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Abstract In this paper, a study of the global dynam-
ics of an autoparametric four degree-of-freedom (DOF)
spring–mass–pendulum system with a rigid body mode
is presented. Following a modal decoupling procedure,
typical approximate periodic solutions are obtained for
the autoparametrically coupled modes in 1:2 internal
resonance. A novel technique based on forward-time
solutions for finite-time Lyapunov exponent is used to
establish global convergence and domains of attrac-
tion of different solutions. The results are compared to
numerically constructed domains of attraction in the
plane of initial position and initial velocity for the pen-
dulum. Simulations are also provided for a few interest-
ing cases of interest near critical values of parameters.
Results also shed some light on the role played by other
modes present in a multi-DOF system in shaping the
overall system response.
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1 Introduction

Dynamical systems possessing both flexible and rigid
body modes arise in many practical applications, in-
cluding robotics and hard disk drive systems. The vibra-
tional response of harmonically excited linear mass–
spring–damper systems exhibiting modal as well as
rigid body dynamics is well understood. Due to the
linearity of system dynamics, the vibrational response
can be projected onto the normal mode coordinates
and reduced to analyzing the response of only a flex-
ible system or that of a rigid body system. For non-
linear systems, however, this decoupling is not pos-
sible since no general modal decoupling procedure is
available. Harmonically excited spring–mass–damper
systems with nonlinear components are known to un-
dergo complicated dynamics in their vibratory mo-
tions near resonant conditions [1, 2]. More specifi-
cally, linear spring–mass–damper systems when cou-
pled to a pendulum possess quadratic nonlinearities
due to inertial coupling with the rotational motion
of the pendulum even though the pendulum by itself
only has geometric nonlinearities. These nonlineari-
ties, even if assumed to be weak and usually approx-
imated as quadratic for small excitation and response
amplitudes, lead to large vibration affects with many
scenarios.

The case of 1:2 internal resonance between a pen-
dulum and another structural or flexible mode that is
resonantly excited has received tremendous attention
in recent years. Many researchers have studied this
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class of problems where 1:2 internal resonance leads
to nonlinear modal coupling in a natural manner. See
extensive literature reviews in [1, 2]. Examples of non-
linear modal coupling due to 1:2 internal resonance in-
clude pitch and roll motion in ships and surface waves
in fluid containing cavities. Others [3–7] have studied
these systems with a view to using the pendulum as a
vibration absorber or neutralizer. To enhance the effec-
tiveness of the absorber, a computer-controlled mass
sliding over a collar on an oscillating rod was used
in [8] as a tunable vibration absorber, and active vi-
bration control laws have been also developed on the
basis of this concept (e.g., see [9]). One important ad-
vantage of the autoparametric vibration absorber over
linear passive vibration attenuation schemes based on
dynamic vibration absorbers [10] is that no additional
resonances in the neighborhood of excitation are cre-
ated when the secondary system is introduced into the
excited system. Banarjee et al. [11] studied a system
consisting of an n degree-of-freedom (DOF) mass–
spring–damper assembly with a pendulum attached to
the kth mass, and investigated periodic solutions and
possible bifurcation by using the asymptotic method
of averaging. More recently, Vyas and Bajaj [12] again
considered a single spring–mass system, but now with
multiple pendulums tuned at slightly different frequen-
cies, and showed significant increase in the effective
bandwidth of the autoparametric pendulum as a vibra-
tion absorber.

Almost all the above studies were primarily local
in that they were limited to finding small steady-state
periodic or other more complex solutions near the equi-
librium position of the unforced system, and included
their stability and bifurcation behavior. Only the work
of Lee and Hsu [13] has investigated the domains of at-
traction of a two DOF spring–pendulum system for dy-
namics within a local region in the pendulum’s plane.
To study the domains of attraction of periodic solu-
tions, the authors used the cell-to-cell mapping tech-
nique developed by Hsu [14]. The domain of attraction
of an invariant set is the set of all initial conditions
for whom the solutions converge to the invariant set.
Thus, the domains of attraction for a system provide an
understanding of the transient dynamics of the system
as it evolves or asymptotically moves toward a steady
state, and are known to be determined by the global
stable and unstable manifolds of hyperbolic invariant
sets for the system. The basin boundaries of attractors
have received much attention in the context of sensitive

dependence on initial conditions [15]. Even when the
system does not have a chaotic attractor, it can exhibit
complex transient dynamics if the basin boundaries of
periodic or other regular attractors are fractal in na-
ture. We should also note that basin boundaries are
invariant manifolds along which sensitive dependence
to initial conditions must hold. Indeed, initial condi-
tions selected on different sides of the basin boundary
approach different invariant sets, and hence develop a
finite distance, no matter how close they were initially.
The converse is certainly not true: sensitive sets are not
necessarily basin boundaries.

The domains of attraction in a region of the state–
space can also be constructed by direct numerical inte-
gration of the equations of motion over a grid of initial
conditions. This is a very numerically intensive and
inefficient approach. A more efficient approach can
be based on the determination of stable and unstable
manifolds or hyperbolic behavior in time-dependent
velocity fields. The hyperbolic behavior is, in general,
characterized by distribution of finite-time Lyapunov
exponents in the flow. Haller [16] has recently derived
rigorous results that allow one to locate finite-time hy-
perbolic sets and their local stable and unstable man-
ifolds in time-dependent velocity fields. He also pro-
vides a numerical algorithm for computing a first ap-
proximation to the uniformly hyperbolic sets in two-
dimensional velocity fields. It has also been shown
[17, 18] that contours or level curves of finite-time
Lyapunov exponents exhibit striking resemblance to
stable and unstable manifolds which define the basin
boundaries.

In this work, we consider a system consisting of an
autoparametric pendulum that is coupled to a 3-DOF
linear spring–mass–damper system. The 3-DOF sys-
tem possesses one rigid body mode and two elastic
modes. Following the problem setup, a modal decou-
pling procedure is performed in Section 2 on the non-
dimensional form of equations to study the dynamics
of the system. In Section 3, approximate steady-state
periodic solutions of the system to a harmonic force ex-
citation acting on the lowest mass are then developed
by using the harmonic balance approach. The focus
is on the dynamics of the system when the resonantly
excited highest-frequency mode is in near 2:1 internal
resonance with the pendulum linear frequency. For pa-
rameter combinations with multiple periodic solutions,
the domains of attraction of coexisting periodic solu-
tions are then considered in Section 4. The domains of
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attraction in a subset region of the state–space of the
system are first obtained by direct numerical integration
over a grid of initial conditions. Here the initial condi-
tions of importance are those for the pendulum, that is,
its angular position and angular velocity. Subsequently,
the maximal finite-time Lyapunov exponent is com-
puted for a grid of initial conditions in pendulum sub-
space, and level curves for the Lyapunov exponent are
contrasted with the domains of attraction determined
by direct numerical simulation. The work concludes in
Section 5 with some remarks.

2 Problem formulation

Consider the 3-DOF linear mass–spring–damper as-
sembly in Fig. 1, which has a pendulum attached to
the second mass, and is subjected to a single frequency
harmonic excitation applied to the bottom mass. The
masses, springs, and the dashpots in the 3-DOF sys-
tem are all identical and the system is in vertical plane.
Note that the system with pendulum in downward or
upward vertical position can also translate as a rigid
body, which represents the first mode of the system.
Clearly, the system shown may exhibit linear “locked-
pendulum” vibrations (pendulum settled to the lower or
upper equilibrium position) for the 4-DOF system with
θ = 0, or nonlinear oscillations in a system in which all
four DOFs are active (nontrivial pendulum oscillations
in addition to vibrations of the spring–mass–damper
system). Naturally, the linear forced oscillations with
pendulum in upward equilibrium position are expected
to be unstable, while those with the pendulum in down-
ward equilibrium position are expected to be stable at
least for some excitation parameters. The focus of this
study is on the case when a 1:2 internal resonance exists
between the pendulum (rotational) mode and the third
locked-pendulum mode, and this third linear mode is in
near-resonance with external excitation. It is assumed
that the coordinates x1, x2, and x3 are measured from
the equilibrium position of the system which exists un-
der the action of constant upward forces of magnitudes
Mg, (M + m)g, and Mg, applied, respectively, to the
three blocks. These forces, not shown in the figure,
compensate for the gravitational forces on the blocks.
The equations of motion governing the motion of the
system are then given as

Mẍ1 + c1(ẋ1 − ẋ2) + k1(x1 − x2) = P0 cos ωt, (1)

Fig. 1 The three-degree-of-freedom spring–mass–damper sys-
tem with a nonlinear pendulum attached to the middle block

(M + m)ẍ2 + c1(2ẍ2− ẋ1− ẋ3) + k1(2x2 − x1 − x3)

+ ml(θ̈ sin θ + θ̇2 cos θ ) = 0, (2)

Mẍ3 + c1(ẋ3 − ẋ2) + k1(x3 − x2) = 0, (3)

ml2θ̈ + ml(ẍ2 + g) sin θ + c2θ̇ + k2θ = 0. (4)

It is important to note that the 4-DOF system with
pendulum has θ = 0 as a solution. The coupling in the
pendulum dynamics and the dynamics of the 3-DOF
linear system arises only through terms in the equa-
tion for the second block. For small amplitude os-
cillations, if only linear terms in generalized coor-
dinates and velocities are retained in the model, the
three coordinates x1, x2, and x3 are uncoupled from
the linear pendulum equation. Now, the natural fre-
quencies of the 3-DOF linear undamped system (sys-
tem without pendulum) are given by �1 = 0, �2 =√

k1/M , and �3 = √
3k1/M . For the 4-DOF linear

system that includes pendulum, it is easy to show that
the second natural frequency �2 = √

k1/M remains
the same, ω2n = �2, while the third frequency �3

is modified to ω3n = √
k1/M

√
(3M + m)/(M + m) =

�2
√

(3 + R)/(1 + R). The additional natural fre-

quency is that for the pendulum with ωp =
√

ω2
g + ω2

k

where ωg = √
g/ l and ωk =

√
k2/ml2. These two

frequencies, respectively, represent the linear grav-
ity and stiffness controlled natural frequencies of the
pendulum about the bottom equilibrium position. In
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the remaining work, we will only consider pendu-
lum motions near θ = 0, that is, motions in which the
pendulum is near its bottom equilibrium position. The
complete (4-DOF) system then has four linear natural
modes: three of them are the “locked-pendulum” ver-
sions of the modes of the 3-DOF linear system, and
the fourth one is the additional pendulum mode of vi-
bration. We now define the following non-dimensional
parameters:

τ = ωt, ηi = xi/ l, R = m/M, ε = P0/k1l,

ζ1 = c1/2M�2, ζ2 = c2/2ml2
√

ω2
g + ω2

k ,

α = ω/�2, βc =
√

β2
2 + β2

2 ,

β1 = ωg/ω2n, β2 = ωk/ω2n. (5)

With these parameters, Equations (1)–(3) reduce to the
following non-dimensional form:

[M] {η}′′ + [C] {η}′ + [K ] {η} = {F} , (6)

where

[M] =

⎡⎢⎢⎣
1

1+R 0 0

0 1 0

0 0 1
1+R

⎤⎥⎥⎦ ,

[C] = 2ζ̂1α̂

⎡⎢⎣ 1 −1 0

−1 2 −1

0 −1 1

⎤⎥⎦ ,

[K ] = α̂2

⎡⎢⎣ 1 −1 0

−1 2 −1

0 −1 1

⎤⎥⎦ ,

{F} =

⎧⎪⎨⎪⎩
εα̂2 cos τ

−γ (θ ′′ sin θ + θ ′2 cos θ )

0

⎫⎪⎬⎪⎭ , {η} =

⎧⎪⎨⎪⎩
η1

η2

η3

⎫⎪⎬⎪⎭ ,

and γ = R/(R + 1), ζ̂1 = ζ1/
√

1 + R, α̂ = 1/

(α
√

1 + R). Note that there is also the pendulum equa-
tion for the 4-DOF system. The influence of the pen-
dulum on block motions is reflected in the vector F on
the right-hand side of Equations (6).

Since the analysis here is primarily concerned with
the response of the system when the third translational
mode of the system is resonantly excited (ω3n/ω ≈ 1),
it is natural to perform a modal transformation to un-
couple the modes of the translational system. It is note-
worthy that the damping and stiffness matrices are pro-
portional. This means that the damped linear 3-DOF
system can be uncoupled on the basis of the undamped
modal matrix for the 3-DOF system. Let [P] be the
modal matrix of the undamped system (6) correspond-
ing to the translational coordinates ηi ’s with {F} = 0.
Then, the transformation {η} = [P]{y} transforms the
system (6) into the following form:

[P]T [M] [P] {y}′′ + [P]T [C] [P] {y}′

+ [P]T [K ] [P] {y} = [P]T {F} . (7)

Here the components of the vector {y}, that is, y1, y2,
and y3, are the amplitudes of the three linear locked-
pendulum modes of vibration of the system with the
pendulum at its lower equilibrium position. The equa-
tions for the three modes are coupled due to the right-
hand side in Equation (7) with the motion of the pendu-
lum. Also, the pendulum motion is nonlinearly coupled
only to the response of the first and the third transla-
tional modes; the second mode being uncoupled from
the motion of the pendulum, as well as from motions
of the first and the third translational modes.

As already stated, the interest in this study is on
steady-state periodic solutions and their domains of
attractions resulting from the excitation acting on the
bottom block. For small amplitude oscillations near the
third (highest) natural frequency of the 3-DOF system,
it can be shown that the response of the system can
be well approximated by assuming negligible contri-
butions to the third mode and the pendulum motions
from the first (rigid body) translational mode of the
system. Such an analysis should follow standard argu-
ments made when applying the method of averaging
to weakly nonlinear resonant oscillations in systems
with internal resonance [2]. Thus, it is reasonable to
neglect the contribution of the first mode (rigid body
mode) to the response of the third mode and the pen-
dulum, that is, to let y1 ≈ 0 in the pendulum’s dynam-
ical equation. Note that this does not suggest that these
modes play no role in the full dynamic response of
the system even at frequencies very close to the third
modal resonance. This assumption has been further
validated by comparing the later obtained solutions
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with those from numerical integration. Also, assum-
ing small oscillations of the pendulum near θ = 0, we
let sin θ ∼= θ, cos θ ∼= 1. The resulting two equations
of motion for y3 and θ are with quadratic nonlinearities
and are given by

y′′
3 + 2ζ3 y′

3 + ω2
3 y3 + c3(θ ′′θ + θ ′2) = c f cos τ, (8)

θ ′′ + 2ζpθ
′ + ω2

pθ + cp y′′
3 θ = 0. (9)

Here, the coefficients in the model can be shown to be

ς3 = ς1(3 + R)/{α(1 + R)},
ω3n =

√
(3 + R)/{α2(1 + R)},

c3 = γ (−2)(R2+2R+3)/
{
(3+R)

(√
2R2+4R+6

)}
,

c f = ε(R2 + 2R + 3)/
{
α2(3 + R)

(√
2R2 + 4R + 6

)}
,

ςp = ς2βc/(α
√

1 + R), ωp = βc/(α
√

1 + R),

cp = −2/(
√

2R2 + 4R + 6).

3 Local steady-state periodic solutions

An approximate steady-state periodic solution for the
reduced system is easily obtained through the method
of harmonic balance. In this regard, one-term harmonic
solutions were assumed for the approximate solution,
which is reasonable for small amplitude harmonic ex-
citation. See [4] for a comprehensive comparison be-
tween harmonic balance solutions and those obtained
by numerical integration. Therefore, the solutions are
assumed in the following form:

y3 = Y3 cos(τ + φ3), (10)

θ = B cos(τ/2 + φB). (11)

Following some trigonometric manipulations and
solution of the resulting algebraic equations, explicit
algebraic expressions for the amplitudes Y3 and B were
obtained as a function of the system parameters. These
are as follows:

Y3

=

⎧⎪⎪⎨⎪⎪⎩
c2

f

/ {√(
ω2

3n − 1
)2 + (2ς3)2

}
, when B = 0,

2
√(

ω2
p − 1/4

)2 + (ςp)2/cp, when B �= 0,

(12)

and the amplitude of the pendulum B governed by the
fourth-order polynomial

B4 − (16q/c3cp)B2 + 64
{
dp

/
c2

p − c2
f

/
4
}/

c2
3 = 0,

(13)

where

q = (
ω2

3n − 1
)(

ω2
p − 1/4

) − 2ς3ςp/c3p,

where c3p = f (R),

d = (
ω2

3n − 1
)2 + (2ς3)2, p = (

ω2
p − 1/4

) + (ςp)2.

Shown in Fig. 2 is a typical frequency response am-
plitude plot of the steady-state periodic solutions for the
third mode and the pendulum, plotted as a function of
α. The parameters were selected to yield zero internal
mistuning (ω3n/ωp = 2), R = 0.2, βc = 0.895, small
primary and secondary system (pendulum) dampings,
ζ1 = 0.005, ζ2 = 0.015, and small forcing amplitude,
ε = 0.02. The procedure and results obtained here are
in accordance with those obtained by Savran [19], who
compared the performance of the autoparametric and
dynamic absorbers for a similar system.

The periodic solutions in Fig. 2 are of two types: the
semi-trivial solution and the nontrivial solution. The
semi-trivial solution corresponds to a trivial pendu-
lum solution, that is, it is with B = 0 or θ = 0. There-
fore, the semi-trivial solution, also termed the locked-
pendulum solution, is the linear modal response of the
third mode. In the nontrivial solution, both Y3 and B
are nonzero. In the frequency interval (region A) be-
tween the points denoted as “pitchfork bifurcations,” it
is known that the semi-trivial solution has larger ampli-
tude of response compared to the response amplitude of
the third mode in the nontrivial solution [3, 4, 11]. How-
ever, at larger mistunings (regions B) the amplitude of
the semi-trivial solution is smaller than that in the non-
trivial solution. This highlights the limited bandwidth
over which the pendulum acts as a vibration absorber.

Figure 2 displays some typical phenomena. As the
excitation frequency is changed, there arise changes
in stability in steady-state solution branches either
through a pitchfork bifurcation or through a saddle–
node bifurcation (turning point). These results are men-
tioned only for completeness, and typical results for this
class of systems, based on averaged equations, can be
found in [4] as well as in [12]. For harmonic balance
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Fig. 2 Amplitude responses
for the third mode and the
pendulum as a function of
the normalized frequency of
excitation, for a nominal set
of parameters. R = 0.2,
βc = 0.895, ζ1 = 0.005,
ζ2 = 0.015, ε = 0.02

solutions, Floquet multipliers of the system linearized
about the periodic orbit may be used to indicate sta-
bility. If all the Floquet multipliers lie inside the unit
circle, the corresponding periodic orbit is stable. On
the other hand, an orbit is unstable if at least one Flo-
quet multiplier is outside the unit circle. In case a Flo-
quet multiplier is of modulus one, a bifurcation point is
created. For details on the classification of bifurcation
points based on such an approach, see [3] and [20]. It
is noteworthy that this system has a strong dependence
on its parameters R, ζ 2, ζ 1, βc, and ε. Many parametric
studies have been performed and details are available
in [4] and [11].

4 Global domains of attraction

Motivated by the existence of two very distinct sta-
ble solutions and the change in their stabilities with
the frequency of excitation (or mistuning), we con-
sider the domains of attraction for these solutions.
These domains play an essential role in determining
the transient response of the autoparametric vibra-
tion absorber. For the following simulations, a dimen-
sional set of parameters was chosen yielding the same
nominal non-dimensional parameters as those used in
Fig. 2. For this set of parameters, the excitation frequen-
cies ω = 14.55, 16.35 and ω = 14.95, 15.9 rad/s were
found to correspond, respectively, to the saddle–node
bifurcations and the pitchfork bifurcations. In region
B of Fig. 2, both a stable and an unstable nontrivial
solution exist in addition to a stable semi-trivial solu-
tion. The domains of attraction then predict the conver-
gence of a trajectory to one stable steady-state solution

compared to the other for different initial conditions.
Note that contrary to steady-state behavior, the analy-
sis here may not be reduced to two second-order dif-
ferential equations (Equations (8) and (9)) for the third
locked-pendulum mode and the pendulum. So, even
if the periodic solutions may essentially be confined
to the four-dimensional subspace of (y3, y′

3, θ, θ ′) and
thus well approximated by the harmonic balance pro-
cedure outlined above, the transient motions may not
be limited to only this subspace.

It is known that the boundaries of domains of attrac-
tion of attractive invariant sets in a finite-dimensional
dynamical system are characterized by the stable mani-
folds of various hyperbolic structures, such as unstable
fixed points, unstable periodic orbits, and other higher
complexity solutions. Finding domains of attraction of
steady-state solutions of forced nonlinear systems is
a very difficult problem and not much literature ex-
ists on the subject. Tondl and colleagues have over the
years (e.g., see [21]) used a method, which involves
applying a disturbance over a period and observing the
subsequent motion. However, such a technique, though
insightful, may not necessarily capture the true do-
mains of attraction for a system. Another noteworthy
study is that of Lee and Hsu [13], who considered a
harmonically excited 2-DOF planar spring–pendulum
system, and used several techniques such as the cell-to-
cell mapping and interpolated mapping to construct the
domains of attraction of stable periodic solutions. The
first technique partitions the state–space into cells and
the dynamics of the system is approximated by map-
pings over a period of forcing. Iterates of the mapping
then correspond to evolution of the system in time. Es-
cape of solutions from the cells then gives a measure

Springer



Nonlinear Dyn (2007) 49:105–116 111

of the domains of attraction. The interpolated mapping
method finds an image corresponding to the discrete
state–space model using an interpolation-based proce-
dure. We now give a short review of the finite-time Lya-
punov exponents approach to approximating domains
of attraction.

4.1 Maximal Lyapunov exponent algorithm

Consider an n-dimensional dynamical system:

{ẋ(t)} = { f ({x} , t)} . (14)

Let {x({x0}, t)} denote the solution to Equation (14)
starting at an initial condition {x0}. Infinitesimal pertur-
bations {ν(t)} about a specified trajectory {x̄(t)} satisfy
the variational equation

{ν̇(t)} = ∂ { f ({x̄} , t)}
∂ {x} {ν(t)} . (15)

These perturbations admit the unique solution

{ν(t)} = ∂ {x({x0} , t)}
∂ {x0} {ν(t0)} , (16)

where ∂{x({x0}, t)}/∂{x0} is the differential transition
operator (or state transition matrix for the linear system
(15)). By taking norms in Equation (16) and dividing
by the perturbation ‖{ν(t0)}‖ �= 0, the maximal stretch
in the flow field at each time instant can be written as

sup
‖{ν(t)}‖
‖{ν(t0)}‖ = sup

∥∥∥ ∂{x}
∂{x0} {ν(t0)}

∥∥∥
‖{ν(t0)}‖

= σ̄ (∂ {x} /∂{x0}), (17)

where ‖{·}‖ is the Euclidean norm and σ̄ (·) is the maxi-
mum singular value of a matrix. Then, the direct (finite-
time) Lyapunov exponent [17, 18] at a trajectory start-
ing at {x0} is defined as

δ({x0}, t) = ln σ̄ (∂ {x} /∂{x0})
(t − t0)

, (18)

where σ̄ (∂{x}/∂{x0}) represents the maximum stretch
in the flow field. Indeed, σ̄ (∂{x}/∂{x0}) > 1 for a re-
gion of stretch and conversely for contraction regions,
whereas σ̄ (∂{x}/∂{x0}) = 1 represents no stretch or
contraction. The aforementioned scenarios correspond

to positive, negative, and zero values for δ({x0}, t).
Thus, a positive Lyapunov exponent represents a region
in state–space where trajectories are separating expo-
nentially. In this discussion, properties of the Lyapunov
exponent and the corresponding system behavior may
be either over a time interval t ∈ [t1, t2] or uniformly
in time ∀ t > t0. This notion of having a positive
Lyapunov exponent has been commonly used as a mea-
sure of chaos in dynamical systems [15, 20]. However,
information about the sensitivity of system’s solutions
to initial conditions can be used to deduce many other
convergence characteristics.

The algorithm to be used here involves solving for
the finite-time Lyapunov exponent over a grid of initial
conditions for a large enough time such that all solu-
tions settle to their final states. Therefore, the longer
the solution time is, the more refined the picture will
become as nearby trajectories would separate (or come
closer) as the time traces of their corresponding Lya-
punov exponents would separate (or merge). The value
of the maximal Lyapunov exponent, a measure of the
sensitivity of a system to initial conditions, is expected
to be maximal on the boundaries between different do-
mains of attraction. This is evident as these boundaries
exhibit the largest sensitivity to initial conditions for
the system.

For the full eight-dimensional state–space of the sys-
tem under study, the domains of attraction in the fre-
quency range of interest are viewed through the sepa-
ration between two physically different solutions both
on the stable manifold. Geometrically, this needs to be
realized in a seven-dimensional phase space. However,
since visualizing such an object even via taking slices
or projections into lower dimensional subspaces will
not necessarily yield much insight, we opt to focus on
observing the effect this object has on the domains of
attraction in the (θ0, θ̇0) plane. In this regard, the pen-
dulum solutions would be either a fixed-point solution
at the origin, which corresponds to the semi-trivial so-
lution for the system, or a periodic orbit (limit cycle)
that corresponds to nontrivial solutions. These may be
sufficient to capture the targeted behavior of the system.

Observe that the problem of finding the finite-time
Lyapunov exponent is, in essence, that of finding the op-
erator norm or largest singular value of the differential
transition operator (Equation (17)). Due to the fixing
of initial conditions for the six translational states to
zero, the problem reduces to that of finding the largest
singular value of an 8 × 2 matrix. It is not difficult to
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show that this reduces to finding the largest eigenvalue
of a 2 × 2 matrix, since the remaining six singular val-
ues are zero. This means that this problem is mathe-
matically equivalent to finding the finite-time invariant
manifolds in a 2D flow field. The algorithm here uses a
fourth-order fixed step Runge–Kutta approximation to
the solution of Equations (1)–(4), which translates to a
global truncation error of order h4, where h is the step
size for time-integration. Considering m different initial
conditions for which the solution is to be sampled along
each of the two axes yields m2 combinations. For this
eighth-order state–space model that translates to solv-
ing 8m2 first-order differential equations. In addition,
these equations need to be solved for long enough time
such that steady-state behavior is reached.

4.2 Simulation results

The final algorithm used to produce the results pre-
sented in the following uses 100 initial condition sam-
ples (m) on each axis, a step size of 0.01 s (≈T/40)
where T is the period of excitation, and 15,000 time
steps in integration. These parameters were selected
on the basis of experience from numerically obtained
solutions. The domains of attraction at an excitation
frequency ω = 14.7 rad/s, which corresponds to 5%
external mistuning from exact resonance condition
(ω3 = 1), are shown in Fig. 3. The response curves
in Fig. 2 had indicated that the semi-trivial state and
a nontrivial periodic solution are stable for this exci-
tation frequency. The data in Fig. 3a was generated
via direct numerical integration for a limited range of
initial condition vector (θ0, θ̇0) near the lower pendu-
lum equilibrium and using a relatively coarse grid. The
points “·” indicate initial conditions that converge to
the semi-trivial solution and the points “∗” represent
initial conditions that converge to the nontrivial peri-
odic response. Figure 3b is a plot of the level sets of
the largest Lyapunov exponent for the same set of pa-
rameters and excitation frequency. It is evident that the
two techniques agree, up to the limited discretization
of the (θ0, θ̇0) plane used in direct numerical integra-
tion. Knowing that at (θ0 = 0, θ̇0 = 0), the solution is
the semi-trivial one and that the boundaries between
different domains correspond to the largest Lyapunov
exponent, the picture becomes clear. As predicted by
numerical integration, the trajectories for initial condi-
tions near the origin converge to the fixed-point solu-
tion (semi-trivial periodic solution). This corresponds

Fig. 3 Domains of attraction in the (θ0, θ̇0) plane at ω =
14.7 rad/s. (a) Result of direct numerical integration; “·” indi-
cate initial conditions that converged to the semi-trivial solution
and “∗” represent initial conditions that converged to nontrivial
response. (b) Level curves of the maximal Lyapunov exponent.
R = 0.2, βc = 0.895, ζ1 = 0.005, ζ2 = 0.015, ε = 0.02

to a small Lyapunov exponent, that is, strongly attrac-
tive solution. As the initial angle increases the sys-
tem is more likely to be attracted to the nontrivial sta-
ble periodic orbit. This is signified by the blue region
which is that of minimal stretch in the flow field or
with strongest attraction for the fixed-point semi-trivial
solution.

The plot also reveals variation in the rate of attrac-
tion from different initial conditions, that is, the degree
of attraction within a domain. The simulation results
starting with different initial conditions (Fig. 4) show
that the regions with different degrees of attraction
could correspond to quite different global system be-
havior. The three cases in Fig. 4a–c lie within the central
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Fig. 4 Time response (position x2 and velocity ẋ2) of second
mass for different initial conditions in (θ0, θ̇0) plane for the case in
Fig. 3. (a) (θ0 = 0, θ̇0 = 1), (b) (θ0 = 0.2, θ̇0 = 1), (c) (θ0 = 0.5,

θ̇0 = −0.3), (d) (θ0 = 0.5, θ̇0 = −0.4). ω = 14.7 rad/s, R = 0.2,
βc = 0.895, ζ1 = 0.005, ζ2 = 0.015, ε = 0.02

regions of Lyapunov exponent δ, (−0.01 < δ < 0.01),
(0.01 < δ < 0.03), and (0.03 < δ < 0.04) and corre-
spond to three different semi-trivial solutions based on
different contributions from the rigid body mode. Ob-
serve also that the responses for the cases in Fig. 4c and
d, which correspond to initial conditions on either side
of the boundary between different domains, have very
similar time traces up to a critical time beyond which
solutions’ paths deviate. It is noteworthy that for a very
small change in initial conditions, the steady-state pen-
dulum oscillations shift from an amplitude of 0 to about
0.5 rad. Note that the results here in Fig. 5 were plotted
for x2 and x ′

2 rather than θ and θ ′ to show the role of
coupling in the dynamics of the complete system. Fur-
thermore, even though the drift in solutions arise for
x1, x2, x3, these contribute a Lyapunov exponent equal
to zero. Thus, as long as there is a positive Lyapunov

exponent, the rigid body translations do not show up in
our calculations.

The next simulation results show the effect of exter-
nal mistuning. Figure 5a shows the Lyapunov exponent
level curves at the same frequency and parameters of
Fig. 3a but over an extended range in the pendulum’s
phase plane. As expected, the structure is quite com-
plex further away from the fixed point at the origin.
Figure 5b shows the level curves for the excitation fre-
quency ω = 16.2 rad/s, which also corresponds to 5%
external mistuning but now above the zero mistuning
point, which is at ω = 15.45 rad/s. The behavior in this
case is quite distinct even in regions somewhat close to
the origin. In fact, a much larger region of initial condi-
tions converges to the fixed point at the origin, includ-
ing some initial conditions much closer to the upper
equilibrium position. Recall that the stable manifolds
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Fig. 5 Lyapunov exponent level curves in (θ0, θ̇0) plane. (a) ω =
14.7 rad/s, (b) ω = 16.2 rad/s. R = 0.2, βc = 0.895, ζ1 = 0.005,
ζ2 = 0.015, ε = 0.02

of the invariant repelling sets play a major role in shap-
ing the domains of attraction. Reverting back to Fig.
2, one notes the asymmetrical nature of the pendulum
solutions. This asymmetry leads to the two periodic or-
bits being very close to each other in the phase space,
for this mistuning. As a result, the unstable orbit repels
most of the trajectories away from its nearby stable
orbit, which then settle to the fixed point.

Next, the global behavior near bifurcation points is
explored. Let us consider the two important frequencies
of ω = 14.6 and 14.9 rad/s, which are very close to a
saddle–node (to its right) and a pitchfork bifurcation (to
its left), respectively. The corresponding level curves
for the finite-time Lyapunov exponent are shown in
Fig. 6.

Observe that for ω = 14.6 rad/s, the domains of at-
traction picture is similar to that for ω = 14.7 rad/s,

Fig. 6 Lyapunov exponent level curves in (θ0, θ̇0) plane. (a) ω =
14.6 rad/s, (b) ω = 14.9 rad/s. R = 0.2, βc = 0.895, ζ1 = 0.005,
ζ2 = 0.015, ε = 0.02

except that the regions of attraction for the semi-trivial
solution are appreciably stretched in size. This is quite
expected as this parameter value is closer to the saddle–
node bifurcation point (ω = 14.55 rad/s) below which
only the semi-trivial solution exists. This bifurcation,
which corresponds to hysteretic behavior or the com-
monly referred to jump phenomenon, is one incentive
for pursing the domains of attraction. The other sig-
nificant parameter values are those in the vicinity of a
pitchfork bifurcation, such as that for ω = 14.9 rad/s.
Here, the semi-trivial solution is losing its stability. This
is indicated by the fact that the origin in (θ0, θ̇0) plane
itself is close to the boundary between solutions, that
is, a region of weakest attraction. Here, the unstable
pendulum orbit (see Fig. 2) is very small and surround-
ing the trivial pendulum solution. Thus, on this scale
it looks like that the origin in (θ0, θ̇0) plane is unstable
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Fig. 7 Chaotic response of the system at large amplitude of
excitation. (a) Level curves of the finite-time Lyapunov exponent
in (θ0, θ̇0) plane. (b) Modal time responses with initial condition
(θ0 = 1, θ̇0 = 0). Frequency ω = 15.45 rad/s and amplitude ε =
1 of excitation

and repelling trajectories as represented by the red area
around θ = 0. The plot in Fig. 6b then mostly con-
sists of pairs of level curves settling onto a periodic
orbit.

Finally, we illustrate the global characterization of
motion of the system for sufficiently large amplitude
of excitation ε = 1 (see Fig. 7). This case corresponds
to chaotic oscillations of the spring–mass–damper–
pendulum system. In contrast to all previous cases, the
Lyapunov exponent values here are all positive over the
pendulum (θ0, θ̇0) plane though they are not necessar-
ily large since no significant change in the final state
takes place for different trajectories. It is noteworthy
that no significant changes in the structure are observed
for larger excitations, e.g., when ε = 10, and only the

intensity of chaotic mixing is just increased. Another
interesting observation (see Fig. 7b) here is that despite
the chaotic dynamics, the response of the second mode
of the system is invariably that of a linear harmoni-
cally driven system, as analytically predicted, with the
excitation amplitude linearly scaling the steady-state
amplitude. This is in contrast to the obviously chaotic
behavior of the third mode, a result which is driven by
the fact that the second mass, which is coupled to the
pendulum, does not contribute to the second mode’s
dynamics.

5 Conclusions

In this work, we studied the global dynamics and
domains of attraction for different periodic solutions
of an autoparametric spring–mass–pendulum system.
Through a modal decoupling procedure, the coupling
between the pendulum and system modes was identi-
fied. In addition to the autoparametric coupling with the
third flexible mode, coupling with a rigid body mode
was also identified. It was shown that rigid body dy-
namics of the system are excited even for zero ini-
tial conditions for the rigid body mode and excitation
near the third mode, which depends on the pendulum’s
transients. Though local steady-state weakly nonlin-
ear behavior is well understood, the transient behav-
ior and asymptotic convergence of solutions to a fixed
point or a periodic orbit in a critical region of frequen-
cies bounded by pitchfork and saddle–node bifurca-
tions depends on domains of attraction. Furthermore,
global and strongly nonlinear behavior is also of in-
terest. A study of characterization of the domains of
attraction was performed through the development of
level curves of the finite-time Lyapunov exponent in a
global region in the pendulum’s plane. This approach,
based on a dynamical performance index rather than
on a discretization or interpolation technique, proved
to be very rewarding and insightful. It provided both
relative and absolute measures of global convergence
to invariant sets. Furthermore, its conceptual robust-
ness allows for global and strongly nonlinear condi-
tions to be studied without concerns of adequacy of
an iteration size or other equivalent parameter. Using
local steady-state solutions as a guide, the behavior
of the three coupled modes for the key cases of in-
terest was captured including strongly excited chaotic
solutions.
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