.e.,
their t5const sections are lines! by the linearity of~6!. Et

s ,
the t5const section of a finite-time stable manifold of th
origin, must lie in the interior of the time-dependent sec
C2(t) where the distance of trajectories from the orig
strictly decreases.

Consider the time-dependent sectorT(t) enclosed by
Et

s , the lineZ2(t), and theC s(t) arc of the unit circle that
connects these lines. SinceEt

s,C2(t), we must have
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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Area„T~ t !…,
p

4
, ~A27!

i.e., the area of the sectorT(t) cannot reach that ofC2(t).
Note, however, that the area ofT(t) is increasing since the
net flux into it is positive both along the boundaryZ2(t) as
well as alongC s(t), while it is zero alongEt

s by the invari-
ance of the stable manifoldEs. We can therefore write for
any tPI 5@ t1 ,t2# that

Area„T~ t !…5Area„T~ t1!…1E
t1

t E
C s(t)

¹v~x0 ,t!j

•n ds dt1
1

2Et1

t

uw0~x0 ,t!udt,

where the first integral is the total fluid area enteringT(t)
along the boundaryC s(t), and the second integral is the are
entering alongZ2(t). The above equation leads to the es
mate

Area„T~ t !….
1

2Et1

t

uw2~x0 ,t!udt,

which, together with~A27!, gives the estimate

E
t1

t2
uw0~x0 ,t!udt,

p

2
. ~A28!

But ~A28! establishes a contradiction with assumption~14!
of the theorem, thusx(t) cannot be finite-time hyperbolic
over the intervalI.

6. Proof of Theorem 5

To prove the theorem, we use Eq.~15! to rewrite the
strain acceleration tensor in the form

M5S212SV2V22
1

r
P1n¹2S1G. ~A29!

We recall that at any fixed timet, the hyperbolic regionH(t)
is defined as the spatial region satisfying

^j1,Mj1&.0, ^j2,Mj2&.0. ~A30!

In what follows we take the zero strain directionsj6 to be
unit vectors for computational simplicity.

To obtain a sufficient dynamic condition on Lagrangi
hyperbolicity, we shall derive a single condition that impli
both conditions in~A30!. Therefore, if this new single con
dition is satisfied over a time intervalI along a trajectory
x(t), then this trajectory is contained in a hyperbolic mater
line over I by Theorem 1.

To evaluate the conditions~A30! using the expression
~A29! for M , we first note that the directions of zero stra
obey the relation

j65
e16e2

A2
, ~A31!

where ei denote the unit eigenvectors of the rate-of-stra
with the properties

Se15se1 , Se252se2 , s>0.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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For concreteness, we also fix a particular orientation fore1

ande2 by requiring

e1Ãe2.0. ~A32!

Then, using~A31! we obtain the following identities:

^j6,S2j6&5
s2

2
^e16e2,e16e2&5s2,

^j6,2SVj6&522^j6,VSj6&

52^e16e2,VS„e16e2!&

572s^Ve1 ,e2&57sv,

^j6,2V2j6&5uVj6u5
v2

4
.

Here, in the second identity, we used the orientation r
~A32! as well as the fact that for two-dimensional incom
pressible flows,SV52VS. Using the three identities abov
together with~A29!, we can rewrite the conditions~A30! as

~s7v/2!22
1

r
^j6,Pj6&1n^j6,¹2Sj6&1^j6,Gj6&.0.

Recalling thats>0, we find that both of these condition
hold if

~s2uvu/2!22
1

r
^j6,Pj6&1n^j6,¹2Sj6&1^j6Gj6&.0.

~A33!

Using the quantities introduced in Sec. IV C and recalli
that j6 are unit vectors, we can write down the followin
estimates:

^j6,Pj6&<k, 2^j6,¹2Sj6&<s, 2^j6,Gj6&<g.

From these estimates we obtain that~A34! is satisfied if con-
dition of ~16! of Theorem 5 holds, which completes th
proof.
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