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The geometry and statistics of mixing in aperiodic flows
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Department of Mechanical and Environmental Engineering and Department of Mathematics,
University of California, Santa Barbara, California 93106-5070

~Received 8 January 1999; accepted 28 June 1999!

The relationship between statistical and geometric properties of particle motion in aperiodic,
two-dimensional flows is examined. Finite-time-invariant manifolds associated with transient
hyperbolic trajectories are shown to divide the flow into distinct regions with similar statistical
behavior. In particular, numerical simulations of simple, eddy-resolving barotropic flows indicate
that there exists a close correlation between such geometric structures andpatchinessplots that
describe the distribution of Lagrangian average velocity over initial conditions. For barotropic
turbulence, we find that Eulerian velocity correlation time scales are significantly longer than their
Lagrangian counterparts indicating the existence of well-defined Lagrangian structures.
Identification of such structures shows a similar, close relationship between the invariant manifold
geometry and patchiness calculations at intermediate time scales, where anomalous dispersion rates
are found. ©1999 American Institute of Physics.@S1070-6631~99!02910-4#
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I. INTRODUCTION

The dynamical systems perspective on the problem
mixing in fluid flows was introduced in the paper of Aref1

where particle motion in a two-dimensional point-vorte
driven oscillatory flow was analyzed. Since then the sub
has been treated in numerous papers~see, e.g., Ottino2 for a
survey!. While the dynamical analysis of mixing in two
dimensional time-periodic and quasiperiodic flows has
ceived much attention, mixing mechanisms in aperio
flows have mainly been treated using a combination of
merical and probabilistic tools~see, e.g., Babianoet al.,3 del
Castillo,4 Weiss et al.,5 Zaslavsky,6 and Ziemniaket al.7!.
The main reason is that several key results in dynam
systems theory are formulated in terms of maps, and he
are inapplicable to flows whose evolution cannot be appro
mated via repeated iterations of a map. Another reason is
dynamical systems has traditionally been concerned w
asymptotic behavior, a concept that is undefined for fin
time experimental and numerical datasets.

Recently, two different approaches have been propo
in dynamical systems to circumvent the difficulty of ape
odic time dependence. First, Mezic´8 used tools from ergodic
theory to study and predict Lagrangian velocity average
two-dimensional flows. Such averages can be used to
struct patchiness plotsthat reveal regions in the flow with
similar finite-time statistical properties~cf. Malhotraet al.9!.
Second, Haller and Poje10 developed a geometric theory o
mixing in two-dimensional, aperiodic fluid flows. This com
puter assisted analytic theory enables one to constructfinite-
time invariant manifolds for any finite-time velocity datase
thereby providing a complete understanding of individu
mixing events associated with mesoscale structures in a
cations~cf. Poje and Haller11 and also Milleret al.12!.

In this paper we explore the connection between fin
2961070-6631/99/11(10)/2963/6/$15.00
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time mixing theory and patchiness plots for realizable, a
riodic flows. In Sec. II the geometric theory of mixing fo
aperiodic flows is reviewed. We recall how finite-time
invariant manifolds provide exact templates for particle d
namics and divide the flow into regions with similar mixin
properties. In sec. III the notion ofpatchiness plotsis intro-
duced and shown to be a powerful diagnostic tool for ap
odic flows. A comparison of the two approaches and a d
cussion of their remarkable correlation is given in Sec.
where the phenomena of oceanographic eddy shedding
two-dimensional turbulence are treated by these techniq

II. FINITE-TIME-INVARIANT MANIFOLDS AND MIXING

We consider a two-dimensional velocity field of th
form

ẋ5u~x,y,t !, ẏ5v~x,y,t !, ~1!

and assume that on the time interval@ t2,t1#, the velocity
field admits a set of closed velocity contours bounded b
time-dependent, singular contour curvef t that contains a
saddle-type stagnation pointp(t)5@x(t),y(t)# @see Fig.
1~a!#. We refer to this structure as akinematic eddy.

As shown in Haller and Poje,10 if the deformation rate of
the kinematic eddy stays below a theoretical bound, then
flow admits a nearbyhyperbolic fluid particle motionG(t)
5@Gx(t),Gy(t)# that attracts a setWs(G) of initial condi-
tions exponentially, and repels another setWu(G). These
sets are two-dimensional surfaces in the extended ph
space of the variables~x,y,t! and can be considered as finit
time analogs of the well-known stable and unstable ma
folds of dynamical systems theory. However, unlike sta
and unstable manifold,Ws(G) and Wu(G) are not unique,
which is related to the fact that they are constructed base
finite-time information. Still, they turn out to be unique up
3 © 1999 American Institute of Physics
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2964 Phys. Fluids, Vol. 11, No. 10, October 1999 Poje, Haller, and Mezić
errors that vanish exponentially as either the time inter
Dt5t12t2 or the strength of the hyperbolicity increases.
summary, if the speed and the deformation rate of a ki
matic eddy are not too large, and if it exists on a long enou
time interval, then a ‘‘saddle-type’’ fluid particle motion ex
ists near the path spanned by the stagnation pointp(t), with
finite-time stable and unstable manifoldsthat are uniquely
determined for all practical purposes. Complete proofs
these statements as well as a sample application can be f
in Haller and Poje.10

FIG. 1. ~a! The formation of akinematic eddyin the Eulerian field.~b! The
dynamic eddydefined by stable and unstable sets in the extended p
space.
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Once the existence of exponentially unique stable a
unstable manifolds is known, they can be determined
merically using the straddling techniques developed in Mil
et al.12 The numerically determined manifoldsWs(G) and
Wu(G), in turn, define the boundaries of adynamic eddyin
the extended phase space@see Fig. 1~b!#. They also provide
an exact classification of initial conditions in terms of the
finite-time behavior. Namely, fluid particles falling in th
‘‘channel’’ between the two manifold are mixed into th
eddy, while all other particles are excluded from mixin
This enables one to define exact eddy boundaries in Lagr
ian terms, complementing Eulerian definitions such as th
given by Weiss.13

III. STATISTICAL PROPERTIES OF PARTICLE
MOTION

In a bounded domainM, let f be an arbitrary bounded
function f :M˜R. The finite-time average off along the
particle paths of a two-dimensional velocity fieldv, is given
by

f * ~ t,x0 ,y0!5
1

t E0

t

f @x~t,x0 ,y0!,y~t,x0 ,y0!,t#dt, ~2!

where x(t,x0) is the location, at timet5t, of a particle
located atx0 at time t50. For a velocity field with periodic
time dependence, it can be shown~see Mezic´,8 Mezić and
Wiggins14! that in the infinite-time limit the level sets of th

se
60
FIG. 2. Double-gyre primitive equations: stable manifold~bold red line! and patchiness plot of thex component of Lagrangian velocity, averaged over
days. The Eulerian velocity, averaged over the same 60-day interval, is shown contoured. Contour interval 0.05 m/s, (ūmin ,ūmax)5(20.3 m/s,0.3 m/s!
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2965Phys. Fluids, Vol. 11, No. 10, October 1999 The geometry and statistics of mixing in aperiodic flows
averagef * are invariant sets for the dynamics. Moreover, t
joint level sets of time averagesf i* of a system of orthogona
basis functionsf i can be shown to be invariant sets on whi
the dynamics of the flow is ergodic. These results rely on
use of Birkhoff’s ergodic theorem.15 For flows with aperi-
odic time dependence, the limit in question might not exis16

but the finite-time average plots still indicate a great d
about mixing properties of the flow, especially if the functio
f is chosen in a physically relevant way. The physical qu
tity that determines the statistical behavior of particle path
the velocity that a particle samples along its path. The ve
ity vector v determines two functions:vx :M˜R and
vy :M˜R. Thus, we consider the finite-time average velo
ties vx* (t,x0 ,y0)5@x(t,x0 ,y0)2x0#/t and vy* (t,x0 ,y0)
5@y(t,x0 ,y0)2y0#/t, where@x(t,x0 ,y0),y(t,x0 ,y0)# is the
position at timet of a particle starting at (x0 ,y0) at time t
50. Plots ofvx* (t,x0 ,y0) and vy* (t,x0 ,y0) as functions of
the initial particle locations,x0 ,y0 have been namedpatchi-
ness plots by Malhotra et al.9 after previous work by
Pasmanter.17

IV. RESULTS

The above ideas are evaluated in the context of an ed
resolving, reduced gravity, primitive equation model of t
wind-driven circulation in an ocean basin. In brief, the sh
low water equations,

]u

]t
1u

]u

]u
1v

]u

]y
2 f 0~11by!v52g8

]h

]x
1Fu1n¹2u,
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]h
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1

]~uh!

]x
1

]~vh!

]y
50,

are solved on a regular grid,Dx5Dy510 km using second
order finite difference methods.18 The effects of smaller-
scale motions have been subsumed in the Laplacian diffu
terms with an ‘‘eddy viscosity’’ coefficientv; g8 is the re-
duced gravity, i.e., the normal gravitational accelerat
weighted by the density difference between the active up
layer and the quiescent lower layerDr/r. No-slip boundary
conditions are imposed on the velocities at the sidewalls.
parameter values are typical of basin scale simulations~see,
e.g., Figueroa and Olsen19! and are given in Poje an
Haller.11

The imposed wind stress, (Fx,Fv)5@(t0 /rH0)
3sin(2py/Ly),0#, sets up a double gyre circulation; a c
clonic ~counterclockwise! circulation in the north and an an
ticyclonic circulation in the south. We concentrate our atte
tion on the strong jet region that separates the two gy
This jet is unstable and, like the midlatitude oceanic jets, i
meant to model, intermittently rolls up, shedding large-sc
eddies in the process. A complete description of the fin
time-invariant manifold structure produced by transient h
perbolic points in the detaching eddy flow is given in Po
Downloaded 20 Feb 2005 to 18.51.1.222. Redistribution subject to AIP 
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and Haller.11 Here we concentrate on the relationship b
tween such structures and Lagrangian statistical meas
described by patchiness plots.

Figure 2 shows the intersection, at timet5t0 , of the
finite-time stable manifold corresponding to a detaching m
ander event with thex2y plane. The associated hyperbol
trajectory is located atG'(950,950). The Lagrangian man
fold structure is superimposed on a patchiness plot of
60-day averaged,x component of the velocity. The calcula
tion was performed using 10 000 particles initialized on
regular grid at timet0 . The average velocity of each partic
is computed and plotted at the initial particle location. T
correspondence between the manifold geometry and
Lagrangian-averaged velocity is striking. The ‘‘mixing cha
nel’’ formed by the extended branches of stable manif
clearly marks those initial conditions in the jet region th
possess significantly negative average velocity. A cont
plot of the x component of the Eulerian velocity, average
over the same 60-day time period is also shown. While th
is a strong correlation between the finite-time manifold g
ometry and spatial variations of the Lagrangian velocity s
tistics, there is very little correlation between the Euleri
and Lagrangian statistical descriptions on the time sca
considered. The appearance of relatively long-lived cohe
structures such as the detaching eddy implies that the dyn
ics of fluid particles, and hence Lagrangian statistics,

FIG. 3. The Lagrangian~upper! and Eulerian~lower! velocity autocorrela-
tion functions in barotropic turbulence. In each, the autocorrelation of thy
component of velocity is dashed; thex component is solid.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Barotropic turbulence: patchiness plot of the magnitude of the Lagrangian-averaged velocity for averaging times~a! 0.5, ~b! 1.0, ~c! 2.5, and~d! 5.0.
The stable~green! and unstable~red! finite time manifolds associated with three hyperbolic trajectories are superimposed.
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dominated by the saddle dynamics associated with dis
guished hyperbolic trajectories. Such structures point
strong spatial inhomogeneities in the flow and in the int
mediate time Lagrangian statistics.

In order to test the persistence of such observation
less obviously well-ordered flow fields containing identi
able coherent structures, we consider the Lagrangian dyn
ics of freely decaying barotropic turbulence. The numeri
model used is a standard spectral scheme~see Babiano
et al.3! with 1282 resolution on a scaled, 2p32p domain
solving the quasigeostrophic vorticity equation,

]q

]t
1J~q,c!5n4¹4q,

whereq5(¹22F2)c andF510 is the scaled inverse of th
Rossby deformation radius. The finite deformation radius
creases vortex–vortex interactions at scales greater thanL/F
and leads to the formation of relatively long-lived and rob
vortex structures on this scale~see Provenzaleet al.20!.

The trajectories of 812, uniformly seeded particles ar
computed alongside the evolving velocity field. The L
grangian and Eulerian velocity autocorrelations, defined

Rvv~ t,t0!5
^v~ t0 ,x0!–v~ t01t,x0!&

^uv~ t0 ,x0!u2&
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Ruu~ t,t0!5
u~x,t0!–u~x,t01t !

uu~x,t0!u2
,

respectively, are shown in Fig. 3. Here the Lagrangian
locity along a trajectory, as a function of the initial positio
x0 , is denoted byv(t,x0), while the Eulerian velocity field is
denoted byu(x,t). The operatorŝ(•)& and (•) correspond
to averaging over all initial conditions and all space, resp
tively. The autocorrelation times, given by

Taa~ t0!5E
0

`

Raa~ t,t0!dt,

are different for the two processes with the Lagrangian ti
scale,Tvv'0.5, considerably shorter than the Eulerian,Tuu

'8. The difference between the two time scales can be
plained by the presence of robust coherent vortex struct
that evolve relatively slowly in the Eulerian frame while e
fectively mixing Lagrangian particles. These are the con
tions under which the analytic conditions for the existence
finite-time-invariant manifolds are satisfied~see Haller and
Poje10!, and the existence of organizing finite-time manifol
can be concluded.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 5. Barotropic turbulence: patchiness plot of thex component of Lagrangian velocity, averaged over 2.5 time units with finite time manifolds sup
posed. Unstable,Wu, in red. Stable,Ws in green. The three hyperbolic points are marked by crosses,1.

FIG. 6. The absolute dispersion curv
for the barotropic turbulence field.
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Figure 4 shows the finite-time stable and unstable ma
folds computed for a subset of three hyperbolic trajecto
corresponding to two pairs of like-signed vortices and a v
tex dipole. From the geometric dynamical systems sta
point, the hyperbolic trajectories associated with rotat
pairs of like-signed vortices are the most robust features
the flow existing for extremely long times (t.40) with time-
averaged hyperbolicityl;1.4. Conversely, the propagatin
dipoles do not produce an easily identified frozen-time st
nation point in the fixed reference frame. The hyperbo
trajectories associated with the dipole structure are, in
case, shorter lived (t,10) with weaker averaged hyperbolic
ity, l;0.8.

Superimposed on the manifold geometry are patchin
plots of the magnitude of the averaged Lagrangian veloc
^uvu&5^(v–v)1/2& for four different averaging times. At earl
times, significant Lagrangian-averaged velocities are c
fined to the high-swirl regions in the interior of the vortice
After a few eddy-turnover times (t52.5), the Lagrangian
average velocity in the vortex cores, as defined by the m
folds, is zero. Appreciable velocities are concentrated n
the hyperbolic points and in the mixing regions straddli
the manifolds. In Fig. 5, the close relation between the fin
time manifold geometry and changes in the sign of thx
component of the Lagrangian average velocity is clea
shown for an intermediate averaging time. The use of e
detection in patchiness plots to determine the finite-ti
manifold geometry has recently been proposed by Bowma21

in the context of atmospheric mixing problems.
We note that as the averaging time is increased, the

tial structure in the patchiness plots is lost. For times lon
than several Lagrangian velocity autocorrelation times, in
vidual particles see the entire spectrum of velocities and
average velocity is zero. For intermediate time scales, wh
may in the geophysical context be the time scales of ob
vation and interest, dispersion statistics are not amenab
Taylor analysis in the diffusion limit and typically show
anomalous dispersion rates~see Fig. 6!. From the results
shown here, it appears reasonable to conclude that in a
ety of flows, particle dynamics on intermediate time sca
are dominated by the presence of finite-time Lagrang
structures associated with distinguished hyperbolic traje
ries. The exact, qualitative relationship between int
mediate-time statistics and the presence of organizing g
metric structures remains the focus of current research.
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