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We point out that local minimizing curves, or troughs, of the smallest finite-time Lyapunov

exponent (FTLE) field computed over a time interval [t0, t] and graphed over trajectory positions at

time t mark attracting Lagrangian coherent structures (LCSs) at t. For two-dimensional area-

preserving flows, we conclude that computing the largest forward-time FTLE field by itself is

sufficient for locating both repelling LCSs at t0 and attracting LCSs at t. We illustrate our results on

analytic examples, as well as on a two-dimensional experimental velocity field measured near a

swimming jellyfish. VC 2011 American Institute of Physics. [doi:10.1063/1.3579597]

Lagrangian coherent structures (LCSs) are time-evolving

surfaces that act as organizers of trajectory patterns in

dynamical systems. The detection of such surfaces from

observed or simulated finite-time velocity data sets is im-

portant in a number of applications, including atmos-

pheric and oceanic tracer spread analysis. One of the

most efficient diagnostic tools for LCSs has been the larg-

est finite-time Lyapunov exponent (FTLE) field, whose

ridges appear to mark repelling LCSs. In this note we

show that from the same numerical run that generates

the forward FTLE field, one can also extract attracting

LCSs as troughs of the minimum forward FTLE field

graphed over evolving trajectory positions.

I. INTRODUCTION

Lagrangian coherent structures (LCSs), as defined in

Haller and Yuan,5 are distinguished invariant manifolds (ma-
terial surfaces) in the extended phase space of a nonautono-

mous dynamical system that act as skeletons of patterns

formed by trajectories. Specifically, attracting LCSs over a

time interval [t0, t] are material surfaces that attract nearby

trajectories at the locally highest rate for times s 2 ½t0; t�. As

a result of this property, attracting LCSs form the backbones

of forward-evolving trajectory patterns over the time interval

[t0, t], acting as central structures on which nearby trajecto-

ries accumulate. In particular, attracting LCSs are the theo-

retical centerpieces of tracer filaments that often form in

unsteady fluid flows.

Similarly, repelling LCSs over [t0, t] are material surfa-

ces formed by trajectories of the dynamical system that repel

other trajectories at the locally highest rate for times

s 2 ½t0; t�. This extreme repulsion causes nearby sets of tra-

jectories to diverge and head toward different regions in the

phase space. Specifically, repelling LCSs are the theoretical

centerpieces of extreme local stretching regions observed in

unsteady flows. As a result, in backward time, repelling

LCSs act as attracting material lines.

Haller6,7 proposed that at time t0, a repelling LCS over

[t0, t] should appear as a local maximizing curve, or ridge,

of the finite-time Lyapunov exponent (FTLE) field com-

puted over initial conditions at t0. Similarly, an attracting

LCS [t0, t] should be a ridge of the backward-time FTLE

field. Indeed, ridges of the FTLE field have been broadly

found to be accurate indicators of LCSs in a number of

applications (see Peacock and Dabiri11 for a recent review).

Haller,7 however, presents a counterexample and further

analysis to show that an FTLE ridge does not necessarily

mark the centerpiece of a coherent trajectory pattern. Shad-

den et al.13 (see also Lekien et al.9) explore the possibility

of defining an LCS at t0 as a ridge of the FTLE field com-

puted over an interval [t0, t]. Realizing that LCSs defined in

this fashion are not invariant under the flow, Ref. 9 presents

an estimate for the material flux through FTLE ridges.

While this estimate turns out to be valid only under further

assumptions on the velocity field (cf. Haller8), the approach

used in Ref. 13 demonstrated, for the first time, the power

of differential-geometric tools in exploring features of the

FTLE field.

All this work highlighted the potential of FTLE fields in

LCS detection, but did not provide a rigorous mathematical

link between physically observable LCSs and features of the

FTLE field. The recent work of Haller8 provides such a link

through a variational theory that characterizes LCSs as the

locally strongest repelling or attracting material surfaces in

the flow among all C1-close material surfaces. This theory

provides computable sufficient and necessary criteria for

LCSs in terms of invariants of the Cauchy–Green strain-ten-

sor field. Applying these criteria to FTLE ridges yields suffi-

cient and necessary conditions under which an FTLE ridge

does mark an LCS. In particular, in two-dimensional flows,

an FTLE ridge marks an LCS precisely when it is approxi-

mately normal to the eigenvector field associated with the
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largest eigenvalues of the Cauchy–Green strain-tensor field

(cf. Tang, Chan and Haller14).

Currently, the standard way of calculating repelling

LCSs at time t0 is to compute a set of trajectories starting

from an array of initial conditions at t0 up to a time

t > t0 � 0, then locating the ridges of the forward-time

FTLE field from the numerical evaluation of the definition of

the FTLE field (cf. below). A separate numerical integration

of the dynamical system in backward time from t0 to �t is

required to locate attracting LCSs as ridges of the backward-

time FTLE field. Recent numerical techniques for speeding

up these calculations appear, e.g., in Brunton and Rowley2

and Lipinski and Mohseni.10

In this brief note, we point out a property of the FTLE

field that enables us to compute both attracting and repelling

LCSs from a single numerical run. Specifically, while the

ridges of largest FTLE computed from t0 to t mark repelling

LCSs at t0, the minimizing curves (or troughs) of the small-

est FTLE computed from t0 to t turn out to mark attracting

LCSs at t, when graphed over trajectory positions at time t.
A similar statement holds in backward time: while the

ridges of largest FTLE computed from t0 to �t mark attract-

ing LCSs at t0, the troughs of the smallest FTLE computed

from t0 to �t turn out to mark repelling LCSs at �t, when

graphed over trajectory positions at time �t.
For two-dimensional flows, further simplifications allow

us to use the largest forward-time FTLE to obtain both repel-

ling LCSs at t0 and attracting LCSs at t > t0. Similarly, the

largest backward-time FTLE can be used to locate both

attracting LCSs at time t0 as well as repelling LCSs at �t.
We illustrate these results on two-dimensional analytical and

experimental velocity fields.

In view of Ref. 8, ridges of the smallest and the largest

FTLE fields only mark LCS candidates. Further conditions

need to be verified on these ridges to ascertain that they are

attracting or repelling LCSs, as opposed to spurious struc-

tures. Since our focus here is the use of the smallest forward

FTLE in detecting LCS candidates, we do not compute the

sufficient and necessary LCS conditions derived in Ref. 8.

For examples of the use of these conditions, we refer the

reader to Refs. 8 and 14.

II. SET-UP AND DEFINITIONS

Consider a dynamical system of the form,

_x ¼ vðx; tÞ; x 2 U � Rn; t 2 a; b½ �; (1)

with a smooth vector field v(x, t) defined on the n-dimen-

sional open domain U over a time interval a; b½ �.
At time t, a trajectory of system (1) is denoted by x(t, t0,

x0), starting from the initial condition x0 at time t0. The flow
map Ft

t0
ðx0Þ maps the initial position x0 of the trajectory into

its position at time t,

Ft
t0

: U ! U; (2)

x0 7! xðt; t0; x0Þ:

By fundamental results from the theory of ordinary differen-

tial equations (see Arnold1), the flow map is as many times

differentiable in x0 as is v(x, t) in x. In particular, if v(x, t) is

continuously differentiable, then we can use the deformation

gradient DFt
t0
ðx0Þ to define a classic measure of strain, the

right Cauchy–Green strain tensor Ct
t0
ðx0Þ as

Ct
t0
ðx0Þ ¼ DFt

t0
ðx0Þ

h iT
DFt

t0
ðx0Þ; (3)

with the superscript T referring to matrix transposition.

We note that the left Cauchy–Green strain tensor
Bt

t0
ðx0Þ can be analogously defined as

Bt
t0
ðx0Þ ¼ DFt

t0
ðx0Þ DFt

t0
ðx0Þ

h iT
: (4)

With Ct
t0
ðx0Þ at hand, the largest FTLE associated with the

trajectory x(t, t0, x0) over the time interval [t0, t] is defined as

Kt
t0
ðx0Þ ¼

1

t� t0j j log jjDFt
t0
ðx0Þjj

¼ 1

t� t0j j log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax Ct

t0
ðx0Þ

h ir
; (5)

where jjDFt
t0
ðx0Þjj denotes the operator norm of DFt

t0
ðx0Þ.

This norm is equal to the square root of kmax Ct
t0
ðx0Þ

h i
, the

largest eigenvalue of Ct
t0
ðx0Þ. Since Ct

t0
is a symmetric and

positive definite tensor by definition, the largest eigenvalue

used in (5) is always real and positive.

For later reference, we also define here the smallest
FTLE associated with the trajectory x(t, t0, x0) over the time

interval [t0, t] as

Ct
t0
ðx0Þ ¼

1

t� t0j j log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmin Ct

t0
ðx0Þ

h ir
; (6)

with kmin½Ct
t0
ðx0Þ� referring to the smallest eigenvalue of

Ct
t0
ðx0Þ. The smallest FTLE (6) does not naturally arise in

measuring the growth of infinitesimal perturbations along

x(t, t0, x0). For this reason, the connection between Ct
t0

and

LCSs has remained unexplored.

III. LARGEST BACKWARD-TIME FTLE FROM THE
SMALLEST FORWARD-TIME FTLE

A. General case

The following simple relationship can be deduced from

the above definitions:

Proposition 1: Consider the times t > t0 � 0. Then the

largest FTLE computed from t to t0 at the location

xt ¼ Ft
t0
ðx0Þ is equal to the negative of the smallest FTLE

computed from t0 to t at the initial condition x0. Specifically,

we have

Kt0
t ðxtÞ ¼ �Ct

t0
ðFt0

t xtð ÞÞ: (7)

Proof: By definition, the largest FTLE computed from time t
to t0 at the location xt is given by
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Kt0
t ðxtÞ ¼

1

t0 � tj j log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax Ct0

t ðxtÞ
� �q

: (8)

To compute the right Cauchy–Green strain tensor

Ct0
t ðxtÞ ¼ DFt0

t ðxtÞ
� �T

DFt0
t ðxtÞ; (9)

we note that, by the chain rule, we have DFt0
t ðxtÞ

DFt
t0
ðx0Þ ¼ I; or, equivalently,

DFt0
t ðxtÞ ¼ DFt

t0
ðx0Þ

h i�1

: (10)

Substituting (10) into (9), we obtain

Ct0
t ðxtÞ ¼ DFt

t0
ðx0Þ

h i�1
� �T

DFt
t0
ðx0Þ

h i�1

¼ DFt
t0
ðx0Þ

h iT
� ��1

DFt
t0
ðx0Þ

h i�1

¼ DFt
t0
ðx0Þ DFt

t0
ðx0Þ

h iT
� ��1

¼ Bt
t0
ðx0Þ

h i�1

: (11)

Therefore, the right Cauchy–Green strain tensor computed

from t to t0 at point xt is just the inverse of the left Cauchy–

Green strain tensor computed at the point x0 from time t0 to t.
Formula (11) implies

kmax Ct0
t ðxtÞ

� �
¼ 1

kmin Bt
t0
ðx0Þ

h i : (12)

Next we note that the eigenvalues of Bt
t0

coincide with those

of Ct
t0

. Indeed, if k is an eigenvalue of Bt
t0

with eigenvector e,

then we have

DFt
t0

DFt
t0

h iT
e ¼ ke;

which, after left-multiplication by DFt
t0

h iT
, yields

Ct
t0

DFt
t0

h iT
e ¼ k DFt

t0

h iT
e;

implying that DFt
t0

h iT
e is an eigenvector of Ct

t0
with eigen-

value k.

We conclude that kmin Bt
t0
ðx0Þ

h i
¼ kmin Ct

t0
ðx0Þ

h i
holds,

thus (12) gives

kmax Ct0
t ðxtÞ

� �
¼ 1

kmin Ct
t0
ðx0Þ

h i ¼ 1

kmin Ct
t0
ðFt0

t ðxtÞÞ
h i ; (13)

which leads to formula (7), as claimed, after substitution into

(8). Note that (13)—and hence (7)—could not have been

concluded immediately, because Ct0
t ðxtÞ

� ��1 6¼ Ct
t0
ðx0Þ; as

seen from (11). (

B. The case of two-dimensional flows

Most applications of LCS analysis in the literature have

involved two-dimensional fluid flows with a simulated or

experimentally measured velocity field v(x, t). For such

flows, the smallest FTLE can be expressed in terms of the

largest FTLE and the determinant of the deformation gradi-

ent DFt
t0

. Based on this fact, Proposition 1 can be rewritten

for two-dimensional flows as follows:

Proposition 2: For two-dimensional dynamical systems,

we have

Kt0
t ðxtÞ ¼ Kt

t0
ðFt0

t xtð ÞÞ �
1

t� t0j j

ðt

t0

divvðFs
t xtð Þ; sÞds; (14)

with div referring to the spatial divergence operator. In par-

ticular, for area-preserving two-dimensional flows, we have

Kt0
t ðxtÞ ¼ Kt

t0
ðFt0

t xtð ÞÞ: (15)

Proof: Note that by (3), we have

det Ct
t0
ðx0Þ ¼ det DFt

t0
ðx0Þ

h i2

;

so for two-dimensional dynamical systems (n¼ 2), formula

(7) can be rewritten as

Kt0
t ðxtÞ ¼ �Ct

t0
ðFt0

t xtð ÞÞ

¼ � 1

t� t0j j log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmin Ct

t0
Ft0

t xtð Þ
� �h ir

¼ � 1

2 t� t0j j log
det Ct

t0
ðx0Þ

kmax Ct
t0

x0ð Þ
h i

¼ � 1

2 t� t0j j log
det DFt

t0
ðx0Þ

h i2

kmax Ct
t0

x0ð Þ
h i

¼ Kt
t0
ðx0Þ �

1

t� t0j j log det DFt
t0
ðx0Þ; (16)

where we have used the fact that the flow map is

an orientation-preserving diffeomorphism, and hence

det DFt
t0
ðx0Þ > 0. By Liouville’s theorem (Arnold1), we have

det DFt
t0
ðx0Þ ¼ exp

ðt

t0

divvðxðs; t0; x0Þ; sÞds

� �
; (17)

thus (16) and (17) together prove formula (14).

If, in addition, the two-dimensional dynamical system is

area-preserving [e.g., v(x, t) is a two-dimensional incompres-

sible fluid velocity field], then divv � 0 leads to the surpris-

ingly simple result (15). (

C. Implications for finding LCSs

Proposition 1 implies that we can simply locate ridges

of the largest backward-time FTLE field, Kt0
t ðxtÞ, by graph-

ing � Ct
t0
ðx0Þ over the corresponding advected locations

xt ¼ Ft
t0
ðx0Þ; then finding the ridges of the resulting scalar

field. This implies that attracting LCSs at time t should be

marked by troughs of Ct
t0
ðFt0

t xtð ÞÞ. Applying Proposition 1 in

backward time gives that repelling LCSs at time �t are

marked by troughs of C�t
t0
ðFt0
�t x�tð ÞÞ.
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For two-dimensional incompressible flows, formula (15)

of Proposition 2 enables a simplified, unidirectional calcula-

tion of LCSs based on the largest FTLE field only: (1) ridges

of the Kt
t0

field graphed over initial trajectory positions x0

reveal repelling LCSs at time t0 (2) ridges of the same field

graphed over final trajectory positions xt reveal attracting

LCSs at t. Similar statements hold in backward time.

While the initial positions x0 are typically launched

from an evenly spaced regular grid at time t0, the trajectory

positions xt may be located along a strongly deformed grid.

As a result, ridge extraction for Kt0
t ðxtÞ may be numerically

challenging for large deformations of the grid, i.e., for large

times t. A way to address this challenge is to first interpolate

the scattered values Kt0
t ðxtÞ over to a regular grid of positions

~xt, then extract ridges of Kt0
t ð~xtÞ.

IV. EXAMPLES

Here we consider three two-dimensional numerical

examples to illustrate our results. Higher-dimensional exam-

ples appear to be more challenging to handle due to the large

deformations in the grid of advected initial conditions. For

this reason, we relegate the numerical illustration of Proposi-

tion 1 on higher-dimensional problems to future work.

A. The forced Duffing equation

Consider the forced Duffing oscillator

_x1 ¼ x2;

_x2 ¼ x1 � x3
1 þ e sin t:

This system is an area-preserving two-dimensional dynami-

cal system, and hence Eq. (15) applies. We select the forcing

amplitude e ¼ 0:1 to ensure the existence of a small-ampli-

tude hyperbolic periodic orbit that perturbs from the saddle

point x1¼ x2¼ 0 of the steady limit. Below we use FTLE to

locate the stable manifold (a repelling LCS) and the unstable

manifold (an attracting LCS) of the periodic orbit.

First, for reference, we locate the unstable manifold at

t¼ 10 in the standard way, i.e., by determining the ridges of

the largest FTLE field Kt0
t ; computed from t¼ 10 back to

t0¼ 0 with time step Dt ¼ 0:01: This computation is per-

formed over an initial grid consisting of 800� 600 points

uniformly distributed in the domain [� 2, 2] � ½�1:5; 1:5�.
For trajectory integration, we use the fourth order Runge–

Kutta method to obtain the forward-time FTLE field shown

in Fig. 1(a).

Next, we compute the largest FTLE field Kt
t0
ðx0Þ for a

similar grid of points x0 initialized at t0¼ 0, then advected

forward up to time t¼ 10 using the same Dt ¼ 0:01: To test

formula (15), we plot the FTLE values Kt
t0
ðx0Þ over the cur-

rent positions xt¼ x(t, t0, x0) at time t¼ 10. In the interest of

better visualization, we follow the numerical procedure pro-

posed in Sec. III C above, i.e., interpolate the FTLE field

Kt
t0
ðFt0

t ðxtÞÞ from the deformed grid of current positions xt

onto a regular grid of positions ~xt using Delaunay triangula-

tion.3 The computational cost of this process is small: for the

resolution used, the triangulation took a few seconds (less

than 1% of the total computational time). The results are

shown in Fig. 1(b).

In agreement with formula (15), the LCSs emerging

from Figs. 1(a) and 1(b) are identical. Note that in Fig. 1(b),

some points of the domain have no associated FTLE values

shown (upper-left and lower-right corners). This is because

the number of advected points at these locations is not suffi-

ciently large to yield meaningful interpolated values for the

FTLE field.

In Fig. 1(c), we show the stable manifold of the hyper-

bolic periodic orbit at time t0 ¼� 10. The stable manifold

forms a ridge of the largest FTLE field Kt
t0
ðx0Þ computed by

advecting a 800� 600 initial grid from t0¼ � 10 to t¼ 0. In

Fig. 1(d), the same manifold is computed by applying for-

mula (15) in backward time, i.e., by plotting the backward

FTLE field Kt0
t ðxtÞ over points ~x0 of a regular grid, interpo-

lated from FTLE values obtained over the advected positions

x0 ¼ Ft0
t ðxtÞ. Again, the LCSs obtained from the two differ-

ent computations agree, as stated in Proposition 1.

B. Forced-damped Duffing equation

Next, we illustrate the validity of the more general for-

mula (14) of Proposition 2 that applies to nonarea-preserving

flows as well. We consider the forced-damped Duffing

oscillator

_x1 ¼ x2

_x2 ¼ x1 � x3
1 � 025x2 þ 04 cos t;

with the constant divergence divv ¼ �0:25. For this choice

of parameters, the systems admits a homoclinic tangle

formed by the stable and unstable manifolds of a saddle-type

periodic orbit (Guckenheimer and Holmes4).

We first locate the unstable manifold (attracting LCS) of

the hyperbolic periodic orbit near the origin at time t¼ 0 in

the standard way, i.e., as a ridge of the largest FTLE field

computed from t0¼ 0 back to t ¼� 5 on the same grid and

with the same numerical method and time step as in the pre-

vious example [see Fig. 2(a)]. To test formula (14), we also

locate the same manifold by (1) computing the FTLE field

Kt0
t ðxtÞ from t ¼� 8 to t0¼ 0; (2) subtracting the integrated

divergence of the velocity field along the trajectories as

given in (14); (3) interpolating the value of Kt0
t ðFt

t0
ðx0ÞÞ

obtained from (14) to a regular 800� 600 grid of points ~x0

at t0 using Delaunay triangulation; (4) plotting Kt0
t ðFt

t0
ð~x0ÞÞ

in Fig. 2(b). Note again that the results in Figs. 2(a) and 2(b)

are identical, with the exception of small corner areas of the

grid where the interpolation fails, as earlier. In Fig. 2(c), we

show the field Kt0
t ðFt

t0
ðx0ÞÞ without interpolation in order to

highlight the importance of this step in the computational

procedure for longer integration times.

We omit here a similar comparison of the two sides of

(14) for the stable manifold, which again gives identical

results.

C. Forced-damped Duffing–van der Pol equation

As a third example, we study a combination of a Duffing

and a van der Pol oscillator of the form,
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_x1 ¼ x2;

_x2 ¼ x1 � x3
1 þ 05x2 1� x2

1

� �
þ 01 sin t:

This system admits an attracting two-dimensional torus (due

to the van der Pol term) that encircles a homoclinic tangle

arising from the Duffing-type term. The homoclinic tangle is

formed by the stable and unstable manifolds of a small-am-

plitude periodic orbit near the origin. In this example, the

smallest FTLE field turns out to yield better images of the

attractor than the largest FTLE.

In Fig. 3(a), we show the unstable manifold (attracting

LCS), identified in the standard way, i.e., as a ridge of the

backward FTLE field computed from t¼ 6 back to t0¼ 0

with Dt ¼ 0:01: Observe that the strong attraction to the

torus results in a rapid divergence of backward-time trajec-

tories, suppressing the unstable manifold of the periodic

orbit in the FTLE calculation. (We show no color where

the numerical integration we used blew up.) By contrast,

Fig. 3(b) shows the results obtained from the application of

formula (14), with the forward FTLE field computed from

t0¼ 0 to t¼ 6 with the same time step. This example illus-

trates that in case of strong instabilities in a given time

direction, using the smallest FTLE in the other time direc-

tion may give a more balanced view of all LCSs present in

the system.

D. Experimental flow field around a jellyfish

In this final example, we illustrate the most general form

of our results, Eq. (7), on an experimental velocity field

obtained from particle image velocimetry (PIV) measure-

ments near a swimming jellyfish. Details of this experiment

can be found in Ref. 12.

FIG. 1. (Color online) (a) Unstable

manifold (attracting LCS) of the forced

Duffing equation from a standard back-

ward FTLE calculation (b) same from a

forward FTLE calculation using formula

(15). (c) Stable manifold (repelling

LCS) for the same system from a stand-

ard forward FTLE calculation (d) same

from a backward FTLE calculation

using formula (15).

FIG. 2. (Color online) (a) Unstable

manifold (attracting LCS) of the forced-

damped Duffing equation from a stand-

ard backward FTLE calculation (b)

same from a forward FTLE calculation

using (14) (c) same as (b) but without

interpolating Kt0
t ðFt

t0
ðx0ÞÞ over a regular

grid of positions.
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Figure 4(a) shows attracting LCS candidates identified

as ridges of the largest FTLE field Kt
t0
ðx0Þ, which is com-

puted by advecting points x0 backward from an initial grid of

600� 600 points. For advection, we used a fourth order

Runge–Kutta scheme with integration time step Dt ¼ 0:005,

and with linear interpolation applied in time and space to the

experimental velocity field.

In Figs. 4(b)–4(e), we illustrate formula (7) by com-

paring the largest FTLE field Kt
t0
ðx0Þ with the smallest

FTLE field � Ct0
t ðFt

t0
x0ð ÞÞ computed over the advected

grid Ft
t0

x0ð Þ for different integration parameters. More

specifically, in Fig. 4(b), we use a 600� 600 grid,

Dt ¼ 0:005; and cubic interpolation in time and space.

In Fig. 4(c), we perform the same computation but on a

smaller, 300� 300 grid. We observe that the reduction

of the number of points has no visible impact on the

quality of the computed field. Similarly, an increase in

the time step to Dt ¼ 0:01 has an unnoticeable effect in

Fig. 4(d). Changing the interpolation scheme from cubic

to linear, using the smaller 300� 300 grid, and increas-

ing the time step to Dt ¼ 0:01 simultaneously lead to a

slight degradation in the of the plot quality [cf. Fig.

4(e)]. Keeping the same time step but decreasing the

grid resolution even further to 100� 100 makes the plot

somewhat blurred [cf. Fig. 4(f)], but the LCS candidates

remain well-defined and virtually identical.

FIG. 3. (Color online) (a) Unstable

manifold (attracting LCS) of the forced-

damped Duffing–van der Pol oscillator,

obtained from a standard backward

FTLE calculation. (b) The same attract-

ing LCS obtained from a forward FTLE

calculation using formula (14).

FIG. 4. (Color online) (a) Attracting

LCSs for the experimentally measured

flow field around a jellyfish from the

largest FTLE field with Dt ¼ 0:005; lin-

ear interpolation in time and space, and

grid resolution 600� 600. (b) Attracting

LCSs obtained from Eq. (7) for step size

Dt ¼ 0:005; cubic interpolation in time

and space, and grid resolution

600� 600: (c) Attracting LCSs obtained

from Eq. (7) for, but with Dt ¼ 0:005;
cubic interpolation in time and space,

and resolution 300� 300: (d) Attracting

LCSs obtained from Eq. (7) for

Dt ¼ 0:01; cubic interpolation in time

and space, resolution 300� 300: (e)

Attracting LCSs obtained from Eq. (7)

for Dt ¼ 0:01; linear interpolation in

time and space, resolution 300� 300: (f)

Attracting LCSs obtained from Eq. (7)

for Dt ¼ 0:01; linear interpolation in

time and space, resolution 100� 100:
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V. CONCLUSIONS

In this note, we have pointed out that the smallest FTLE

field can be used to extract attracting LCSs from forward-

time trajectories and repelling LCSs from backward-time

trajectories. We have illustrated this observation on two-

dimensional, nonautonomous area-preserving and dissipative

dynamical systems, as well as on the experimentally meas-

ured flow field around a jellyfish. Beyond establishing a rela-

tionship between LCSs and the smallest FTLE for the first

time, our results allow for computational savings over the

standard LCS extraction method that requires trajectory inte-

gration in both time directions. In addition, as our third

example above shows, using the smallest FTLE for LCS

analysis is more accurate if computing the largest FTLE

leads to rapidly growing instabilities.

We believe that the simple relationship between the

smallest FTLE and LCSs pointed out here also makes LCS

analysis more readily applicable to problems involving real-

time flow analysis. In particular, as one gathers more and

more velocity data at increasing times t, a single forward-

running calculation reveals the attracting LCSs at time t.
This, for instance, enables the real-time tracking of the pres-

ent (time t) center of material accumulation, while revealing

in more and more detail the original partition of the phase

space by repelling LCSs at t0 that has lead to the current dis-

tribution of initial conditions.
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