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Solving the inertial particle
equation with memory
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The dynamics of spherical particles in a fluid flow is governed by the well-accepted
Maxey–Riley equation. This equation of motion simply represents Newton’s second
law, equating the rate of change of the linear momentum with all forces acting on
the particle. One of these forces, the Basset–Boussinesq memory term, however, is
notoriously difficult to handle, which prompts most studies to ignore this term despite
ample numerical and experimental evidence of its significance. This practice may
well change now due to a clever reformulation of the particle equation of motion
by Prasath, Vasan & Govindarajan (J. Fluid Mech., vol. 868, 2019, pp. 428–460),
who convert the Maxey–Riley equation into a one-dimensional heat equation with
non-trivial boundary conditions. Remarkably, this reformulation confirms earlier
estimates on particle asymptotics, yields previously unknown analytic solutions and
leads to an efficient numerical scheme for more complex flow fields.
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1. Introduction

The motion of finite-size (or inertial) particles immersed in a fluid flow can differ
significantly from that of fluid elements. This leads to clustering or scattering effects
that cannot be explained using the fluid velocity field alone. The resulting dynamical
phenomena are important in a number of areas, including rain drop formation in
clouds (Pinsky & Khain 1997), sinking of biogenic particles in the ocean (Monroy
et al. 2017), transport of volcanic ash in the atmosphere (Espinosa Arenal, Avila
& Raza 2018), ocean-drifter motion (Beron-Vera et al. 2015) and cell collection in
oncological studies (Haddadi, Naghsh-Nilchi & Di Carlo 2018), just to name a few.

Most related studies assume that the particles are spherical, do not interact with
each other, their associated Stokes and Reynolds numbers are small, the effect of
gravity is negligible and the particles do not modify the ambient flow whose velocity
field is u(x, t). Under these assumptions, the equation of motion for inertial particles
simplifies from its general form derived by Maxey & Riley (1983) to
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R ÿ =
Du(y(t), t)

Dt
−

1
S
( ẏ(t)− u(y(t), t))

−

√
3
S

{
ẏ(0)− u(y(0), 0)

√
πt

+
1
√

π

∫ t

0

ẏ(s)− u(y(s), s)
√

t− s
ds
}
, (1.1)

where D/Dt .= ∂t + u · ∇ is the material derivative along fluid trajectories; R is a
dimensionless number depending on the ratio of the particle and fluid densities and
S is the Stokes number. The simplified Maxey–Riley (MR) equation given above is a
second-order, nonlinear system of implicit integro-differential equations with a singular
kernel and with an initial-condition term that blows up as t→ 0. The implicit nature
of the equation arises from its last term, the Boussinesq–Basset memory term, which
accounts for boundary layer development around the moving particle and renders the
equation highly non-trivial to solve. Classical solutions to the MR equation turn out to
exist only under the unphysical assumption that the initial particle velocity is exactly
equal to the local fluid velocity. In all other cases, only mild solutions can be shown
to exist (Farazmand & Haller 2014; Provencher-Langlois, Farazmand & Haller 2015).
More broadly speaking, the MR equation is not a dynamical system, as the present
state does not uniquely determine the future evolution of the inertial particle. Rather,
the full history of particle positions and velocities is required for the solution.

Because of these subtleties, the memory term in the MR equation is often
omitted in applications (Michaelides 1997). At the same time, growing numerical
and experimental evidence for its significance (Candelier, Angilella & Souhar 2004;
Toegel, Luther & Lohse 2006; Garbin et al. 2009; Daitche & Tél 2011; Guseva,
Feudel & Tél 2013; Daitche & Tél 2014) has inspired an ongoing effort to handle
this term appropriately in numerical schemes. The main challenge to overcome is the
increasing memory cost in many-particle computations, given that the full history of
each particle needs to be stored to advance the numerical scheme. To address this
challenge, Van Hinsberg, Ten Thije Boonkkamp & Clercx (2011), Klinkenberg, de
Lange & Brandt (2014), Elghannay & Tafti (2016) and Parmar et al. (2018) have
proposed approximations or modifications to the memory kernel, whereas Daitche
(2013) developed higher-order schemes to handle the singularity of the kernel. All
these advances, however, involve modifications to the original problem, and assume
the initial particle velocity to be equal the flow velocity (i.e. ẏ(0)=u(y(0), 0)), which
is unlikely in practical applications.

2. Overview

Prasath, Vasan & Govindarajan (2019) give a fundamentally new take on the
MR equation by reformulating (1.1) as a boundary condition for a simple diffusion
equation qt = qxx for a vectorial quantity q(x, t), defined over the half-line x > 0 for
times t> 0. Specifically, they select the initial condition q(x, 0)= 0 for x> 0, and the
Dirichlet boundary condition q(0, t)= g0(t). They then ask what equivalent Neumann
boundary condition would lead to the exact same solution to this problem.

The result is that the equivalent Neumann condition, qx(0, t), for this diffusion
problem will be exactly of the form of the bracketed last two terms in the MR
equation if one introduces the notation q(0, t) = ẏ(t) − u(y(t), t) in these terms.
The remaining terms in (1.1) can be expressed as functions of q(0, t) and qt(0, t),
and the y(t) position appearing in the arguments of u and Du/Dt in the equation
can be computed on the run as the solution of the ordinary differential equation
ẏ(t)= q(0, t)+ u(y(t), t).
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This insightful observation enables one to solve the classic diffusion equation
for q(x, t), with the MR equation imposed as a Robin-type boundary condition
qt(0, t)+ αq(0, t)− γ qx(0, t)= f (q(0, t), y, t) for appropriate constants α, γ > 0 and
a smooth function f . In this representation, the original non-local problem, along with
all complications of the singular kernel and the integral over the past, disappears. This
creates an opportunity to use analytical and numerical methods available for classical
diffusion problems to study the dynamics of inertial particles.

As a first illustration of the power of this approach, Prasath et al. (2019) show how
particle motion in spatially homogeneous (but still unsteady) flows can be analytically
deduced. They derive a formula for q(0, t) which is explicit up to the evaluation of an
integral involving the forcing function f (q(0, t), t). In concrete problems, this integral
form can be analysed using Watson’s lemma (Miller 2006) to obtain asymptotic
expressions for the particle velocity for increasing times.

Specifically, the velocity of a particle relaxing in a non-moving background flow
( f ≡ 0) is found explicitly to decay to zero at a rate of O(t−3/2), confirming
the only previously available analytic solution derived for the MR equation by
Provencher-Langlois et al. (2015). Notably, ignoring the memory term in the MR
equation leads to exponential decay. Sedimenting particles, such as aerosols and
droplets in the atmosphere, are characterized by f ≡ (0, const.). A similar analysis
yields that they approach a vertical terminal velocity at a rate of O(t−1/2), extending
the earlier findings of Clift, Grace & Weber (2013) to the case of non-zero initial
velocities. Finally, for a particle in an oscillating background flow ( f ≡ (0, sin λt)),
the velocity decay to a time-periodic steady state is surprisingly found to be faster in
the presence of the Boussinesq–Basset memory term than without it. This shows that
the memory term cannot generally be considered as an additional drag on the particle.

For spatially dependent velocity fields, closed-form solutions are generally not
available from this approach. An exception is particle migration in planar Couette
flow, for which Prasath et al. (2019) still derive a new, explicit solution, exploiting
the linearity of the velocity in the spatial variable. This solution may serve as
an important benchmark for testing numerical schemes for more general, spatially
dependent solutions. In all such schemes, the complete absence of a singular kernel in
the diffusive reformulation of the MR equation eliminates any need for approximating
such a kernel, keeping the memory requirements low relative to other methods. The
numerical scheme proposed by the authors reaches spectral accuracy by employing
Chebyshev polynomials in the evaluation of the integrals arising from the nonlinear
boundary conditions for the underlying diffusion problem. They illustrate the efficacy
of this approach on the example of particle motion in a steady, infinite vortex.

3. Future

As many-particle simulations in various media are increasingly popular, the fresh
approach of Prasath et al. (2019) will undoubtedly generate further activity in this
field. As they have already demonstrated, their reformulation yields new closed-form
solutions, provides rigorous asymptotic estimates for the particle velocities and
inspires new numerical methods.

Further testing and refinement of the available numerical scheme is highly desirable
for problems involving a large number of particles in spatially complex flows with
complicated time dependence. In such a challenging setting, a systematic comparison
with prior numerical approaches will also be necessary to carry out, factoring in
memory requirements, computational speed and coding complexity. Viewing inertial
particle motion with memory as a classic diffusion problem may well have presently
unforeseen further advantages, as it opens a new connection to a well-developed area
of applied mathematics and computational science.
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