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Unsteady flow separation on slip boundaries
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We derive analytic criteria for the location and angle of unsteady particle separation and
reattachment in two-dimensional flows with free-slip boundary conditions. Our wall-based criteria
show that, in general, fluid breakaway from the boundary takes place at locations different from
either instantaneous or averaged stagnation points. Indeed, for time-varying flows, separation does
not occur along a free streamline or along an average free streamline. We apply the formula to
transport in randomized Rayleigh-Bénard convection cells, as well as to boundary current
separation and reattachment in high-frequency radar data collected in Monterey Bay, California.
© 2008 American Institute of Physics. [DOI: 10.1063/1.2923193]

I. INTRODUCTION

Flow separation is the breakaway of fluid from a solid
boundary. From aerodynamic stall through oceanic boundary
current separation to microfluidic mixing, a variety of fluid
flows are dominated by separating flow structures. In a semi-
nal paper on two-dimensional steady flows with no-slip
boundaries, Prandtl showed that separation takes place at
points of zero wall-shear and negative wall-shear gradients.1
A major open question has been how Prandtl’s criterion
could be generalized to unsteady flows.

Early work on two-dimensional unsteady flows revealed
that vanishing wall shear and accompanying flow reversal
near the wall does not, in general, denote separation in any
meaningful sense in unsteady flows with no-slip
boundaries.>? Indeed, numerical simulations and experimen-
tal flow visualization using smoke, dye, or tracers indicate
fluid breakaway at locations unrelated to instantaneous
points of zero wall shear.>* For separation taking place ex-
actly on the boundary, a necessary and sufficient criterion for
particle separation exists.” Nevertheless, this result is limited
to no-slip boundaries and is unable to represent more com-
plex separation processes where fluid detaches at a finite dis-
tance from the boundary (see, for example, the experiments
of Koromilas and Telionis6).

To capture global boundary layer separation, it is conve-
nient to observe the flow at a lower resolution. This proce-
dure is commonly used in large-scale geophysical simula-
tions, such as ocean or mantle modeling. In such systems, the
grid resolution of the numerical solver cannot usually be
made sufficiently small to resolve the boundary layer. In the
discretized equations, the first row of grid points along the
boundary represents the averaged motion in the boundary
layer instead of the boundary itself. At such a low resolution,
enforcing the usual no-slip boundary condition (all the com-
ponents of the velocity vanish) is therefore not appropriate.
Instead, it is replaced by the weaker free-slip boundary con-
dition (the normal component of the velocity vanishes but
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particles can move freely along the boundary). It is worth
noting that switching to a low resolution free-slip model is
not only a necessary evil resulting from the limited amount
of memory available on today’s computers, but is also a
means to study global separation of the boundary layer. In-
deed, when many complex processes occur inside the bound-
ary layer,6 the free-slip model maps the net boundary layer
behavior to the free-slip boundary.

Two objectives are therefore pursued in this manuscript
on separation and reattachment along free-slip boundaries.
First, we provide a free-slip theory that can be applied di-
rectly to ocean and plasma large-scale problems where only
data with free-slip boundary conditions are available. Sec-
ond, the free-slip theory also gives the means to “look at the
fluid problem from a distance” and to investigate separation
of the entire boundary layer.

Unsteady separation in flows with slip boundaries has
not yet been scrutinized as much as separation on no-slip
boundaries. Motivated by two-dimensional steady slip flows,
most studies associate unsteady slip separation with free
streamlines detaching from the wall or, equivalently, instan-
taneous hyperbolic stagnation points on the wall. Related
work on geophysical flows shows, however, a vast discrep-
ancy between wall-based stagnation points and locations of
tracer breakaway in unsteady flows.”®

Few theoretical studies have been concerned with the
details of unsteady slip separation. Ghil et al. gave condi-
tions under which bifurcation creates an instantaneous stag-
nation point on the boundary.9 In unsteady flows, however,
stagnation points do not mark the locations of Lagrangian
separation, the actual fluid breakaway.

Iterative procedures for locating Lagrangian separation
and reattachment points near a stagnation point on a free-slip
boundary have been proposed.lo’11 Separation may not, how-
ever, take place near a stagnation point if this point bifurcates
or moves fast enough.12 Conversely, flow separation can also
occur in the absence of stagnation points on the boundary.
Figure 1 shows pathlines for an unsteady flow in a circular
domain. This flow has closed streamline contours at each

© 2008 American Institute of Physics
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FIG. 1. (Color online) Separation in the absence of hyperbolic stagnation points and without any free streamlines detaching from the boundary. The
streamfunction is given by #(x,y,1)=(x>+y>—1)(x cos wt+y sin wt+w/2). For @>2, the streamlines are closed curves (dashed lines) and there is only one
elliptic stagnation point oscillating near the origin. Numerical pathlines and analytical solutions reveal flow separation from the boundary, which has neither
stagnation points nor detaching streamlines. The figure corresponds to w=4 (enhanced online).

time instance and does not have any stagnation points on the
boundary. There is not any free streamline detaching from
the boundary. Nevertheless, a thin material spike starting
from the boundary reveals the presence of flow
separation.13’14 Examples such as this one underline how
separation is inherently a Lagrangian concept: The process is
defined by the motion of particles detaching from the bound-
ary. In slowly varying flows, separating lines of particles and
free streamlines are sufficiently close to approximate the
former with the latter. Examples like the one depicted in
Fig. 1 show that for quickly varying flows, actual particle
separation may be unrelated to streamlines detaching from
the boundary. The same conclusion holds for stagnation
points. Hence, we seek a separation criterion that does not
rely on instantaneous stagnation points or on streamline ge-
ometry. Instead, we concentrate on the motion of particles:
Separation is the concentration of particles on and near the
boundary, followed by ejection of a material spike inside the
flow.

Lekien er al." computed slip separation and reattach-
ment points from a finite-time Lyapunov exponent analysis.
This procedure yields correct breakaway locations, but it re-
lies on the global tracking of fluid particles away from the
boundary. In some applications, on-wall detection of separa-
tion is preferred, if not required. Moreover, Lyapunov expo-
nent studies do not yield explicit separation criteria in terms
of familiar boundary quantities.

Despite the lack of a complete theory, unsteady separa-
tion on slip boundaries occurs in many applications. Ex-
amples include boundary current separation in oceanic
ﬂows,lﬁ’17 recirculation in coastal areas,18 wake formation
behind moving bubbles,'**” vortex shedding in the wake of a
fish fin?' recirculation in microfluidic devices,zz’23 and lift
generation on free-flying insects.”* In most of these ex-

amples, the fluid velocity on the boundary is not prescribed
(free slip). In many other examples, the global separation of
the boundary layer of a true no-slip flow can be studied ef-
ficiently by switching to a free-slip model.

In this paper, we present necessary and sufficient criteria
for slip separation in two-dimensional unsteady flows. Using
the theory of normally hyperbolic invariant manifolds from
dynamical system theory, we derive explicit time-dependent
formulas for the separation location and angle. At separation,
attracting material lines (unstable manifolds) emerge from
the boundary, collecting fluid particles from the vicinity of
the boundary, then subsequently ejecting them into the main
stream. We obtain similar results for flow reattachment by
locating repelling material lines (stable manifolds) that col-
lect and guide fluid from the main stream to stretch it along
the boundary.

To illustrate our results, we first consider the two-
dimensional Rayleigh—Bénard convection model of Solomon
and Gollub® with a periodic motion of the roll pattern. In
this case, separation is well understood since the separation
points are the invariants of the Poincaré map—a strobo-
scopic view of particle paths in the systern.26 We show that,
for the periodic case, our separation theory is equivalent to
classical results. We then prescribe random motion for the
roll pattern in the Solomon—Gollub model and add Gaussian
noise to test the robustness of the separation criteria to per-
turbations. Our aim is to locate separation from, and reat-
tachment to, horizontal convection cell boundaries. We find
that separation and reattachment points differ markedly from
the randomly appearing instantaneous stagnation points and
from the stagnation points of the mean flow.

As a first application, we consider separation profiles
computed by Coulliette and Wiggins8 for the quasigeo-
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FIG. 2. (Color online) Separation is the breakaway of fluid near a wall.
Particles in B, a portion of the boundary that acts as a stable manifold, are
attracted toward the separation trajectory x.,(f). Fluid is ejected along an
unstable manifold W inside the fluid domain (). A necessary and sufficient
criteria for separation is derived by transforming the velocity field into a
moving coordinate frame oriented with the unit tangent vector e and the unit
normal vector n. The existence of a normally hyperbolic subspace A" gen-
erates the desired separation framework.

strophic ocean model of Rowley27 and we show that our
formulas predict the previously observed separation angle.
Finally, we consider velocity data obtained from the coastal
ocean dynamics applications radar (CODAR) installation in
Monterey Bay, CA. The separation and reattachment points
that we identify agree with previous studies.” The originality
of the present work is that we use only coastal velocities in
predicting separation and reattachment angles and hence ob-
tain our results at a significantly reduced computational cost.

Il. SETUP

Consider a two-dimensional fluid velocity field

_ (uley.n)
vl = (v(x,y,t) )’

with x=(x,y) defined on a smooth planar domain () that is
allowed to vary in time (see Fig. 2). We assume that the first
spatial derivatives of v(x,7) are uniformly bounded in time.

We also assume that, on a (possibly time-dependent)
smooth compact subset 5 of the flow boundary 0(), the ve-
locity field satisfies the free-slip boundary condition

(v(x,0),n(x,1))=0, x e B, (1)

where n(x, ) denotes the inward unit normal to B and (-,-) is
the inner product. The condition above states that the veloc-
ity field is tangent to B. Trajectories starting on the compact
boundary segment 3 are confined to B and hence remain
bounded at all times. Let e(x,#) denote the unit tangent vec-
tor to 3 at point x and at time ¢ for which

detfe(x,/) n(x,0)]=1.

Fluid trajectories x(r) generated by the velocity field satisfy
the differential equation

x=v(x,1). (2)

For simplicity, we assume planar flow geometry, but the re-
sults obtained extend to flows on any smooth, orientable,
two-dimensional surfaces, such as a sphere or an isopycnal
surface in the ocean.
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lll. FREE-SLIP SEPARATION AND REATTACHMENT

In this section, we define unsteady flow separation from,
and reattachment to, the free-slip boundary segment B. We
then derive necessary and sufficient criteria under which
separation or reattachment occurs.

A. Definitions

We say that flow separation takes place on B along a
boundary trajectory x(z) if

[S1] x(r) attracts other trajectories within B;

[S2] x(7) has a unique unstable manifold W"[x(z)] that is
uniformly bounded away from a portion of boundary con-
taining x(7) in backward time;

[S3] the above two properties are robust: Small enough
smooth perturbations to the velocity field result in a nearby
x(r) satisfying S1 and S2.

Conditions S1 and S2 describe experimentally observed
features of flow separation: Particles converge to the separa-
tion location along the wall and then are ejected from the
wall (see Fig. 2 as well as the illustrations of Koromikas and
Telionis® for a geometric description of this setting). Physi-
cally, the unstable manifold W*[x(r)] is a material line that
shrinks to x(7) in backward time. Condition S3 guarantees
the observability of the separation taking place along
W¥[x(¢)]. This definition of separation is compatible with
previous work on slip separation28 as well as no-slip
separation.5

We also define reattachment as separation in backward
time. Specifically, reattachment takes place along a boundary
trajectory x(r) if

[R1] x(z) repels other trajectories within 15;

[R2] x(¢) has a unique stable manifold W*[x(z)] that is
uniformly bounded away from a portion of boundary con-
taining x(7) in forward time;

[R3] the above two properties are robust.

In this case, the stable manifold W*[x(7)] is a material
line that shrinks to x(7) in forward time.

B. Separation and reattachment criteria

As we prove in Appendix A, flow separation takes place
along a boundary trajectory x(¢) up to the present time ¢
whenever

1 t
\(?) = lim sup P J (e, (Vv)e)y(y).s ds <0,
T

T—+%

3)

t
A\, (2) =lim inf lf (0, (Vv)n)y(y) 5 ds >0,
T—+o TJ 1

with (-,-) denoting the inner product. For incompressible
flows, (n,(Vv)n)=—(e,(Vv)e); thus, Eq. (3) simplifies into
\a(£) >0 or, equivalently, \.(¢) <O0. In fact, provided that the
density remains uniformly bounded from both zero and in-
finity, Appendix B shows that we can always check only one
of the two conditions A, <0 or \,>0.

Physically, the conditions in Eq. (3) require the averaged
tangential rate of strain A\, and the averaged normal rate of
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strain \, along a boundary trajectory x(f) to be asymptoti-
cally negative and positive, respectively. A strict asymptotic
average for these strain rates may not exist, hence the use of
“lim sup” and “lim inf” instead of a simple limit.

We also show in Appendix A that under the
conditions (3), the separation angle 6(r) measured from the
boundary satisfies

t
cot = lim f ef§[<e,(VV)e>—<n»(VV)n>][x(r),r] dr[(e,(Vv)n)
-7

T—+o0

+ <ns(Vv)e>][x(s),s] ds. (4)

Similarly, reattachment takes place along a boundary tra-
jectory x(z) from the present time ¢ whenever

T—+%

1 t+T
Ne(?) = lim inf }f (e,(Vv)e)[X(s),s] ds >0,
t

(5)
1 t+T
\u(f) =1im sup }f <11,(VV)II>[X(‘Y)J] ds <O0.
t

T—+%

For incompressible flows, Eq. (5) simplifies to the single
condition A\, <0. Appendix B shows that for fluids with den-
sities uniformly bounded away from zero and infinity, one
condition also implies the other. It is therefore enough to
check only one of \¢>0 or A\, <0. Furthermore, at any time
t, the reattachment angle 6(r) measured from the boundary
satisfies

+T
cot O=— lim f il (VV)m) = (e (VV)e)] (), dr
t

T—+

X[(e,(Vv)m) + (n, (Vv)e) |1x(s) 5 ds. (6)

C. Numerical implementation of the criteria

Implementing the separation and reattachment criteria in
Egs. (3) and (5) requires the computation of A, and \, for an
array of trajectories on the boundary segment of interest.
Trajectories satisfying the two conditions in either
Eq. (3) or (5) are locally unique by the theory of normally
hyperbolic invariant manifolds (cf. Appendix A). For such
trajectories, formulas (4) and (6) give the correct separation
or reattachment angles.

In practice, however, velocity data are available only for
finite time intervals; thus, the asymptotic expressions in cri-
teria (3) and (5), as well as in angle formulas (4) and (6),
cannot be computed exactly. Instead, we invoke earlier re-
sults on finite-time hyperbolic material lines'*'*** to con-
clude that finite-time versions of Egs. (3) and (5) mark mov-
ing separation or reattachment points over a finite-time
interval 7.

Such boundary trajectories are no longer unique, but all
tend exponentially fast to a well-defined unique trajectory as
the length of the available velocity data increases.'> Conse-
quently, separation and reattachment points identified from
finite-time versions of Egs. (3) and (5) will be unique for
practical purposes, at least when computed from long enough
velocity data.
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In view of the above, at any time ¢ and for large enough
T, we identify a separation point candidate x(f) as a positive
local maximum of A\,(¢). The boundary trajectory x(¢) is an
actual moving separation point if it also satisfies \,(z) <O.
For incompressible flows, A (f)<O holds whenever
N\a(?) >0; thus, only one of the two conditions in Eq. (3) has
to be verified. Appendix B shows that the equivalence holds
also for most compressible fluids where the density is uni-
formly bounded away from O and +o.

According to the criterion in Eq. (5), locating reattach-
ment at a given time requires the knowledge of future veloc-
ity information. Hence, given a finite-time data set up to time
1y and a constant integration time 7, we can obtain only ap-
proximate reattachment locations at times 1<t,—T as posi-
tive local maxima of [ §+T<e,(VV)e)[X(S),S] ds and negative lo-
cal minima of [1""(n, (Vv)n)py).q ds.

The minima and maxima that we compute approximate
separation trajectories with an arbitrary precision, provided
that the integration time 7 is long enough. For small 7, the
minima and maxima are not true trajectories and might even
bifurcate at some times. Such bifurcating approximate sepa-
ration points are often desirable in systems that oscillate be-
tween different dynamical regimes.13’3o

Note that our separation criteria require only the knowl-
edge of the velocity and velocity derivatives on the bound-
ary. This is a useful feature for experimental implementation
and flow control applications. To use the separation criterion,
it is not necessary to install sensors in the flow to study and
control separation; it is sufficient to place captors on the
wing, airfoil, or other surface of interest.

IV. EXAMPLE 1: PERIODICALLY OSCILLATING
RAYLEIGH-BENARD CONVECTION

We illustrate the use of our separation and reattachment
criteria on a two-dimensional model of time-dependent
Rayleigh—-Bénard convection developed by Solomon and
Gollub.*>?*'*? This model involves an infinite array of con-
vection cells and hence does not have any real solid bound-
aries. Nevertheless, each convection cell is bounded from
above and below by horizontal streamlines that behave as
free-slip walls. Our objective is to find the locations of sepa-
ration from, and reattachment to, these horizontal cell bound-
aries.

The Rayleigh—Bénard convection model of Solomon and
Gollub® is given by the streamfunction

=2 sinfkLx g0} sin2y, )

where A is the maximum vertical velocity in the flow, k is the
wave number, and g(r) represents the lateral motion of the
roll pattern. The domain of the fluid is defined by x € R and
O=<y=<m/2. The lines y=0 and y=m/2 are the free slip
boundaries of the system.

In the velocity field generated by ¢, the fluid rotates in
opposite directions in adjacent cells. In the absence of roll
motion (g(7)=K), the boundaries between cells are vertical
lines satisfying x=K+m/k. In this case, cell-to-cell transport
is possible only through diffusion. For nonzero roll velocity,
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FIG. 3. (Color online) Separation in periodically oscillating convection cells. The invariants of the Poincaré map of the system correspond to periodic
hyperbolic trajectories on the top and bottom boundaries (triangles). The flow separates along the unstable manifold of the hyperbolic trajectory oscillating
along the top boundary. Particles reattach to the lower boundary along the unstable manifold of the other hyperbolic trajectory.

the vertical lines between cells move at a speed g(¢) and are
no longer barriers to transport (see Fig. 3). In this case, cell-
to-cell transport is dominated by chaotic advection.”

Camassa and Wiggins28 studied Lagrangian transport be-
tween cells for periodic oscillations g(7)=B sin(wt). In this
case, separation and reattachment on the horizontal walls
take place along stable and unstable manifolds of periodic
fluid trajectories that are confined to those walls. Such peri-
odic trajectories are fixed points of the associated Poincaré
map. Their stable and unstable manifolds intersect and form
heteroclinic tangles that are responsible for chaotic cell-to-
cell transport (see Fig. 3). Following the transport theory of
Rom-Kedar near a heteroclinic tangle,26 cell-to-cell fluxes
and re-entry rates can be efficiently computed based on the
geometry and the area of the lobes comprised between the
invariant manifolds.

For a periodic motion of the roll pattern, this system is
therefore well understood using classical tools such as
Poincaré sections. The separation and reattachment points
are periodic trajectories that can be computed by seeking
invariants in the Poincaré sections of the boundaries. The
periodic oscillation of such a Poincaré invariant along the top
boundary (see Fig. 3) is shown on the left panel of Fig. 4. To
compare the criteria that we develop in this manuscript with
the classical Poincaré analysis for periodic flows, we have
superimposed the curve corresponding to the maximum of A,
for this system (see left panel of Fig. 4). The two resulting
curves are visually identical, which indicates that our criteria
reduce to the classical Poincaré invariant for periodic flows.
The right panel of Fig. 4 shows that the difference between

the two approaches remains below 0.1% of the amplitude of
the motion of the separation point.

Note that the implementation of criteria (3) and (5) re-
quire the selection of a large (but finite) integration time 7.
The results shown in Fig. 4 are independent of the choice of
T, which need not be a integer multiple of the period of the
flow. Provided that T is large enough (i.e., larger than 2 or 3
times the period of the flow), criteria (3) and (5) reduce to
the classical Poincaré invariant for periodic flows.

V. EXAMPLE 2: RANDOMLY OSCILLATING
RAYLEIGH-BENARD CONVECTION

Our objective is to locate separation and reattachment on
the horizontal cell boundaries when the time dependence is
aperiodic and, hence, Poincaré maps are undefined. To illus-
trate the generality of our separation criteria, we consider the
same model of Rayleigh-Bénard convection [see Eq. (7)]
where we use a smooth but aperiodic function g() in Eq. (7)
to emulate the temporal complexity of turbulent convection.

Specifically, g(¢) is a realization of a random process
with zero mean (i.e., E[g(#)]=0), variance B (i.e., E[g(¢)*]
=B for all 1), and stationary Gaussian covariance in time,

E[g(1)g(1,)] = Bel ~ 2117, )

where 7 is the decorrelation time, i.e., the typical time scale
of the random oscillations of g(7).
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FIG. 4. Comparison between the hyperbolic Poincaré invariants (classical theory) and the point corresponding to the maximum \, for periodic Rayleigh—
Bénard convection cells. Left panel: The Poincaré section of the system has invariants that correspond to hyperbolic (separating) periodic trajectories. The
maximum of A\, is visually identical to the separation point predicted by Poincaré. Right panel: The difference between Poincaré’s separating trajectory and
the point where A\, is maximum, remains below 0.1% of the amplitude of the oscillations regardless of the integration time 7.

We generate the random function g(7) using the Wiener—
Khintchine theorem.** Namely, we first generate a random
Fourier spectrum G(w) with zero mean and unit impulse co-
variance E[G(w)G(w')]=8(w-w"). Such a spectrum can be
computed at discrete points w; using a random number gen-
erator because the spectrum is uncorrelated [i.e., the value of
G(w;) can be selected independently of G(w;) with ; # w;].
We then obtain g(¢) by inverting the random spectrum G(w)
with the desired Gaussian covariance,

+00

g =5 Re f

As an example, Fig. 5 shows a realization of the lateral mo-
tion of the roll pattern (solid curve) for B=0.48 and 7y=1r.
For numerical simulations, the right-hand side of Eq. (9) is
replaced by a discrete spectrum with a large number of com-
ponents. The algorithm used to compute the Gaussian noise
is available online.*® Note that g(7) is a (deterministic) real-
ization of the random process and is not itself a random
variable. The Gaussian noise is introduced only to produce a
smooth but aperiodic function g(r) with a specified timescale.
Once computed, g(¢) is considered deterministic and not
stochastic.

The velocity field generated by the streamfunction (7) is
incompressible; hence, the separation and reattachment cri-
teria simplify to the second equations in Egs. (3) and (5). On
both horizontal streamlines (y=0 and y=/2), a direct com-
putation gives

G(w)e—}n-wzrgﬂwt do |. (9)

Py =—2A cos{k[x — g(¢)]} cos 2y,

(n,(Vv)n) =v,=- %

which we integrate in time along boundary trajectories to
evaluate Egs. (3) and (5). Note that only velocity and veloc-
ity gradient information on the boundary are needed to per-
form this analysis.

Figures 6—8 show the streamlines of the model with ran-
dom g(7) at three different times 7. For different integration
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FIG. 5. Amplitude of the random forcing g(r) (which also corresponds to a
stagnation point in this case) and corresponding separation and reattachment
points. This chart gives only the x coordinate of the points. For the separa-
tion point, the y coordinate is y=7/2. For the reattachment point, the y
coordinate is y=0. Note that g(z), shifted by /2, corresponds to the x
coordinates of the stagnation points both on the top and on the bottom
boundaries.
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Integration Time

FIG. 6. (Color online) Transport in a chaotic Rayleigh-Bénard cell under random Gaussian forcing with amplitude B=0.48 and decorrelation time 7,=1.
Figures 6-8 show streamlines [Eq. (7) with A=0.18 and k=2], as well as separation and reattachment points at different times. Also shown are the \,, fields
in forward (below streamlines) and backward time (above streamlines). The color map is identical for the two \,, plots and their maxima mark separation or
reattachment. Particles (thick lines) released from five fixed locations near the top boundary confirm the predicted position and angle of separation. This panel

corresponds to time 7=5.

times 7, Figs. 6—8 show also a color map of \,, which we
view as a function of initial trajectory positions along the top
and bottom cell boundaries (y=0 and y=/2). As the inte-
gration time increases, only one point on each boundary con-
tinues to admit a positive \,. This point corresponds to a

separation point on the top cell boundary, and a reattachment
point on the bottom cell boundary.

The angle between the boundary and the separation (or
reattachment) profile at each of these points can be computed
using formulas (4) and (6). Since we have
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FIG. 7. (Color online) Transport in a chaotic Rayleigh-Bénard cell under random Gaussian forcing with amplitude B=0.48 and decorrelation time 7y=1r.
Figures 6-8 show streamlines [Eq. (7) with A=0.18 and k=2], as well as separation and reattachment points at different times. Also shown are the \, fields
in forward (below streamlines) and backward time (above streamlines). The color map is identical for the two A, plots and their maxima mark separation or
reattachment. Particles (thick lines) released from five fixed locations near the top boundary confirm the predicted position and angle of separation. This panel
corresponds to time #=30.

(e,(Vv)n) + (n,(Vv)e) = u, + v, top and bottom cell boundaries where y=0 or y=7/2. We
A therefore conclude that §=m/2, i.e., the separation and reat-
=—(k* - 4)sin{k[x — g()]} sin 2y, tachment profiles are always locally orthogonal to the cell
k boundaries.
the integrands in Egs. (4) and (6) vanish identically on the To verify the above predictions, we show advected fluid
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Integration Time

Integration Time

FIG. 8. (Color online) Transport in a chaotic Rayleigh-Bénard cell under random Gaussian forcing with amplitude B=0.48 and decorrelation time 7y=1r.
Figures 6-8 show streamlines [Eq. (7) with A=0.18 and k=2], as well as separation and reattachment points at different times. Also shown are the \, fields
in forward (below streamlines) and backward time (above streamlines). The color map is identical for the two A, plots and their maxima mark separation or
reattachment. Particles (thick lines) released from five fixed locations near the top boundary confirm the predicted position and angle of separation. This panel

corresponds to time #=60.

particles in Figs. 6—8 that corroborate the presence of sepa-
ration and reattachment on the top and bottom cell bound-
aries at the predicted positions and angles. The particles are
released continuously from five fixed locations right below
the top boundary. The y coordinate of the release sites is
/2-2X%1073. The x coordinates of the release sites are 1.0,

1.25, 1.5, 1.75, and 2.0. As shown in Figs. 68, the advected
particles converge toward the separation on the top bound-
ary, then follow the separation profile inside the domain. To
limit the number of rendered particles, they are followed for
a maximum time Jr=25 after the release.

Figure 9 illustrates the robustness of separation and re-
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FIG. 9. Robustness of the separation point with respect to model parameters. Left panel: Influence of the maximum velocity A. Right panel: Influence of the

amplitude of the lateral displacement B.

attachment detected by our criteria. We compute the separa-
tion point for various combinations of the parameters A
(maximum vertical velocity) and B (variance of the lateral
motion of the stagnation point). As seen in the figure, sepa-
ration persists within a large range of the model parameters.

VI. EXAMPLE 3: RANDOMLY OSCILLATING
RAYLEIGH-BENARD CONVECTION WITH NOISE

Listed in items S3 and R3 of the separation and reattach-
ment definitions, robustness with respect to perturbations of
the flow field is required for observable separation or reat-
tachment. Such robustness under changes of parameters fol-
lows from the structural stability of hyperbolic invariant
manifolds.>® A further practical question, however, is the ro-
bustness of separation and reattachment we locate under ad-
ditional stochastic noise. The requirement of robustness un-
der stochastic noise is stressed for features found in
measured and simulated geophysical flow data.”’

Assume that, instead of Eq. (2), the fluid particle motion
satisfies

x=v(x,1) + M(x,1), (10)

where A is some noise superimposed on the velocity field.
One might wonder whether separation points still exist for
the perturbed system (10) and, if they do, how close a new
separation point Xg(f) is to its unperturbed counterpart
Xqep(?) identified for Eq. (2).

For the noise field NV in Eq. (10), we shall select V X ¢,
where ¢ is the realization of a multivariate Gaussian stream
function noise. Such an unbiased noise field is characterized
by its magnitude N and its covariance

E[b(x,,1,) b(%o,15)] = Ne 1 = xalPlo*lty = 12,

The parameters o and 7 are commonly referred to as the
decorrelation length and the decorrelation time of the signal,
respectively. They determine the size and the time scale of
the features in the noise field.”

Such a multivariate Gaussian noise field can be
computed using the Wiener—Kitchine theorem and a
three-dimensional version of Eq. (9). Level sets of stream-
function (7) superimposed with a realization of several noise
fields are shown in Figs. 10 and 11. Note that both the back-
ground flow v and the noise field N satisfy the boundary
condition at the horizontal boundaries; hence, the boundary
conditions of the perturbed flow are unchanged.

Also note that several stagnation points are created by
the noise on the top and bottom boundaries. The regular
Eulerian pattern of Eq. (7) disappears and frequent and nu-
merous bifurcations of stagnation points take place near the
separation location. This shows that even simple flows with a
small noise violate the stringent conditions of stagnation-
point-based separation tracking algorithms that assume
unique nonbifurcating stagnation points.

By contrast, our A-criteria do not rely on instantaneous
stagnation points and successfully capture separation in
noisy flow fields. Indeed, Figs. 10 and 11 confirm that ex-
trema of A, and A, continue to capture separation and reat-
tachment under stochastic noise.

Figure 12 gives the position of the separation point at all
times for each of the systems in Figs. 10 and 11. Note that
our separation criteria involve integrals along trajectories. As
a result, perturbations with relatively small time scales are
rapidly averaged out when integrated. The position of the
separation point is, therefore, only slightly affected by noise
fields with small 7, even when N, the amplitude of the noise,
is large.

Vil. APPLICATION 1: ORTHOGONAL SEPARATION
IN A QUASIGEOSTROPHIC MODEL
OF THE NORTH ATLANTIC

Coulliette and Wiggins8 studied separation in a quasi-
geostrophic model of surface transport in the North Atlantic.
Of primary interest is a separating trajectory on the Western
boundary and its separation profile that propagates into the
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FIG. 10. (Color online) Transport in a chaotic noisy Rayleigh-Bénard cell using a random Gaussian forcing with amplitude B=0.48 and decorrelation time
To=7r. Bach panel shows the streamlines, separation, and reattachment points at time =30.0 for different noise fields N. (a) N=0. (b) N=0.025, o=1,
=1/10. (c) N=0.05, o=1, 7=7/10. (d) N=0.005, =0.3, 7=7/10. (e) N=0.005, 0=0.3, 7=m/2. (f) N=0.0015, 0=0.1, 7=7/10. Particles (thick lines)
released from five fixed locations on the top boundary validate the position and angle of the separation. Labels and color map are identical to those in Figs.

6-8 (enhanced online).

Gulf Stream. In the model used by Coulliette and Wiggins,
there is always a slowly varying, isolated, stagnation point
on the Western boundary. They find a separation point by
integrating two (converging) trajectories that initially
straddle the separation point. In the context of this smooth
model, the hyperbolic trajectory computed by Coulliette and
Wiggins corresponds to a separation point, as defined in this
manuscript. The main advantage of the new method pre-
sented here is that it remains applicable when stagnation
points bifurcate or get too close to one another.

In this manuscript, we also provide formula (4) for de-
termining the angle at which the separation profile intersects
the boundary. While unnoticed by Coulliette and Wiggins, all
the separation profiles and reattachment profiles that they
show are orthogonal to the boundary. Can we explain this
property using formulas (4) and (6)?

The numerical results in Coulliette and Wiggins8 are ob-
tained using the model and the software of Rowley.27 The
latter provides options for simulating no-slip boundary con-
ditions or no-stress boundary conditions. The simulations of
Coulliette and Wiggins are therefore not only free slip (the
normal component of the velocity vanishes: (v,n)=0) but
also incorporate the more constraining no-stress condition
[the normal derivative of the tangential velocity vanishes:
(e,(Vv)n)=0]. Since the Western boundary of the domain of
Coulliette and Wiggins is a straight segment in a neighbor-
hood of the separation point (i.e., € and n are constant vec-
tors), we also have (n,(Vv)e)=0. Indeed, the velocity v is
oriented along the constant unit vector e; hence, its deriva-
tive in the normal direction must vanish.

Using (n,(Vv)e)=(e,(Vv)n)=0 in formula (4), we find
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FIG. 11. (Color online) Transport in a chaotic noisy Rayleigh-Bénard cell using a random Gaussian forcing with amplitude B=0.48 and decorrelation time
7o=77. Bach panel shows the streamlines, separation, and reattachment points at time r=60.0 for different noise fields N. (a) N=0. (b) N=0.025, o=1,
=1/10. (c) N=0.05, o=1, 7=7/10. (d) N=0.005, =0.3, 7=7/10. (¢) N=0.005, 0=0.3, 7=m/2. (f) N=0.0015, 0=0.1, 7=7/10. Particles (thick lines)
released from five fixed locations on the top boundary validate the position and angle of the separation. Labels and color map are identical to those in Figs.

6-8 (enhanced online).

T
cot=0= 6=—.
2
This shows that separation (and reattachment) in Coulliette
and Wiggins8 is necessarily orthogonal to the boundary.
Whenever the stronger no-stress condition is used instead of
free slip and the boundary is locally linear, separation and
reattachment are constrained along directions that are or-
thogonal to the boundary.

VIil. APPLICATION 2: BOUNDARY CURRENT
SEPARATION AND REATTACHMENT
IN MONTEREY BAY

In this section, we consider high-frequency (HF) radar
measurements of surface currents v(x,7) in Monterey Bay,
CA. ¥ We seek unsteady separation and reattachment along
the coastline, which is treated as a free-slip boundary in ac-

cordance with common practice in geophysics. Indeed, large
grid sizes typically do not allow for resolving the boundary
layer flow in these systems. Separation and reattachment lo-
cations have a major impact on material transport in the bay
determining, for instance, the spread of coastal pollution.7

Three HF radar antennas have been operating in
Monterey Bay since 1994, collecting surface current mea-
surements binned every hour on a horizontal uniform grid
with 1X 1 km? resolution.””*° Additional stations have been
installed and will permit analysis along the entire California
coastline. To apply our separation and reattachment criteria,
we interpolate and extrapolate the available velocity data to
obtain a smooth velocity field v near the coastline. We re-
quire this processed velocity field to be everywhere tangent
to the coastline and admit a continuous Jacobian along the
coastline.

To obtain a velocity field v satisfying the above require-
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FIG. 12. Robustness of the separation point with respect to multivariate
Gaussian noise.

ments, we use an extension of classic modal analysis to re-
gions bounded by both a coastline (free-slip boundary con-
dition) and an open boundary.‘”’42 Specifically, we rely on a
set of basis functions for velocity fields defined over the bay.
The HF radar data are projected onto 64 of these modes,
corresponding to length scales shorter than 2 km. The result-
ing nowcast of the surface velocity field is continuously dif-
ferentiable and minimizes the least-squares difference with
the measured currents.*"*> Real-time measured currents as
well as reconstructed velocity fields can be monitored
online.**

If we assume that the density remains uniformly
bounded from zero and from infinity along the boundary, the
development in Appendix B implies that we do not need to
compute both A, or A,. Indeed A\,>0& A\ <0. Instead of
selecting one of the two criteria, we prefer a hybrid, more
robust, indicator: N\,—\,. Note that in the (uncommon) case
of a fluid where the density is unbounded or can approach
zero, Appendix B would not apply. The function A,—X\,
could still be used to detect separation and reattachment, but
each individual criterion would also have to be checked at
the candidate separation points.

Figure 13 shows A\,—A\, as a function of time and of the
arc length along the coastline for a fixed integration time
T=48 h, which matches the typical time scales observed by
autonomous underwater vehicles in Monterey Bay.45 Due to
the temporal resolution of the data, peaks of uncertainties are
expected within 2 h, which is more than 20 times shorter
than the time scales of the dynamics in the bay and the finite
integration time 7 used to compute our \-criteria. Based on
our numerical experiments in Sec. VI, the above ratio is ex-
pected to yield robust reattachment results.

Between August 1 and 6, 2003, there is one location at
each time instance where A,—A\, is positive. As predicted in
Appendix B, similar plots with \,, and \, alone (not shown,
but similar to Fig. 13) reveal that this point satisfies both
Ay>0 and \,<0 and hence corresponds to a reattachment
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FIG. 13. Reattachment point in Monterey Bay. Highest level sets of
An— A, as a function of time and the arc length along the coastline. N, and A,
are approximated using a finite integration time of 7=48 h. There is at most
one reattachment point at each time, corresponding to a positive value of
An—Ne.

point oscillating around the Monterey Peninsula until
August 6 when it disappears (see Fig. 14). The reattachment
point reappears on August 11 and persists for the entire
month, briefly disappearing only between August 18 and 20.

Similarly, a plot of A,—\, in backward time reveals a
moving separation point in the Northern part of the bay, near
the city of Santa Cruz. During the month of August 2003, a
single separation point is observed between August 8 and
August 19, as well as after August 24. Note that the separa-
tion and reattachment points do not disappear during August:
They move off our computational domain.

Figure 15 is a sketch of transport in Monterey Bay. It
corresponds to a time when there is both a separation point
and a reattachment point (i.e., between August 11 and 18,
2003 and between August 24 and 28, 2003). The correspond-
ing separation and reattachment profiles are deduced from
the streaklines of Fig. 14.

The separation and reattachment profiles in Fig. 15 oc-
casionally approach each other but never intersect. The re-
sulting thin channel between the two profiles is responsible
for the continued ejection of fluid from the Bay toward the
open ocean. This alleyway in the summer transport mecha-
nism of Monterey Bay is consistent with the finite-time
Lyapunov exponent plots based on the same radar data.” Re-
cently, the existence of such a robust reattachment profile
oscillating around the Monterey Peninsula was confirmed us-
ing the Harvard Ocean Prediction System and Error Sub-
space Statistical Estimation.”’

We stress that the separation and reattachment points
that we obtained for the bay cannot be inferred from instan-
taneous radar data. Specifically, stagnation points in the data
bifurcate on hourly time scales and are often absent near
actual fluid breakaway from the coast. When present, they
are often accompanied by other instantaneous stagnation
points that incorrectly signal local reattachment.
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FIG. 14. (Color online) Separation and reattachment points in Monterey Bay. The upper panels show the separation point near Santa Cruz as well as
streaklines released near the coast. The panels at the bottom show, in addition, the reattachment point and streamlines obtained from a backward-time
integration. In this case, the base of the reattachment profile wanders around the Monterey Peninsula.

IX. CONCLUSIONS

We have presented necessary and sufficient criteria for
unsteady separation and reattachment for two-dimensional
fluid flows with free-slip boundary conditions. Based on ve-
locities and velocity derivatives along the boundary, our for-
mulas predict Lagrangian separation location and angle.
Only quantities on the boundary must be measured or mod-
eled to use our criteria; they do not use interior information.

The Lagrangian view underlying our criteria differs from
the traditional Eulerian view that considers instantaneous
stagnation points as points of separation or make use of stag-
nation points to locate separation. Through examples, we
have shown that the Lagrangian view is preferable, espe-
cially when several transient stagnation points evolve and
bifurcate along the boundary; yet, no actual fluid breakaway
is generated by most of them. Likewise, our criteria perform
well in cases where separation occurs in the absence of per-
sistent stagnation points. Furthermore, the theory and criteria

FIG. 15. (Color online) Sketch illustrating the geometry of transport in
Monterey Bay based on the separation and reattachment profiles.
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developed in this paper are Galilean invariant, unlike the
notion of a stagnation point or a separating streamline.

Fluid breakaway by itself does not guarantee large-scale
separation: It may only be the indicator of the formation of a
local separation bubble.® The ability of our theory to predict
both of these phenomena is also its limitation: It is unable to
differentiate between the two. Nevertheless, we stress that
the objective of the free-slip model is to simulate a flow at
low resolution: The boundary layer processes from the real
flow (with a no-slip boundary) are averaged in few rows of
grid points near the boundary which then looks like a slip
surface. As a result, the free-slip separation points that we
investigate in this paper should not be seen as confined to the
boundary. They represent the global signature of complex
boundary layer processes such as the ones depicted by Ko-
romilas and Telionis.®
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APPENDIX A: PROOF OF THE SLIP-SEPARATION
CRITERION

1. Normal hyperbolicity

Based on the work of Fenichel®® and Maﬁé,47 normal
hyperbolicity of a boundary trajectory x(¢), with the stable
(unstable) sub-bundle tangent to B, is a sufficient and neces-
sary condition for S1-S3 (for R1-R3). Thus, to locate sepa-
ration or reattachment in the sense of S1-S3 (or R1-R3), it is
sufficient to establish normal hyperbolicity for x(¢). This ap-
pendix provides the details for separation; the same results in
backward time identify reattachment.

The linearized flow along a boundary trajectory x(r) is of
the form

u,(x(1),1) M)Y(X(t)’t)) (A1)

v (x(2),1) vy(x(1),1)

with &(f) € R? denoting an evolving infinitesimal perturba-
tion to the trajectory x(z). Note that the proof remains valid
for any other C! orientable manifold since the equation of
variations takes place in the tangent bundle.

At any boundary point x, we introduce a local coordinate
system whose axes are unit vectors parallel to the tangent
vector e(x,7) and the normal vector n(x,7). Specifically, we
define the transformation matrix family T(x,?) as

E=A(NE  AQ) =(
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T(x,t) = [e(x,t) n(x,t)],

which we use to change the & coordinates along x(7) to w
coordinates aligned with e(x(r),7) and n(x(z),z). Such a co-
ordinate change is defined by the relation

E=Tx(1),)w. (A2)

The coordinate change (A2) is similar to the transformation
used to study Lagrangian coherent structures in slowly vary-
ing flows in Haller and Tacono.* It transforms the linearized
flow (A1) into

Sy(1)  b(r) ) (A3)

w=B()w, B(t):( 0 S,

where

8(1) = (e,(VV)e)xex(n)»
b(1) = [(e,(VV)m) + (n,(VV)e) Jx(y)»

S ()=, (VV))yy(y)-

The brackets (-,-) denote the inner product; Sy(¢) and S ()
are the tangential and normal rates of strain along the trajec-
tory x(¢). For incompressible flows, the identity S;(r)+S , (¢)
=0 can be used to further simplify Eq. (A3).

The matrix representation of the linearized flow (A3) is
upper diagonal and can therefore be solved explicitly. Direct
integration gives the solution

Wio
w(t;tg) = D(t,10)Wy, Wo= ,
Wao

d(t,1,) )

0 el S1(s) ds

ef;OS”(s) ds

d(t,10) = ( (A4)

t
d(t,1,) =f TSI dref S, (7) 47p(s) ds.
0

Note that the line {w,=0} is an invariant subspace for Eq.
(A3) and hence for the flow map ®(z,1,). This invariant sub-
space is tangent to the boundary segment B at x(). The
a priori knowledge of this invariant manifold is, in fact, the
reason why we can solve Eq. (A4) explicitly.

Following Fenichel’s theory,36 the boundary segment B
is normally hyperbolic along x(¢) (with the stable sub-bundle
aligned with the boundary and the unstable sub-bundle off
the boundary) if

(@) Any solution [w;(z),0] of Eq. (A3) decays to zero ex-
ponentially as t— oc;

(B) For any t e R, there exists a unique one-dimensional
subspace,

0
" W](t))
N ‘{ "<w3<r>

wh(t) >0, [[(wWi(),wh(1)]|= 1},

ke R,

such that for any for any initial time 7, and initial vec-
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tor wyeNt,), we have ®(t,1)w,e N'(t) and
| ®(,20)w| decays to zero exponentially as t— —oo.

Condition («) ensures that infinitesimal perturbations to x(z)
along the boundary decay to zero exponentially. Condition
(B) guarantees that for any time ¢, there is an off-boundary
direction (the separation direction) in which infinitesimal
perturbations to x(¢) decay to zero in backward time. We
show the geometry of conditions («) and (B) in Fig. 2.

2. Verifying normal hyperbolicity

Following Fenichel’s theory36 and using the explicit so-
lution (A4), we restate property () as

1 t
N = lim sup . f Sy(s) ds < 0. (A5)
1

t—— 0 o

Although formally dependent on the present time f,, the
Lyapunov-type number A, tuns out to be constant in time
along each trajectory.36 To examine property (8), we con-
sider a time-dependent family of unit vectors r'(s) that are
not tangent to the boundary B at the point x(¢) at time 7. Any
such unit vector family can be written in the form

Phys. Fluids 20, 097101 (2008)

w(l)(t) ) B (cos 0(1)

wg(t) sin 6(¢)

The linearized flow along x(7) advects the unit vector r’(z,)
into

r’(r) = ( ), sin 6(¢) # 0.

cos A(r)e! WSI) 45 4 i 0(t0)d(2,1,) )

sin 6(z,) ef;OSL(S) ds

D(t,10)r°(ty) = (

(A6)
whose angle 6(¢) with the boundary satisfies
[cos O(zo)e’ SI0) 45 4 gin O(to)d(t,1)]
= cot 6(r) [sin O(rg)e51 ) 957, (A7)

Using Eq. (A6), property (8) can be succinctly expressed as

1

A, = lim inf —— In||®(2,7)r°(z,)]| > 0,
t——e I —1

where A\, refers to the unstable Lyapunov-type number intro-

duced by Fenichel,” evaluated in the present context. By

Eq. (A7), the norm of ®(z,1,)r’ty) can be written as

D (2, 10)r"(t)|| = V[cos Bto)eltS1) & 4 sin 0(t)d(t, 1) T2+ [sin 6(rg)elL) &2

= |\J’1 + cot? 6(1)sin 6(zy)e’ SL) ds

Therefore, since

lim sup|cot 6(r)| < °,

t——0

(A9)

and sin 6(¢;) # 0 by S2, then (A8) is equivalent to

Ap =lim inf ln‘ V1 + cot® 6(r)sin 6(1,)e’ S1(s) ds

t—-o [ —1j

1 t
=lim inf f S, (s)ds.
t——% t_ to 1

0

Consequently, condition (A9) and properties (2) and (3) can
be expressed as

1 t
N =lim sup f Si(s) ds <0,
[——% - tO ZO
t
A, = lim inf f S, (s)ds >0, (A10)
t—-o =1y,

0

lim sup|cot A()| < o.
t——%

The last condition in Eq. (A10) can be formulated in a sim-
pler form. Observe that Eq. (A7) implies

(A8)

cot 6(z) = cot 0(t0)ef io[s”(“‘)_s L] ds 4 d(t,to)e_f iosi(s) ds

Thus, the third condition in Eq. (A10) is equivalent to the
existence of two constants K, K, >0 such that for 7,—t large
enough,

K, < |C0t G(IQ)EI;U[S”(S)_SL(S)] ds | d(t,to)e_fiosi(s) ds| <K,.
Dividing this inequality by e/t[SI9-516)]ds giyes

Kl
I IS1(5)=5 L ()] ds

= |cot O(1o) + d(t,15)e! 1, Si(s) ds

K,

s— . (A11)
ef,O[Su(S)—SL(S)] ds

Taking the limit for t— —o in Eq. (A11), using the first two
conditions in Eq. (A10), and recalling the definition of
d(t,t,) from Eq. (A4), we find that Eq. (A11) implies

t——00

t
lim {cot 0(t,) + e Ti,Si) dsf eUSID drefy 1 (9 47p(s) ds
i1

0

=0, (A12)

which is equivalent to
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——0

0

t
cot 6(ty) =— lim f IS dr+fS.1(7) 47p(s) ds. (A13)
1
As a result, the last condition in Eq. (A10) is equivalent to

|cot 6(19)| =

t
lim f S-S LA d7p5) @ | < oo
1

——x

0

(A14)

for all 1.

Note, however, that the continuous differentiability of v
and the compactness of B imply that b(s) is uniformly
bounded. Therefore, by the first two conditions in Eq. (A10),
the improper integral in Eq. (A14) converges. As a result, the
last condition in Eq. (A10) follows from the first two condi-
tions.

After the substitution of #—T for 7 and ¢ for ¢, the com-
putations above show that the separation criterion (3) is nec-
essary and that the separation angle is given by formula (4).
The criterion is also necessary, as shown by Maiié.”’ Revers-
ing the direction of time in our arguments, we obtain the
reattachment criterion (5) and the reattachment angle for-
mula (6).

3. Remarks about normal hyperbolicity
and the separation problem

We close with two remarks on subtle modifications to
the normally hyperbolic invariant manifold results of Fen-
ichel that are needed before the results apply in the present
context. First, according to Fenichel’s results, the lim sup in
Eq. (A5) would have to be taken as t— +%, not as — —0.
The reason is Fenichel’s existence proof for a stable mani-
fold to x(r), which builds on asymptotic properties of nearby
solutions in the r— +0o° limit.

In our specific context, however, the boundary segment
B is known to be an invariant manifold for the velocity field
v. Within this invariant manifold, a neighborhood of x() acts
as a stable manifold for x(7) (based on velocity data up to the
present time #,) by the first condition in Eq. (A10). As a
result, a separate existence proof for a stable manifold of x(z)
is not needed.

Second, Fenichel’s original results apply to compact in-
variant manifolds in autonomous (i.e., time independent)
vector fields. The velocity field v(x,z) used here becomes
autonomous only on the extended phase space {(x,7)|x
€ O,r e R}, on which the extended trajectory (x(z),7) is not
compact.

Nevertheless, Fenichel’s proof carries over to the non-
compact case as long as the Lyapunov-type numbers A\, and
A\, within the invariant manifold in question are uniformly

lim inf
T—+»

< + oo,

f [<e’ (Vv)e>x(s),s + <n’(VV)n>x(s),s] ds
=T

1
= lim inf —
T—+ T

f [<e’(vv)e>x(s),s + <n’(VV)n>x(s),s] ds
=T
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bounded away from zero, and v and its first derivatives are
uniformly bounded in time. Here, the invariant manifold to
be studied is the single extended trajectory {(x(1),?)|t € R};
thus, Eq. (A10) ensures the uniform boundedness of
Lyapunov-type numbers from zero along the manifold. As
for the uniform boundedness of v and its derivatives, that is
an explicit assumption in Sec. II. With these observations,
Fenichel’s proofs carry over to the noncompact manifold

(x(1),1).

APPENDIX B: SIMPLIFIED CRITERIA FOR FLUIDS
WITH BOUNDED DENSITY

Two conditions are necessary to satisfy the separation
criterion (3). For incompressible flows, one implies the other.
The equivalence between the two conditions remains true for
any flow which has a density p that remains bounded (away
from infinity) and uniformly bounded away from 0, which
we prove in this appendix. This observation simplifies the
separation criterion considerably as, for most fluids, only one
of N\ or A\, must be computed.

Let us suppose that the first condition,

1 t
\(?) =1im sup }J' (e,(Vv)e)[x(s),s] ds <0,
=T

T—+%

is satisfied and that the density p satisfies

Fkminokmax > 0: VxeQ: VrieR:

p(X,t) < kmax and p(X9t) > kmin-

We want to show that this necessarily implies the second
condition

1 t
)\n([) =lim inf }J (n,(Vv)n)[x(s),s] ds > 0.
t=T

T—+%

To prove this result, note that the continuity equation states
dp/dt=—pV -v. Integrating this equation along a boundary
trajectory from time ¢#—7 to time ¢, we get

In p[x(1),] = In p[x(t = T),t = T] = - f (V- ¥)px(s),s1 ds
=T

=- f [{e.(VV)e)[x(s). + M, (VYN ] ds
=T

Let us fix 7. If the density p[x(z—T),7—T] is to remain uni-
formly bounded away from infinity and from zero, when
T— 4+, we must have

=0. (B1)
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We can now prove that one condition implies the other
by contradiction. Let us assume that we have A\, <0 and, at
the same time, A\,,<0. This would imply

1 t
lim inf _J <e, (Vv)e>[x(s) s] ds
7)., :

T—+x 1

1 t
< lim sup }f (€, (VV)e)y(s).s1 ds =Ne <0
-7

T—+% 1

and

1 t
lim inf —J (0, (Vv)n)y( s ds =N, <O,
T) ¢

T—+©

which leads to

L
lim inf }f (<e’(VV)e>[x(s),s] + <n9(VV)n>[x(s),s]) ds <0,
=T

T—+x

and contradicts Eq. (B1).

As a result we have shown that provided that the density
p[x(t=T),t—T] remains uniformly bounded from zero and
infinity for 7T— 4%, A,<0=\,>0. A similar development
can be used to prove the reverse statement: A\, >0=\,<O0.
The same conclusion holds for reattachment.
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