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We use a dynamical systems approach to extend Prandtl’s steady separation criterion
to two-dimensional unsteady flows with no-slip boundaries. Viewing separation
profiles as non-hyperbolic unstable manifolds in the Lagrangian frame, we obtain
explicit Eulerian formulae for the location of flow separation and reattachment on
fixed and moving boundaries. We also derive high-order approximations for the
unsteady separation profile in the vicinity of the boundary. Our criteria and formulae
only use the derivatives of the velocity field along the boundary, and hence are of
use in monitoring and controlling separation. In particular, we predict unsteady flow
separation points and separation angles from distributed pressure and skin-friction
measurements along the wall. As an example, we predict and verify separation points
and separation profiles in variants of a two-dimensional oscillating separation-bubble
flow.

1. Introduction
1.1. Steady separation

Prandtl (1904) showed that streamlines in a steady flow past a two-dimensional
streamlined body separate from the boundary where the skin friction (or wall shear)
vanishes and admits a negative gradient. Specifically, let y = 0 be the flat boundary
of a steady incompressible velocity field (u(x, y), v(x, y)), and let τw denote the skin
friction along the wall. Then steady separation takes place at a point (p, 0) if

τw(p) = νρ uy(p, 0) = 0,

τ ′
w(p) = νρuxy(p, 0) < 0,

}
(1.1)

where ν is the kinematic viscosity and ρ is the density of the fluid. Although commonly
thought otherwise, the steady separation conditions (1.1) are purely kinematic: they
can be derived for any two-dimensional compressible velocity field that conserves
mass (see, e.g. Shariff, Pulliam & Ottino 1991).

Prandtl’s conditions give an Eulerian criterion for a Lagrangian phenomenon,
the convergence and subsequent ejection of fluid particles from the vicinity of
the boundary. This simple Lagrangian picture of separation is invoked in most
introductory texts (see, e.g. Tritton 1988; Lugt 1995; Schlichting & Gersten 2000;
Sobey 2000), although it is rarely noted in the research literature.

To illustrate the Lagrangian aspects of flow separation, figure 1 shows the motion
of fluid particles in a separation-bubble model derived by Ghosh, Leonard & Wiggins
(1998). Note how an initial upwelling, then a singular-looking tip, then a sharp
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Figure 1. Separation evidenced by a layer of fluid particles in a steady separation bubble
model (see § 9 for more information). Also shown are the streamlines inside the separation
bubble.

material spike form in succession out of a set of material lines that initially align with
the wall. Despite what is suggested by the initial upwelling and the tip, separation
takes place at the point of attachment of a distinguished streamline, as predicted
by (1.1). Accordingly, particles are attracted to, and ejected by, the distinguished
streamline itself.

As the above example shows, steady flow separation appears as an instability in
the Lagrangian frame. This instability is owing to the presence of a distinguished
fixed point (the separation point) whose unstable manifold is the singular streamline
described above. This unstable manifold acts as an attracting material line that
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collects and transports particles away from the wall. The distinguished fixed point
is degenerate owing to the no-slip boundary conditions, and hence its location and
stability cannot be predicted from linearization. Prandtl’s first condition in (1.1) gives
a necessary condition for the existence of such a degenerate fixed point, while (1.1) as
a whole gives a sufficient set of conditions for the existence of an unstable manifold.

1.2. Prior work on unsteady separation

For unsteady velocity fields, the Lagrangian and Eulerian descriptions of separation
differ. On the Eulerian side, initial suggestions that unsteady flow separation also
takes place at points of zero skin friction were dismissed by numerical simulations
of boundary-layer separation by Rott (1956), Moore (1958) and Sears & Telionis
(1971). Specifically, Sears & Telionis (1975) observed that vanishing wall shear ‘does
not denote separation in any meaningful sense in unsteady flow’, and proposed
a separation criterion that has become known as the Moore–Rott–Sears (MRS)
principle.

According to the MRS principle, unsteady separation takes place at a point
off the boundary where the wall-component of the shear vanishes and the local
streamwise velocity equals the velocity of the moving separation structure. This
postulate, however, requires the a priori knowledge of the separation speed, making
the MRS principle difficult, if not impossible, to apply (Williams 1977; Van Dommelen
1981).

On the Lagrangian side, Van Dommelen (1981) and Van Dommelen & Shen (1982)
initiated the numerical study of unsteady boundary-layer separation in Lagrangian
coordinates. This approach has removed earlier computational difficulties seen in the
Eulerian frame, and revealed the true Lagrangian signature of unsteady separation.
As explained by Cowley, Van Dommelen & Lam (1990), this frame-independent
signature is precisely the one shown in figure 1. The contraction of an infinitesimal
fluid element in the streamwise direction is accompanied by a spiky expansion in the
wall-normal direction.

Van Dommelen and coworkers attribute the material spike to the formation of a
singularity in the boundary-layer equations, and define the unsteady separation point
as the location of the singularity. A number of separation studies have since confirmed
the advantages of Lagrangian coordinates (see, e.g. Peridier 1995; Cassel, Smith &
Walker 1996; Degani, Walker & Smith 1998), and formal asymptotic expansions are
available for Van Dommelen’s singularity in the boundary-layer equations (Cowley
1983; Van Dommelen & Cowley 1990). Analytic results show, however, that separation
in the boundary-layer equations has no direct connection with velocity singularities
(Liu & Wan 1985).

Despite computational advances on boundary-layer separation, a theoretically
sound description has been missing for general unsteady flow separation, a
phenomenon that is equally common for high and low Reynolds numbers. As Sears &
Telionis (1975) point out, we would ideally need an unsteady separation definition
that does not depend on our ability to solve the boundary-layer equations accurately.
Secondly, as suggested by Cowley et al. (1990), an ideal separation definition should
be independent of the coordinate system selected. Thirdly, as argued by Wu et al.
(2000), the growing interest in active flow control calls for a separation criterion that
uses quantities measured or computed along the boundary.

The Lagrangian definition of steady separation (reviewed in connection with
figure 1) has the above three ingredients, and hence is an ideal starting point
for a rigorous unsteady separation theory. Such a theory was first proposed by
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Shariff et al. (1991) for two-dimensional incompressible time-periodic flows. Shariff
et al. defined the separation point as a fixed point with an unstable manifold for
the Poincaré map associated with the periodic flow. Using this Lagrangian definition,
they showed that unsteady separation points are located at boundary points where
the time-average of the skin friction vanishes. This remarkable result, however, is
based on an assertion on the Poincaré map that has remained unverified ever since.

Realizing the above shortcoming, Yuster & Hackborn (1997) re-derived the
zero-mean-friction principle for near-steady time-periodic incompressible flows in a
mathematically rigorous way; Hackborn, Ulucakli & Yuster (1997) verified the result
experimentally. The validity of the zero-mean-skin friction principle for general time-
periodic flows, however, has remained an open question. As a notable contribution,
Yuster & Hackborn (1997) showed that the principle fails for compressible time-
periodic flows.

In summary, the only available rigorous unsteady separation criterion has been
the zero-mean-friction principle, which applies to time-periodic incompressible flows
that are close to a steady limit. No results have been derived for compressible flows,
or for flows with general time dependence. In addition, no rigorous theory has been
proposed for moving separation, which cannot be explained by classical unstable
manifolds (cf. § 8).

1.3. Results on fixed separation

In this paper, we extend the Lagrangian view of separation from steady flows to
compressible unsteady flows with general time dependence. Specifically, we define
fixed unsteady flow separation as a material instability induced by an unstable
manifold of a distinguished boundary point. In this general context, the unstable
manifold is a time-dependent material line that shrinks to the separation point in
backward time. In forward time, the unstable manifold attracts and ejects particles
from a vicinity of the boundary.

Using the above Lagrangian definition, we derive mathematically exact Eulerian
criteria that locate time-dependent unstable manifolds emanating from the wall.
Because of the degeneracy (non-hyperbolicity) of fixed points on a no-slip wall,
classical dynamical systems methods for locating their unstable manifolds fail to
apply. Equally inapplicable are the Poincaré-map arguments of Shariff et al. (1991)
and Yuster & Hackborn (1997) because of the general time-dependence we allow for.
To overcome these limitations of classical invariant manifold theory, we develop a
novel nonlinear technique that renders both the location and the shape of unstable
manifolds or separation profiles.

We show that fixed (i.e. non-moving) separation takes place where the weighted
backward-time average of the skin friction remains uniformly bounded. The weight
function in this average is just the squared reciprocal of the fluid density. We also
clarify the meaning of effective separation points at which the weighted finite-time
mean of the skin friction vanishes. These points turn out to converge to fixed
separation points provided that an unsteady version of Prandtl’s second separation
condition (cf. (1.1)) holds.

When applied to simple flows, our criteria agree with prior exact separation
criteria for such flows. Specifically, for steady flows, our general criteria coincide
with those of Prandtl (1904) and Lighthill (1963). When applied to incompressible
time-periodic flows, our results agree with those of Shariff et al. (1991) and Yuster &
Hackborn (1997). Finally, when translated into the Lagrangian frame, our separation
criterion agrees with the second criterion of Van Dommelen (1981) for boundary-layer
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separation. Most importantly, however, our kinematic theory predicts unsteady flow
separation in general velocity fields that are inaccessible to previous theories.

1.4. Results on moving separation

By moving separation we mean separation where the separation point may move,
disappear and reappear. In such cases, classical invariant manifold theory turns out
to be inapplicable; we need to use finite-time unstable manifolds (Haller 2000, 2001) to
describe moving separation profiles. Finite-time unstable manifolds are inherently non-
unique, and so are moving separation profiles. The distance between two separation
profiles, however, tends to zero as their time of existence increases (Haller 2000).

We present two approaches to moving separation: a heuristic and a rigorous one.
The first approach assumes that the backward-time integral of the skin friction has
a well-defined mean component, or equivalently, that a well-defined mean separation
profile exists in the Lagrangian frame. This assumption leads to a heuristic necessary
criterion that identifies moving separation as a bifurcation in the mean evolution of
wall-bound material lines.

When applied to analytic flow models, the heuristic criterion yields explicit
expressions for the location and shape of the moving separation profile. When
applied to numerical or experimental data, the criterion gives separation profiles that
converge to the moving profile as more and more past velocity data is processed in
the calculation.

Our second method for locating moving separation, a sufficient criterion, is based
on a rigorous analytic construction of finite-time unstable manifolds near effective
separation points. Effective separation points depend sensitively on the time scale
over which they are computed, but we find the time scale for which they closely
approximate a nearby moving separation point. This time scale results from a general
analytic estimate that may be further strengthened for particular classes of flows.

With the exception of quasi-periodic and periodic flows, most unsteady flows
produce moving separation, and hence should be analysed by the above two criteria.
If the separation happens to be fixed, the heuristic necessary criterion produces moving
separation points that converge to the fixed separation point after initial transients.
By contrast, our sufficient criterion yields separation points that are close to the fixed
separation from the start, but this closeness may not improve further in time.

As we illustrate in examples, our moving separation criteria perform reliably under
both regular and stochastic time dependence, suggesting that the separation theory
described here is equally applicable to laminar and turbulent flows.

1.5. Organization of the paper

We derive necessary conditions for fixed compressible separation in § 2, and give a
quadratic approximation for a general compressible separation profile. Section 2 also
contains equivalent Lagrangian and density-independent formulations of our criteria,
as well as the treatment of moving and non-smooth boundaries. We show how the
theory simplifies for incompressible flows in § 3, and exploit this simplification to
derive a quartic-order approximation for incompressible separation profiles.

In § 4, we give a kinetic version of our separation criteria for Navier–Stokes flows,
and, in § 5, we formulate sufficient conditions for sharp unsteady separation. Section 6
shows how our fixed separation criteria simplify to steady time-periodic and quasi-
periodic flows. Fixed unsteady reattachment is discussed in § 7, and moving unsteady
separation and reattachment are treated in § 8. We illustrate our separation criteria
on different versions of a kinematic flow model in § 9, and present our conclusions in
§ 10.
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Figure 2. Unsteady separation profile viewed as a time-dependent material line that guides
particles away from the wall.
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Figure 3. Behaviour of typical material lines in backward time near a separation profile M(t).
The line N(t) attaches to the wall away from the separation point. The line L(t) attaches to
the wall at the separation point, but does not coincide with the separation profile.

2. Fixed unsteady separation
2.1. Set-up

Consider a two-dimensional velocity field v(x, y, t) = (u(x, y, t), v(x, y, t)), with the
induced fluid particle motion satisfying

ẋ = u(x, y, t), ẏ = v(x, y, t). (2.1)

Assume further that a boundary is present in the flow at y = 0 with the no-slip
boundary conditions

u(x, 0, t) = v(x, 0, t) = 0. (2.2)

We seek a time-dependent material line M(t) – the separation profile – that collects
and ejects fluid particles from a vicinity of the boundary (figure 2). As a material line,
M(t) is anchored to the same boundary point γ for all times owing to the no-slip
boundary conditions. In dynamical systems terms, M(t) is an unstable manifold for
a fixed point of the y = 0 boundary.

By fixed unsteady flow separation we mean the type of separation induced by M(t).
Specifically, fluid particles are ejected along M(t) in the form of a thin spike from
the vicinity of the boundary into the main stream. The spike aligns with M(t), whose
shape changes in time, but whose point of attachment remains fixed. As shown in
figure 3, generic material lines emanating from the boundary converge to the boundary
as t → −∞. Fixed unsteady separation profiles, such as M(t), are exceptions to this
rule, and this property renders them explicitly computable, as we shall see below.
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Figure 4. Time history of a hypothetical material line N(t0) whose first derivative at the wall
remains bounded, but whose curvature grows unbounded in backward time. The graph of the
function x = y − ty2 is an example of a time-dependent curve of the type N(t).

To exclude degenerate or unphysical cases of separation, we shall only consider
separation profiles with the following properties:

1. The separation profile is unique: no other separation profiles emerges from the
same boundary point.

2. The separation profile is transverse, i.e. M(t) is not tangent to the boundary.
3. The separation profile is regular up to nth order: M(t) admits n derivatives

(n � 1) that remain uniformly bounded at y = 0 for all times.
Properties 1 and 2 express plausible physical features of separation. Property 3 is

to exclude separation profiles that enclose a bounded angle with the boundary, but
still end up approaching the boundary owing to unbounded growth in their higher
derivatives (cf. figure 4). We shall call a separation profile with n uniformly bounded
derivatives at the wall an nth-order separation profile.

By its definition, fixed separation is present for all times in the flow, and hence
transient phenomena – such as the creation, destruction and movement of separation
points – do not arise in its study. Fixed separation is, therefore, relevant for flows
with recurrent time dependence, such as time-periodic or quasi-periodic flows (see
§ 6 for examples). In such flows, fixed separation may also take place around general
curved boundaries (cf. § 2.9). For flows with non-recurrent time dependence, moving
separation will be the relevant concept (cf. § 8).

2.2. Assumptions

We assume that no sinks or sources are present at separation, and hence the continuity
equation

ρt + ∇ · (ρv) = 0 (2.3)

holds for the density ρ(x, y, t) in the neighbourhood of a separation point (x, y) =
(γ, 0). Because of the no-slip boundary conditions at y = 0, the continuity equation
simplifies to

ρt (x, 0, t) + ρ(x, 0, t)vy(x, 0, t) = 0 (2.4)

at boundary points, leading to the density relation

ρ(x, 0, t) = ρ(x, 0, t0) exp

(
−
∫ t

t0

vy(x, 0, s) ds

)
. (2.5)
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Differentiation of (2.5) with respect to x gives the wall-tangential density gradient
evolution

ρx(x, 0, t) = ρx(x, 0, t0) exp

(
−
∫ t

t0

vy(x, 0, s) ds

)

− ρ(x, 0, t0) exp

(
−
∫ t

t0

vy(x, 0, s) ds

)∫ t

t0

vxy(x, 0, s) ds. (2.6)

The density of the fluid should remain bounded from below and from above for
all times along the boundary. Thus, we may assume that for appropriate ρ2 > ρ1 > 0
and for all t ,

0 < ρ1 � ρ(x, 0, t) � ρ2 < ∞ (2.7)

holds along the boundary region of interest.
Next we assume that the tangential density gradient along the boundary remains

uniformly bounded near the separation point for all times. In view of (2.5), (2.6) and
(2.7), this second assumption is equivalent to∣∣∣∣

∫ t

t0

vxy(x, 0, s) ds

∣∣∣∣ � K1 < ∞, (2.8)

for an appropriate constant K1, for any time t , and for all x values near γ .
Assumptions (2.7) and (2.8) hold automatically for incompressible flows, because

for such flows,

vy(x, 0, t) ≡ 0, vxy(x, 0, t) ≡ 0. (2.9)

2.3. Equation for the separation profile

Using the no-slip boundary condition, we rewrite (2.1) as

ẋ = yA(x, y, t), ẏ = yB(x, y, t), (2.10)

where

A(x, y, t) =

∫ 1

0

uy(x, sy, t) ds, B(x, y, t) =

∫ 1

0

vy(x, sy, t) ds. (2.11)

Next we recall that fixed unsteady separation occurs if a boundary point p = (γ, 0)
admits an unstable manifold M(t) that is not tangent to the boundary. In that case,
the unstable manifold is locally represented by a time-dependent graph

x = γ + yF (y, t), (2.12)

as shown in figure 5.
Substitution of (2.12) into (2.10) gives

y[B(γ + yF, y, t)F + yFyB(γ + yF, y, t) + Ft − A(γ + yF, y, t)] = 0. (2.13)

For continuously differentiable separation profiles, the bracketed expression in (2.13)
must be zero for all y � 0. (It is certainly zero for y > 0, and it cannot take any other
value but zero at y = 0 by continuity.) As a result, (2.14) implies that the separation
profile must satisfy the partial differential equation

Ft = A(γ + yF, y, t) − B(γ + yF, y, t)F − yFyB(γ + yF, y, t). (2.14)

We shall use this separation equation to deduce necessary criteria for separation,
and to devise approximations to the separation profile. Such approximations will be
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Figure 5. Near the wall, the separation profile can be viewed as a graph over the y variable,
because we have assumed non-tangential separation.

obtained from a series expansion

F (y, t) = f0(t) + yf1(t) + 1
2
y2f2(t) + . . . , (2.15)

where

f0(t) = F (0, t), f1(t) = Fy(0, t), f2(t) = Fyy(0, t). (2.16)

2.4. Necessary conditions for separation

To simplify our notation, we let

a(t) = A(γ, 0, t), b(t) = B(γ, 0, t), ρ(t) = ρ(γ, 0, t), (2.17)

where (γ, 0) is the separation point we wish to characterize. We also rewrite (2.5) in
our new notation as

ρ(t) = ρ(t0) exp

(
−
∫ t

t0

b(s) ds

)
. (2.18)

Setting y = 0 in the separation equation (2.14), we obtain the linear differential
equation

ḟ 0(t) = −b(t)f0(t) + a(t). (2.19)

The general solution of this equation is

f0(t) = f0(t0)
ρ(t)

ρ(t0)
+ ρ(t)

∫ t

t0

a(τ )

ρ(τ )
dτ, (2.20)

where we used (2.18).
Recall that f0(t) is the tangent of the angle that the separation profile encloses

with the wall-normal direction at ξ = y = 0. Fixed separation takes place at x = γ ,
if f0(t) remains bounded in backward time (cf. figure 3). By assumption (2.7), the
first term on the right-hand side of (2.20) and the ρ(t) factor in the second term are
both bounded in backward time. Therefore, a necessary condition for separation is
the boundedness of the integral of the second term in (2.20), which we express in the
form

lim sup
t → −∞

∣∣∣∣
∫ t

t0

uy(γ, 0, τ )

ρ(γ, 0, τ )
dτ

∣∣∣∣ < ∞. (2.21)

This criterion is an extension of Prandtl’s first condition for steady separation, as
we show in § 6.1. Notice that γ does not depend on t0 in (2.21), because if the integral
in (2.21) is bounded for a given t0, then it will also be bounded for any other t̄0 (say,
with t̄0 > t0) by the boundedness of the integrand over the finite interval [t0, t̄0].
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Just as Prandtl’s first condition, (2.21) is also satisfied at any point of a fluid at
rest, which shows the need for a second condition to describe separation. A second
necessary condition turns out to be∫ −∞

t0

[
1

ρ(τ )
(uxy(γ, 0, τ ) − vyy(γ, 0, τ )) − 2vxy(γ, 0, τ )

∫ τ

t0

uy(γ, 0, s)

ρ(γ, 0, s)
ds

]
dτ = ∞,

(2.22)

as we show in Appendix A. This condition ensures that all material lines emanating
from boundary points near γ converge to the wall in backward time, a feature that
flows at rest do not possess. As we show in § 6.1, condition (2.22) simplifies to Prandtl’s
second separation condition when applied to steady flows.

2.5. Effective separation points

The theoretical necessary condition (2.21) can be expressed in a form more suitable
for computations. To derive this equivalent form, we again recall that material lines
emanating from any boundary point near (γ, 0) align with the boundary as t → −∞.
By formula (2.20), this asymptotic alignment in backward time is only possible if, for
all small enough |x − γ |,∫ −∞

t0

uy(x, 0, τ )

ρ(x, 0, τ )
dτ =

{
+ ∞ if x > γ,

− ∞ if x < γ.
(2.23)

Consequently, for any large constant C > 0 and for any small δ > 0, we can select
t � t0 such that ∫ t

t0

uy(x, 0, τ )

ρ(x, 0, τ )
dτ

{
>C if x = γ + δ,

< −C if x = γ − δ.
(2.24)

Thus, not only is the backward integral of uy/ρ bounded at separation, but it also
admits a sign change arbitrarily close to the separation point for large enough |t − t0|.

Because the integral

it (x) =

∫ t

t0

uy(x, 0, τ )

ρ(x, 0, τ )
dτ (2.25)

is a continuous function of x for any finite t, we conclude from (2.24) that it (x) must
admit at least one zero that approaches γ as t approaches −∞. As a result, defining
the effective separation point γeff (t, t0) via the formula∫ t

t0

uy(γeff , 0, τ )

ρ(γeff , 0, τ )
dτ = 0, (2.26)

we obtain

γ = lim
t → −∞

γeff (t, t0), (2.27)

as shown in figure 6.
Equations (2.26) and (2.27) give a practical algorithm for computing fixed unsteady

separation points at time t0 from velocity data. For a past time t with |t − t0|
large enough, we compute the integral in it (x) along the wall and find the effective
separation point γeff (t, t0). By (2.27), this effective separation point will converge to
the real separation point γ as t → −∞.

Three remarks are in order. (i) Fixed separation points of time-periodic or time-
quasi-periodic flows are exactly computable from finite-time velocity data without the
use of effective separation points (cf. § 6). (ii) The effective separation point γeff (t, t0)
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it (x)

γeff (t1, t0)

γeff (t2,t0)

γ x

t = t2 > t1 t = t1

Figure 6. The convergence of the effective separation point to the actual separation point.

is a good approximation for the true separation point if we select t = t0 − Tm(t0),
where Tm will be defined in our discussion on moving separation (cf. § 8). (iii) Taking
the limit t → −∞ in our formulae does not require solving for the velocity field in
backward time; it requires computing longer and longer backward-time averages from
the available velocity data as the current time t0 progresses.

2.6. Separation angle and curvature

To obtain an expression for the angle of fixed unsteady separation, we first differentiate
(2.14) with respect to y and set y = 0 to obtain the equation

ḟ 1 = axf0 + ay − bxf
2
0 − byf0 − 2bf1. (2.28)

Our notation here is consistent with that of the previous sections; for instance, we
have ax(t) = Ax(γ, 0, t) and f1(t) = Fy(0, t).

Using the density formula (2.18), we write the solution of the above linear o.d.e. in
the form

f1(t) = f1(t0)
ρ2(t)

ρ2(t0)
+

∫ t

t0

ρ2(t)

ρ2(τ )

[
ay(τ ) + (ax(τ ) − by(τ ))f0(τ ) − bx(τ )f 2

0 (τ )
]
dτ. (2.29)

For a second-order separation profile (i.e. for a profile of bounded curvature), the
above solution must be bounded as t → −∞. As we show in Appendix A, this
boundedness requirement leads to the following formula for the slope of the separation
profile at t = t0:

f0(t0) = lim
t → −∞

ρ(t0)

∫ t

t0

[
by(τ ) − ax(τ )

ρ(τ )

∫ τ

t0

a(s)

ρ(s)
ds + bx(τ )

(∫ τ

t0

a(s)

ρ(s)
ds

)2

− ay(τ )

ρ2(τ )

]
dτ

∫ t

t0

[
ax(τ ) − by(τ )

ρ(τ )
− 2bx(τ )

∫ τ

t0

a(s)

ρ(s)
ds

]
dτ

.

(2.30)
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We recall that f0(t0) gives the separation slope measured relative to the wall-
normal direction at time t = t0. Therefore, the angle of separation at (γ, 0) is α(t0) =
tan−1(1/f0(t0)) when measured from the boundary.

To obtain the next coefficient in the expansion (2.15) for the separation profile, we
differentiate (2.14) twice with respect to y and set y = 0 to obtain

ḟ 2 = ayy + (2axy − byy)f0 + (axx − 2bxy)f
2
0 − bxxf

3
0

+ 2(ax − 2by)f1 − 6bxf0 f1 − 3bf2, (2.31)

an o.d.e. for the function f2(t). The solution of this equation is

f2(t) = f2(t0)
ρ3(t)

ρ3(t0)
+ ρ3(t)

∫ t

t0

ayy(τ ) + f0(τ )(2axy(τ ) − byy(τ ))

ρ3(τ )
dτ

+ ρ3(t)

∫ t

t0

f 2
0 (τ )

axx(τ ) − 2bxy(τ ) − bxx(τ )f0(τ )

ρ3(τ )
dτ

+ 2ρ3(t)

∫ t

t0

f1(τ )
ax(τ ) − 2by(τ ) − 3bx(τ )f0(τ )

ρ3(τ )
dτ. (2.32)

Again, the right-hand side of (2.32) should be bounded for all t � t0 if ξ = yF (y, t)
is the graph of a third-order separation profile. Since the first term on the right-hand
side is bounded by assumption (2.7), the sum of the remaining three terms must be
bounded for all t � t0. Repeating the arguments leading to (11.7) and (11.11) in
Appendix A, then substituting (2.29) for f (τ ) finally leads to

f1(t0) = − lim
t → −∞

ρ2(t0)

∫ t

t0

[R(τ ) + S(τ ) + T (τ )U (τ )] dτ∫ t

t0

ρ2(τ )T (τ ) dτ

, (2.33)

with

R(τ ) =
ayy(τ ) + f0(τ )(2axy(τ ) − byy(τ ))

ρ3(τ )
,

S(τ ) = f 2
0 (τ )

axx(τ ) − 2bxy(τ ) − bxx(τ )f0(τ )

ρ3(τ )
,

T (τ ) = 2
ax(τ ) − 2by(τ ) − 3bx(τ )f0(τ )

ρ3(τ )
,

U (τ ) =

∫ τ

t0

ρ2(τ )

ρ2(s)

[
ay(s) + (ax(s) − by(s))f0(s) − bx(s)f

2
0 (s)
]
ds.




(2.34)

Similar expressions can be derived for higher-order derivatives of F (y, t) in a
recursive fashion by further differentiating the separation equation (3.8) with respect
to y at y = 0. Although these expressions are lengthy for general compressible flows,
they become significantly simpler for incompressible flows (see § 3).

2.7. Density-independent formulation

Using the density relation (2.5), we can express the density in terms of the integral
of vy(γ, 0, t), and obtain a density-independent formulation of our fixed separation
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theory. In this formulation, assumptions (2.7) and (2.8) are expressed as∣∣∣∣
∫ t

t0

vy(x, 0, s) ds

∣∣∣∣ � K0 < ∞,

∣∣∣∣
∫ t

t0

vxy(x, 0, τ ) dτ

∣∣∣∣ � K1 < ∞, (2.35)

and the separation criteria (2.21) and (2.22) are replaced by

lim sup
t → −∞

∣∣∣∣
∫ t

t0

exp

(∫ τ

t0

vy(γ, 0, s) ds

)
uy(γ, 0, τ ) dτ

∣∣∣∣ < ∞ (2.36)

and ∫ −∞

t0

[
exp

(∫ τ

t0

vy(γ, 0, s) ds

)
(uxy(γ, 0, τ ) − vyy(γ, 0, τ ))

− 2vxy(γ, 0, τ )

(∫ τ

t0

exp

(∫ s

t0

vy(γ, 0, s) ds

)
uy(γ, 0, s) ds

)
dτ

]
= ∞. (2.37)

Similarly, effective separation points are defined by the formula∫ t

t0

exp

(∫ τ

t0

vy(γeff , 0, s) ds

)
uy(γeff , 0, τ ) dτ = 0. (2.38)

The separation slope and curvature, as well as higher-order derivatives of the
separation profile can all be expressed in purely kinematic terms using the density
relation (2.5). We shall use the above density-independent formulation in deriving
separation conditions for moving boundaries in § 2.9.

2.8. Lagrangian formulation

In a series of papers, Van Dommelen and coworkers have shown that unsteady
separation is best described in the Lagrangian frame, a point of view that we have
adopted throughout this paper. Working with Prandtl’s boundary-layer equations, Van
Dommelen (1981) proposes that fluid-stretching in the wall-normal direction becomes
infinitely large at the point of separation. He then uses mass conservation in the
Lagrangian variables to explore the implications of his postulate for the derivatives
of particle positions with respect to initial states. If x(t; x0, y0, t0) denotes at time t

the x coordinate of a fluid particle that started from position (x0, y0) at time t0, Van
Dommelen’s criterion for boundary-layer separation at point (x, y) at time t reads

∂x(t; x0, y0, t0)

∂x0

= 0,
∂x(t; x0, y0, t0)

∂y0

= 0. (2.39)

As we show in Appendix C, these conditions may only be fully satisfied for velocity
fields with singularities. Another postulate implicit in (2.39) is that the separation
point lies off the wall. By contrast, our separation criteria locate on-wall separation
in general two-dimensional Navier–Stokes flows for which the velocity field is known
to remain regular.

Below we give a mathematically exact Lagrangian separation criterion for
comparison with Van Dommelen’s criteria. Our Lagrangian criterion applies to any
two-dimensional compressible flow that remains regular along the boundary for all
times. As we show in Appendix C, the criterion can be written as

lim sup
t → −∞

∣∣∣∣∂x(t; γ, 0, t0)

∂y0

∣∣∣∣ < ∞, (2.40)

where, as earlier, (γ, 0) denotes the fixed separation point on the boundary. As in
the Eulerian formulation, our Lagrangian separation criterion is approximated by the
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Figure 7. Moving boundary defined by the function y = h(x −
∫ t

t0
uB(s) ds).

effective separation criterion

∂x(t; γeff , 0, t0)

∂y0

= 0, (2.41)

which locates an effective separation point γeff (t0, t) that converges to the true
separation point γ as t → −∞.

Comparing (2.39) and (2.41), we conclude that when applied on the boundary, Van
Dommelen’s second separation condition in (2.39) coincides asymptotically with the
Lagrangian version of our first necessary condition. Once the second condition in
(2.39) holds, however, the first condition will never be satisfied for a non-singular
velocity field.

2.9. Separation on moving boundaries of general shape

Assume now that the velocity field (2.10) satisfies no-slip boundary conditions along
a boundary B(t) that moves with velocity vB(t) = (uB(t), vB(t)). We want to find a
necessary condition for separation at a point whose relative location is fixed on the
moving boundary.

If at time t0 the boundary – say, a moving airfoil – is represented by a differentiable
graph y = h(x), then at a later time t the boundary satisfies

y −
∫ t

t0

vB(s) ds = h

(
x −

∫ t

t0

uB(s) ds

)
, (2.42)

as indicated in figure 7.
We now transform the velocity field to the canonical form (2.1) by letting

ξ = x −
∫ t

t0

uB(s) ds, η = y − h(ξ ) −
∫ t

t0

vB(s) ds. (2.43)

In terms of the (ξ, η) coordinates, fluid particle motions satisfy

ξ̇ = û(ξ, η, t), η̇ = v̂(ξ, η, t), (2.44)
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where

û(ξ, η, t) = u

(
ξ +

∫ t

t0

uB(s) ds, η + h(ξ ) +

∫ t

t0

vB(s) ds, t

)
− uB(t),

v̂(ξ, η, t) = v

(
ξ +

∫ t

t0

uB(s) ds, η + h(ξ ) +

∫ t

t0

vB(s) ds, t

)
− vB(t) − h′(ξ )û(ξ, η, t).




(2.45)

The transformed velocity field (û, v̂) satisfies the boundary conditions

û(x, 0, t) = 0, v̂(x, 0, t) = 0. (2.46)

Furthermore,

ûξ + v̂η = ux + uyh
′ + vy − h′uy = ux + vy, (2.47)

thus compressibility or incompressibility is unaffected by the change of coordinates
(x, y) �→ (ξ, η).

Because

ûη(ξ, η, t) = uy

(
ξ +

∫ t

t0

uB(s) ds, η + h(ξ ) +

∫ t

t0

vB(s) ds, t

)
,

v̂η(ξ, η, t) = vy

(
ξ +

∫ t

t0

uB(s) ds, η + h(ξ ) +

∫ t

t0

vB(s) ds, t

)
− h′(ξ )ûη(ξ, η, t),



(2.48)

the density-independent necessary condition (2.36) – applied in the (ξ, η) co-ordinates –
takes the form

lim sup
t → −∞

∣∣∣∣
∫ t

t0

E(τ, t) uy

(
γ +

∫ τ

t0

uB(s) ds, h(γ ) +

∫ τ

t0

vB(r) dr, τ

)
dτ

∣∣∣∣ < ∞, (2.49)

where

E(γ, τ, t) = exp

(∫ τ

t0

[
vy

(
γ +

∫ s

t0

uB(r) dr, h(γ ) +

∫ s

t0

vB(r) dr, s

)

− h′(γ )uy

(
γ +

∫ s

t0

uB(r) dr, h(γ ) +

∫ s

t0

vB(r) dr, s

)]
ds

)
. (2.50)

As in the case of flat boundaries, we locate the separation point on general boundaries
by computing the effective separation point γeff (t, t0) for |t − t0| large enough from
the formula∫ t

t0

E(γeff , τ, t) uy

(
γeff +

∫ τ

t0

uB(s) ds, h(γeff ) +

∫ τ

t0

vB(r) dr, τ

)
dτ = 0. (2.51)

To evaluate the second necessary condition (2.37) in the present (ξ, η) coordinates,
we compute the second derivatives

ûξη(ξ, η, t), v̂ξη(ξ, η, t), v̂ηη(ξ, η, t), (2.52)

in terms of the original velocity field from (2.48). With these expressions, the second
separation condition (2.37) becomes a straightforward but lengthy condition, which
we omit here for brevity.
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Figure 8. Backward facing step, as an example of fixed separation at a corner. Note that the
separation is transverse relative to the vertical wall {y = 0, x � 0}.

2.10. Separation at a corner

We now consider flow separation at a corner, i.e. at a point where the boundary fails
to be differentiable, but admits two well-defined tangents. Typically, the separation
profile will be tangent to one of these tangents, in which case the separation is
transverse relative to the other side of the corner. Because our focus so far has been
transverse separation, we now consider separation relative to the part of the boundary
that lies downstream from the corner.

As earlier, we consider a general boundary of the form y = h(x, t), and assume
that the boundary shape h is differentiable in x for all x > γ, with x = γ marking
the location of the corner. At the corner γ , we assume that the upper derivative of h,

h′(x, t) = lim
s → +0

h(x + s, t) − h(x, t)

s
, (2.53)

is finite. We seek a separation profile emanating from (x, y) = (γ, h(γ, t)), assuming
that x � 0 designates a region downstream of the corner. Thus the separation profile
will be transverse to the x � 0 portion of the boundary, as shown in figure 8.

In this setting, our previous arguments for fixed separation carry over without
change if we replace differentiation with respect to x with the upper differentiation
defined in (2.53). With this slight modification, our formulae for the shape of the
separation profile apply to corner separation.

3. Fixed unsteady separation in incompressible flows
In this section, we focus on incompressible flows and show how our theory for fixed

unsteady separation simplifies in this case. We also derive a general quartic-order
approximation for the separation profile.

3.1. Set-up

Consider again the velocity field (2.1), but now with the incompressibility condition

ux + vy = 0. (3.1)
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The no-slip boundary conditions again enable us to rewrite the velocity field in the
form (2.10), with the equivalent incompressibility condition

yAx + B + yBy = 0. (3.2)

Setting y = 0 in this equation gives B(x, 0, t) ≡ 0, thus we can further rewrite the
velocity field in the form

ẋ = yA(x, y, t), ẏ = y2C(x, y, t), (3.3)

where

C(x, y, t) =

∫ 1

0

∫ 1

0

vyy(x, spy, t)p dp ds. (3.4)

Enforcing the incompressibility condition (3.1) for system (3.3) gives the relation

y(Ax + 2C + yCy) = 0 (3.5)

between the functions A and C. Away from the boundary, i.e. for y > 0, this relation
implies

Ax + 2C + yCy = 0. (3.6)

Because Ax , C and Cy are continuous, (3.6) extends to y = 0. Therefore, (3.6) must
hold all over the fluid, including the boundary.

In our arguments, we will work with the incompressible canonical velocity field
(3.3) for simplicity. Alternatively, we could work with the compressible canonical form
(2.10) and use the incompressibility condition (3.6), but that approach would quickly
lead to intractably complex expressions.

3.2. Equation for the separation profile

As in the compressible case, we seek the unsteady separation profile in the form of
an unstable manifold satisfying ξ = x − γ = yF (y, t). Substituting this relation into
(3.3) leads to the equation

y[A(yF + γ, y, t) − yC(yF + γ, y, t)(F + yFy) − Ft ] = 0. (3.7)

The bracketed expression must therefore vanish for all y � 0 by continuity, leading
to the incompressible separation equation

A(yF + γ, y, t) − yC(yF + γ, y, t)(F + yFy) − Ft = 0. (3.8)

The compressible separation equation (2.14) is equivalent to (3.8) in the case of
incompressible flows.

3.3. Necessary conditions for separation

Computing the O(1) term in the Taylor expansion of (3.8), we find that

ḟ 0 = a, (3.9)

which implies

f0(t) = f0(t0) +

∫ t

t0

a(τ ) dτ. (3.10)

As in the compressible case, we obtain a necessary criterion at the point (γ, 0) by
requiring f0(t) to be bounded in backward time:

lim sup
t → −∞

∣∣∣∣
∫ t

t0

uy(γ, 0, τ ) dτ

∣∣∣∣ < ∞. (3.11)
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In analogy with (2.22), the further necessary condition∫ −∞

t0

uxy(γ, 0, τ ) dτ = ∞ (3.12)

must hold at fixed separation points. Note that, by incompressibility, this last condition
is equivalent to ∫ −∞

t0

vyy(γ, 0, τ ) dτ = −∞. (3.13)

3.4. Effective separation points

As noted earlier, the separation criterion (3.11) is unsuitable for direct computations.
Instead, we use effective separation points defined as∫ t

t0

uy(γeff , 0, s) ds = 0, (3.14)

to approximate the location of the actual flow separation. Our argument for the con-
vergence of effective separation points to actual separation points is again valid here.

3.5. Separation profile up to quartic order

We now give explicit formulae for the time-dependent coefficients of the quartic
separation profile

x = γ + f0(t)y + f1(t)y
2 + 1

2
f2(t)y

3 + 1
6
f3(t)y

4. (3.15)

While these coefficients are tedious to compute for the compressible case, they become
manageable in the present setting. As we show in Appendix B, the coefficients take
the following form when evaluated at time t0:

f0(t0) = lim
t → −∞

∫ t

t0

[
ay(τ ) − 3c(τ )

∫ τ

t0

a(s) ds

]
dτ

3

∫ t

t0

c(τ ) dτ

, (3.16)

f1(t0)

= lim
t → −∞

∫ t

t0

{
ayy(τ ) − 8cy(τ )f0(τ ) − 4cx(τ )f 2

0 (τ ) − 8c(τ )

∫ τ

t0

[ay(s) − 3c(s)f0(s)] ds dτ

}

8

∫ t

t0

c(τ ) dτ

,

(3.17)

f2(t0) = lim
t → −∞



∫ t

t0

(
1

15
ayyy − 1

3
cxxf

3
0 − cxyf

2
0 − cyyf0 − 2cyf1 − 2cx f0f1

)
dτ∫ t

t0

c dτ

+

∫ t

t0

c

(∫ τ

t0

(
4cxf

2
0 + 8cyf0 + 8cf1 − ayy

)
ds

)
dτ∫ t

t0

c dτ


, (3.18)
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f3(t0) = lim
t → −∞



∫ t

t0

(
1

24
ayyyy − 1

4
cxxxxf

4
0 − cxxyf

3
0 − 3

2
cxyyf

2
0 + cyyyf0

)
dτ∫ t

t0

c dτ

− 3

∫ t

t0

(
cxxf

2
0 f1 + 2cxyf0 f1 + cyyf1 + cx

[
f 2

1 + f0f2

]
+ cyf2

)
dτ∫ t

t0

c dτ

+ 5

∫ t

t0

c

{∫ τ

t0

(
cxxf

3
0 + 3cxyf

2
0 + 3cyyf0 + 6cxf0f1 + 6cyf1 + 3cf2 − 1

5
ayyy

)
ds

}
dτ∫ t

t0

c dτ


.

(3.19)

4. Unsteady separation from pressure and skin friction
Monitoring and controlling unsteady separation in experiments requires separation

criteria phrased in terms of physically measurable quantities. Here we present a
formulation of our separation theory in terms of pressure, skin friction, density and
viscosity measured along the wall.

We recall that the skin friction τw(x, t) is defined as

τw(x, t) = νρ(x, 0, t)uy(x, 0, t), (4.1)

where ν denotes the kinematic viscosity. Using τw, we rewrite the first separation
condition (2.21) as

lim sup
t → −∞

∣∣∣∣
∫ t

t0

τw(γ, s)

ρ2(γ, 0, s)
ds

∣∣∣∣ < ∞. (4.2)

For some t < t0, the effective separation point is then computed from the equation∫ t

t0

τw(γeff (t, t0), s)

ρ2(γeff (t, t0), 0, s)
ds = 0, (4.3)

thus for incompressible flows, the effective separation point coincides with the point of
zero mean-skin-friction. For compressible flows, however, the zero-mean-skin-friction
rule is generally inadequate as a true separation indicator: to obtain a good estimate
for the separation location, we need to use 1/ρ2 as a weight function when integrating
the skin friction in time.

For incompressible flows, the second separation criterion (2.22) also admits a simple
kinetic formulation. Differentiating equation (4.1) with respect to x, we obtain

τ ′
w(x, t) = τw(x, t)ρx(x, 0)/ρ(x, 0) + νρ(x, 0)uxy(x, 0, t), (4.4)

from which we express and substitute uxy into (2.22) to obtain the second kinetic
separation criterion∫ −∞

t0

[τ ′
w(x, τ )ρ(x, 0) − τw(x, τ )ρx(x, 0)] dτ = ∞. (4.5)

In addition to these necessary criteria, our separation slope formula also admits
a purely kinetic form for incompressible flows. To derive this form, we observe
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that along the no-slip boundary y = 0, the incompressible Navier–Stokes equations
simplify to

px(x, 0, t)/ρ(x, 0) = νuyy(x, 0, t), vyy(x, 0, t) = −uxy(x, 0, t), (4.6)

with p(x, y, t) denoting the pressure. Combining these formulae with the definitions
of a(γ, t) and c(γ, t), we obtain the kinetic separation slope formula

f0(t0)

= lim
t → −∞

∫ t

t0

[
νpx(γ, 0, τ )ρ2(γ, 0) + 3[τ ′

w(γ, τ )ρ(γ, 0) − τw(γ, τ )ρx(γ, 0)]

∫ τ

t0

τw(γ, τ ) ds

]
dτ

3νρ(γ, 0)

∫ t

t0

[τw(γ, τ )ρx(γ, 0) − τ ′
w(γ, τ )ρ(γ, 0)] dτ

.

(4.7)

If the initial density of the incompressible fluid is equal to a constant ρ0 along the
wall, then the kinetic separation slope formula takes the simpler form

f0(t0) = − lim
t → −∞

∫ t

t0

[
px(γ, 0, τ ) + 3τ ′

w(γ, τ )

∫ τ

t0

(1/νρ)τw(γ, τ ) ds

]
dτ

3

∫ t

t0

τ ′
w(γ, τ ) dτ

. (4.8)

Formulae (4.2) and (4.7) show that for incompressible flows, the separation location
and slope can both be monitored from pressure and skin friction sensors distributed
along the wall.

5. Sufficient conditions for sharp separation
So far we have described necessary features of fixed unsteady separation: if

separation takes place at the point (γ, 0), then conditions (2.21) and (2.22) must
hold. As we argue below, a slightly stronger version of this set of conditions turns out
to be sufficient: when these stronger conditions are satisfied, they guarantee the exis-
tence of a time-dependent nonlinear separation profile anchored to a boundary point.

To motivate these sufficient conditions, we first note that condition (2.21) is general
enough to allow for weak separation. By weak separation we mean a scenario
whereby particles near the separation point may turn back towards the wall for
finite periods of time, and are only ejected from a vicinity of the wall asymptotically.
Such weak separation behaviour is atypical in observed fluid motion where, once
started, separation tends to be sharp: particles in a vicinity of the separation point
move away monotonically from the wall without turning back.

In this paper, we establish a sufficient criterion for sharp separation. To avoid
lengthy technical arguments, we assume that the flow is incompressible. As we prove
in Appendix D, sharp incompressible separation takes place if the first necessary
condition

lim sup
t → −∞

∣∣∣∣
∫ t

t0

uy(γ, 0, s) ds

∣∣∣∣ < ∞ (5.1)

and a stronger version of the second criterion (3.12) both hold. This stronger criterion
requires uxy to be negative and uniformly bounded away from zero for all times, i.e.
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requires

uxy(γ, 0, t) < −c0 < 0. (5.2)

For details of the argument, see Appendix D.
As a simple Taylor expansion shows, the quantity vyy(γ, 0, t) = −uxy(γ, 0, t) is the

dominant term in the instantaneous strength of separation. Requiring it to be strictly
positive for all times ensures continued ejection of particles (sharp separation) from
a vicinity of the wall. By contrast, the incompressible necessary condition (3.12) only
requires the asymptotic mean of vyy(γ, 0, t) to be strictly positive, and hence allows
for weak separation.

6. Separation in flows with simple time dependence
Here, we evaluate our results for three simple classes of flows that produce

fixed separation: steady, time-periodic and quasi-periodic flows. In all three cases,
separation points and profiles turn out to be exactly computable from finite-time
velocity data, and hence the use of effective separation points is unnecessary. In the
steady and time-periodic cases, we show how our criteria for the separation location
and angle agree with previous results by others. For the quasi-periodic case, no related
results are available in the literature.

6.1. Steady flows

6.1.1. Assumptions

For a steady compressible flow with a horizontal no-slip boundary at y = 0, the
continuity equation (2.3) yields

ρ(x, 0)vy(x, 0) = 0. (6.1)

Because the density of the fluid is non-zero along the boundary, we obtain

vy(x, 0) = 0, (6.2)

which also implies

vxy(x, 0) = 0. (6.3)

Therefore, our main assumptions (2.7)–(2.8) are satisfied for steady flows.

6.1.2. Separation criteria

Because the density ρ(x, y) is constant in time, the first separation condition (2.21)
becomes ∣∣∣∣

∫ −∞

t0

uy(γ, 0) ds

∣∣∣∣ = lim
t → −∞

|uy(γ, 0)(t0 − t)| < ∞. (6.4)

This condition is equivalent to

uy(γ, 0) = 0, (6.5)

which is Prandtl’s classic necessary condition for steady separation at (γ, 0) (cf. (1.1)).
Differentiating the continuity equation (2.3) with respect to y, we obtain

ρ(γ, 0)[uxy(γ, 0) + vyy(γ, 0)] = 0, (6.6)

which implies

uxy(γ, 0) = −vyy(γ, 0). (6.7)
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Thus, our second separation criterion (2.22) can be written as∫ −∞

t0

[uxy(γ, 0) − vyy(γ, 0)] dτ = lim
t → −∞

2

∫ −∞

t0

uxy(γ, 0) dτ

= lim
t → −∞

2uxy(γ, 0)(t − t0) = ∞, (6.8)

implying
uxy(γ, 0) < 0. (6.9)

This is Prandtl’s second condition for steady separation (cf. (1.1)).

6.1.3. Separation profile

The slope of the separation profile is given by formula (2.30), which now simplifies to

f0(t0) = lim
t → −∞

−
∫ t

t0

ay(τ ) dτ∫ t

t0

[ax(τ ) − by(τ )] dτ

= − uyy(γ, 0)

3uxy(γ, 0)
, (6.10)

where we have used (6.5) and (6.7). This last equation agrees with a classic result,
Lighthill’s formula for the separation slope in steady flows (Lighthill 1963). Higher-
order approximations for steady separation profiles can be derived following § § 2
and 3.

6.2. Time-periodic flows

6.2.1. Assumptions

If the velocity field v = (u, v) is T -periodic in time, then v and its derivatives admit
Fourier expansions in time. In particular, vy(x, y, t) can be written as the sum of a
time-independent mean and a time-dependent oscillating part:

vy(x, y, t) = v̄y(x, y) + ṽy(x, y, t), (6.11)

where

v̄y(x, y) =
1

T

∫ T

0

vy(x, y, t) dt,

∫ T

0

ṽy(x, y, t) dt = 0. (6.12)

The first major assumption in our fixed separation study was (2.7), which now takes
the particular form

lim sup
t → −∞

∣∣∣∣
∫ t

t0

vy(x, 0, s) ds

∣∣∣∣ = lim sup
t → −∞

∣∣∣∣v̄y(x, 0) (t − t0) +

∫ t

t0

ṽy(x, 0, s) ds

∣∣∣∣ < ∞. (6.13)

Because ṽy(x, y, t) is a zero-mean periodic function of t , the integral
∫ t

t0
ṽy(x, y, s) ds

is also a zero-mean periodic function of t , and hence remains bounded for all t . Then,
in view of the density formula (2.5), assumption (2.7) is equivalent to∫ T

0

vy(γ, 0, t) dt = 0. (6.14)

We stress that without this last assumption, the density at the separation point
would tend to zero or infinity. Repeating the above argument for assumption (2.8),
we obtain ∫ T

0

vxy(γ, 0, t) dt = 0, (6.15)

which prevents the unbounded growth of the wall-tangential density gradient at the
point of separation.
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6.2.2. Separation criteria

Under assumption (6.14), the first separation condition (2.21) becomes

lim sup
t → −∞

∣∣∣∣
∫ t

t0

uy(γ, 0, s)

ρ(γ, 0, s)
ds

∣∣∣∣ < ∞. (6.16)

Again, the integrand in this condition is a T -periodic function, thus the integral only
remains bounded if ∫ T

0

uy(γ, 0, t)

ρ(γ, 0, t)
dt = 0, (6.17)

giving a general criterion for separation in two-dimensional time-periodic flows.
For incompressible time-periodic flows, the relevant first separation criterion is

(3.11), which can only hold if ∫ T

0

uy(γ, 0, t) dt = 0. (6.18)

This agrees with the result of Shariff et al. (1991) on the location of unstable
manifolds in two-dimensional incompressible flows with a no-slip boundary. While
Yuster & Hackborn (1997) gave compressible counter-examples to the main assertion
in the argument of Shariff et al., our results justify the assertion for time-periodic
incompressible flows.

Our second separation criterion can also be evaluated by splitting the integrand
in (2.22) into a mean and an oscillating part. This time, however, the mean must be
negative for the criterion to be satisfied, thus∫ T

0

[
1

ρ(t)
(uxy(γ, 0, t) − vyy(γ, 0, t)) − 2vxy(γ, 0, t)

∫ t

t0

uy(γ, 0, s)

ρ(γ, 0, s)
ds

]
dt < 0 (6.19)

must hold for all t0. For incompressible flows, this criterion simplifies to∫ T

0

uxy(γ, 0, t) dt < 0, (6.20)

as we readily deduce from (3.12).
Time-periodic flows illustrate that the lim sup operation cannot be replaced by lim

in the separation criterion (2.21). Indeed, at a fixed separation point γ , the left-hand
side of formula (3.11) becomes

lim sup
t → −∞

∣∣∣∣
∫ t

t0

uy(γ, 0, τ ) dτ

∣∣∣∣ = lim sup
t → −∞

∣∣∣∣
∫ t

t0

ũy(x, y, τ ) dτ

∣∣∣∣ , (6.21)

and the integrand in this formula will have no limit as t → − ∞ for an unsteady
time-periodic velocity field.

6.2.3. Separation profile

Based on the above arguments, all our asymptotic formulae for the derivatives
of the separation profile simplify to integrals over one period. For instance, the
separation angle formula (2.30) becomes

f0(t0) =

ρ(t0)

∫ T

0

[
by(t) − ax(t)

ρ(t)

∫ t

t0

a(s)

ρ(s)
ds + bx(t)

(∫ t

t0

a(s)

ρ(s)
ds

)2

− ay(t)

ρ2(t)

]
dt

∫ T

0

[
ax(t) − by(t)

ρ(t)
− 2bx(t)

∫ t

t0

a(s)

ρ(s)
ds

]
dt

. (6.22)
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For incompressible flows, this formula further simplifies to

f0(t0) =

∫ T

0

[
ay(t) − 3c(t)

∫ t

t0

a(s) ds

]
dt

3

∫ T

0

c(t) dt

, (6.23)

as we see from (3.16). In terms of the original velocity field, condition (6.23) reads

f0(t0) =

∫ T

0

uyy(γ, 0, t) dt − 3

∫ t

t0

vyy(γ, 0, t)

∫ T

0

uy(γ, 0, s) ds dt

3

∫ T

0

vyy(γ, 0, t) dt

. (6.24)

Using the incompressibility condition vyy = −uxy , reparameterizing the domain of the
double integral, and setting t0 = 0, we can further rewrite (6.4) as

f0(0) =

3

∫ T

0

uy(γ, 0, t)

∫ t

0

uxy(γ, 0, s) ds dt −
∫ T

0

uyy(γ, 0, t) dt

3

∫ T

0

uxy(γ, 0, t) dt

, (6.25)

which agrees with formula (19) of Shariff et al. (1991). As we have mentioned above,
while Yuster & Hackborn (1997) give compressible counter-examples to the general
assertion that Shariff et al. use to derive the above formula, our results show that
their assertion is correct for incompressible time-periodic flows.

The incompressible formulae (3.17)–(3.19) simplify in the same fashion as (3.16)
simplifies to (6.23): the limit of the quotient of long-term averages is replaced by the
quotient of averages over one period.

6.3. Quasi-periodic flows

Quasi-periodic flows still display simple time-dependence, yet cannot be studied
through the repeated iteration of a single period-T map. For this reason, even partial
or ad hoc separation results have been unavailable for quasi-periodic separation.
Here, we show how our general separation criteria translate to simple formulae in the
quasi-periodic case.

Many canonical separation problems, such as separation behind a cylinder or a
backward facing step, admit a finite number of dominant frequencies in their Fourier
spectrum. Such flows are approximated well by quasi-periodic velocity fields, which
are amenable to the criteria described below.

6.3.1. Assumptions

Let ω1, ω2, . . . , ωm be m numbers that are rationally independent, i.e. admit no
vanishing linear combination with rational coefficients. We say that the original
velocity field (u(x, y, t), v(x, y, t)) is quasi-periodic in time with frequencies ω1, . . . , ωm,
if we can write

u(x, y, t) = U (x, y, ω1t, . . . , ωmt),

v(x, y, t) = V (x, y, ω1t, . . . , ωmt),

}
(6.26)

where the functions U (x, y, φ1, . . . , φm), and V (x, y, φ1, . . . , φm) are 2π-periodic in
each of the arguments φ1, . . . , φm.
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Quasi-periodic velocity fields can be Fourier expanded in terms of the angular
arguments φi, thus we can write

u(x, y, t) = u(x, y, t) + ũ(x, y, t),

v(x, y, t) = v(x, y, t) + ũ(x, y, t),

}
(6.27)

where

u(x, y, t) =
1

(2π)m

∫ 2π

0

. . .

∫ 2π

0

U (x, y, φ1, . . . , φm) dφ1 . . .dφm,

v(x, y, t) =
1

(2π)m

∫ 2π

0

. . .

∫ 2π

0

V (x, y, φ1, . . . , φm) dφ1 . . .dφm,




(6.28)

and (ũ(x, y, t), ũ(x, y, t)) denotes the bounded oscillatory part of the velocity. Just as
in the periodic case, we perform a decomposition into mean and oscillating parts for
the quantities featured in (2.7)–(2.8), and obtain

vy(γ, 0, t) = 0, vxy(γ, 0, t) = 0, (6.29)

as the main physical assumptions for our theory. Again, these assumptions ensure the
boundedness of the density and the density gradient along the wall.

6.3.2. Separation criteria

Following the arguments we gave in the periodic case, we deduce the two separation
criteria

uy(γ, 0, t)

ρ(γ, 0, t)
= 0,

uxy(γ, 0, t) − vyy(γ, 0, t)

ρ(γ, 0, t)
− 2vxy(γ, 0, t)

∫ t

t0

uy(γ, 0, s)

ρ(γ, 0, s)
ds < 0.




(6.30)

(6.31)

Here, the second criterion must be satisfied for all t0 > 0.

6.3.3. Separation profile

Quasi-periodic separation profiles obey formulae similar to their periodic
counterparts. We simply take the periodic formulae and replace single-phase averaging
over [0, T ] with multi-phase averaging as defined above. For instance, the separation
slope now obeys the formula

f0(t0) = ρ(t0)

by(t) − ax(t)

ρ(t)

∫ t

t0

a(s)

ρ(s)
ds + bx(t)

(∫ t

t0

a(s)

ρ(s)
ds

)2

− ay(t)

ρ2(t)

ax(t) − by(t)

ρ(t)
− 2bx(t)

∫ t

t0

a(s)

ρ(s)
ds

, (6.32)

simplifying to

f0(t0) =

ay(t) − 3c(t)

∫ t

t0

a(s) ds

3c(t)
(6.33)

in the incompressible case. We omit the remaining higher-order expressions for brevity.
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y
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� (t)

Figure 9. Reattachment profile as time-dependent stable manifold for the boundary point γ .

y

xγ

� (t0)

Figure 10. Behaviour of wall-bound material lines near a reattachment profile in
backward time.

7. Unsteady flow reattachment
We view reattachment profiles as material lines that shrink to a single boundary

point, the point of reattachment, as t → ∞. Thus, in dynamical systems terms, a
reattachment profile is a time-dependent stable manifold, or repelling material line, as
shown in figure 9.

Material lines that emanate from generic boundary points become asymptotically
tangent to the boundary in the t → −∞ limit, as shown in figure 10. By contrast, all
derivatives of fixed reattachment profiles at y = 0 stay bounded for all past times. As
in the case of fixed separation, we enforce this boundedness property on the solutions
of the separation equation (2.14) to deduce

lim sup
t → −∞

∣∣∣∣
∫ t

t0

uy(γ, 0, s)

ρ(γ, 0, s)
ds

∣∣∣∣ < ∞, (7.1)

the first necessary condition for fixed unsteady reattachment at (γ, 0).
Effective reattachment points can be defined through the formula∫ t

t0

uy(γeff (t, t0), 0, s)

ρ(γ (t, t0), 0, s)
ds = 0, (7.2)

and they will again converge to actual fixed reattachment points as t → −∞.
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Figure 11. Moving separation along a no-slip boundary.

As for a second necessary criterion for unsteady reattachment, we follow the
argument in Appendix A to find that

∫ −∞

t0

[
uxy(γ, 0, τ ) − vyy(γ, 0, τ )

ρ(γ, 0, τ )
− 2vxy(γ, 0, τ )

∫ τ

t0

uy(γ, 0, s)

ρ(γ, 0, s)
ds

]
dτ = −∞. (7.3)

Note that this criterion requires convergence to −∞, as opposed to +∞ in the case of
separation. The reason for this difference is that nearby material lines are not repelled
but attracted by reattachment profiles in backward time, as shown in figure 10.

Finding the shape of fixed reattachment profiles is more difficult. The reason
is that all material lines anchored at the reattachment point are attracted to the
reattachment profile in backward time, and hence all admit bounded derivatives
at y = 0 as t → −∞. For this reason, our successive calculation of derivatives (see
Appendix B) fails for reattachment. Exceptions are time-periodic and quasi-periodic
flows, for which formulae (6.22), (6.23) and (6.32) remain equally valid in the case of
reattachment.

A way to address the above difficulty is to treat fixed reattachment as a special case
of moving reattachment. Then the moving separation algorithm described in § 8.1
renders a convergent approximation for the fixed separation profile for increasing
values of the present time t0.

8. Moving separation and reattachment
Moving separation points are commonly observed under varying flow conditions,

such as increasing Reynolds numbers in a flow past a cylinder. By moving separation,
we mean separation of varying location, which includes the case of disappearing
and reappearing separation points. Here, we only discuss moving separation along
a flat boundary (figure 11), because the results extend to general boundaries via the
approach of § 2.9. For simplicity, we shall assume that the flow is incompressible.

First, we stress that classical invariant manifolds are inadequate for describing
moving separation: if particles are to separate from the wall along an attracting
material line (a classical unstable manifold), then the point of attachment of the
material line on the boundary cannot move owing to the no-slip boundary condition.
A similar argument shows that moving reattachment cannot be understood via
classical stable manifolds.
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The key to understanding moving separation is a recent development in dynamical
systems, the concept of finite-time invariant manifolds (Haller & Poje 1998; Haller
2000, 2001). A finite-time unstable manifold is a material curve that acts as an
unstable manifold for a fixed point only over a finite time interval I. In more
physical terms, a finite-time unstable manifold is a material line that attracts all
nearby fluid particles over I.

When a finite-time unstable manifold ceases to attract, another nearby material line
may become attracting. Then the second material line will act as a separation profile
for a while, attracting all nearby material lines, including the one that used to be the
separation profile. Later, the second material line may also lose its attracting property,
and give its place to a nearby third material line that has just become attracting.

If the above process repeats itself, we observe a sliding separation point created
by attachment points of different material lines, each of which acts as a finite-time
separation profile. Similarly, moving reattachment can be thought of as the sliding of
finite-time attracting material lines along a no-slip wall.

8.1. Heuristic necessary condition

Here we give a numerically assisted necessary condition for moving separation in
incompressible flows. This criterion assumes that the backward-time integral of the
skin friction has a well-defined mean component that can be extracted numerically
or analytically. The criterion is heuristic in that it does not address the existence of a
finite-time invariant manifold; it simply assumes the presence of a moving point at
which the fluid breaks away from the boundary.

Consider a moving separation point that lies at x = γ (t0) at time t0. For concreteness,
assume that the instantaneous velocity of the separation profile is negative, as shown
in figure 12. Let l1(t) be a material line based at a boundary point x1 that is on
the left-hand side of the moving separation profile at time t0. The motion of l1(t) is
typically aperiodic, but for the separation to be observable in the Lagrangian frame,
the mean component of the slope of l1(t) must grow; we assume that this is the case.

In our arguments below, the mean component of a function f (t) (denoted 〈f 〉(t))
will be a low-order polynomial least-squares fit to sampled values of f (t). The sampled
values are taken from the interval [0, T ], where T and the number of samples are
as large as possible. In analytic examples, the mean component may be exactly
identifiable without a numerical least-squares fit (for example, 〈t + sin t〉 = t).

Because the separation profile repels l1(t) in backward time, the mean component
of the slope of l1(t) relative to the vertical will decrease for decreasing t < t0 values,
as shown schematically in figure 12. By contrast, the mean slope of a material line
l2(t) anchored at the point x2 on the right-hand side of the profile will initially grow
in backward time. This trend changes once the backward-moving profile passes x2:
the mean component of the slope of l2(t) will then decrease for further decreasing
values of t (see figure 12).

As a consequence, the derivative

d

dT
[〈�α〉(x, t0 − T )]T =0 (8.1)

of the mean-angle-change function 〈�α〉(x, t0 − T ) changes sign from negative to
positive at the moving separation point x = γ (t0). Thus, in the case of non-degenerate
moving separation, (d/dT )[〈�α〉(x, t0 −T )]T =0 has a transverse zero at x = γ (t0). (With

the customary mean definition 〈�α〉 = (1/t)
∫ t

0
�α(τ ) dτ , this last conclusion would
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Figure 12. Backward-time change in the slope of two material lines lying instantaneously on
different sides of a moving separation point. Here αi(t) denotes the angle enclosed by the
material line li(t) with the wall at the point xi . Dashed line indicates the mean evolution of
the angle change function �αi(t) = αi(t) − αi(t0).

be invalid: figure 12 shows a case where (1/t)
∫ t

0
�α(τ ) dτ grows initially on both

sides of the separation profile.)
The slope of any wall-bound material line satisfies the expression (2.20). In this

expression, the first term is constant for incompressible flow, and hence any change in
the mean slope comes entirely from the second integral term. Thus a non-degenerate
sign change in (8.1) means a transverse zero at x = γ (t0) for the function

Mt0 (x) =
d

dT

〈∫ t0−T

t0

uy(x, 0, s) ds

〉
T =0

. (8.2)

Such a transverse zero exists at γ (t0) if

d

dT

〈∫ t0−T

t0

uy(γ (t0), 0, s) ds

〉
T =0

= 0,
d

dT

〈∫ t0−T

t0

uxy(γ (t0), 0, s) ds

〉
T =0

> 0.

(8.3)

These two conditions give an extension of Prandtl’s necessary criteria to moving
separation. For moving reattachment, the criteria become

d

dT

〈∫ t0−T

t0

uy(γ (t0), 0, s) ds

〉
T =0

= 0,
d

dT

〈∫ t0−T

t0

uxy(γ (t0), 0, s) ds

〉
T =0

< 0. (8.4)

Recall that 〈g〉(x, t0, · ) is a low-order polynomial least-squares fit to sampled values
of g(x, t0, · ) over a T interval as large as possible. In practice, this means a least-
squares polynomial fit for g values up to T = t0 − t00, where t00 is the earliest time at
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which velocity data is available. For a faithful approximation of 〈g〉, the order of the
least-squares polynomial should be low relative to the number of sampled values for
g. In our later numerical experiments, the order three or four was selected.

With increasing T , 〈g〉 gives an increasingly accurate representation of the mean
evolution of

∫
uy ds. As a result, transverse zeros of Mt0 (x) converge to moving

separation or reattachment points as the present time t0 becomes sufficiently far from
t00.

The derivatives of a moving separation profile at the wall can be determined
by repeating the argument leading to (8.2). For instance, the mean curvature of l1(t)
decreases in backward time for t < t0, while the mean curvature of l2(t) only decreases
in backward time after an initial period of increase. Assuming incompressibility, we
use the curvature formula (12.6) to find that

Nt0 (x) =
d

dT

〈∫ t0−T

t0

[
uyy(x, 0, τ ) − 3vyy(x, 0, τ )

(
f0(t0) +

∫ τ

t0

uy(x, 0, s) ds

)]
dτ

〉
T =0

(8.5)

has a transverse zero at x = γ (t0), with f0(t0) denoting the slope of the separation
profile at t = t0. As a result, we obtain

f0(t0) =

(d/dT )

〈∫ t0−T

t0

[
uyy(γ (t0), 0, τ ) − 3vyy(γ (t0), 0, τ )

∫ τ

t0

uy(γ (t0), 0, s) ds

]
dτ

〉
T =0

3(d/dT )

〈∫ t0−T

t0

vyy(γ (t0), 0, τ ) dτ

〉
T =0

.

(8.6)

Higher derivatives of the moving separation profile are obtained in a similar fashion.
As opposed to the case of fixed separation profiles, (8.6) is equally valid for moving

flow reattachment. This is because (8.6) follows from a bifurcation in short-term
material line behaviour that is also present in moving reattachment.

We recall that moving separation profiles are inherently non-unique. The formulae
given above single out the separation profile that attracts nearby material lines at
the highest rate. The numerical extraction of the mean component 〈g〉 is also a non-
unique procedure, but it is the bifurcation of 〈g〉 that defines the moving separation
location, not the actual values of 〈g〉. In our numerical experiments (see § 9) we found
the separation location to be robust with respect to changes in the order of the
polynomial least-squares fit producing 〈g〉.

8.2. Analytic sufficient condition

Moving separation can also be treated in rigorous analytic terms without assuming
a well-defined mean for the skin friction integral. First, for the present time t0, we
compute the effective separation point γeff (t, t0) for all available t < t0, then identify
the upper and lower bounds

γ+(t, t0) = sup
s∈[t,t0)

γeff (s, t0), γ−(t, t0) = inf
s∈[t,t0)

γeff (s, t0), (8.7)

on γeff (t, t0). Let the maximal x distance travelled by γeff (s, t0) over the interval [t, t0)
be denoted by

δ(t, t0) = γ+(t, t0) − γ−(t, t0), (8.8)
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which is the length of the interval

I (t, t0) = [γ−(t, t0), γ+(t, t0)]. (8.9)

Finally, assume that the flow is incompressible.
In Appendix E, we prove the existence of finite-time sharp separation at the point

γ (t0) = 1
2
[γ+(t0 − Tm(t0), t0) + γ−(t0 − Tm(t0), t0)], (8.10)

where Tm(t0) is the smallest time for which

1
2
δ(t0 − Tm(t0), t0)

∫ t0

t0−Tm(t0)

max
x∈I (t0−Tm(t0),t0)

|uxy(x, 0, t)| dt = 1, (8.11)

max
x∈I (t0−Tm(t0),t0)

uxy(x, 0, t) < 0, t ∈ [t0 − Tm(t0), t0]. (8.12)

The above conditions distinguish one finite-time unstable manifold out of the
infinitely many near the moving separation point. For specific velocity fields, the
conditions may be further sharpened (see Appendix E). A similar result holds for
moving reattachment points, except that the second condition in (8.11) is replaced by

max
x∈I (t0−Tm(t0),t0)

uxy(x, 0, t) > 0, t ∈ [t0 − Tm(t0), t0]. (8.13)

To obtain derivatives of the moving separation profile at time t0, we use the time
scale Tm(t0) to evaluate our earlier derivative formulae for fixed separation. For
instance, if the flow is incompressible, we use the finite-time version of (3.16) to
deduce the moving separation slope formula

f0(t0) =

∫ t0−Tm(t0)

t0

[
ay(τ ) − 3c(τ )

∫ τ

t0

a(s) ds

]
dτ

3

∫ t−Tm(t0)

t0

c(τ ) dτ

. (8.14)

Again, recall that moving separation profiles are non-unique. For any present time
t0, the above criterion singles out the profile that has remained close to an effective
separation point γeff (t, t0) for the longest time.

9. An example: unsteady separation bubble at a no-slip wall
In this section, we test our unsteady separation and reattachment formulae on

variants of an unsteady separation bubble flow derived by Ghosh et al. (1998). Ghosh
et al. use the algorithm of Perry & Chong (1986) to derive a low-order approximation
to separation bubble solutions of the Navier–Stokes equations. Simple but dynamically
relevant, this flow model allows a detailed comparison between our theory and actual
flow separation displayed by fluid particles. Numerically more challenging flows will
be treated elsewhere.

9.1. Time-periodic separation bubble

We first consider the original velocity field derived by Ghosh et al. (1998) for the
study of passive scalar transport near an unsteady separation bubble. The velocity
field is of the form

u(x, y, t) = −y + 3y2 + x2y − 2
3
y3 + βxy sinωt,

v(x, y, t) = −xy2 − 1
2
βy2 sinωt,

}
(9.1)
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with the wall located at y = 0. Because the flow is incompressible, our main
assumptions (6.14) and (6.15) for time-periodic flows are satisfied.

Evaluating conditions (6.18) and (6.20), we obtain

∫ T

0

uy(γ, 0, t) dt =

∫ T

0

(−1 + γ 2 + βγ sinωt) dt = (γ 2 − 1)
2π

ω
,

∫ T

0

vyy(γ, 0, t) dt =

∫ T

0

(−2γ − β sinωt) dt = −2γ
2π

ω
,




(9.2)

and hence fixed separation points must satisfy |γ | = 1 and γ < 0, and fixed
reattachment points must satisfy |γ | = 1 and γ > 0. Separation and reattachment
points must therefore lie at

γ = − 1, γ = +1, (9.3)

respectively, in agreement with the numerical observation of Ghosh et al.
At time t , the derivatives of the separation profile emanating from (x, y) = (−1, 0)

obey (3.16)–(3.19). Because the velocity field is time-periodic, (3.16)–(3.19) simplify to
quotients of averages over one period, as we remarked at the end of § 6.2. Computing
these averages, we find that

f0(t) = 1 +
β

ω
cos ωt,

f1(t) =
1

3
− β2

2ω2
− 3β

2ω
cos ωt − 4β

ω2
sinωt − 3β2

8ω2
cos 2ωt,

f2(t) =
2

3
+

5β2

2ω2
+

β

ω

(
5

4

β2

ω2
− 24

ω2
− 4

3

)
cosωt +

20β

ω2
sinωt

+
3β2

2ω2
cos 2ωt +

11β2

2ω3
sin 2ωt +

β3

4ω3
cos 3ωt,

f3(t) =
7

3
+

33

8

β2

ω2
− 237

128

β4

ω4
+

135

2

β2

ω4
+

β

ω2

(
360

ω2
− 75

4

β2

ω2
− 15

)
sinωt

+
β

ω

(
390

ω2
− 105

8

β2

ω2
− 5

)
cosωt +

β2

ω2

(
5

2
− 15

8

β2

ω2
+

435

4ω2

)
cos 2ωt

− 525

8

β2

ω3
sin 2ωt − β3

ω3

(
15

8
+

10

ω

)
sin 3ωt − 15

64

β4

ω4
cos 4ωt.




(9.4)

Using these expressions, we have computed the unsteady separation profile up to
quartic order and compared it with the actual time evolution of the fluid near the
boundary. Advecting a thin layer of fluid particles in time, we have found that they
indeed separate from the wall along the time-dependent separation profile predicted
by our theory (figure 13). For comparison, we also show instantaneous streamlines
in the figure, noting that the instantaneous streamline separation point (zero skin
friction point) has no direct relationship to the true separation point. Also note that
just as in the steady case (figure 1), flow separation starts with the formation of a tip
away from the actual point of separation, with the true separation point and profile
only prevailing later.
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Figure 13. Separating fluid particles (green and red), the quartic separation profile predicted
from our theory (blue), and instantaneous streamlines (black) in the time-periodic separation
bubble model. The parameter values are ω = 2π and β = 3. Particles with different colours
were released from different sides of the predicted separation profile at t = 0. The
figures correspond to the times (a) t = 0, (b) t = 8.2, (c) t = 9.95, (d) t = 15.0, (e) t = 18.65,
(f) t = 25.

We finally show how the moving separation formulae (8.3) and (8.6) also give
the correct separation location and separation slope in this example. The sinusoidal
time dependence here makes the mean operation 〈 · 〉 straightforward to perform
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Figure 14. Separation point of the time-periodic separation bubble flow. The figure shows
the exact location, as well as the location obtained from a numerical implementation of our
necessary and sufficient moving separation criteria.

analytically:〈∫ t0−T

t0

uy(x, 0, s) ds

〉
=

〈∫ t0−T

t0

(−1 + x2 + βx sinωs) ds

〉

=

〈
(1 − x2)T +

βx

ω
[cos ωt0 − cosω(t0 − T )]

〉

= (1 − x2)T +
βx

ω
cosωt0. (9.5)

Thus, the moving separation criteria, (8.3), yield the separation conditions

1 − γ 2(t0) = 0, −2γ (t0) > 0, (9.6)

which give the exact fixed separation point γ (t0) ≡ −1. Similarly, when evaluated,
(8.6) reproduces the separation slope formula in (9.4).

We show in figure 14 how the numerical implementation of the necessary and the
sufficient moving separation criteria perform on this example. We used a third-order
polynomial least-squares fit to extract the mean component of (9.5) numerically.
Because the exact mean is a linear function of T , our numerics produced a small
oscillating error in the location of the separation point. This error decreases for
higher-order polynomial fits, and for smaller step-sizes in the numerical integration.

9.2. Compressible separation bubble

To test our general separation criteria, we now add a phenomenological compressible
term to the separation bubble velocity field. We let

u(x, y, t) = −y + 3y2 + x2y − 2
3
y3 + βxy sinωt,

v(x, y, t) = − xy2 − 1
2
βy2 sinωt + d(t)y,

(9.7)
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where, for T = 2π/ω,

d(t) =

{
d0, tmodT ∈ [0, T /4],

−d0/3, tmodT ∈ (T/4, T ).
(9.8)

We have selected a linear compressible term for simplicity. The function d(t) has
mean zero to ensure bounded density and wall-tangential density gradients (cf. (6.14)
and (6.15)). For this choice of d(t), our main physical assumptions (2.7) and (2.8) are
satisfied.

Evaluating the density-independent versions of the necessary criteria (6.17) and
(6.20), we find that∫ T

0

exp

(∫ t

t0

vy(γ, 0, s) ds

)
uy(γ, 0, t) dt = 0,

∫ T

0

exp

(∫ t

t0

vy(γ, 0, s) ds

)
vyy(γ, 0, t) dt > 0,




(9.9)

must hold at the separation point for any choice of t0. Computing these integrals, we
obtain the separation point location

γ = −A −
√

A2 + 1 where A =
d2

0β

6
(
d2

0 + ω2
)
(1 − exp(−d0T/4))

. (9.10)

This formula gives a separation point that differs from the zero-mean-skin-friction
point x = −1 for non-zero values of the compressibility parameter d0, even though
the velocity field is time-periodic.

To obtain a linear approximation for the unsteady separation profile, we use the
formulation of § 2.7 to rewrite the separation slope formula (6.22) as

f0(t0) =

∫ T

0

[
ay(t) exp

(
2

∫ t

t0

vy(γ, 0, s) ds

)
− 3by(t) exp

(∫ t

t0

vy(γ, 0, s) ds

)

×
∫ t

t0

a(s) exp

(∫ s

t0

vy(γ, 0, r) dr

)
ds

]
dt

,

3

∫ T

0

by(t) exp

(∫ t

t0

vy(γ, 0, s) ds

)
dt

(9.11)

with a, ay and by being the same as in the incompressible limit considered in the
previous section. In our simulation described below, we evaluated f0(t0) numerically
to obtain a prediction for the instantaneous separation angle.

Advecting a layer of fluid particles, we have again found that the flow indeed
separates from the wall at the predicted separation point (9.10) (figure 15). The
separation point is not the zero mean-skin-friction point despite the exact time-
periodicity of the flow. This agrees with the conclusions of Yuster & Hackborn (1997),
who showed that the results of Shariff et al. (1991) are inapplicable to compressible
time-periodic flows.

9.3. Unstable separation bubble

Both flows we have considered so far have been time-periodic and exhibited fixed
unsteady separation. We now turn to a version of the separation bubble flow that
exhibits aperiodic time dependence and produces moving unsteady separation.
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Figure 15. Linear prediction for the separation profile and actual flow separation in the
compressible oscillating separation bubble model with ω = 1, β = 3 and d0 = 1. The small
square on the wall denotes the instantaneous skin friction point (when in range), and the small
circle denotes the true separation point. Particle positions are shown at (a) t = 0, (b) t = 7.15,
(c) t = 10.45, (d) t = 12.65, (e) t = 23.10, (f) t = 23.65.

For high Reynolds numbers, steady flows with stagnation points tend to be unstable,
with oscillatory instabilities growing exponentially in time (Friedlander & Vishik 1991;
Lifshitz 1991). As a consequence, small perturbations of a steady separation bubble
will lead to exponentially growing oscillations of the bubble for large enough Reynolds
numbers. To model a case where these growing oscillations saturate over time, we
consider the incompressible velocity field

u(x, y, t) = −y + 3y2 + x2y − 2
3
y3 + β(1 − e−αt )xy sin2 ωt,

v(x, y, t) = −xy2 − 1
2
β(1 − e−αt )2y2 sin2 ωt,

}
(9.12)

where α > 0 is a parameter controlling the strength of the instability.
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Figure 16. Moving separation location for the unstable separation bubble model.

To evaluate the necessary conditions for moving separation, we note that∫ t0−T

t0

uy(x, 0, s) ds =

∫ t0−T

t0

[
x2 − 1 + 1

2
βx(1 − e−αs)(1 − cos 2ωs)

]
ds, (9.13)

and hence〈∫ t0−T

t0

uy(x, 0, s) ds

〉
= − (x2 − 1 + βx/2)T +

βx

4ω
sin 2ωt0

+
βx

2α
(exp(−α(t0 − T )) − exp(−αt0)). (9.14)

Then the moving separation conditions (8.3) yield

γ 2(t0)+
1
2
βγ (t0)(1−exp(−αt0))−1 = 0, −2γ (t0)+

1
2
β(exp(−αt0)−1) > 0, (9.15)

giving the exact moving separation location

γ (t0) = 1
4
β(exp(−αt0) − 1) −

√
1
16

β2(exp(−αt0) − 1)2 + 1, (9.16)

plotted with a dashed line in figure 16.
Using the two procedures described in § 8, we also locate the moving separation

point numerically. Figure 16 shows the results from the heuristic necessary and the
analytic sufficient criteria of § 8. For the necessary criterion, we used a third-order
polynomial least-squares fit to identify the mean component of

∫ t0−T

t0
uy(x, 0, s) ds; we

then located x = γ (t0), the point at which the coefficient of the linear polynomial
term changed sign (see (8.3)).

For the sufficient moving separation criterion, we determined Tm(t0) as the solution
of (8.11). (For times t ∈ [0, 40.00] , the integration times Tm(t) are shown in figure 17).
With Tm(t0) at hand, we plotted the effective separation point γeff (Tm(t0), t0) (the
location of a finite-time unstable manifold) in figure 16.
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Figure 17. Moving separation time scale as a function of the present time for the unstable
separation bubble model. The parameter values are β = 2, α = 0.007 and ω = 2π. (We plot t0
itself whenever t0 − Tm(t0) would be negative.)

The separation points obtained from the two numerical methods typically differ
from the exact location in (9.16), but after initial transients, both criteria track the
actual moving separation point closely. As we indicated earlier, the necessary criterion
produces a point that actually converges to the exact moving separation point as more

and more past velocity data are used in calculating
∫ t0−T

t0
uy(x, 0, s) ds.

We show the results of a particle simulation with the computed linear separation
profiles superimposed in figure 18. For the heuristic necessary criterion, we used (8.6)
to compute the separation slope, employing a fourth-order polynomial least-squares
fit in extracting the mean components. For the analytic sufficient criterion, we used
(8.14) to obtain the separation slope. As already suggested by figure 16, we obtain
virtually identical linear separation profiles from both moving separation algorithms
if t0 is large enough.

9.4. Randomly oscillating separation bubble

Consider the velocity field

u(x, y, t) = −y + 3y2 + x2y − 2
3
y3 + βxy[A log(t + B) + r(t)],

v(x, y, t) = −xy2 − 1
2
βy2[A log(t + B) + r(t)],

}
(9.17)

where β, A, B > 0 are parameters, and r(t) is a mean-zero random variable of normal
distribution. This velocity field models a growing separation bubble with a well-defined
mean growth, onto which substantial random oscillations are superimposed.

We now have∫ t0−T

t0

uy(x, 0, s) ds =

∫ t0−T

t0

[x2 − 1 + βx[A log(s + B) + r(s)]] ds, (9.18)
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Figure 18. Flow separation in the unstable separation bubble model: separating fluid particles,
instantaneous streamlines, linear separation profile computed from the necessary criterion (light
thick line), and linear separation profile computed from the sufficient criterion (dark thick
line). The figure correspond to times (a) t = 1, (b) t = 9, (c) t = 17, (d) t = 23, (e) t = 29,
(f) t = 37.

and hence〈∫ t0−T

t0

uy(x, 0, s) ds

〉
= (1 − x2)T + βAx[(t0 − T + B) log(t0 − T + B) + T ]

− βAx(t0 + B) log(t0 + B) + βx

∫ t0−T

t0

r(s) ds. (9.19)
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Figure 19. Typical time-dependence for the random velocity field.

Because r(t) has zero mean, its integral converges to zero for increasing T . Thus,
in a statistical sense, the necessary separation criteria (8.3) yield the conditions

γ 2(t0) − βA[log(t0 + B)]γ (t0) − 1 = 0, −2γ (t0) − βA log(t0 + B) > 0, (9.20)

giving the statistically exact moving separation location

γ (t0) = − 1
2
βA log(t0 + B) −

√
1
4
β2A2 log2(t0 + B) + 1. (9.21)

This is the moving separation location at time t = t0 observed on the average over
many realizations of r(t).

The exact separation location in a given realization of r(t) will differ from
(9.21), and can only be identified numerically. In our test simulation, we selected
β = 4, A= 0.3 and B = 3, and set the standard deviation of r(t) equal to 0.2. We
sampled r(t) at multiples of �t = 0.2, and used a cubic spline interpolation to obtain
velocity values in (9.17) for intermediate times. With these parameters, a particular
realization of the random velocity field coefficient A log(t + B) + r(t) is shown in
figure 19.

In figure 20, we show the statistically exact separation point along with those
obtained numerically from the necessary and the sufficient moving separation criteria.
(The integration time scale Tm(t) obtained from the sufficient criterion (8.11) is shown
in figure 21.)

Figure 20 shows that both the necessary and the sufficient conditions track the rough
location of the statistically exact mean separation location. The analytic sufficient
criterion, however, outperforms the heuristic necessary condition in accuracy, as
seen in the snapshots of figure 22. (For a full animation, see web.mit.edu/ghaller/
www/2dseparation.html.)
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Figure 20. Moving separation location in the randomly oscillating separation bubble model.
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Figure 21. Moving separation time scale as a function of the present time for the randomly
oscillating separation bubble model. (We plot t0 itself whenever t0 − Tm(t0) would be negative.)
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Figure 22. Flow separation in the randomly oscillating separation bubble model: separating
fluid particles, linear separation profile computed from the heuristic necessary criterion (light
thick line), and linear separation profile computed from the analytic sufficient criterion
(dark thick line). The figure correspond to times (a) t = 9, (b) t = 13, (c) t =18, (d) t = 22,
(e) t =31, (f) t = 35.

10. Conclusions
We have developed a rigorous theory of two-dimensional unsteady separation that

relates the formation of a material spike near a no-slip boundary to the existence of
an unstable manifold for a distinguished point on the boundary. This theory is frame-
independent, and only assumes regularity and mass conservation along the boundary.
In particular, the velocity field does not have to solve the boundary-layer equations
or the Navier–Stokes equations: it can be an arbitrary numerical, experimental, or
model field.
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The existence of a wall-bound unstable manifold (separation profile) is guaranteed
by Prandtl’s classic separation criteria for steady flows with no-slip boundaries. Here,
we have extended these criteria to unsteady compressible flows with general time
dependence, covering separation and reattachment on fixed and moving boundaries.
We have also given an algorithm for computing the shape of the unstable manifold via
a Taylor expansion. This expansion becomes particularly simple for incompressible
flows, for which we have obtained a quartic approximation of the separation profile.

We have also given a theoretical description of moving separation using finite-
time invariant manifolds. The two algorithms we described in § 8.1 locate moving
separation and reattachment profiles in incompressible flows with general aperiodic
time dependence. As we illustrated in examples, these algorithms are to be used if the
fixed or moving nature of separation is a priori unknown.

While motivated by Lagrangian arguments, our criteria are fully Eulerian, and
hence do not require the advection of fluid particles. In addition, these criteria only
use quantities computed from distributed pressure and skin-friction measurements
along the wall (cf. § 4), and hence are applicable in active flow control.

Being purely kinematic, our analysis does not distinguish between laminar and
turbulent separation. Further work is required, however, on the computational
difficulties in moving turbulent separation. These difficulties arise from errors in
the long-term numerical integration of our criteria, and from errors in identifying the
mean component of the backward-time skin-friction integral.

The no-slip assumption (2.2) on the boundary is crucial in our theory, thus
compressible fluids with slip boundary conditions are not covered by the present
results. The case of slip boundaries is actually simpler to analyse, because we can use
the classic theory of hyperbolic invariant manifolds to describe separation profiles
(see Wang et al. 2003).

Beyond the further testing of our results on numerical and experimental velocity
data, a notable challenge is the extension of the theory to three-dimensional
unsteady flows. The Lagrangian definition of separation extends to three dimensions,
but technical difficulties arise in the derivation of Eulerian criteria for fixed and
moving unstable manifolds. Some of these difficulties are related to the increased
dimensionality of the problem, whereas others are related to the variety of
topologically different separation profiles that a three-dimensional unsteady flow may
support. We are addressing these challenges in ongoing work (Grunberg, Surana &
Haller 2004).
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Appendix A
After substituting formula (2.20) for f (τ ) in (2.29), we obtain

f1(t) =
f1(t0)ρ

2(t)

ρ2(t0)
+ ρ2(t)

∫ t

t0

[
P (τ, t0) + f0(t0)Q(τ, t0, t) − f 2

0 (t0)bx(τ )

ρ2(t0)

]
dτ, (A 1)



300 G. Haller

where

P (τ, t0) =
ay(τ )

ρ2(τ )
+

ax(τ ) − by(τ )

ρ(τ )

∫ τ

t0

a(s)

ρ(s)
ds − bx(τ )

(∫ τ

t0

a(s)

ρ(s)
ds

)2

,

Q(τ, t0, t) =
1

ρ(t0)

[
ax(τ ) − by(τ )

ρ(τ )
− 2bx(τ )

∫ τ

t0

a(s)

ρ(s)
ds

]
. (A 2)

We first observe that for material lines emanating from the separation point (γ, 0)
with slopes larger or smaller than the slope of the separation profile, f1(t) will tend
to plus or minus infinity, respectively, as t → −∞. This is because in backward time,
the separation profile – as any unstable manifold – also repels material lines that
emanate from the separation point, but do not coincide with the separation profile.

As a consequence, for any ε �= 0, (A 1) yields∫ −∞

t0

[
P (τ, t0) + [f0(t0) + ε]Q(τ, t0, t) − [f0(t0) + ε]2bx(τ )

ρ2(t0)

]
dτ = sign (ε)∞. (A 3)

On the separation profile itself, however, f1(t) remains bounded, i.e.

lim sup
t → −∞

∣∣∣∣
∫ t

t0

[
P (τ, t0) + f0(t0)Q(τ, t0, t) − f 2

0 (t0)bx(τ )

ρ2(t0)

]
dτ

∣∣∣∣ < ∞. (A 4)

Comparing these two expressions we obtain∫ −∞

t0

[
Q(τ, t0, t) − [2f (0t0) + ε]

bx(τ )

ρ2(t0)

]
dτ = ∞. (A 5)

By assumptions (2.7)–(2.8), we can write

lim sup
t → −∞

∣∣∣∣
∫ t

t0

[2f0(t0) + ε]
bx(τ )

ρ2(t0)
dτ

∣∣∣∣ = |2f0(t0) + ε|
ρ2(t0)

lim sup
t → −∞

∣∣∣∣
∫ t

t0

vxy(γ, 0, τ ) dτ

∣∣∣∣ < ∞,

(A 6)
therefore (A 5) simplifies to ∫ −∞

t0

Q(τ, t0, t) dτ = ∞, (A 7)

or equivalently, ∫ −∞

t0

[
ax(τ ) − by(τ )

ρ(τ )
− 2bx(τ )

∫ τ

t0

a(s)

ρ(s)
ds

]
dτ = ∞, (A 8)

as claimed in the necessary separation condition (2.22).
To prove (2.30), observe that (A 6) simplifies the boundedness condition (A 4) to

lim sup
t → −∞

∣∣∣∣
∫ t

t0

[P (τ, t0) + f0(t0)Q(τ, t0, t)] dτ

∣∣∣∣ < ∞, (A 9)

which, together with (A 7), implies

lim
t → −∞

∫ t

t0

[P (τ, t0) + f0(t0)Q(τ, t0, t)] dτ∫ t

t0

Q(τ, t0, t) dτ

= 0. (A 10)
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However, this is equivalent to

f0(t0) = − lim
t → −∞

∫ t

t0

P (τ, t0) dτ∫ t

t0

Q(τ, t0, t) dτ

, (A 11)

which is in turn equivalent to (2.30).

Appendix B
Computing the O(y, y2, y3) terms in the incompressible separation equation (3.8)

leads to the set of equations

ḟ 1 = (ax − c)f0 + ay, (B 1)

ḟ 2 = ayy + 2[axy − cy]f0 + [axx − 2cx]f
2
0 + 2[ax − 2c]f1, (B 2)

ḟ 3 = ayyy + (axxx − 3cxx)f
3
0 + 3(axxy − 2cxy)f

2
0 + 3(axyy − cyy)f0

+ 6(axx − 3cx)f0 f1 + 6(axy − 2cy)f1 + 3(ax − 3c)f2, (B 3)

ḟ 4 = ayyyy + (axxxx − 4cxxx)f
4
0 + 4(axxxy − 3cxxy)f

3
0 + 6(axxyy − 2cxyy)f

2
0

+ 4(axyyy − cyyy)f0 + 12(axxx − 4cxx)f
2
0 f1 + 24(axxy − 3cxy)f

2
0 f1

+ 12(axyy − 2cyy)f1 + 12(axx − 4cx)f
2
1 + 12(axx − 4cx)f0 f2

+ 12(axy − 3cy)f2 + 4(ax − 4c)f3. (B 4)

We note the following incompressibility relations derived from (3.6):

ax + 2c = 0, axy + 3cy = 0, axx + 2cx = 0, (B 5a–c)

axxx + 2cxx = 0, axxy + 3cxy = 0, axyy + 4cyy = 0, (B 5d–f)

axxxx + 2cxxx = 0, axxxy + 3cxxy = 0, (B 5g, h)

axxyy + 4cxyy = 0, axyyy + 5cyyy = 0. (B 5i, j)

We first integrate (B 1), then substitute (3.10) and use (B 5a) to obtain

f1(t) = f1(t0) +

∫ t

t0

[
ay(τ ) − 3c(τ )f0(t0) − 3c(τ )

∫ τ

t0

a(s) ds

]
dτ (B 6)

for the first-order term in the expansion for the incompressible separation profile. Be-
cause f1(t) remains bounded in backward time at a fixed separation point, we can use
the argument of Appendix A to derive (3.16) from (B 6). The expression (3.16) can also
be obtained by setting b(τ ) ≡ 0 and by(τ ) = c(τ ) in its compressible counterpart (2.30).

Next we integrate (B 2) and observe that the boundedness of f2(t) implies the
boundedness of the integral∫ t

t0

[
ayy(τ ) − 8cy(τ )f0(τ ) − 4cx(τ )f 2

0 (τ ) − 8c(τ )f1(τ )
]
dτ (B 7)

for all t � t0. Invoking the arguments of Appendix A, then substituting (B 6) and
using (B 5) leads to (3.17). Again, this result also follows from the compressible
curvature formula (2.33) if we note that

b = 0, bx = 0, by = c, bxx = 0, bxy = cx, byy = cy, (B 8)

hold for incompressible flows.
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We now integrate (B 3) and use the incompressibility conditions in (B 5) to find that
the integral∫ t

t0

[
ayyy − 5cxxf

3
0 − 15cxyf

2
0 − 15cyyf0 − 30cyf1 − 30cx f0f1 − 15cf2

]
dτ (B 9)

must be bounded for all t � t0. Proceeding again as above, we use this boundedness
to obtain (3.18). Finally, we integrate (B 4) and follow the same procedure to obtain
the last formula in (3.19).

Appendix C
Recall that the flow map associated with (2.1) is defined as

Ft
t0
(x0, y0) =

(
x(t; x0, y0, t0)

y(t; x0, y0, t0)

)
. (C 1)

The Jacobian of this map, usually called the deformation gradient, is given by the
formula

∇Ft
t0
(x0, y0) =




∂x(t)

∂x0

∂x(t)

∂y0

∂y(t)

∂x0

∂y(t)

∂y0


. (C 2)

If u and v are continuously differentiable, then the entries of the matrix ∇Ft
t0

remain
bounded on bounded domains for any finite t (cf. Arnold 1978). In view of this, the
formula

det ∇Ft
t0

=
∂x(t)

∂x0

∂y(t)

∂y0

− ∂x(t)

∂y0

∂y(t)

∂x0

(C 3)

and Van Dommelen’s condition (2.39) together imply

det ∇Ft
t0
(γ, η) = 0. (C 4)

This last equation, however, contradicts Liouville’s formula

det ∇Ft
t0
(γ, η) = exp

(∫ t

t0

∇ · v(x(s; γ, η, t0), y(s; γ, η, t0), s) ds

)
, (C 5)

for continuously differentiable velocity fields (cf. Arnold 1978). Therefore, v = (u, v)
cannot be continuously differentiable.

To find an exact Lagrangian criterion for fixed unsteady separation at a boundary
point, we differentiate (2.1) with respect to the initial positions (x0, y0) to obtain the
matrix differential equation

d

dt
∇Ft

t0
(x0, y0) =

(
ux

(
Ft

t0
(x0, y0), t

)
uy

(
Ft

t0
(x0, y0), t

)
vx

(
Ft

t0
(x0, y0), t

)
vy

(
Ft

t0
(x0, y0), t

)
)

∇Ft
t0
(x0, y0), (C 6)

with the initial condition

∇Ft
t0
(x0, y0) =

(
1 0

0 1

)
. (C 7)
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Because of the no-slip boundary conditions, we have ux(x, 0, t) = vx(x, 0, t) = 0; thus
along the boundary, (C 6) simplifies to

d

dt
∇Ft

t0
(x0, 0) =

(
0 uy

(
Ft

t0
(x0, 0), t

)
0 vy

(
Ft

t0

(
x0, 0), t

)
)

∇Ft
t0
(x0, 0). (C 8)

We solve this equation by direct integration, then use the density relation (2.5) and
the initial condition (C 7) to obtain

∇Ft
t0
(x0, 0) =




1 ρ(x0, 0, t0)

∫ t

t0

uy(x0, 0, τ )

ρ(x0, 0, τ )
dτ

0
ρ(x0, 0, t0)

ρ(x0, 0, t)


 . (C 9)

Comparing this last expression with (C 2) gives

∂x(t; x0, 0, t0)

∂x0

= 1,
∂x(t; x0, 0, t0)

∂y0

= ρ(x, 0, t0)

∫ t

t0

uy(x0, 0, τ )

ρ(x0, 0, τ )
dτ,

∂y(t; x0, 0, t0)

∂x0

= 0,
∂y(t; x0, 0, t0)

∂y0

=
ρ(x0, 0, t0)

ρ(x0, 0, t)
,




(C 10)

for any boundary point (x0, 0) . Therefore, by the necessary condition (2.21), if x0 = γ

is a separation point on the boundary, then necessarily

lim sup
t → −∞

∣∣∣∣∂x(t; γ, 0, t0)

∂y0

∣∣∣∣ < ∞. (C 11)

As (C 10) shows, the remaining three elements of the deformation gradient show no
special behaviour at separation points.

Appendix D
Here we prove a sufficient criterion for fixed sharp separation in incompressible

flows under conditions (5.1) and (5.2). Beyond these two conditions, we assume that
the velocity field as well as its first and second derivatives remain uniformly bounded
for all times at the separation point. We will establish the existence of a unique
material line that acts as an unstable manifold for the separation point (γ, 0) .

We start by fixing γ and introducing the time-dependent coordinate change

q = x − γ − y (f0(t) + yf1(t)) , (D 1)

with f0(t) and f1(t) satisfying (3.10) and (B 6). Note that this change of coordinates
transforms the x = γ coordinate axis into the new q =0 axis that has a quadratic
tangency with the candidate unstable manifold (separation profile) for all times. We
obtain

q̇ = ẋ − ẏf0 − yḟ 0 − 2yẏf1 − y2ḟ 1

= yqax(t) + m1(q, y, fk, t)y
3 + m2(q, y, fk, t)yq2 + m3(q, y, fk, t)y

2q,

ẏ = y2C(γ + yf0 + y2f1 + q, y, t)

= y2 [c(t) + ym4(q, y, fk, t) + qm5(q, y, fk, t)] ,




(D 2)

as new equations of motion for fluid particles, with appropriate smooth functions
mi, and with fk referring to f0 and f1. The O(y) and O(y2) terms in the q̇ equation
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y

Q

q0 αβ

β

Figure 23. The definition of the cone Q.

vanish precisely because we chose f0(t) and f1(t) in our coordinate transformation to
satisfy (3.10) and (B 6). Most importantly, f0(t) and f1(t) remain bounded because γ

is a fixed separation point; as a result, all terms in the q̇ equation remain bounded
for all times.

We define the cone

Q = {(q, y) | |q| � αy, 0 � y � β} , (D 3)

where α and β are positive constants to be selected below (figure 23). By our
boundedness assumption on the velocity field, we can select a large enough constant
K > 0 such that

|mi(q, y, fk, t)| � K, (q, y) ∈ Q, t ∈ �. (D 4)

Consider now the y = β boundary of the cone Q. Along this boundary, we have

ẏ|y=β = β2 [c(t) + βm4(q, β, fk, t) + qm5(q, β, fk, t)]

� β2 [c(t) − K (β + βα)] > 0, (D 5)

provided that

c(t) > Kβ(α + 1), (D 6)

or, equivalently,

vyy(γ, 0, t) > 2Kβ(α + 1). (D 7)

Therefore, solutions intersecting the y = β boundary of Q leave Q immediately if the
inequality (D 7) holds for all times (figure 24).

Next, we consider the q = αy boundary of the cone Q, where we have

q̇|q=αy = y2αax(t) + m1(q, y, fk, t)y
3 + m2(q, y, fk, t)y

3α2 + m3(q, y, fk, t)y
3α

� β2[αax(t) + Kβ(1 + α2 + α)] < 0,

ẏ|q=αy = y2[c(t) + ym4(q, y, fk, t) + αym5(q, y, fk, t)]

� y2[c(t) − Kβ(α + 1)] > 0,



(D 8)

provided that

ax(t) < −
Kβ
(
α2 + α + 1

)
α

, c(t) > Kβ (α + 1) , (D 9)
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y

q

W im
– W im

+

Figure 24. Fluid particles entering and leaving the cone Q, and the two sets W im
+ and W im

− .

or, equivalently,

uxy(γ, 0, t) < −Kβ

(
α + 1 +

1

α

)
, vyy(γ, 0, t) > 2Kβ (α + 1) . (D 10)

Both (D 7) and (D 10) hold if we have

uxy(γ, 0, t) < − max

(
2Kβ (α + 1) , Kβ

(
α + 1 +

1

α

))
, (D 11)

where we used the fact that uxy(γ, 0, t) ≡ −vyy(γ, 0, t) by incompressibility. By
condition (5.2), we can satisfy this last inequality by choosing the α and β parameters
of the cone Q so that

max

(
2β (α + 1) , β

(
α + 1 +

1

α

))
<

c0

K
. (D 12)

A possible choice is

α = 1, β =
c0

5K
, (D 13)

for which we conclude that solutions intersecting the q = α boundary of the cone
Q enter Q immediately by the estimates (D 8) (cf. figure 24). An identical argument
establishes the same conclusion for the q = −αy boundary of Q.

Based on the above observations, we conclude that under conditions (D 7) and
(D 10), the extended equations of particle motion

q̇ = yqax(t) + m1(q, y, fk, t)y
3 + m2(q, y, fk, t)yq2 + m3(q, y, fk, t)y

2q,

ẏ = y2 [c(t) + ym4(q, y, fk, t) + qm5(q, y, fk, t)] ,

ṫ = 1,


 (D 14)

have the following properties on the closed set Q = Q × �:
(a) The set of initial particle positions (q0, y0, t0) that immediately leave Q in

backward time is given by Wim = {(q, y, t) ∈ Q | y > 0, |q| = αy} . This is a set with
two connected components

Wim
± = {(q, y, t) ∈ Q | y > 0, q = ±αy} . (D 15)

We show these sets in figure 24.
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(b) If Wev denotes the set of initial conditions (q0, y0, t0) that eventually leave Q
in backward time, then Wim is a relatively closed subset of Wev. (This is because a
sequence within Wim

± converges to a point outside Wim
± , then that point is necessarily

at q = y = 0, which is not in Wev . Therefore, all Cauchy sequences in Wim
± that

converge to a point in Wev necessarily have their limit points in Wim
± . By definition,

this means that Wim is relatively closed in Wev .)
These two properties, by definition, make Q a backward-time Wasewsky set for the

extended system (D14) (cf. Hale 1980). As a result, the Wasewsky principle holds for
Q: the map Γ : Wev → W im that maps initial positions in Q to the point where they
leave Q in backward time, is continuous.

Assume now that all initial conditions with y0 �= 0 eventually leave Q in backward
time. This would imply that

Wev = {(q, y, t) ∈ Q | y > 0} . (D 16)

However, this is a contradiction, because the set Wev defined above is connected, and
hence cannot be mapped by a continuous map Γ into the disconnected set Wim. We
therefore conclude that Wev �= Q, i.e. there is a non-empty set of initial fluid particle
positions W ∞ that stay in Q for all backward times. By definition, W ∞ is an invariant
set and is necessarily smooth in t because it is composed of fluid trajectories that are
smooth in t. Also, by the continuity of the Wasewsky map, Wev = Q − W∞ consists
of two disjoint sets of initial conditions, A and B, such that

Wev = A ∪ B, W im
+ ⊂ A, W im

− ⊂ B. (D 17)

Next we want to argue that all solutions in W∞ tend to ξ = y = 0 in backward
time. Consider a specific initial position (q̄0, ȳ0, t̄0) ∈ W ∞, and denote the trajectory
emanating from this initial position by (q(t), y(t), t). Along this trajectory, we have

ẏ(t) = y2(t)[c(t) + y(t)m4(q, y, fk, t) + q(t)m5(q, y, fk, t)] (D 18)

which, upon integration, gives

y(t) =
y0

1 + y0

∫ t0

t

[c(τ ) + y(τ )m4(q, y, fk, τ ) + q(τ )m5(q, y, fk, τ )] dτ

. (D 19)

This equation holds for all t � t0, because the trajectory we consider stays in Q for
all backward times. Then (D 19) and (D13) lead to the estimate

y(t) �
β

1 + y0

∫ t0

t

[c(τ ) − Kβ(α + 1)] dτ

=
β

1 + y0

∫ t0

t

[
1

2
vyy(γ, 0, τ ) − Kβ(α + 1)

]
dτ

�
β

1 + y0

∫ t0

t

[
1

2
c0 − Kβ(α + 1)

]
dτ

=
2β

2 + y0(c0/5)(t0 − t)
, (D 20)

allowing us to conclude that

lim
t → −∞

y(t) = 0. (D 21)

In other words, trajectories that never leave Q in backward time will necessarily
converge to the y = 0 boundary of the cone Q. By the definition of Q, however, this
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convergence in the y-direction implies

lim
t → −∞

q(t) = 0. (D 22)

We therefore conclude that all trajectories in W∞ converge to y = q =0 in backward
time, thus W ∞ is an unstable manifold for (γ, 0). Any material curve in this
manifold admits bounded and unique y derivatives according to formulae (3.16)–
(3.19), therefore the unstable manifold is unique up to terms of order O(y3).

The same argument applies when higher-order terms of the candidate separation
profile (3.15) are included in the initial coordinate change (D1), leading to a unique
unstable manifold up to terms of order O(yn). Here, n is an arbitrary integer that
can be as large as the degree of differentiability of the original velocity field.

Given the existence of the separation profile, we only need to argue that the
separation is indeed sharp along this profile. To prove sharp separation, it is enough
to establish that the y-coordinate of fluid particles in the separation profile W ∞ grows
monotonically for all times as long as the particles are in a vicinity of the boundary.
Note that W ∞ has been constructed as a material line whose y � β portion is fully
contained in the cone Q. For all fluid particles that lie in the separation profile as
well as in the {0 < y � β} neighbourhood of the boundary, (D 2) and (D 13) yield
the estimate

ẏ = y2 [c(t) + ym4(q, y, fk, t) + qm5(q, y, fk, t)]

� y2
[

1
2
c0 − Kβ(α + 1)

]
� y2(c0/10). (D 23)

Therefore, the y-coordinate of fluid particles in W∞ grows monotonically in the
{0 < y � β} neighbourhood of the boundary, resulting in sharp separation.

Appendix E
Here we show that for general incompressible flows, (8.11) gives a sufficient

condition for finite-time sharp separation close to the moving effective separation
point γeff (t, t0). We shall show this by arguing that if γeff (t, t0) moves slowly enough for
t ∈ [t0 − Tm(t0), t0], then any point (γ, 0) close enough to γeff (t, t0) acts as a separation
point in the Lagrangian frame over that time interval. From this argument, we obtain
a set of points that can be considered finite-time separation points. The size of this
set tends to zero as the admissible time scale Tm(t0) increases. As a result, in numerical
calculations we obtain a separation point that is unique for practical purposes.

We start by selecting a boundary point (γ, 0) and introducing a time-dependent
coordinate change

q = x − γ − yφ(t), (E 1)

with φ(t) to be defined below. We obtain the transformed velocity field

q̇ = ẋ − ẏφ − yφ̇

= y(a − φ̇) + yqax + y2[(ax − c)φ + ay]

+ (l1y
3 + l2y

2q + l3yq2)(l4 + n1φ),

ẏ = y2C(γ + yφ, y, t)

= y2[c(t) + (l5y + l6q)(l7 + n2φ)],




(E 2)

with appropriate smooth functions lj (q, y, φ, t) and nk(q, y, φ, t). These functions
are typically not globally bounded in φ, thus they will grow unbounded if φ grows
unbounded in time.
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If we select φ(t) to satisfy

φ̇ = a, (E 3)

then the O(y) term in the q̇ equation of (E 2) vanishes. By our assumptions, the O(yq)
term remains bounded regardless of the choice of φ. If γ were a fixed separation
point, then the solution φ(t) of (E 3) would remain bounded for all times, and hence
the O(y3, y2q, yq2) terms in the q̇ equation would also remain bounded for all times.
However, γ is not a fixed separation point in our current setting, and hence the
O(y3, y2q, yq2) terms in the q̇ equation will typically grow unbounded in time.

To control the above-mentioned growth of nonlinear terms in (E 2), we select

γ = γeff (t, t0) + �(t, t0), (E 4)

with γeff (t, t0) denoting an effective separation point. In that case, by the mean-value
theorem, any solution of (E 3) can be written as

φ(t) = φ(t0) +

∫ t

t0

A(γ, 0, τ ) dτ = φ(t0) +

∫ t

t0

A(γeff (t, t0) + �(t, t0), 0, τ ) dτ

= φ(t0) +

∫ t

t0

[
A(γeff (t, t0), 0, τ ) + Ax(γ

∗(τ ), 0, τ )�(t, t0)
]
dτ

= φ(t0) + �(t, t0)

∫ t

t0

uxy(γ
∗(τ ), 0, τ ) dτ, (E 5)

for some γ ∗(τ ) falling between γ and γeff (t, t0).
Let I (t, t0) denote the maximal x interval covered by the moving effective separation

point γeff (s, t0) while s varies over the time interval [t, t0] . We denote the length of
I (t, t0) by δ(t, t0). If we select γ as in (8.10), then for any t < t0, we have the estimate

|φ(t)| =

∣∣∣∣φ(t0) + �(t, t0)

∫ t

t0

uxy(γ
∗(τ ), 0, τ ) dτ

∣∣∣∣
� |φ(t0)| + δ(t, t0)

∣∣∣∣
∫ t

t0

uxy(γ
∗(τ ), 0, τ ) dτ

∣∣∣∣
� |φ(t0)| + δ(t, t0)

∫ t0

t

max
x∈I (t,t0)

|uxy(x, 0, τ )|dτ. (E 6)

As in Appendix D, we now define the cone

Q = {(q, y) | |q| � αy, 0 � y � β} , (E 7)

where α and β are positive constants to be selected below. Modifying the functions lj
and nkφ in (E 2) smoothly outside a time interval [t0 −Tm, t0] with Tm to be determined
below, we can select a constant K > 0 such that the modified functions satisfy

|lj (q, y, φ, t)| , |nk(q, y, φ, t)φ| � K, (q, y) ∈ Q, t ∈ �. (E 8)

Along the y = β boundary, we now have

ẏ|y=β = β2[c(t) + (l5y + l6q)(l7 + n2φ)]

� β2[c(t) − 2K2(β + βα)] > 0, (E 9)

provided that

c(t) > 2K2β(1 + α), (E 10)
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or, equivalently,

vyy(γ, 0, t) > 4K2β(1 + α). (E 11)

Therefore, solutions intersecting the y = β boundary of Q leave Q immediately if the
inequality (E 11) holds for all times.

Next we consider the q = αy boundary of the cone Q, where we have

q̇|q=αy = y2[αax(t) + (ax − c)φ + ay + y(l1 + l2α + l3α
2)(l4 + n1φ)] < 0,

ẏ|q=αy = y2[c(t) + y(l5 + l6α)(l7 + n2φ)] > 0,

}
(E 12)

provided that

αax(t) + (ax − c)φ + ay < −2K2β(1 + α + α2),

c(t) > 2K2β(1 + α).

}
(E 13)

For fixed α > 0, we can always select an appropriately small β > 0 such that both of
these inequalities hold, provided that

αax(t) + 3
2
|ax(t)|

[
|φ(t0)| + δ(t, t0)

∫ t0

t

max
x∈I (t,t0)

|uxy(x, 0, τ )| dτ

]
+ |ay(t)| < 0,

c(t) > 0,


 (E 14)

where we used the incompressibility relation ax + 2c = 0.
The conditions in (E 14) hold if we require

δ(t, t0)

∫ t0

t

max
x∈I (t,t0)

|uxy(x, 0, τ )| dτ < 2
3

[
α − max

x∈I (t,t0)

|uyy(x, 0, t)|
2|uxy(x, 0, t)|

]
− |φ(t0)|,

max
x∈I (t,t0)

uxy(x, 0, t) < 0,

(E 15)

Recall that α denotes the tangent of the half-angle of the cone Q, and φ(t0) denotes
the tangent of the angle at which Q is tilted relative to the vertical in the original (x,

y) coordinate system.
Our selection of the parameters α and φ(t0) will depend on the given problem.

Ideally, φ(t0) should be chosen as the tangent of a mean value of the separation angle,
and α should be chosen as the tangent of the maximal deviation of the separation
angle from its mean value. To obtain a universal estimate, we select

α = 3 + max
x∈I (t,t0)

|uyy(x, 0, t)|
2 |uxy(x, 0, t)| + 3

2
|φ(t0)| , (E 16)

which will still accommodate sizable variations in the separation angle. (For specific
problems, more refined choices of α may be possible.) For the above choice of
α, the conditions (E 15) are equivalent to (8.11). Under these conditions, solutions
intersecting the q = α boundary of the cone Q enter the cone immediately by the
estimates (D 8).

With this last conclusion, the rest of our argument is identical to that of Appendix
D. Following that argument, we find that γ is a fixed sharp separation point for
the modified system that admits all the uniform bounds that we have assumed. As
a result, the original unmodified system also admits sharp finite-time separation at
γ as long as it agrees with the modified system. The resulting separation profile,
however, is non-unique, which is a common feature of finite-time separation points.
As a result, the choice (E 16) will give a separation profile, but not necessarily the
one that ejects particles the most intensely. In particular problems, we may improve
upon this conservative choice of parameters by picking a different α in (E 16).
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