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Stretching, alignment, and shear in slowly varying velocity fields
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We derive criteria that locate intense material stretching and shear in two-dimensional flows with slow time
dependence. Our derivation makes use of the near integrability of the equation of variations along trajectories
of the slowly varying flow. The criteria yield two diagnostic scalar fields for use in real-time Lagrangian
predictions in geophysical flows.
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I. INTRODUCTION

In this paper, we derive Lagrangian criteria for regions
material stretching and shear in slowly varying tw
dimensional velocity data. Because of their fast converge
these criteria will be useful in short-term Lagrangian pred
tion schemes, such as the scheme of Lekienet al. @1# for
passive pollution control near the surface of Monterey B

A number of studies have addressed the stability of in
vidual fluid trajectories in frames comoving with particle
@2–14#. While most studies assume slow variation for t
velocity gradient along fluid trajectories, these moving g
dients may vary fast even in steady flows. This paper der
Lagrangian stability criteria that are exact for steady flow
regardless of how fast the velocity gradient changes al
trajectories. We then apply the same stability criteria to
locity fields that vary slowly in time, expecting that the a
ditional slow variation of velocity gradients due to unstea
ness is negligible, at least over short and intermediate t
scales.

We first derive exact criteria for stretching and alignme
of material elements in steady flows. Specifically, using L
grangian velocities and their normal vectors as a basis a
trajectories, we solve the equation of variations along a fl
trajectory in the steady limit. The solution leads to a sim
stability criterion that identifies repelling, attracting, and ne
tral trajectories. A side result is an exact formula for t
asymptotic alignment direction of material elements at
arbitrary point of the flow. The stability criterion and th
alignment formula yield two scalar fields,l and m, that
highlight stretching, compression, and shear regions in
Lagrangian sense.

As a second step, we extend the results to weakly
steady velocity fields. In the language of nonlinear dynam
l andm then reveal stable and unstable manifolds, as we
generalized KAM-type regions in two-dimensional slow
varying velocity data. We test our arguments on a tw
dimensional barotropic turbulence simulation, finding thal
and m converge faster than the finite-time Lyapunov exp
nent distribution, a frequently used Lagrangian stability in
cator. Lyapunov exponents highlight both repelling mate
lines~stable manifolds! and shear lines while missing attrac
ing material lines~unstable manifolds!. By contrast, thel
field highlights both stable and unstable manifolds in a sin
numerical run, distinguishing these manifolds from lines
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high shear. As a complementary tool, them field locates
Lagrangian structures of high shear~such as rings and jets!,
while it ignores stable and unstable manifolds.

II. THE EQUATION OF VARIATIONS

Consider the two-dimensional velocity fieldv(x,t)
5@u(x,t),v(x,t)#T, with the associated equation for partic
motions,

ẋ5v~x,t !, xPR2. ~1!

Solutions of this equation are the fluid trajectoriesx(t,x0)
with initial positions x(t0 ,x0)5x0. Small perturbationsj
5x082x0 of the initial condition ofx(t,x0) satisfy the equa-
tion of variations,

j̇5“v„x~ t,x0!,t…j. ~2!

As is well known in the classical theory of ODEs~see,
e.g., Hale@15#!, a solution of Eq.~2! in the case ofsteady
velocity fields is given by

j~ t !5v„x~ t,x0!…, ~3!

as one verifies by direct substitution. Whilev„x(t,x0),t… is
not a solution to Eq.~2! for unsteady flows, it is still close to
a solution for finite times ifv(x,t) varies slowly in time. It is
this finite-time closeness that we exploit in our analysis
low.

III. PASSAGE TO A MOVING FRAME

Motivated by the solution~3!, we introduce a coordinate
system whose axes are unit vectors parallel tov„x(t,x0)… and
v'

„x(t,x0)…, a vector orthogonal tov„x(t,x0)…. More specifi-
cally, we define the vectorv' and the transformation matrix
T as

v'5S 2v

uD , T~x,t !5
1

uvu @v~x,t !v'~x,t !#,

then fix an initial conditionx0, an initial timet0, and change
coordinates along the trajectoryx(t,x0) by letting

j5T„x~ t,x0!,t…h.
©2003 The American Physical Society04-1
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Applying this change of variables to Eq.~2! leads to the
transformed equation of variations

ḣ5@A~ t !1b~ t !B#h, ~4!

where

A~ t !5S Si~ t ! a~ t !

0 2Si~ t !1d~ t !
D , B5S 0 1

21 0D ,

a~ t !5
v•~@“v#v'2@“v'#v!

uvu2
U

x5x(t,x0)

,

b~ t !5
v'

•vt

uvu2 U
x5x(t,x0)

,

Si5
~v,Sv!

uvu2 U
x5x(t,x0)

, d~ t !5“•vux5x(t,x0) , ~5!
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with SÄ1
2 (“v1“vT) denoting the rate-of-strain tenso

Note thatSi is the parallel strain rate along the trajectory a
d(t) is the divergence of the velocity field along the traje
tory. The quantitySi has also been used in earlier work
describe growth of disturbances to barotropic steady flo
@16#.

IV. THE STEADY LIMIT

For slowly varying velocity fields, (v'
•vt)/uvu2 is small,

and hence Eq.~4! is a small perturbation of its steady limi

ḣ5A~ t !h. ~6!

Equation ~4! is also a small perturbation of Eq.~6! if the
velocity field is close to the product of a purely time
dependent scalar field and a steady vector field. Below
examine the steady limit~6! more closely.

A. Solutions and invariant manifolds

Direct integration of Eq.~6! gives the solutionh(t)
5C(t,t0)h0 with the fundamental solution matrix
C~ t,t0!5S expF E
t0

t

Si~t!dtG E
t0

t

expF E
s

t

Si~t!dtGexpH E
t0

s

@2Si~t!1d~t!#dtJ a~s!ds

0 expH E
t0

t

@2Si~t!1d~t!#dtJ D . ~7!
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Note that the$h250% subspace is invariant under the m
C(t,t0), showing that vectors initially tangent to the traje
tory x(t,x0) are advected into tangent vectors by the line
ized flow. The stability type of the$h250% subspace is de
termined by the growth of theh2 component of vectors
initially parallel to theh2 axis. Specifically, with the notation

l~ t,t0!5E
t0

t

@2Si~t!1d~t!# dt

5E
t0

t uxv
22~uy1vx!uv1vyu

2

u21v2 U
x5x(s,x0)

ds, ~8!

we obtain that

l~ t,t0!,0⇒$h250% attracts over@ t0 ,t#,

l~ t,t0!.0⇒$h250% repels over@ t0 ,t#,

l~ t,t0!50⇒$h250% neutral over @ t0 ,t#, ~9!

a general criterion for the stability of a trajectory over t
time interval@ t0 ,t#.

The quantityl(t,t0)/(t2t0) can be thought of as a finite
Lyapunov exponent computed in the direction orthogona
-

o

the Lagrangian velocity of the trajectory. The expone
l(t,t0) can also be viewed as a finite-time version of t
mixing efficiency proposed by Ottino@17#, when the effi-
ciency is evaluated along the unit vectorv'/uvu.

B. Hyperbolicity and material alignment

If l(t,t0).0 holds, then the$h250% subspace is repel
ling. At the same time, there is contraction within that su
space, as long as the flow is only moderately compress
i.e., d(t),Si(t). These two effects imply hyperbolic
~saddle-type! behavior for the underlying trajectoryx(t,x0)
over the time interval@ t0 ,t#. A similar conclusion holds for
l(t,t0),0.

In the l(t,t0).0 case of hyperbolicity, the zero solutio
of the linear equation~6! admits a time-dependent unstab
manifold Wu. This unstable manifold contains special sol
tions that converge to the origin ast→2`. The manifold
Wu is a two-dimensional set in the (h,t) space-time, with its
t5const sliceWu(t) forming a line through the origin~see
Fig. 1!.

The significance ofWu is that all solutions of Eq.~6!
outside the$h250% subspace converge toWu(t) as t→`.
As a consequence, typical small perturbations to the ini
conditionx0 align asymptotically withWu(t). Equivalently,
4-2
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all small material elements placed transversely tox(t,x0)
align with Wu(t) as t→`.

To find Wu(t) for any t, consider a vector

h t5S h1
t

h2
t D PWu~ t !.

By the definition ofWu, all current positionsht in Wu(t)
decay to the origin of Eq.~6! in backward time, thus we hav

lim
T→2`

C~T,t !h t50.

Using Eq.~7!, we rewrite this last limit as

lim
T→2`

S h1
t expF E

t

T

Si~t!dtG1h2
t E

t

T

expF E
s

T

Si~t!dtG
3expH E

t

s

@d~t!2Si~t!# dtJ a~s!dsD 50, ~10!

or equivalently,

h1
t

h2
t

5 lim
T→2`

E
T

t

expH E
s

t

@2Si~t!2d~t!#dtJ a~s!ds.

Therefore, the anglef(x,t) between the velocityv(x,t) and
the instantaneous unstable subspaceWu(t) obeys the formula

cotf~x,t !5 lim
T→2`

E
T

t

expH E
s

t

@2Si~t!2d~t!# dtJ a~s!ds,

~11!

where the integrands are to be evaluated along a fluid tra
tory that is at the pointx at time t.

The anglef(x,t) maintains its meaning forl(t,t0),0.
In that case, the unstable manifoldWu coincides with the
$h250% subspace, and henceucotf(x,t)u→` as t→`. We
also recall that the gradients of any tracer fieldc(x,t) ad-
vected by the velocity field align asymptotically with th
direction orthogonal toWu(t). Therefore, the anglec(x,t)
between the tracer gradient and the velocity fieldv(x,t)
obeys the formula

tanc~x,t !52 lim
T→2`

E
T

t

expH E
s

t

@2Si~t!2d~t!# dtJ
3a~s!ds,

FIG. 1. The unstable manifoldWu in the (h1 ,h2 ,t) coordinates,
and itst5const sliceWu(t).
05630
c-

as t→`. Both this tracer-gradient alignment angle and t
angle Eq.~11! for material alignment are exact for stead
flows, as opposed to the approximate angles derived pr
ously in the literature@8,11#.

C. Ellipticity and parabolicity

If the trajectoryx(t,x0) is periodic with periodp, then

v„x~ t0 ,t0!…5v„x~ t01p,t0!…5C~ t01p,t0!v„x~ t0 ,t0!…,

thus 1 is an eigenvalue with eigenvectorh5(1,0)T for the
matrix C(t01p,t0). Consequently,

E
t0

t01p

Si~t!dt50 ~12!

for any t0, i.e., Si(t) is a mean-zero periodic function. Fo
incompressible flows, therefore,l(t,t0) is a mean-zero peri-
odic function along periodic trajectories. As a resu
l(t,t0)50 occurs at least twice within one period. We ca
this periodic recurrence of instantaneous neutral stabilityel-
liptic stability for the trajectoryx(t,x0). For example, trajec-
tories inside a vortex ring of a steady flow are elliptic.

If the trajectoryx(t,x0) is aperiodic, a zero ofl(t,t0)
does not necessarily lead to other zeros. In that case, a b
indicator of overall neutral stability forx(t,x0) is the bound-
edness ofh2(t) along any solution of Eq.~6!. For incom-
pressible flows, the boundedness ofh2(t) is equivalent to

ul~ t,t0!u<K, tPR, ~13!

for any t0 and for someK, as one verifies from Eq.~7!. If an
aperiodic trajectory satisfies Eq.~13!, we say that its stability
type isparabolic. For example, trajectories inside a jet or
shear layer of a steady flow are parabolic.

For incompressible flows, both elliptic and parabolic tr
jectories satisfy Eq.~13!. The difference is that along para
bolic trajectories with uniform shear@i.e., with a(t) uni-
formly bounded from zero#, the alignment anglef(x,t)
converges to zero~cf. Fig. 2!, while f(x,t) oscillates peri-
odically along elliptic trajectories. Thusucotfu→` on para-
bolic trajectories, whileucotfu shows bounded oscillation
on elliptic trajectories.

By contrast,ucotfu converges to a finite value along hy
perbolic trajectories withl(t,t0).0, and ucotfu tends to
infinity along hyperbolic trajectories withl(t,t0),0. Along
the latter trajectories, we also havel(t,t0)→2`, distin-
guishing them from parabolic trajectories, on whichl(t,t0)
remains bounded by Eq.~13!.

FIG. 2. For shear flows, any initial vectorh0 aligns with theh1

axis ast→`.
4-3



e

m
nt
al

at
g

th

a

nd
re
W
is

c-

he
at

y

G. HALLER AND R. IACONO PHYSICAL REVIEW E68, 056304 ~2003!
V. SLOWLY VARYING INCOMPRESSIBLE FLOWS

We now assume that the velocity fieldv is incompress-
ible. In that case,d(t)[0 along all trajectories, and henc
the coefficient matrix of Eq.~6! takes the form

A~ t !5S Si~ t ! a~ t !

0 2Si~ t !
D ,

and Eq.~8! can be rewritten as

l~ t,t0!52E
t0

t

Si~t!dt

5E
t0

t ux~v22u2!2~uy1vx!uv

u21v2 U
x5x(s,x0)

ds.

~14!

Furthermore, the alignment anglef(x,t) is given by the sim-
pler expression@cf. Eq. ~11!#

cotf~x,t !5 lim
T→2`

E
T

t

e
22l(t,s)

a~s!ds. ~15!

We call v slowly varying if the function b(t)
5v'

•vt /uvu2 is small compared to the other terms in Eq.~4!.
By contrast, most stability studies in the Lagrangian fra
assume slow variation for the full velocity gradie
“v(x(t,x0),t), an assumption that already fails for typic
trajectories of steady flows.

A. Slowly varying hyperbolic regions

Incompressibility implies that whenever a trajectory
tracts~repels! in normal directions, it experiences stretchin
~contraction! in the tangential direction. As a result, bo
l(t,t0).0 and l(t,t0),0 in Eq. ~9! indicate saddle-type
behavior along the trajectoryx(t,x0), at least over the time
interval @ t,t0#. Suchfinite-time hyperbolicbehavior leads to
the existence of finite-time stable and unstable manifolds
sociated with the trajectory@9#.

Under what conditions doesl(t,t0).0 or l(t,t0),0 im-
ply hyperbolicity for the equation of variations~4!? We an-
swer this question below by invoking a result of Haller a
Yuan @19# on the size of admissible perturbations that p
serve hyperbolicity in a time-dependent linear system.
will only discuss thel(t,t0),0 case, as the other case
similar.

We consider the full transformed equation of variation

ḣ5A~ t !h1b~ t !Bh, ~16!

and seek a condition under which Eq.~16! remains finite-
time hyperbolic, provided that Eq.~6! is finite-time hyper-
bolic. We assume that

Si~ t !>smin.0, ub~ t !u<e,
05630
e
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for all tPI 5@ t0 ,t1# and for some constante.0. Under the
first of these assumptions, we havel(t,t0),0 for all t
P(t0 ,t1#.

Let the matrixM (t) contain the normalized real eigenve
tors of A(t). We pass to the eigenbasis ofA(t) by setting
h5M (t)z, which leads to the transformed system

ż5L~ t !z1M21@Ṁ1b~ t !B#z, ~17!

with L(t)5diag@Si(t),2Si(t)#. Following Haller and Yuan
@19# we fix a finite time intervalI and define the quantities

a5min
tPI

udetM ~ t !u, b5max
tPI

iṀ~ t !i , ~18!

with iṀi5AS i , j Ṁ i j
2 denoting the norm of the matrixṀ

Note thata is a measure of the minimal angle between t
two eigenvectors, whileb measures the maximal rate
which the eigenvectors change.

Redefining our notation asṀ1b(t)B→Ṁ , we apply the
results of Haller and Yuan@19# to obtain the condition

smin.2A2
b12e

a

for the survival of finite-time hyperbolicity for Eq.~4! over
the time intervalI. Thus, we obtain the criterion

uv'
•vtu

uvu2 U
x5x(s,x0)

,
asmin22A2b

4A2
~19!

for l(t,t0),0 to be a conclusive indicator of hyperbolicit
for a trajectoryx(t,x0) of the velocity fieldv(x,t).

For instance, if in Eq.~5! we had

Si~ t !521cos
1

2
t, a~ t ![1, d~ t ![0

along a hypothetical fluid trajectoryx(t,x0), then we would
find

detM ~ t !5

2S 21cos
1

2
t D

A114S 21cos
1

2
t D 2

,

iṀ~ t !i5

Asin2
1

2
t

114S 21cos
1

2
t D 2 .

In that case, we would obtain

smin51, a5
2

A5
, b,

1

5
,

4-4
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thus the criterion~19! would be satisfied if

uv'
„x~ t,x0!,t…•vt„x~ t,x0!,t…u

uv„x~ t,x0!,t…u2
,

A52A2

10A2
.

This last inequality then would give an upper bound
the unsteadiness ofv for which we could rigorously conclude
the hyperbolicity of the trajectoryx(t,x0). Note, however,
that Eq. ~19! is only a sufficient criterion to guide one’
intuition about slowness of the velocity field: if conditio
~19! fails, the trajectoryx(t,x0) may still be hyperbolic.

B. Slowly varying shear regions

To conclude neutral stability from Eq.~6! for the full
equation of variations~4! is more subtle. Arbitrarily small
perturbations of an elliptic or parabolic trajectory may res
in elliptic, parabolic, or weakly hyperbolic behavior. Th
growth of the alignment anglef(x(t,x0),t), however, re-
mains an indicator of high Lagrangian shear for slowly va
ing velocity fields while the integral of the perturbation ter
in Eq. ~16! is still small.

A computable finite-time expression for cotf(x(t,x0),t)
is

m~ t,t0!

5E
t0

t

e
22l(t,s) ~u22v2!~uy1vx!24uvux

u21v2 U
x5x(s,x0)

ds,

~20!

obtained by replacing theT→2` limit in Eq. ~15! with t0,
the earliest time at which velocity data are available.

In view of our discussion in Sec. IV C,umu values con-
verging to infinity indicate uniform shear regions~i.e., over-
all parabolic stability! in a slowly varying velocity field. In
principle, umu may also tend to infinity along attracting tra
jectories if the$h250% subspace remains the unstable ma
fold of the origin in Eq.~4!. Such a coincidence is unlikely in
a typical unsteady fluid flow, thus large enough values ofumu
invariably mark shear regions in applications. Large posit
m values correspond to clockwise shear, and negativem val-
ues indicate anticlockwise shear.

VI. A NUMERICAL EXAMPLE

To test l(t,t0) and m(t,t0) as indicators of Lagrangian
hyperbolicity and shear, we consider a two-dimensio
barotropic turbulence simulation used by Pojeet al. @18# and
Haller and Yuan@19#. This velocity field models the genera
tion of mesoscale eddies in two-dimensional quasig
strophic turbulence, and hence is an example of a geoph
cal flow that is considered slowly varying.

Starting at the nondimensionalized timet055, we advect
a grid of fluid particles over the planar domain@0,2p#
3@0,2p# numerically. Using the definition~14!, we compute
and plot l(t,t0) for increasing times over the initial grid
positions. Local maxima of this plot will delineate th
05630
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FIG. 3. ~Color! Comparison of thel(t,t0) field ~left images!
and the finite-time Lyapunov exponent distribution~right images! at
times t55.1, t55.6, andt56.7.

FIG. 4. ~Color! Comparison of them(t,t0) field ~left images!
and the finite-time Lyapunov exponent distribution~right images! at
times t55.1, t55.6, andt56.7.
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t5t0 position of material lines that repel fluid particles ov
the interval @ t0 ,t#. Similarly, local minima of thel plot
denote attracting material lines over the@ t0 ,t# interval. Fi-
nally, near-zero values ofl(t,t0) mark material regions with
neutral stability type.

We show snapshots of the above computation in Fig
For reference, we also show the distribution of finite-tim
Lyapunov exponents calculated from the DLE algorithm d
scribed by Haller@20#. Repelling material lines and lines o
high shear att5t0 both appear as maximizing curve
~ridges! of the DLE plots.

Figure 3 confirms that over short time scales, the quan
l(t,t0) quickly develops maxima over attracting mater
lines and minima over repelling material lines. By contra
Lyapunov exponents are unable to distinguish between h
shear regions and high-stretching regions over short t
scales. This is undesirable in geophysical prediction wh
one needs to extract repelling and attracting material li
reliably from very short datasets in order to predict the tra
port of material, such as chemical pollution, in real time@1#.
For longer times, Lyapunov exponents become more e
cient in detecting hyperbolic material lines. The inefficien
of l(t,t0) over such long times is due to the growing err
between solutions of the equation of variations and thos
its steady limit.

Figure 4 shows snapshots of them(t,t0) field defined in
Eq. ~20!, confirming that this field indeed admits maxim
over high-shear regions in slowly varying velocity field
Again, the convergence ofm(t,t0) is faster than that of the
Lyapunov exponent field, makingm(t,t0) the quantity of
choice in geophysical prediction. Remarkably,m(t,t0) re-
mains an efficient indicator of ellipticity and shear even
long times, indicating that the error between solutions of
equation of variations and those of its steady limit rema
bounded.
ua
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VII. CONCLUSIONS

We have shown that the solutions of the equation of va
tions of a steady flow remain reliable Lagrangian stabil
indicators for slowly varying incompressible flows. The sc
lar field l(t,t0) defined in Eq.~14! admits positive maxima
over repelling material lines~stable manifolds! and negative
minima over attracting material lines~unstable manifolds!.
The field m(t,t0) defined in Eq.~20! admits local maxima
along regions of high shear, separating unmixed parcel
fluid from high-shear rings surrounding them. Thel(t,t0)
field is most effective over short time intervals; its accura
in Lagrangian prediction diminishes for longer times. B
contrast, them(t,t0) field appears to be a reliable indicator
unmixed Lagrangian vortex cores and the surrounding ri
even for long times.

We have obtained the above results after a judicio
choice of Lagrangian coordinates along fluid trajectori
The same choice of coordinates in three-dimensional ste
flows does not lead to a solvable equation of variations,
less the flow is completely integrable. The reason is th
unlike the two-dimensional case, one solution of a thr
dimensional linear system does not lead to a full gene
solution. Nevertheless, for three-dimensional steady flo
the solution~3! enables one to reduce the equation of var
tions ~2! to a two-dimensional linear system that is conce
tually easier to study. The implications of this reduction f
slowly varying three-dimensional flows will be explore
elsewhere.
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