
Extraction of Separation and Attachment Surfaces
from Three-Dimensional Steady Shear Flows

A. Surana∗

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

G. B. Jacobs†

San Diego State University, San Diego, California 92182

and
G. Haller‡

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

DOI: 10.2514/1.21464

We apply a recent analytic theory of three-dimensional steady separation to direct numerical simulations of

backward-facing-step and lid-driven-cavity flows. We determine the exact location and slope of separation and

attachment surfaces that have only been approximated heuristically in earlier studies. We also visualize the

corresponding global separation and attachment surfaces, which reveal highly complex separated flow geometry.

Nomenclature

C = speed of sound
D = rate of the strain tensor
e = internal energy
g = separation curve slope
h = inflow channel height
I = identity matrix
L = length
L = separation curve
Ma = Mach number
Mf = reference Mach number
Pr = Prandtl number
p = pressure
p = separation or attachment point
q = separation or attachment point
R = gas constant
Re = Reynolds number
S = step-height dimension
S = separation surface
T = temperature
u = velocity in the x direction
u = velocity tangential to the boundary
v = velocity in the y direction
v = three-dimensional steady velocity field
W = spanwise width dimension
w = velocity in the z direction
x = spatial coordinate vector
x = spatial coordinate
y = spatial coordinate
z = spatial coordinate
� = ratio of specific heats, cp=cv
� = unstable limit cycle
� = boundary trajectory

� = separation angle
� = thermal conductivity
� = first coefficient of viscosity
� = second coefficient of viscosity
� = kinematic viscosity
� = density
� = stress tensor
� = wall-shear field
! = wall-vorticity field

Subscripts

f = reference property
x = derivative with respect to x
y = derivative with respect to y
z = derivative with respect to z
1 = x direction
2 = y direction
3 = z direction

I. Introduction

T HE accurate identification of separation patterns in three-
dimensional flows is important for a number of engineering

applications. For instance, separation and attachment has a major
impact on mixing in combustors and on the aerodynamic forces
acting on an aircraft, a submarine, or a passenger car. In several
instances, the separation location itself is crucially important to
detect. Drag reduction by wall-based flow control, for example, is
known to be most effective when the actuators are placed close to
separation surfaces.

The systematic study of steady-flow separation dates back to the
seminal work of Prandtl [1] in 1904. He showed that a two-
dimensional steady flow separates from a no-slip boundary at points
at which the wall shear vanishes and admits a negative gradient.
Three-dimensional flows, however, tend to separate along lines [2–
6], as opposed to isolated wall-shear zeros.

In three dimensions, integral curves of the wall-shear vector field
(also known as wall-shear lines or limiting streamlines) are the only
viable candidates for separation lines, because they mark the
intersection of two-dimensional stream surfaces with the boundary.
Legendre [7] proposed to analyze wall-shear lines in topological
terms used in the local theory of two-dimensional vector fields. In
this topological approach, one tries to infer the global geometry of the
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wall-shear field from local analysis near critical points. In [8–11],
Legendre’s theory is further discussed and refined.

Lighthill [12] offered a more global view by proposing the
convergence of wall-shear lines as a necessary criterion for
separation. He concluded that separation lines always connect saddle
points of the wall-shear field to stable spirals or nodes. In some flows
[13], however, the separation lines defy this paradigm. For example,
in flows past spheroids [13], the separation line appears to originate
from a regular point.

Wu et al. [14] proposed to look beyond skin-friction patterns and
view separation as distinguished three-dimensional particle motion
near the boundary. These authors defined the separation surface as a
two-dimensional set of fluid trajectories backward-asymptotic to a
saddle-type wall-shear zero. For the three-dimensional boundary-
layer equations, Van Dommelen and Cowley [15] also took a
particle-based view by defining separation as a formation of a
material spike that leaves the boundary layer. Still in the Lagrangian
context, Wu et al. [16] derived conditions for the simultaneous
convergence and upwelling of fluid near the boundary.

Despite the preceding advances, identifying exact separation and
attachment locations in three-dimensional steady flows has remained
a challenge. Converging or diverging wall-shear lines are indicators
of separation or attachment, but tend to fill open regions of the
boundary. For this reason, heuristic indicators such as zerowall shear
[17] or zero streamwise wall shear [18,19] are commonly used to
extract a single separation line candidate. These indicators are known
to be inaccurate, but are still convenient choices for benchmarking,
as noted by Nie and Armaly [20].

Another challenge is the identification of the two-dimensional
separation surface (often called a shear layer) that emanates from the
separation line. Although several studies noted different particle
behaviors on different sides of inferred separation surfaces
[17,21,22], no tools were available to extract such surfaces from
numerical or experimental data. As a result, the global geometry of
separated flows has only been studied thoroughly in two-
dimensional cross sections or along individual streamlines.

Recently, Surana et al. [23] developed an exact theory of three-
dimensional steady separation to address the preceding challenges.
Based on nonlinear dynamic systems techniques, the theory gives
mathematical criteria for the location of one- and two-dimensional
unstable manifolds emanating from the wall. The unstable
manifolds collect and eject particles from arbitrarily small
neighborhoods of the wall and hence are the Lagrangian objects
responsible for separation. Stable manifolds act in the same way in
backward time and hence are the Lagrangian objects responsible for
attachment.

Surprisingly, only four basic manifold topologies may exist, as
shown in [23]. The theory also provides a first-order approximation
for separation and attachment surfaces near the wall. The resulting
formula for the location of these surfaces only depends on the wall
shear; the formula for the slope of the surfaces depends on the wall
shear, the wall-pressure gradient, the wall density, and the wall
viscosity.

Here, we provide the first application of the preceding separation
theory to direct numerical simulations of three-dimensional steady
flows over a backward-facing step and in a lid-driven cavity.
Computing all necessary formulas of the theory, we identify all one-
and two-dimensional separation and attachment locations. We also
determine local tangent approximations to the separation surfaces
and then find the global separation surfaces by advecting the local
approximations. Our analysis follows a well-defined wall-based
algorithm, thus the present study of two specific benchmark
problems also provides a practical recipe to uncover the geometry of
three-dimensional steady separated flows.

In Sec. II, we review the theory from Surana et al. [23]. In Sec. III,
we describe the numerical model and simulation of the backward-
facing-step and lid-driven-cavity flows. In Sec. IV, we apply the
exact separation theory to these flows to identify all separation lines
and surfaces. The final section is reserved for conclusions and a
description of related work on open separation and unsteady
separation.

II. Separation in Three-Dimensional Steady Flows

A. Setup and Notation

Consider a three-dimensional steady velocity field

v �x; y; z� � �u�x; y; z�; v�x; y; z�; w�x; y; z�� (1)

that satisfies the steady continuity equation

r � ��v� � 0 (2)

with the fluid density ��x; y; z�.
For simplicity, assume that there is a flat boundary (i.e., a two-

dimensional plane) at z� 0, where the velocity field v satisfies the
no-slip boundary condition:

u�x; 0� � v�x; 0� � w�x; 0� � 0 (3)

Fluid particles (i.e., infinitesimal volumes of fluid moving along
trajectories x�t� � �x�t�; y�t�; z�t��) are advected by the Lagrangian
equations of particle motion:

_x� v�x� (4)

All notions of stability and instability used in this paper would be
with respect to the trajectories generated by Eq. (4).

We note that the separation and attachment criteria we discuss here
extend to general curved boundaries, as described in [23]. In our
notation, we distinguish the velocity components parallel to the
boundary by letting

x � �x; y�; u�x; z� � �u�x; y; z�; v�x; y; z��
w�x; z� �w�x; y; z�

The wall-shear field on the boundary is defined as

� �x� � @zu�x; 0� (5)

Another quantity of interest is the wall-vorticity field

! �x� � @zu?�x; 0� (6)

where �a; b�? � ��b; a�.
If x�s;x0� denotes a trajectory of the wall-shear field ��x� with

x�s;x0� � x0, then

@2zw�s� � @2zw�x�s;x0�; 0� (7)

measures the flow-stretching rate normal to the wall along x�s;x0�.
Using Eq. (3) in the continuity equation (2), we can express
@2zw�x; 0� from wall-based quantities as

@2zw�x; 0� � �rx � ��x� �
1

��x; 0� rx��x; 0� � ��x� (8)

B. Separation and Attachment Definitions

We say that the flow separates at the z� 0 boundary if fluid
particles starting arbitrarily close to the boundary converge to a
streamline L (separation curve) or a stream surface S (separation
surface), alongwhich they are ejected from the boundary (see Fig. 1).
In the language of nonlinear dynamics, L is a one-dimensional
unstable manifold of a boundary point (separation point) and S is a
two-dimensional unstable manifold of a curve of boundary points
(separation line).

We define attachment as separation exhibited by the flow in
backward time. Attachment points are, therefore, boundary points
with a one-dimensional stable manifold (attachment curve), and
attachment lines are boundary curves with a two-dimensional stable
manifold (attachment surface), as shown in Fig. 2.

We shall focus on separation and attachment surfaces and lines
that are bounded, smooth, locally unique, transverse to the boundary,
and robust with respect to small perturbations to the flow. For such
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structures, amathematically exact nonlinear theorywas developed in
[23], which we shall review next.

C. Separation and Attachment Criteria

For what follows, we first recall in Fig. 3 the basic topology of
fixed points and limit cycles we are going to use in the following
discussion. In [23] it was shown that if p is a point on the z� 0
boundary, then

S0 p is a separation point if, and only if,

� �p� � 0; rx � ��p�< 0; detrx��p�> 0 (9)

that is, p is either a stable node or a stable spiral of the wall-shear
field (5).

R0 p is an attachment point if, and only if,

� �p� � 0; rx � ��p�> 0; detrx��p�> 0

that is,p is either a unstable node or a unstable spiral of thewall-shear
field (5).

As argued in [23], a separation or attachment line � is necessarily a
full wall-shear trajectory fx�s;x0�g1s�0. Because there are infinitely
many wall-shear trajectories on the z� 0 boundary, additional
criteria are required to identify separation and attachment lines. The

p
γ

a) b)

Fig. 1 Steady separation along a) a streamline (one-dimensional unstable manifold)L and b) a stream surface (two-dimensional unstable manifold)S.

p
γ

a) b)

Fig. 2 Steady attachment along a) a streamline (one-dimensional stable manifold) L and b) a stream surface (two-dimensional stable manifold) S.

Fig. 3 The main planar vector field features used in our discussion: a) node, b) spiral, c) saddle, and d) stable limit cycle.
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following criterion provides sufficient and necessary conditions for
the existence of such lines.

1. Separation Line Criterion

Abounded trajectory � of thewall-shearfield is a separation line if,
and only if, one of the following holds (cf. Fig. 4):

1) S1 � originates from a saddle pwithrx � ��p�< 0 and ends at a
stable spiral q with rx � ��q�< 0.

2) S2 � originates from a saddle pwithrx � ��p�< 0 and ends at a
stable nodeqwithrx � ��q�< 0. Also, � is tangent to the direction of
weaker attraction at q.

3) S3 � originates from a saddle p with rx � ��p�< 0 and spirals
onto a stable limit cycle � with

Z
�

rx � ��x�s;x0�� ds < 0

4) S4 � is a stable limit cycle with
Z
�

rx � ��s;x0� ds < 0

In general, combinations of the basic separation patterns S1–S3
are also possible. Two examples are shown in Fig. 5: the first shows
separation lines connecting a saddle to a node and a spiral; the second
shows two separation lines emanating from different saddles but
approaching the same spiral.

2. Attachment Line Criterion

Abounded trajectory � of the wall-shear field is an attachment line
if, and only if, one of the following holds:

1) R1 � originates from an unstable spiral p, where rx � ��p�> 0
and ends at a saddle q, where rx � ��q�> 0.

2) R2 � originates from an unstable nodepwithrx � ��p�> 0 and
ends at a saddle q with rx � ��q�> 0. Also, � is tangent to the
direction of weaker repulsion at p.

3) R3 � spirals off from an unstable limit cycle � with
Z
�

rx � ��x�s;x0�� ds > 0

and ends at a saddle q with rx � ��q�> 0.
4) R4 � is an unstable limit cycle with

Z
�

rx � ��x�s;x0�� ds > 0

The four basic attachment patterns R1–R4 and their combinations
can be visualized by reversing the arrows in Figs. 4 and 5.

All saddles, nodes, spirals and limit cycles featured in the
preceding separation and attachment criteriamust be nondegenerate,
that is, must attract or repel nearby wall-shear trajectories

exponentially in s. Additionally, in the case of a node, the two rates of
attraction or repulsion must be unequal.

Specifically, a nondegenerate node p satisfies [23]

�rx � ��p��2 > 4 detrx��p�> 0 (10)

a nondegenerate saddle p satisfies

detrx��p�< 0 (11)

a nondegenerate spiral p satisfies

0< �rx � ��p��2 < 4 detrx��p�

and a nondegenerate limit cycle � satisfies

Z
�

! � �rx�!�
j!j2

����
x�x�s;x0�

ds ≠ 0 (12)

D. Separation and Attachment at the Corners

The conditions in Eqs. (10–12) will hold for general flows as long
as p and � are bounded away from the corners. Flows that separate or
reattach at the corners, however, will violate Eq. (10) or Eq. (11);
examples include the backward-facing-step flow and the lid-driven-
cavity flow analyzed in this paper.

To see this, consider the case of a vertical wall satisfying x� 0 in
Fig. 6. Because of the no-slip condition on the z� 0 and x� 0
planes, the velocity field can be written as [23]

v �x; z� � �x2zA; xzB; xz2C� (13)

where

Fig. 4 Four basic separation patterns S1–S4.

a) b)

Fig. 5 Separation lines a) S1 and S2, emanating from the same saddle-

type wall-shear zero and b) two S2, terminating at the same spiral-type

wall-shear zero.
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A�x; z� �
Z

1

0

Z
1

0

Z
1

0

@3xxzu�rqx; y; sz�q dq dr ds

B�x; z� �
Z

1

0

Z
1

0

@2xzv�rx; y; sz� ds dr

C�x; z� �
Z

1

0

Z
1

0

Z
1

0

@3xzzw�sx; y; rqz�q dq dr ds

(14)

Consequently, the wall-shear field on the z� 0 boundary, its
divergence, and the determinant of its gradient vanish identically at
the corner formed by the intersection of x� 0 and z� 0.

Following [23], we now discuss higher-order analogs of the
nondegeneracy conditions in Eqs. (10) and (11) under which S1–S4
and R1–R4 remain applicable at the corners. As we show in the
Appendix, a pointp lies in the intersection of awall-shear line and the
x� z� 0 corner if

@2xzv�p; 0� � 0

We further show that the leading-order stretching rate off the z� 0
plane at the point p is now given by

@3xzzw�p; 0� � �rx � @x��p� (15)

A comparison of Eqs. (8) and (15) reveals that � must be replaced by
@x� in all conditions on nodes and saddles in S1–S3 and R1–R3. In
addition, Eqs. (10) and (11) are replaced by the following two
conditions: p is a nondegenerate node if

�rx � @x��p��2 > 4 detrx@x��p�> 0 (16)

whereas p is a nondegenerate saddle if

detrx@x��p�< 0 (17)

E. Separation and Attachment Slope

If p is a separation point, the one-dimensional separation curve L
emanating from p is locally represented by

x � p� zG�z� (18)

where G admits the Taylor-series expansion

G �z� � g0 � zg1 � 1
2
z2g2 � 1

6
z3g3 � . . . (19)

The slope of L obeys the formula [23]

g 0 ��f2rx��p� � �rx � ��p��Ig�1@2zu�p; 0� (20)

with I denoting the two-dimensional identity matrix; the same
formula is valid for attachment curves. The higher-order terms in
Eq. (19) are obtained from a recursive scheme.

Similarly, if � is a separation line, then the corresponding two-
dimensional separation surface S and the wall normal at a point
x0 2 � encloses an angle 	�x0� that satisfies

tan 	�x0� � � lim
s!�1

Z
s

0

e
R
r

0
�12@2zw�q��S?�q�� dq @

2
zu � !
2j!j

����
x�x�r;x0�;z�0

dr

(21)

where @2zw�q� is defined in Eq. (7), and S?�q� is defined as

S?�q� �
! � �rx�!�
j!j2

����
x�x�q;x0�

measuring the wall-shear stretching rate normal to x�q;x0�.
Attachment angles can be computed by changing the limit to s!
�1 in Eq. (21).

F. Separation in Navier–Stokes Flows

In flows governed by the Navier–Stokes equations, the separation
slope and angle formulas can be simplified to depend on on-wall
quantities only. To illustrate this, we consider the general
compressible Navier–Stokes momentum equations

@��v�
@t
�r � ��vv� � �rp�r � � (22)

with vv denoting the dyadic product of vwith itself. The stress tensor
� is given by

� � ��r � v�I� 2�D

where I is 3 	 3 and D� 1
2
�rv� �rv�T �. Invoking the Stokes

hypothesis 3�� 2�� 0, we rewrite the stress tensor in component
form as


ij ��
2

3
�
@vk
@xk

�ij � �
�
@vi
@xj
�
@vj
@xi

�
(23)

with �ij denoting the Kronecker delta, with �x1; x2; x3� 
 �x; z� and
v� �v1; v2; v3� 
 �u; v; w�, and with summation understood over
repeated indices.

Under the assumption that the viscosity coefficients are constant
and the flow is steady, Eq. (22) becomes

@��vivj�
@xj

�� @p
@xi
� �

@
ij
@xj

(24)

Consider the x1 component of Eq. (24),

@��uu�
@x

� @��uv�
@y

� @��uw�
@z

�� @p
@x
� �

�
@
xx
@x
�
@
xy
@y
� @
xz

@z

�

(25)

Note that on the boundary x3 
 z� 0, we have

@��uu�
@x

� @��uv�
@y

� @��uw�
@z

� 0;
@
xx
@x
� 0

@
xy
@y
� 0;

@
xz
@z
� @

2u

@z2

which, coupled with Eq. (25), yields

uzz�x; 0� �
1

�
px�x; 0�

A similar equation can be derived for the x2 component. Combining
the equations for the x1 component and x2 component leads to the
relationship

@2zu�x; 0� �
1

��
rxp�x; 0� (26)

Given Eq. (26), the separation slope formula (20) and the
separation angle formula (21) become

z = 0

x = 0y = 0
p

Fig. 6 Separation at the corners.
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g 0 ��
1

��
�2rx��p� � rx � ��p�I��1rxp�p; 0� (27)

and

tan 	�x0�

� � 1

2��
lim
s!�1

Z
s

0

e
R
r

0
�12@2zw�q��S?�q�� dq �rxp;!�

j!j

����
x�x�r;x0�;z�0

(28)

Recall that @2zw�q� can be computed from on-wall quantities using
Eq. (8). Attachment slopes and angles satisfy Eqs. (27) and (28) (with
s!�1).

G. Algorithm for Locating Separation and Attachment

The preceding results lead to the following algorithm for locating
separation and attachment:

1) For a givenwall-shearfield ��x�,find all nondegenerate zerospi
and limit cycles �j. Away from the corners, use the conditions in
Eqs. (10–12); at the corners, use Eqs. (16) and (17).

2) For the preceding pi and �j, determine the sign of rx � ��pi�
and Z

�j

rx � ��x�s;x0�� ds

At the corners, determine the sign of rx � @x��pi�, where x is the
coordinate introduced in Sec. II.D along the corner line.

3) For each nondegenerate wall-shear saddle pk, find its stable and
unstable manifolds in the z� 0 plane. The manifold Wu�pk� is
obtained numerically by advecting a small line segment (initially
tangent to the unstable eigenvector ofpk) using the flow of _x� ��x�.
In other words, we take an initial condition on the unstable
eigenvector of pk sufficiently close to pk and solve the system
_x� ��x� for that initial condition. The manifoldWs�pk� is obtained
by backward-advecting a small line segment, initially tangent to the
stable eigenvector of p using the flow of _x� ��x�.

4) Identify separation and attachment points using the criteria S0
and R0.

5) Identify separation and attachment lines from the criteria S1–S4
andR1–R4.At the corners, use @x��pi� instead of��pi� in S1–S3 and
R1–R3.

6) Compute the slope of separation and attachment curves using
Eq. (20) or Eq. (27).

7) Compute first-order approximations for attachment and
separation surfaces from the angle formula in Eq. (21) or Eq. (28).

8) If the velocity field off the boundary is available, compute
global separation and attachment surfaces by advecting their tangent
planes (obtained from the first-order approximation in item 7) in the
appropriate time direction.

III. Numerical Simulations

A. Numerical Methodology

We consider a Newtonian fluid with zero bulk viscosity. The
kinetic viscosity �, the conductivity �, and the specific heats at
constant pressure cp and at constant volume cv are assumed to be
independent of the temperature. Under these hypotheses, the
nondimensional governing equations expressing the conservation of
mass, momentum, and energy in Cartesian coordinates xi become

@�

@t
� @��vi�

@xi
� 0 (29)

@��vi�
@t
�
@��vivj�
@xj

�� @p
@xi
� 1

Re

@
ij
@xj

(30)

@��e�
@t
� @��evi�

@xi
�� @�pvi�

@xi
�
@�vj
ij�
@xi

� 1

�� � 1�M2
fPr

@2T

@x2i

(31)

As before, vi denotes the velocity field components, p is the
mechanical pressure, and e denotes the sum of internal and kinetic
energies. The stress tensor 
ij is given in Eq. (23). Equations (29–31)
are closed with the ideal gas law

p� �T

�M2
f

so that

e� p

� � 1
� � u

2
i

2

All variables are normalized by the reference length Lf , the
density �f , the velocity Uf , and the temperature Tf. The
nondimensional numbers in the preceding equation are the Reynolds
number Re� �fUfLf=�, the Prandtl number Pr� cp�=�, and the
reference Mach number Mf �Uf=C, where C�

������������
�RTf

p
is the

speed of sound with gas constant R.
We solve Eqs. (29–31)with a staggered-gridmultidomain spectral

method. For a detailed description and validation of this method, we
refer to [24,25].

B. Numerical Models

We consider two different flow geometries: a backward-facing
step and a lid-driven cavity. Both are classic benchmark problems
with complex separation and attachment topologies that are ideal for
the validation of the separation criteria listed in Sec. II.

1. Backward-Facing Step

We consider the two-dimensional, closed, backward-facing-step
flow studied by Gresho et al. [26], with a slight three-dimensional
perturbation added in the periodic spanwise direction. The
computational model is shown in Fig. 7a.

The upstream and downstream lengths from the step are Lu and
Ld. Following [26], we take S� h� 1, Lu � 1, and Ld � 34. We
take the spanwise width to beW � 4.

At the inflow, we specify the analytical velocity and temperature
curve of a flow between two infinite parallel plates:

u0�z� � �6��z � S�2 � �z � S��

T�z� � Twall �
�
3�� � 1�
4Pr

�1 � �2�z � S� � 1�4�
� (32)

To introduce three-dimensional features into the flow, wemodify the
inflow u velocity as

u�y; z� � u0�z��1� 0:1 cos�2�y=W��

At the outflow, we again specify velocity and temperature profiles
according to the analytical flow between parallel plates, so that the
mass-flow rates at the inflow and outflow are equal. We compute the
prescribed pressure difference between inflow and outflow from the
analytical channel-flow pressure gradient. The walls are no-slip and
isothermal; the spanwise boundary conditions are periodic. We
initialize the flow with the inflow boundary condition (32).

The Reynolds number based on the bulk inflow velocity and the
step height is Re� 300, ensuring laminar separation on the top wall
[27]. TheMach number based on thewall temperature and the inflow
bulk velocity is Ma� 0:4, which ensures a nearly incompressible
flow without restricting the explicit-time-scheme step. The Prandtl
number is Pr� 0:72.

The numerical studies of Armaly et al. [27] and Gresho et al. [26]
indicate that at Re� 300, the backward-facing-step flow is two-
dimensional. To generate three-dimensional effects, we therefore
introduced an additional spatial spanwise variation in the inlet
velocityfield. Because the numericalmethodologywe used is similar
to that described in [26], we adopt the resolution from that study. By
taking the Reynolds number to be 25% less than used in [26], we
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reasonably expect that the same resolution still guarantees
convergence despite the new three-dimensional effects.

Specifically, we take 2 	 1 and 4 	 17 domains in the x � z plane
upstream and downstream of the sudden expansion. In accordance
with the dimensions of the elements in the x � z plane, we take six
elements in the spanwise direction. In each domain, we employ a
ninth-order discretization.

With this setup, the flow reaches steady state after 200 non-
dimensional time units. We reproduced the 2-D steady-state solution
of Gresho et al. [26] at Re� 400 (not shown here). To ensure a
laminar steady flow for 3-D flowwith the perturbed inflow boundary
condition, we consider the flow at a slightly smaller Reynolds
number of Re� 300 in our 3-D simulation.

In Fig. 8a, we show representative streamlines computed in the
sudden expansion of the backward-facing step.

The flow separates at the sharp edge of the expansion and
reattaches further downstream at the bottom wall. The sudden
expansion also creates a smaller separation bubble on the top wall
behind the step. As a result of the spanwise sinusoidal inflow
perturbation, the separation and attachment patterns show a spanwise
three-dimensional variation, which we shall analyze next.

2. Lid-Driven Cavity Flow

Our second study is on the lid-driven cavity. The computational
model (Fig. 7b) consists of a cube with sides L. The top wall in the z
direction is driven at a constant velocity u in the x direction. All walls
are no-slip and isothermal. The velocity distribution on the moving
top wall is tapered to zero toward the sides according to a parabolic
profile; this is to avoid velocity singularities at these locations.

The Reynolds number based on the top-wall velocity and the cube
side is Re� 400, ensuring laminar flow [28]. The Mach number
based on the wall temperature and the inflow bulk velocity is
Ma� 0:1, rendering the flow practically incompressible; the Prandtl
number isPr� 0:72. Started from a quiescent state, the flow reaches
steady state after 25 nondimensional time units.

The computational grid consists of four domains, with the grid
refined near the walls. With each domain of seventh order, we obtain
a converged solution that is in close agreement with the 2-D
simulations in [29]. Based on the convergence studies by Jacobs et al.
[25], this resolution guarantees a well-resolved cavity flow.

For the Reynolds number Re� 400, the y� 0:5 midplane is
invariant (i.e., composed of streamlines), as found in [28]. Figure 8c
shows the 2-D streamline pattern in themidplane, with the separation

a) b)

Fig. 7 Steady flow geometries studied in this paper: a) backward-facing step and b) lid-driven cavity.

Fig. 8 Streamlines computed a) for the backward-facing step, b) for the lid-driven cavity, and c) in the y� 0:5 symmetry plane of the lid-driven cavity.
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and attachment clearly visible near the x� 1wall. The streamlines in
the cavity flow (Fig. 8b) exhibit complicated behavior [28], leading
to the complex three-dimensional separation geometry that we
identify next.

IV. Separation and Attachment Analysis

A. Backward-Facing Step

Figure 9 shows thewall-shear patterns on the bottom and topwalls
of the backward-facing step. The flow is periodic in the spanwise
direction, as reflected by the periodic spanwise wall-shear
distribution.

We now apply steps 1–8 of the separation and attachment
detection algorithm described in Sec. II.G.

1. Steps 1–3

In Table 1, we list all zeros of � on the top and bottomwalls, along
with quantities that verify the nondegeneracy of these zeros (steps 1–
2).We then determine (step 3) the stable and unstablemanifolds of all
the nondegenerate wall-shear saddles Sij, featured in Fig. 9.

2. Steps 4 and 5

Based on Table 1, criteria S0–S4 and R0–R4 of Sec. II.C give the
following results (cf. Sec. II.G):

For the bottom wall,
1) N11 satisfies R0 and hence is an attachment point.
2) The wall-shear lines connecting N11 to S11 and S21 satisfy R2

and hence form an attachment line.
For the top wall,
1) F12 and F22 satisfy S0 and hence are separation points.
2) N12 satisfies R0 and hence is an attachment point.
3) The wall-shear lines connecting S12 to F12 and F22 satisfy S1

and hence form a separation line. (Note, however, that the lines
connecting S32 to F12 and F22 do not form a separation line.)

4) The wall-shear lines connecting N12 to S32 and S52 satisfy R2
and hence form an attachment line.

3. Steps 6 and 7

We obtain the local separation and attachment surfaces identified
previously by computing the angle formula Eq. (28) at each point of
the separation or attachment line. Figures 10a and 11a show the
resulting local analytic approximations to the separation and
attachment surfaces, with nearby streamlines validating the
approximations. In this example, separation and attachment curves
are contained in separation and attachment surfaces, respectively,
hence we do not compute them separately.

4. Step 8

Figures 10b and 11b show the corresponding global separation
and attachment surfaces, which we obtained by advecting
trajectories starting from the local approximate surfaces.

B. Lid-Driven Cavity Flow

We study the wall-shear field on each of the walls shown in
Fig. 12. Because of the symmetry of the flow with respect to the
y� 0:5plane,walls 1 and 2 admit identicalwall-shearfields.Wewill
again go through steps 1–8 of the algorithm presented in Sec. II.G.

1. Steps 1–3

In Table 2, we list all zeros of� onwalls 1–4 and 6.We also list the
quantities that verify the nondegeneracy of these zeros (steps 1 and
2). In step 3, we determine the stable and unstablemanifolds of all the
nondegenerate wall-shear saddles shown in Fig. 12. Note that wall 5
is not fixed and hence violates the assumption in Eq. (3). The
correspondingwall-shear lines in Fig. 12, however, show that there is
no separation or attachment on this wall.

2. Steps 4 and 5

Based on Table 2, the separation and attachment criteria of Sec. II.
C give the following results (cf. Sec. II.G):

For walls 1 and 2,
1) F11 satisfies S0 and hence is a separation point.
2) F21 and N11 satisfy R0 and hence are attachment points.
3) The wall-shear lines connecting S11 to F11 and N113 satisfy S1

and S2, respectively, and hence form a separation line.
4) The wall-shear lines connecting S21 to F11 and N114 satisfy S1

and S2, respectively, and hence form a separation line.
For wall 3,
1) N23 and N33 satisfy S0 and hence are separation points.
2) N13 satisfies R0 and hence is an attachment point.
3) The wall-shear lines connecting N13 to S13, S232, S134 and S231

all satisfy R2 and hence form attachment lines.
4) The wall-shear line connecting N136 to S13 satisfies R2 and

hence is an attachment line.
For wall 4,
1) N24 and N34 satisfy S0 and hence are separation points.
2) N14 satisfies R0 and hence is an attachment point.

Fig. 9 Wall-shear lines computed on the top and bottomwalls behind the backward-facing step. Sij refer to saddles,Nij to nodes, andFij to foci (spirals).

We also indicate special wall-shear lines (stable and unstable manifolds of the saddles) connecting zeros. Among these, the solid lines will turn out to be
actual separation lines (green) or attachment lines (blue). The location of step at x� 1 is indicated by a dotted magenta line.

Table 1 Classification of wall-shear zeros for the backward-facing step

Bottom wall (z� 0)
Wall-shear zero �x; y� coordinates rx � � detrx�
S11 � S21 (11.49, 4.00), (11.49, 0.00) 1.00 �1:00
N11 (10.79, 2.00) 2.96 1.72

Top wall (z� 2)
Wall-shear zero �x; y� coordinates rx � � detrx�

S12 (8.15, 2.00) �0:54 �0:16
S22 
 S42 (13.25, 4.00), (13.25, 0.00) 0.05 �0:02
S32 
 S52 (17.09, 4.00), (17.09, 0.00) 0.12 �0:01
N12 (17.42, 2.00) 0.68 0.11

F12 
 F22 (11.58, 3.46) �0:09 0.006
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3) The wall-shear lines connecting S14 to N24 and N34 satisfy S2
and hence form a separation line.

4) The wall-shear line connecting N14 to S143 satisfies R2 and
hence is an attachment line.

For wall 6,
1) N16 satisfies R0 and hence is an attachment point.
2) The wall-shear line connectingN16 to S161 and S162 satisfies R2

and hence is an attachment line.

3. Steps 6 and 7

Figures 13a, 14a, and 15a show the local analytic approximations
to separation and attachment surfaces on walls 1, 3, and 4,
respectively, along with nearby streamlines. Figure 16a shows the
local analytic approximation to the attachment curve of the pointN16,
along with nearby streamlines, obtained from Eq. (27). The wall-
shear line connecting N16 to S161 and S162 represents an attachment
line, but computing the first-order approximation to the
corresponding separation surface would require a higher-order
version of the angle formula (28), due to the corner degeneracy at
S161 and S162.

4. Step 8

Figures 13b, 14b, and 15b show the global separation and
attachment surfaces obtained by advecting their local approxima-
tions in the appropriate time direction. Figure 16b shows the global
attachment curve of N16 obtained by advecting the local attachment
curve in backward time.

V. Conclusions

In this paper, we discussed a rigorous procedure for locating
separation and attachment points and lines on fixed no-slip
boundaries of three-dimensional steady fluid flows. The theoretical

foundations of this procedure are given in Surana et al. [23]; our
focus was the application of the theory to direct numerical
simulations of separated shear flows.

For Navier–Stokes flows, we relied on distributed measurements
of the wall-shear field �� @zu�x; 0� to find the exact location of
separation and attachment. Whenever the separation line is unique
and bounded, the separation surface will be of one of the four
topological types described in Sec. II.C. To obtain a tangent
approximation for the separation and attachment structures, we also
relied on distributed wall-pressure measurements.

As example flows, we considered a backward-facing step and a
lid-driven cavity. In both examples, we gave a full analysis of the
separation and attachment structures. In earlier studies [17–19] of
these flows, only heuristic criteria such as those based on Prandtl’s 2-
D separation conditions or visual inspection of tracings were used to
characterize separation. In the present study, we systematically
located the exact streamlines and stream surfaces to which fluid
particles converge and depart from the wall. We also constructed the
global separation and attachment surfaces by advecting their local
approximations in the appropriate time direction. The resulting
global surfaces have highly complex geometries that most likely
result in chaotic streamlines.

The theory underlying our algorithm assumes the existence of a
unique separation surface and hence is inapplicable to open
separation or crossflow separation [5,30]. Nevertheless, appropriate
extensions of the invariant manifold techniques yield a crossflow
separation line and associated separation surface that best
approximates the bulk of streamlines breaking away from the wall
(Haller et al. [31]).

For three-dimensional unsteady flows with a well-defined
asymptotic mean, separation and attachment lines can be detected by
applying the present techniques to the time-averaged velocity field
[32]. The separation lines then turn out to remain fixed in time, even
though the corresponding separation surfaces are time-dependent.

Fig. 10 Attachment surface on the bottom wall of the backward-facing step. a) Local analytic approximation validated by streamlines and b) global

surface obtained from advecting the local approximation in time.

Fig. 11 Same as Fig. 10, but for the top wall. For better visibility, only half of the global separation surface is shown.
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By contrast, the application of critical point theory to the
instantaneous velocity field would suggest that the separation
location is time-varying. For details of the time-dependent version of
the present separation theory, we refer the reader to Surana et al. [32],
who extend related two-dimensional results by Haller [33] and Kilic
et al. [34].

Appendix

Using the form given in Eq. (13) for the velocity field and
introducing the rescaled time s through the relation ds= dt�
x�t�z�t�, we find that streamlines satisfy

d

ds
�x; y; z� � �xA; B; zC� (A1)

A point p� �0; p� in the z� 0 plane is a fixed point for Eq. (A1) if

B�p; 0� � 0 (A2)

To understand the topology of limiting streamlines near �p; 0�, we
linearize Eq. (A1) at �p; 0�. The linearization of the scaled velocity
field (A1) at �p; 0� admits the coefficient matrix:

M �p� �
A�p; 0� 0 0

@xB�p; 0� @yB�p; 0� @zB�p; 0�
0 0 C�p; 0�

0
@

1
A (A3)

Restricted to the z� 0 plane, the eigenvalues of M�p� are

A�p; 0� � @3xxzu�p; 0�; @yB�p; 0� � @3xyzv�p; 0� (A4)

thus,p can only be a saddle or a node for the rescaled Eq. (A1) within
the z� 0 plane.

Fig. 12 Wall-shear fields on walls 1, 4, 5, and 6 for the lid-driven-cavity flow.We also indicate special wall-shear lines (stable and unstable manifolds of

the saddles) connecting wall-shear zeros. Among these, the solid lines turn out to be actual separation lines (green) or attachment lines (blue) lines.
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Table 2 Classification of wall-shear zeros for the lid-driven cavity. The third-order derivatives were obtained by spectral differentiation of the

polynomial base functions [24]

Wall 1 (y� 0) and Wall 2 (y� 1)
Wall-shear zero �x; z� rx � � detrx�

S11 (0.33, 0.02) �0:36 �0:74
S21 (0.97, 0.50) �3:99 �17:81
F11 (0.63, 0.73) �15:72 103.20
F21 (0.83, 0.03) 1.78 0.87
N11 (0.03,0.05) 0.82 0.17

Wall 1 (y� 0) corners and wall 2 (y� 1) corners
Wall-shear zero �x; z� rx � @x� detrx@x�
N114, S141 (1.00, 0.52) �247:77 5076.68
S116, S161 (0.00, 0.05) 6.80 �434:07

Wall 3 (z� 0)
Wall-shear zero �x; y� rx � � detrx�

S13 (0.08, 0.50) 1.59 �5:00
N13 (0.74, 0.50) 16.49 61.60
N23 (0.31, 0.96) �3:24 2.54
N33 (0.03, 0.04) �3:45 2.84

Wall 3 �z� 0� corners
Wall-shear zero �x; y� rx � @y� detrx@y�
N113, S131 or S132 (0.34, 0.00) or (0.34, 1.00) 16.63 �3256:11
S113, S231 or S232 (0.83, 0.00) or (0.83, 1.00) 27.96 �81:12

Wall 3 at intersections with wall 4 and 6
Wall-shear zero �x; y� rx � @x� detrx@x�
S134, S143 (1, 0.50) 3.30 �9219:04
N136, S163 (0, 0.50) 131.51 3180.26

Wall 4 (x� 1)
Wall-shear zero �y; z� rx � � detrx�

S14 (0.50, 0.24) �3:89 �2:10
N14 (0.50, 0.15) 8.03 15.90
N24 (0.08, 0.41) �7:24 9.09
N34 (0.92, 0.41) �7:15 8.36

Wall 6 (x� 0)
Wall-shear zero �y; z� rx � � detrx�

N16 (0.50, 0.15) 8.03 15.90

Fig. 13 Approximation to the separation surfaces a) local, for walls 1 and 2, obtained from the slope formula in Eq. (28) and b) global, obtained by

advecting the local approximate surfaces in time.

Fig. 14 Same as Fig. 13 but for wall 3.
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From the characteristic Eq. (A3), we find that p is a nondegenerate
node within the z� 0 plane in Eq. (A1) if

�A�p; 0� � @yB�p; 0��2 > 4A�p; 0�@yB�p; 0�> 0 (A5)

whereas p is a nondegenerate saddle within the z� 0 plane if

A�p; 0�@yB�p; 0�< 0 (A6)

Combining Eqs. (A5) and (A6) with Eq. (A4) gives the
nondegeneracy conditions in Eqs. (16) and (17).

Using the form in Eq. (13) for the velocity field in the continuity
equation (2), we obtain

r� � �x2zA; xzB; xz2C�
� �xz�2A� x@xA� @yB� 2C� z@zC� � 0

or, equivalently,

r� � �xA;B; zC� � ��2A� x@xA� @yB� 2C� z@zC� � 0 (A7)

By Eq. (A2), at the equilibrium p, Eq. (A7) reduces to

2A�p; 0� � @yB�p; 0� � 2C�p; 0� � 0 (A8)

which is equivalent to Eq. (15) by Eq. (A4).
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