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Stretching, alignment, and shear in slowly varying velocity fields
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We derive criteria that locate intense material stretching and shear in two-dimensional flows with slow time
dependence. Our derivation makes use of the near integrability of the equation of variations along trajectories
of the slowly varying flow. The criteria yield two diagnostic scalar fields for use in real-time Lagrangian
predictions in geophysical flows.
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[. INTRODUCTION high shear. As a complementary tool, the field locates
Lagrangian structures of high sheauch as rings and jets
In this paper, we derive Lagrangian criteria for regions ofwhile it ignores stable and unstable manifolds.
material stretching and shear in slowly varying two-

dimensional velocity data. Because of their fast convergence, Il. THE EQUATION OF VARIATIONS
these criteria will be useful in short-term Lagrangian predic- . . . . .
tion schemes, such as the scheme of Leléeal. [1] for Consider the two-dimensional velocity field/(x,t)

passive pollution control near the surface of Monterey Bay.:[L!(X't)*U(X't)]T' with the associated equation for particle
A number of studies have addressed the stability of indiMotons,

vidual fluid trajectories in frames comoving with particles . )

[2—14). While most studies assume slow variation for the x=v(xt), xeR*. @
velocity gradient along fluid trajectories, these moving gra-
dients may vary fast even in steady flows. This paper derive
Lagrangian stability criteria that are exact for steady flows
regardless of how fast the velocity gradient changes alon
trajectories. We then apply the same stability criteria to ve-
locity fields that vary slowly in time, expecting that the ad- .
ditional slow variation of velocity gradients due to unsteadi- §=VV(x(t,x),1)¢. @

ness is negligible, at least over short and intermediate time As is well known in the classical theory of ODEsee

scales. . .
) . . . . e.g., Hale[15]), a solution of Eq.(2) in the case ofteady
We first derive exact criteria for stretching and a“gnmentvelocity fields is given by

of material elements in steady flows. Specifically, using La-
grangian velocities and their normal vectors as a basis along E1)=V(X(t,X0)), 3)
trajectories, we solve the equation of variations along a fluid
trajectory in the steady limit. The solution leads to a simpleas one verifies by direct substitution. Whitx(t,x,),t) is
stability criterion that identifies repelling, attracting, and neu-not a solution to Eq(2) for unsteady flows, it is still close to
tral trajectories. A side result is an exact formula for thea solution for finite times if/(x,t) varies slowly in time. It is
asymptotic alignment direction of material elements at anhjs finite-time closeness that we exploit in our analysis be-
arbitrary point of the flow. The stability criterion and the |ow.
alignment formula yield two scalar fielda, and u, that
highlight stretching, compression, and shear regions in the IIl. PASSAGE TO A MOVING FRAME
Lagrangian sense.

As a second step, we extend the results to weakly un- Motivated by the solutior{3), we introduce a coordinate
steady velocity fields. In the language of nonlinear dynamicssystem whose axes are unit vectors parallei(iqt,xy)) and
\ andu then reveal stable and unstable manifolds, as well ag* (x(t,X,)), a vector orthogonal ta(x(t,X,)). More specifi-
generalized KAM-type regions in two-dimensional slowly cally, we define the vector" and the transformation matrix
varying velocity data. We test our arguments on a two-T as
dimensional barotropic turbulence simulation, finding that
and u converge faster than the finite-time Lyapunov expo-
nent distribution, a frequently used Lagrangian stability indi-
cator. Lyapunov exponents highlight both repelling material
lines (stable manifoldsand shear lines while missing attract- then fix an initial conditiorx,, an initial timet,, and change
ing material lines(unstable manifolds By contrast, thex coordinates along the trajectoxyt,x,) by letting
field highlights both stable and unstable manifolds in a single
numerical run, distinguishing these manifolds from lines of E=T(X(t,%g),t)m.

§olutions of this equation are the fluid trajectorigs,x,)
with initial positions x(tg,Xg) =Xo. Small perturbationst
'=X,—Xo of the initial condition ofx(t,X,) satisfy the equa-
on of variations,

—v 1
W=< u)’ T(x,t)= —[v(X, )V (x,1)],
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Applying this change of variables to E@) leads to the \jth S=1(Vv+Vv") denoting the rate-of-strain tensor.

transformed equation of variations Note thatS; is the parallel strain rate along the trajectory and
. 4(t) is the divergence of the velocity field along the trajec-
n=[A(t) +b(t)B]7, (4 tory. The quantityS; has also been used in earlier work to
describe growth of disturbances to barotropic steady flows
where [16].
A(t)= ( S(®) a(t) ) :( 0 1) IV. THE STEADY LIMIT
0 -—-S+at))’ -1 0/’
SO+ For slowly varying velocity fields,y(i-vt)/.|v|2 is small,
" V- ([VVIVE = [VVA ) and hence Eq4) is a small perturbation of its steady limit,
a(t)= , :
Iv[2 i 7=A(t) 7. ()
X=X(t,Xq)
Equation(4) is also a small perturbation of E@6) if the
vhev, velocity field is close to the product of a purely time-
b(t)= 5 , dependent scalar field and a steady vector field. Below we
vl x=X(t,X0) examine the steady limi{t) more closely.
(v,SV) A. Solutions and invariant manifolds
|~ Iv|2 ' 5(t):V'V|XZX(t,Xo)' ) Direct integration of Eq.(6) gives the solutionz(t)
x=x(t.xo) =W(t,tg) 7o with the fundamental solution matrix
t t t S
exp{ ft S(ndr ft ex;{ LS‘(T)dT exp( ft [—S(n+ 5(7')]d7'] a(s)ds
Wt to)= i i i (7)

t
0 exp{ft [—S(n)+ 6(7')]d7']

Note that the 7,= 0} subspace is invariant under the map the Lagrangian velocity of the trajectory. The exponent
W(t,ty), showing that vectors initially tangent to the trajec- A (t,ty) can also be viewed as a finite-time version of the
tory x(t,Xo) are advected into tangent vectors by the linear-mixing efficiency proposed by Ottinpl7], when the effi-
ized flow. The stability type of théz;,=0} subspace is de- ciency is evaluated along the unit vector/|v]|.
termined by the growth of they, component of vectors

initially parallel to thez, axis. Specifically, with the notation . .
B. Hyperbolicity and material alignment

t .
_ _ If \(t,tp)>0 holds, then thd 7»,=0} subspace is repel-
Nt tp) = + 4 d . 0 . L2 ) o
(tto) fto[ S(n+ (] dr ling. At the same time, there is contraction within that sub-

space, as long as the flow is only moderately compressible,

_ ft uxvz_(uy+ vX)UU+vyu2 ds. @® i.e., o(t)<S(t). '!'hese two effect_s imp.ly hyperbolic
t u2+p2 ' (saddle-typg behavior for the underlying trajectom(t,xg)
x=X(s.Xo) over the time intervalty,t]. A similar conclusion holds for
we obtain that ML) <0.
In the \(t,tg)>0 case of hyperbolicity, the zero solution
N\(t,tg)<0={7,=0} attracts over|tg,t], of the linear equatiori6) admits a time-dependent unstable
manifold WY. This unstable manifold contains special solu-
\(t,to)>0={7,=0} repels over[to,t], tions that converge to the origin @s»—o. The manifold
WY is a two-dimensional set in they(t) space-time, with its
A(t,t5)=0={7,=0} neutral over[tg,t], (9) ’It:_= col?st slicew(t) forming a line through the origiisee
ig. 1).
a general criterion for the stability of a trajectory over the The significance oW is that all solutions of Eq(6)
time interval[ty,t]. outside the{7,=0} subspace converge ¥"(t) ast— .

The quantity\ (t,tg)/(t—1tp) can be thought of as a finite- As a consequence, typical small perturbations to the initial
Lyapunov exponent computed in the direction orthogonal tccondition x, align asymptotically withW"(t). Equivalently,
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FIG. 2. For shear flows, any initial vectay, aligns with thez,
axis ast—oo.
FIG. 1. The unstable manifoM/ in the (74, 7,,t) coordinates,
and itst=const sliceW"(t). ast—o. Both this tracer-gradient alignment angle and the
angle Eq.(11) for material alignment are exact for steady
all small material elements placed transverselyx(b,xg) flows, as opposed to the approximate angles derived previ-
align with WY(t) ast—oo. ously in the literatur¢8,11].
To find WY(t) for anyt, consider a vector

7]t C. Ellipticity and parabolicity
1
77t= t

) e WH(1). If the trajectoryx(t,Xq) is periodic with periodp, then

V(X(tg,tp))=V(X(tot+ p,tg))=T(to+ p,to)v(X(tg,tp)),
By the definition of WY, all current positionsy' in W(t) (x(to.to)) =V(x(to+ P o)) (fo Pto)V(x(to o))
decay to the origin of Eq6) in backward time, thus we have ihus 1 is an eigenvalue with eigenvectge (1,0)T for the
matrix W(ty+p,tg). Consequently,

72

lim W(T,t)n'=0.
T tot+p
Using Eq.(7), we rewrite this last limit as 6 §(r)d7=0 (12
T T T . . .. .
lim (ntlex;{f S(ndr|+ WIZJ ex;{f S|(ndr for anyty, i.e., §(t) is a mean-zero periodic function. For
To—o t t s incompressible flows, therefork(t,ty) is a mean-zero peri-

. odic function along periodic trajectories. As a result,
X ex f [8(1)—S()] dr a(s)ds) =0, (10) )\(_t,to)=_0 occurs at least twice within one period. Wg_call
t this periodic recurrence of instantaneous neutral statality
. liptic stability for the trajectory(t,x,). For example, trajec-
or equivalently, tories inside a vortex ring of a steady flow are elliptic.
. If the trajectoryx(t,xp) is aperiodic, a zero ol (t,tg)
n_ lim ftex f‘[z (1)— 8(7)]dr!a(s)ds does not necessarily lead to other zeros. In that case, a better
t T s (7 e ' indicator of overall neutral stability fax(t,x,) is the bound-
M2 To-= . .
edness ofzy,(t) along any solution of Eq(6). For incom-
Therefore, the anglé(x,t) between the velocity(x,t) and  pressible flows, the boundednessgi(t) is equivalent to

the instantaneous unstable subspatét) obeys the formula
IN(t,t)|<K, teR, (13

t t
cot¢(x,t)=TIlmwaexp[ J'S[ZSH(T)_ ()] dT] a(s)ds, for anyty and for someK, as one verifies from Ed7). If an

(12) aperiodic trajectory satisfies E(L.3), we say that its stability
type isparabolic For example, trajectories inside a jet or a
where the integrands are to be evaluated along a fluid trajeshear layer of a steady flow are parabolic.
tory that is at the poink at timet. For incompressible flows, both elliptic and parabolic tra-
The angle¢(x,t) maintains its meaning fox(t,ty)<0.  jectories satisfy Eq(13). The difference is that along para-
In that case, the unstable manifoll" coincides with the bolic trajectories with uniform shedi.e., with a(t) uni-
{5,=0} subspace, and hen¢eot$(x,t)|—~ ast—cw. We formly bounded from zerp the alignment anglep(x,t)
also recall that the gradients of any tracer fielck,t) ad-  converges to zer¢cf. Fig. 2, while ¢(x,t) oscillates peri-
vected by the velocity field align asymptotically with the odically along elliptic trajectories. Thugot¢|— on para-
direction orthogonal ta\V(t). Therefore, the angleg/(x,t)  bolic trajectories, whilgcot¢| shows bounded oscillations
between the tracer gradient and the velocity figlk,t)  on elliptic trajectories.
obeys the formula By contrast,|cot¢| converges to a finite value along hy-
perbolic trajectories with\ (t,t5)>0, and|cot¢| tends to

L t t infinity along hyperbolic trajectories with(t,ty)<0. Along
tan¢(x,t)——Tllmwaexp{ L[ZS‘(T)_&TH dr the latter trajectories, we also hawdt,ty)— —o, distin-
guishing them from parabolic trajectories, on whictt,tg)

Xa(s)ds, remains bounded by Eq13).
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V. SLOWLY VARYING INCOMPRESSIBLE FLOWS

We now assume that the velocity fieldis incompress-
ible. In that caseg(t)=0 along all trajectories, and hence
the coefficient matrix of Eq(6) takes the form

Si(t)
0

a(t)

A(”:( —qm)’

and Eq.(8) can be rewritten as
t
)\('[,'[0)=—JAt S(ndr
0

ds.

ft Uy (v2=u?) = (U, +v,)uv
to u?+v?

X=X(S,Xg)

(19

Furthermore, the alignment angfgx,t) is given by the sim-
pler expressiofcf. Eq. (11)]

—2\(t,s)

cotop(x,t)= lim Jte a(s)ds. (15
T

T——

We call v slowly varying if the function b(t)
=v'.v,/|v|? is small compared to the other terms in E4j.

By contrast, most stability studies in the Lagrangian frame
assume slow variation for the full velocity gradient
Vv(x(t,xg),t), an assumption that already fails for typical

trajectories of steady flows.

A. Slowly varying hyperbolic regions

Incompressibility implies that whenever a trajectory at-
tracts(repels in normal directions, it experiences stretching
(contraction in the tangential direction. As a result, both

A(t,tg)>0 and\(t,tp)<O0 in Eq. (9) indicate saddle-type
behavior along the trajectory(t,x,), at least over the time
interval[t,tg]. Suchfinite-time hyperbolidbehavior leads to

PHYSICAL REVIEW E68, 056304 (2003

for all tel=[ty,t4] and for some constart>0. Under the
first of these assumptions, we hawét,ty)<<O for all t
S (to !tl] .

Let the matrixM (t) contain the normalized real eigenvec-
tors of A(t). We pass to the eigenbasis Aft) by setting
n=M/(t)z, which leads to the transformed system

z=A(t)z+M M+b(t)B]z 17
with A(t)=diad S(t),—S(t)]. Following Haller and Yuan
[19] we fix a finite time interval and define the quantities

a=min |detM(t)|, B=max|M(t)],

tel tel

(18

with M| =3 ;M7 denoting the norm of the matri¥l
Note thata is a measure of the minimal angle between the
two eigenvectors, while8 measures the maximal rate at
which the eigenvectors change.

Redefining our notation asl+b(t)B—M, we apply the
results of Haller and Yuahl9] to obtain the condition

B+2¢

(%

Smin~> 2 \/E

for the survival of finite-time hyperbolicity for Eq4) over
the time intervall. Thus, we obtain the criterion

asmin_z\/z[’)

<—
4.2

for N(t,tg) <O to be a conclusive indicator of hyperbolicity

for a trajectoryx(t,xo) of the velocity fieldv(x,t).
For instance, if in Eq(5) we had

V- vyl

[v[?

(19

X=X(S,Xg)

S(Hy=2+ coslt, a(t)=1, 4(t1)=0

2

along a hypothetical fluid trajectom(t,x,), then we would
find

the existence of finite-time stable and unstable manifolds as-

sociated with the trajector}9].
Under what conditions doeg(t,ty) >0 orA(t,ty) <0 im-
ply hyperbolicity for the equation of variatiorid)? We an-

swer this question below by invoking a result of Haller and
Yuan [19] on the size of admissible perturbations that pre-
serve hyperbolicity in a time-dependent linear system. We
will only discuss thea(t,ty)<O case, as the other case is

similar.
We consider the full transformed equation of variation
7=A(t) 7+ b(t)By, (16)
and seek a condition under which Ed.6) remains finite-
time hyperbolic, provided that Eq6) is finite-time hyper-
bolic. We assume that

S()=Smin>0,  [b(t)|<e,

2

1
2+cos—t
2

\/1+4

detM(t)=

1 2
2+cos—t)
2

1
smzzt

M=
1+4

2.
2+cos§t)

In that case, we would obtain

Smn=1, a=

o
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thus the criterion(19) would be satisfied if oY

[VE(X(1,%0) 1) - Vi (X(1,%0), 1) B—+2
|V(X(thO)!t)|2 10\/5 '

This last inequality then would give an upper bound on
the unsteadiness offor which we could rigorously conclude
the hyperbolicity of the trajectorx(t,xy). Note, however, %
that Eq.(19) is only a sufficient criterion to guide one’s o
intuition about slowness of the velocity field: if condition
(19 fails, the trajectoryk(t,x,) may still be hyperbolic.

B. Slowly varying shear regions

To conclude neutral stability from Ed6) for the full
equation of variationg4) is more subtle. Arbitrarily small o
perturbations of an elliptic or parabolic trajectory may result , .
in elliptic, parabolic, or weakly hyperbolic behavior. The
growth of the alignment angleb(x(t,xg),t), however, re-
mains an indicator of high Lagrangian shear for slowly vary- '
ing velocity fields while the integral of the perturbation term

in Eq. (16) is still small. n
A computable finite-time expression for apfx(t,x),t)

is 0
#(tto) FIG. 3. (Color) Comparison of the\(t,ty) field (left images

t 2_.2 +p)— and the finite-time Lyapunov exponent distributigight images at

:f o 2o (U VT (Uy o) — duv ds, timest=5.1, t=5.6, andt="6.7.
to u?+o?
X=X(S,Xq)
(20 Y
~_

obtained by replacing th&— —o limit in Eq. (15) with t,, El ﬁ' I2

the earliest time at which velocity data are available.

In view of our discussion in Sec. IV Gu| values con- . 0
verging to infinity indicate uniform shear regiofis., over- o F
all parabolic stability in a slowly varying velocity field. In ' IED 2
principle, | x| may also tend to infinity along attracting tra- & '
jectories if the{ 7,=0} subspace remains the unstable mani- % e 0
fold of the origin in Eq.(4). Such a coincidence is unlikely in 25w rJ
a typical unsteady fluid flow, thus large enough valuegudf I“)
invariably mark shear regions in applications. Large positive IEI
w values correspond to clockwise shear, and negativel- D 0
ues indicate anticlockwise shear. ' ° E . o @
° rglel
! -10
VI. ANUMERICAL EXAMPLE o Y ,J§| zx i
To test\(t,tp) and u(t,ty) as indicators of Lagrangian ,.” 1 § .
hyperbolicity and shear, we consider a two-dimensional & : I3°
barotropic turbulence simulation used by Pejeal.[18] and . | _ >
Haller and Yuar{19]. This velocity field models the genera- ' /T- 7 N o &
tion of mesoscale eddies in two-dimensional quasigeo- - ' "-q

strophic turbulence, and hence is an example of a geophysi-

cal flow that is considered slowly varying. |§| I P ﬂ I
Starting at the nondimensionalized timg=5, we advect 0, ‘ ) '.

a grid of fluid particles over the planar domaj®,27]

X [0,2m] numerically. Using the definitiofiL4), we compute FIG. 4. (Color) Comparison of theu(t,t,) field (left image$

and plotA(t,tp) for increasing times over the initial grid and the finite-time Lyapunov exponent distributigight images at
positions. Local maxima of this plot will delineate the timest=5.1,t=5.6, andt=6.7.
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t=t, position of material lines that repel fluid particles over VIl. CONCLUSIONS

the interval[to,t]. Similarly, local minima of thex plot We have shown that the solutions of the equation of varia-

denote attracting material lines over t[‘l@,t_] mter_val. F'_' tions of a steady flow remain reliable Lagrangian stability
nally, near-zero values of(t,to) mark material regions with jngicators for slowly varying incompressible flows. The sca-
neutral stability type. _ .. lar field \(t,to) defined in Eq.(14) admits positive maxima
We show snapshots of the above computation in Fig. 3gyer repelling material lineéstable manifoldsand negative
For reference, we also show the distribution of finite-timeminima over attracting material lingsinstable manifolds
Lyapunov exponents calculated from the DLE algorithm de-The field u(t,t,) defined in Eq.(20) admits local maxima
scribed by Hallef20]. Repelling material lines and lines of along regions of high shear, separating unmixed parcels of
high shear att=t, both appear as maximizing curves fluid from high-shear rings surrounding them. Thét,to)
(ridges of the DLE plots. field is most effective over short time intervals; its accuracy
Figure 3 confirms that over short time scales, the quantityn Lagrangian prediction diminishes for longer times. By
A(t,tg) quickly develops maxima over attracting material contrast, theu(t,ty) field appears to be a reliable indicator of
lines and minima over repelling material lines. By contrast,unmixed Lagrangian vortex cores and the surrounding rings
Lyapunov exponents are unable to distinguish between higtgven for long times.
shear regions and high-stretching regions over short time We have obtained the above results after a judicious
scales. This is undesirable in geophysical prediction wherghoice of Lagrangian coordinates along fluid trajectories.
one needs to extract repelling and attracting material linedhe same choice of coordinates in three-dimensional steady
reliably from very short datasets in order to predict the transflows does not lead to a solvable equation of variations, un-
port of material, such as chemical pollution, in real tifag Iess the flow is 'compl.etely integrable. The reason is that,
For longer times, Lyapunov exponents become more efﬁynhke t'he twp-d|men5|onal case, one solution of a three-
cient in detecting hyperbolic material lines. The inefficiencydimensional linear system does not lead to a full general
of M(t,to) over such long times is due to the growing error Solution. Nevertheless, for three-dimensional steady flows,

between solutions of the equation of variations and those df'€ Solution(3) enables one to reduce the equation of varia-
its steady limit. tions (2) to a two-dimensional linear system that is concep-

Figure 4 shows snapshots of taet,t,) field defined in tually easier to study. The implications of this reduction for

Eq. (20), confirming that this field indeed admits maxima slowly varying three-dimensional flows will be explored
over high-shear regions in slowly varying velocity fields. &/Sewhere.
Again, the convergence qi(t,ty) is faster than that of the

Lyapunov exponent field, making(t,t;) the quantity of

choice in geophysical prediction. Remarkably(t,ty) re- G.H. was partially supported by the NSF Grant No. DMS-

mains an efficient indicator of ellipticity and shear even for01-02940 and AFOSR Grant No. F49620-03-1-0200. The ve-
long times, indicating that the error between solutions of thdocity field analyzed in this paper was originally generated

equation of variations and those of its steady limit remaingy Andrew Poje, who used the barotropic turbulence solver
bounded. of Antonello Provenzale.
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