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Abstract

We derive a hierarchy of PDEs for the leading-order evolution of wall-based quantities, such as the skin-friction and the wall-pressure gradient,
in two-dimensional fluid flows. The resulting Reduced Navier–Stokes (RNS) equations are defined on the boundary of the flow, and hence have
reduced spatial dimensionality compared to the Navier–Stokes equations. This spatial reduction speeds up numerical computations and makes the
equations attractive candidates for flow-control design. We prove that members of the RNS hierarchy are well-posed if appended with boundary-
conditions obtained from wall-based sensors. We also derive the lowest-order RNS equations for three-dimensional flows. For several benchmark
problems, our numerical simulations show close finite-time agreement between the solutions of RNS and those of the full Navier–Stokes equations.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Background and motivation

The approximation of Navier–Stokes flows near a no-slip boundary was apparently first discussed in detail by Perry and
Chong [11], who developed a procedure for finding the Taylor coefficients of a velocity field expanded at a boundary point. By this
procedure, one can construct velocity models that are polynomials in terms of the distance from the point of expansion. The models
are dynamically consistent up to any desired order, but depend on properties imposed a priori on the velocity derivatives at the wall.

Danielson and Ottino [3] used the above procedure to construct a system of ODEs for the Taylor coefficients of a velocity field
at a no-slip boundary point. The ODE system becomes finite-dimensional upon truncation of the Taylor expansion; Danielson and
Ottino showed that even low-order truncations may lead to ODEs with a strange attractor, a hallmark of Eulerian turbulence.

Recently, Bewley and Protas [12] proposed a less restrictive Taylor-expansion of the velocity in terms of the normal distance
from the boundary. For two-dimensional flows, this procedure yields a single-variable Taylor-expansion with coefficients depending
on the location along the boundary. Bewley and Protas showed that under appropriate conditions, the expansion converges in the
vicinity of the wall. In addition, for incompressible flows, all Taylor coefficients can be expressed in terms of time- and wall-
tangential derivatives of the wall shear (skin friction) and the wall pressure.

With the availability of accurate skin-friction and pressure sensor-arrays, the results in [12] enable local velocity reconstruction
from wall-based measurements. This offers a promising tool for practical flow control, where the impact of the controller must
be evaluated from wall sensors. Feedback control, however, requires more than just an observation of the output: a model for the
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Fig. 1. Domain of definition for the RNS equations.

evolution of the flow is also crucial. The Bewley–Protas results offer hope that, at least near the wall, such models are reducible to
depend only on the skin friction and wall pressure.

Further underlying the need for such reduced flow models, typical performance objectives in flow-control are often phrased
directly in terms of skin friction and wall pressure, not velocity. Examples include pressure-recovery enhancement in diffusers
and surface-drag reduction on submarines. The former aims to maximize the integral of the wall-pressure gradient; the latter to
minimize the integral of the skin friction. In both cases, a qualitative prediction for the evolution of the underlying quantity is more
beneficial than a highly accurate but complex numerical model.

1.2. Main results

Motivated by the above, here we study how the dynamics of wall-based quantities, such as the wall-shear τ and the wall-pressure
gradient γ , can be modelled and predicted in two-dimensional Navier–Stokes flows. Our main result is a hierarchy of models, the
Reduced Navier–Stokes (RNS) equations, that describe the evolution of the above quantities at different levels of accuracy. Since
the RNS equations are defined on the flow boundary, they only have one spatial dimension, the wall coordinate x . This dimensional
reduction results in computation times that are significantly shorter than those of direct Navier–Stokes simulations.

Solving the RNS equations requires updated boundary conditions for τ and γ at two x-locations, x1 and x2 (see Fig. 1). Thus, x1
and x2 must either be points with a priori known velocity derivatives (e.g., corner points), or must lie within distributed skin-friction
and wall-pressure sensor arrays. In either case, the RNS equations provide qualitative prediction for the time-evolution of τ (x, t)
and γ (x, t) over the spatial interval [x1, x2]. The prediction necessarily deteriorates over time; solving the RNS equations over
longer times therefore requires periodic re-initialization by sampling τ (x, t) and γ (x, t) from sensors distributed over [x1, x2].

We derive three members of the RNS hierarchy explicitly; these evolution equations are obtained from cubic, quartic, and quintic
truncations of the Taylor expansion of the wall-tangential velocity component. We prove that these three RNS equations and all
higher-order RNS systems are well-posed, i.e., admit unique solutions that depend continuously on the initial data. We also derive
the lowest-order RNS equation for three-dimensional flows, and discuss the relevance of the two-dimensional RNS equations in
select flow-control problems.

We present evidence for the accuracy of the RNS equations by comparing their numerical solution to classic solutions of the
Navier–Stokes equations. These classic solutions include a viscous channel flow, the Blasius boundary layer solution, viscous flow
near a stagnation point, and an oscillating flow over an infinite plate. We finally compare the direct numerical simulation of a
lid-driven cavity flow to that of the RNS equations. In all cases, we observe close quantitative agreement on short to intermediate
timescales, and qualitative accuracy over longer timescales.

2. RNS equations for two-dimensional flows

Consider the two-dimensional Navier–Stokes equations

∂t u + ux u + u yv = −
1
ρ

px + ν
(
uxx + u yy

)
,

∂tv + vx u + vyv = −
1
ρ

py + ν
(
vxx + vyy

)
, (1)

where (u(x, y, t), v(x, y, t)) is a velocity field satisfying the incompressibility condition

ux + vy = 0, (2)

and the no-slip boundary condition

u(x, 0, t) = v(x, 0, t) = 0 (3)

at the y = 0 boundary. In (1), p(x, y, t) denotes the pressure, and ν and ρ are the kinematic viscosity and the density of the fluid.
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We seek to understand the evolution of the skin-friction field

τ(x, t) = ρνu y(x, 0, t),

and the wall-pressure-gradient field

γ (x, t) = px (x, 0, t) = ρνu yy(x, 0, t). (4)

As auxiliary variables to be used later, we also introduce

σ(x, t) = ρνu yyy(x, 0, t), λ(x, t) = ρνu yyyy(x, 0, t), η(x, t) = ρνu yyyyy(x, 0, t).

With the above variables, the Taylor expansion of u(x, y, t) near the y = 0 boundary can be written as

u(x, y, t) =
1
νρ

[
τ(x, t)y +

1
2
γ (x, t)y2

+
1
6
σ(x, t)y3

+
1
24

λ(x, t)y4
+

1
120

η(x, t)y5
+O(y6)

]
. (5)

Subtracting the x-derivative of the second equation in (1) from the y-derivative of the first equation, we obtain the vorticity-transport
equation

∂t
(
u y − vx

)
+ u

(
uxy − vxx

)
+ v

(
uxx + u yy

)
= ν

(
2uxxy + u yyy − vxxx

)
, (6)

from which we shall derive approximate expressions for the evolution of the Taylor coefficients in (5).

2.1. The cubic RNS equations

Setting y = 0 in Eq. (6) yields

τt = ν (2τxx + σ) . (7)

Differentiating (6) with respect to y and using the incompressibility condition (2) leads to

∂t
(
uxx + u yy

)
+ u y

(
uxy − vxx

)
+ u

(
uxyy + uxxx

)
− ux

(
uxx + u yy

)
+ v

(
uxxy + u yyy

)
= ν

(
2uxxyy + u yyyy + uxxxx

)
. (8)

After setting y = 0 in (8), we obtain

γt +
1
νρ

ττx = ν
(
2γxx + νρu yyyy

)
. (9)

Finally, differentiating (8) with respect to y, we find that

∂t
(
uxxy + u yyy

)
+ u yy

(
uxy − vxx

)
+ u y

(
uxyy + uxxx

)
+ u y

(
uxyy + uxxx

)
+ u

(
uxyyy + uxxxy

)
− uxy

(
uxx + u yy

)
− 2ux

(
u yyy + uxxy

)
+ v

(
u yyyy + uxxyy

)
= ν

(
2uxxyyy + u yyyyy + uxxxxy

)
. (10)

Setting y = 0 in this last equation, we obtain[
∂t
(
uxxy + u yyy

)
+ 2u yu yyx

]
y=0 = ν

(
2uxxyyy + u yyyyy + uxxxxy

)
y=0 . (11)

At the same time, the second x-derivative of (6) taken at y = 0 is(
∂t uxxy

)
y=0 = ν

(
2uxxxxy + uxxyyy

)
y=0 . (12)

Combining (11) and (12) gives

σt +
2
νρ

τγx = ν
(
σxx + νρu yyyyy − τxxxx

)
. (13)

We now assume that the velocity component u(x, y, t) is well approximated by its third-order Taylor expansion near the y = 0
boundary; in other words, we truncate the expansion (5) at cubic order. Under this approximation, Eqs. (7), (9) and (13) yield the
cubic RNS equations

τt = 2ντxx + νσ, (14)

γt = 2νγxx −
1
νρ

ττx ,

σt = νσxx − ντxxxx −
2
νρ

τγx .
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To this nonlinear system of PDEs, we add the boundary and initial conditions

τ(0, t) = T0(t), τ (L , t) = T1(t), τ (x, t0) = τ 0(x), (15)

γ (0, t) = G0(t), γ (L , t) = G1(t), γ (x, t0) = γ 0(x),

σ (0, t) = S0(t), σ (L , t) = S1(t), σ (x, t0) = σ 0(x).

The initial and boundary conditions for τ may be obtained from distributed skin-friction sensors; the same conditions for γ can
be measured by distributed pressure sensors. Realistic sensors do not exist for measuring σ directly, but distributed skin-friction
sensors can be used to find the values of σ from the relations

σ(0, t) = Ṫ0(t) − 2ντxx (0, t), σ (L , t) = ṪL(t) − 2ντxx (L , t), σ (x, t0) = τ̇ (x, t0) − 2ντ 0
xx (x).

The solvability of the cubic RNS equations (14) is guaranteed by the following result.

Theorem 2.1. The cubic RNS equations (14) with the boundary and initial conditions (15) are well-posed: they admit unique
solutions (τ, γ, σ ) with continuous dependence on initial data in the function space H3 [0, L] × H2 [0, L] × H1 [0, L].

Proof. See Appendix A.1. �

The advantage of the cubic RNS equations (14) is that they are defined on the one-dimensional spatial domain [0, L], as
opposed to the Navier–Stokes equations (1) that are defined on a two-dimensional domain. System (14), however, cannot be solved
independently: its time-dependent boundary conditions are to be obtained from pressure- and skin-friction sensors at the boundary.
In addition, a distributed skin-friction and pressure measurement at t = 0 is necessary to identify the initial condition.

Since the system (14) is obtained from a Taylor-series truncation of the original velocity field, it will only approximate true
Navier–Stokes solutions for finite times. As a result, (14) must be periodically re-initialized for its solutions to stay accurate. Our
main motivation is controller design, for which the simplicity and the short-term predictive power of (14) is more important than
its long-term accuracy.

2.2. The quartic RNS equations

For increased accuracy, we now derive a higher-order approximation for the evolution of velocity derivatives at the wall.
Differentiating (10) with respect to y, we obtain

∂t
(
uxxyy + u yyyy

)
− u yyyvxx + u yy

(
2uxyy + 2uxxx

)
+ 3u y

(
uxyyy + uxxxy

)
+ u

(
uxyyyy + uxxxyy

)
− uxyyuxx

−3uxyuxxy − 2uxyu yyy − 3ux
(
u yyyy + uxxyy

)
+ v

(
u yyyyy + uxxyyy

)
= ν

(
2uxxyyyy + u yyyyyy + uxxxxyy

)
. (16)

Setting y = 0 in this equation gives[
∂t
(
uxxyy + u yyyy

)
+ 2u yyuxyy + 3u y

(
uxyyy + uxxxy

)
− 3uxyuxxy − 2uxyu yyy

]
y=0

= ν
(
2uxxyyyy + u yyyyyy + uxxxxyy

)
y=0 . (17)

Next, we differentiate (8) twice with respect to x and set y = 0 to obtain[
∂t u yyxx + 3uxyuxxy + u yuxxxy

]
y=0 = ν

(
2uxxxxyy + uxxyyyy + uxxxxxx

)
y=0 . (18)

Subtracting (18) from (17) then gives[
∂t u yyyy + 2u yyuxyy + u y

(
3uxyyy + 2uxxxy

)
− 6uxyuxxy − 2uxyu yyy

]
y=0 = ν

(
uxxyyyy + u yyyyyy − uxxxxyy

)
y=0 ,

or, equivalently,

∂tλ +
2
νρ

γ γx +
1
νρ

τ(3σx + 2τxxx ) −
6
νρ

τxτxx −
2
νρ

τxσ = ν
(
λxx + νρu yyyyyy − γxxxx

)
.

We now assume that the velocity component u(x, y, t) is well approximated by its fourth-order Taylor expansion near the
boundary, i.e., we truncate the expansion (5) at quartic order. Under this approximation, Eqs. (7), (9) and (13) can be summarized
in the quartic RNS equations

τt = 2ντxx + νσ,

γt = 2νγxx + νλ −
1
νρ

ττx ,

σt = νσxx − ντxxxx −
2
νρ

τγx ,
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λt = νλxx − νγxxxx −
2
νρ

γ γx −
1
νρ

τ(3σx + 2τxxx ) +
6
νρ

τxτxx +
2
νρ

τxσ, (19)

with the initial and boundary conditions

τ(0, t) = T0(t), τ (L , t) = T1(t), τ (x, t0) = τ 0(x), (20)

γ (0, t) = G0(t), γ (L , t) = G1(t), γ (x, t0) = γ 0(x),

σ (0, t) = S0(t), σ (L , t) = S1(t), σ (x, t0) = σ 0(x),

λ(0, t) = L0(t), σ (L , t) = L1(t), λ(x, t0) = λ0(x).

The boundary and initial conditions for λ can again be obtained from distributed skin-friction and pressure measurements:

λ(0, t) =
[
Ġ0(t) − 2νγxx (0, t) + T0(t)τx (0, t)/(νρ)

]
/ν,

λ(L , t) =
[
Ġ1(t) − 2νγxx (L , t) + T1(t)τx (L , t)/(νρ)

]
/ν,

λ(x, t0) = γ̇ (x, t0) − 2νγ 0
xx (x) + τ 0(x)τ 0

x (x)/(νρ).

The solvability of the quartic RNS equations (14) is guaranteed by the following result.

Theorem 2.2. The quartic RNS equations (19) with the boundary and initial conditions (20) are well-posed on the function space
H4 [0, L] × H3 [0, L] × H2 [0, L] × H1 [0, L].

Proof. See Appendix A.2 �

Note that the evolution of the pressure gradient and the skin friction remain independent in Stokes flows even after the addition
of higher-order terms. The same conclusion will hold for any higher-order RNS equation. In those higher-order equations, the only
further change is the appearance of linear coupling terms to higher-order y-derivatives of u. This suggests that the first robust
enough model for both the skin friction and the pressure gradient is the quartic model.

2.3. Higher-order RNS equations

In order to derive an nth order approximation for the evolution of flow-derivatives at the wall, we subtract the second x-derivative
of the order n − 2 RNS equations from the (n − 3)-order y-derivative of Eq. (10). Setting y = 0 in the resulting equation and
neglecting y-derivatives of u higher in order than n, we obtain the nth-order RNS equations. For example, the quintic RNS equations
take the form

τt = 2ντxx + νσ, (21)

γt = 2νγxx + νλ −
1
νρ

ττx ,

σt = νσxx − ντxxxx + νη −
2
νρ

τγx ,

λt = νλxx − νγxxxx −
2
νρ

γ γx −
1
νρ

τ(3σx + 2τxxx ) +
6
νρ

τxτxx +
2
νρ

τxσ,

ηt = νηxx + ντxxxxxx +
1
νρ

[(5λ + 8γxx )τx − 5γ (σx + τxxx ) − τ(4λx + 3γxxx ) + 5τxxγx ],

with appropriate boundary and initial conditions.
Our regularity results extend to the solutions of higher-order RNS equations:

Theorem 2.3. For any n ≥ 3, the nth-order RNS equations are well-posed on the function space Hn [0, L] × · · · × H1 [0, L].

Proof. See Appendix A.2. �

3. RNS equations for three-dimensional flows

Although the focus of the present paper is two-dimensional flows, we briefly discuss here how analogous equations can be
derived in three dimensions. We start with the three-dimensional Navier–Stokes equations

ut + ux u + u yv + uzw = −
1
ρ

px + ν(uxx + u yy + uzz)
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vt + vx u + vyv + vzw = −
1
ρ

py + ν(vxx + vyy + vzz)

wt + wx u + wyv + wzw = −
1
ρ

pz + ν(wxx + wyy + wzz) (22)

where (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) is a velocity field satisfying the incompressibility condition

ux + vy + wz = 0,

and the no-slip boundary condition

u(x, y, 0, t) = 0, v(x, y, 0, t) = 0.

In (22), p(x, y, z, t) denotes the pressure, and ν and ρ are the kinematic viscosity and the density of the fluid.
The skin-friction field is now defined as

(τ 1(x, y, t), τ 2(x, y, t)) = (ρνuz, ρνvz)|z=0,

and the wall-pressure-gradient field is equal to

(γ 1(x, y, t), γ 2(x, y, t)) =
(

px (x, y, 0, t), py (x, y, 0, t)
)

= (ρνuzz, ρνvzz)|z=0.

As auxiliary variables to be used later, we also introduce

(λ1, λ2) = (ρνuzzz, ρνvzzz)|z=0,

(σ 1, σ 2) = (ρνuzzzz, ρνvzzzz)|z=0.

With these variables, the Taylor expansion of u(x, y, z, t) and v(x, y, z, t) at the boundary z = 0 can be written as

u(x, y, z, t) =
1
ρν

[
τ 1(x, y, t)z +

1
2
γ 1(x, y, t)z2

+
1
6
σ 1(x, y, t)z3

+
1

24
λ1(x, y, t)z4

+ O(z5)

]
,

v(x, y, z, t) =
1
ρν

[
τ 2(x, y, t)z +

1
2
γ 2(x, y, t)z2

+
1
6
σ 2(x, y, t)z3

+
1
24

λ2(x, y, t)z4
+ O(z5)

]
. (23)

As we show in Appendix B, the truncation of the expansion (23) at cubic order leads to the three-dimensional cubic RNS equation

τ 1
t = 2ντ 1

xx + ντ 1
yy + ντ 2

xy + νσ 1,

τ 2
t = 2ντ 2

yy + ντ 2
xx + ντ 1

xy + νσ 2,

γ 1
t = ν

(
2γ 1

xx + γ 1
yy + λ1

+ γ 2
xy

)
−

1
νρ

(
τ 1τ 1

x − 2τ 1
y τ 2

− τ 1τ 2
y

)
,

γ 2
t = ν

(
2γ 2

yy + γ 2
xx + λ2

+ γ 2
xy

)
−

1
νρ

(
τ 2τ 2

y − 2τ 2
x τ 1

− τ 2τ 1
x

)
,

σ 1
t = −ν

[
3τ 1

xxxx + 3τ 1
yyxx + σ 1

xx + 3τ 2
xxxy + 3τ 2

yyyx + 2σ 2
xy − σ 1

yy

]
+

1
νρ

[
−2γ 1

x τ 1
− 3γ 1

y τ 2
− 3τ 1

y γ 2
+ 3γ 1τ 2

y + τ 1γ 2
y − 3τ 1

xxτ
1
]

+
1
νρ

[
−3τ 2

xyτ
1
+ 3τ 1

xyτ
2
+ 3τ 2

yyτ
2
+ 3(τ 1

x )2
+ 6τ 1

x τ 2
y + 3(τ 2

y )2
]
,

σ 2
t = −ν

[
3τ 2

yyyy + 3τ 2
yyxx + σ 2

yy + 3τ 1
xyyy + 3τ 1

yxxx + 2σ 1
xy − σ 2

xx

]
+

1
νρ

[
−2γ 2

y τ 2
− 3γ 2

x τ 1
− 3τ 2

x γ 1
+ 3γ 2τ 1

x + τ 2γ 1
x − 3τ 2

yyτ
2
]

+
1
νρ

[
−3τ 1

xyτ
2
+ 3τ 2

xyτ
1
+ 3τ 1

xxτ
1
+ 3(τ 1

x )2
+ 6τ 1

x τ 2
y + 3(τ 2

y )2
]
. (24)

4. The τ– p̄ formulation with application to flow control

Here we discuss the relevance of the RNS equations in flow modelling and control. First, we recall that all derivatives of an
incompressible velocity field at a no-slip wall can be expressed in terms of the skin friction, pressure, their wall gradients, and their
time derivatives (see Bewley and Protas [12]). This implies that (14) can be re-written as a two-dimensional set of PDEs for τ and γ .
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Fig. 2. Possible domains of definition for the RNS equations in flow control problems. (a) Inclined wall section of a two-dimensional diffuser (b) Wall section of a
two-dimensional streamlined body.

Indeed, differentiating the first equation of (14) in time gives

τt t = 2ντxxt + νσt

= 2ντxxt + ν

[
ν

(
1
ν
τxxt − 2τxxxx

)
− ντxxxx −

2
νρ

τγx

]
,

which, combined with the second equation of (14), gives the system of PDEs

τt t = 3ντxxt − 3ν2τxxxx −
2
ρ

τγx , (25)

γt = 2νγxx −
1
νρ

ττx .

Integrating the second equation of (25) with respect to x over the interval [0, x] and introducing the pressure difference
p̄(x, t) = p(x, t) − p(0, t), we obtain the τ– p̄ form of the cubic RNS system:

τt t = 3ντt xx − 3ν2τxxxx −
2
ρ

τ p̄xx , (26)

p̄t = 2ν p̄xx +
1
νρ

[∫ x

0
τ 2

x (s, t) ds − τ 2
]

+
1
νρ

τ 2 (0, t) − 2ν p̄xx (0, t).

This formulation is preferable over (14) if the pressure and skin-friction boundary conditions at x = 0 are trivial. For instance,
if x = 0 coincides with the location of a vertical no-slip wall (i.e., there is a corner at x = 0), then we have

τ (0, t) = 0, pxx (0, t) = 0,

where the second relation follows from the Navier–Stokes equations (1). In this case, the τ– p̄ form of the cubic RNS equation
simplifies to

τt t = 3ντt xx − 3ν2τxxxx −
2
ρ

τ p̄xx , (27)

p̄t = 2ν p̄xx +
1
νρ

[∫ x

0
τ 2

x (s, t) ds − τ 2
]

.

Setting the correct boundary conditions for this equation only requires time-resolved skin-friction and pressure measurements at
x = L .

The τ– p̄ formulation (26) (or (27)) offers a lowest-order approximation for the evolution of the skin friction and the wall-pressure
gradient. Such approximations are useful in flow control problems where the cost function only depends on τ or p̄.

For instance, if x ∈ [0, L] varies on a wall segment connecting the inlet and the outlet of a diffuser (see Fig. 2(a)), then losses in
the diffuser are measured by the pressure recovery

C p(t) =
p̄(L , 0, t)
1
2ρu2

in(t)
,

with uin denoting the mean inflow velocity. The losses will be minimal if C p is maximal. Assuming constant-in-time inflow
conditions, C p(t) will be maximal if p̄(L , 0, t) is maximal. Thus, to minimize losses in the diffuser, the time-average of the
cost function

cp(t) = p̄(L , 0, t)

is to be maximized.
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Another relevant example is surface drag reduction over the boundary section [0, L] of a streamlined body (see Fig. 2(b)). Since
the surface drag force is the integral of the wall shear along the wall, minimizing the average of the cost function

cτ (t) =

∫ L

0
τ(x, t) dx,

minimizes surface drag over [0, L].
In deriving the RNS hierarchy, we have assumed no-slip boundary conditions on the [0, L] wall segment. Therefore, the domain

of definition of the RNS equations cannot contain wall-based fluidic actuators performing blowing or suction. Such actuators can
be placed outside [0, L] – preferably close to x = 0 or x = L – to control the boundary conditions for the RNS equations.

5. Numerical study of the RNS equations

Here we show by examples that the cubic, quartic, and quintic RNS solutions approximate true Navier–Stokes solutions well over
characteristic time intervals. The examples include a channel flow, a Blasius boundary layer flow, a viscous flow near a stagnation
point, an oscillating flow above an infinite plane, and a lid-driven cavity flow.

In the first four examples, the Navier–Stokes equations admit exact or simplified steady-state solutions. We use these steady-
state solutions as initial conditions for the RNS equations, and monitor how the solutions obtained this way deviate from the exact
steady-state solutions. In our last example, we compare direct numerical solutions of the Navier–Stokes and the RNS equations. In
this case, the boundary conditions for the RNS equations are a priori known: the normal derivatives of the u-velocity are zero at the
corners of the lid-driven cavity.

We use a Chebyshev spectral scheme for the spatial approximation of (14), (19) and (21). We choose this method for its high
accuracy and for its ability to treat Dirichlet boundary conditions (see Canuto et al. [2]). For temporal integration, we use a second-
order implicit Crank–Nicholson scheme (Canuto et al. [2]) combined with a Newton–Krylov solver (Kelley [7]). We present our
simulation results using the nondimensional (convective) time

t̄ = tu0/L0,

where u0 is a characteristic velocity and L0 is a characteristic length.

Channel flow

Analytical solution
For a laminar flow between two parallel plates at distance L , the Navier–Stokes equations (1) simplify to

νu yy =
1
ρ

px , (28)

if we assume that the vertical velocity v vanishes, and u does not vary with x . Consequently, px ≡ p0
x is a constant.

Integrating (28) with respect to y and using the symmetry condition u y (x, L/2) = 0 leads to

u y (x, y) =
1
νρ

p0
x (y − L/2) . (29)

Integrating once more and using the no-slip condition u = 0 at y = 0 yields

u (x, y) =
1

2νρ
p0

x (y2
− Ly). (30)

Setting u(x, L/2) = umax then gives

p0
x = −

8umaxνρ

L2 , (31)

thus the solution of (28) can be written as

u (x, y) = −4umax

[( y

L

)2
−

y

L

]
. (32)

Validation
From (32), we obtain

τexact = −
4ρνumax

L
, γexact = −

8umaxνρ

L2 , σexact = 0, λexact = 0. (33)
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Fig. 3. RNS simulations for τ and γ in the perturbed channel flow with ε = 10−3. The percentage error for τ is obtained as 1τ% =
100
N

[∑N
i=1 |τ − τi |

]
/ maxi |τi |

where τ1, . . . . , τN are the τ values at N gridpoints x1, . . . , xN ∈ [0, 1]; the definition of 1γ % is similar.

As a direct substitution into (14) and (19) shows, (33) is an exact solution of the cubic and quartic RNS equations. This was to be
expected, because the solution (32) is exactly equal to its cubic and quartic Taylor-expansion in y.

In practice, however, initial conditions for the RNS equations are determined from sensors and hence are subject to measurement
errors. We emulate such errors by selecting the perturbed initial condition

τ = τexact [1 + ε sin(2.0πx)] , ε � 1, (34)

in our RNS simulation instead of the exact steady-state given in (33). We select the parameters umax = 1 m/s, ν = 0.01 m2/s, and
ρ = 1.0 kg/m3 in our simulations.

At this low Reynolds number (Re = umaxL/ν = 10), the full Navier–Stokes equations damp out the perturbation in (34) and the
flow returns to steady state. By contrast, the cubic RNS equations produce slowly growing oscillations about the steady state for
the perturbed initial condition (34). Positive news on the growth is that it is weak: it does not exceed the order of the perturbation
on timescales of O(1). This can be seen in Fig. 3, where the percentage errors in τ and γ are plotted for different RNS equations.

As seen from Fig. 3, the quartic RNS equations limit the error growth better for τ . The quintic RNS equations (21) provide
further improvement for t̄ < 1, but for larger times, the error grows faster. For t̄ > 5, the error exceeds the order of the perturbation,
and hence the RNS equations have to be re-initialized. Interestingly, increasing the order of the RNS equation results in growing
errors for γ ; the errors, however, still remain below 1% for times up to t̄ = 3.

Despite the growing errors, qualitative accuracy of the RNS equations persists for extended times. Specifically, qualitative
correctness holds up to t̄ = 7 in the cubic and quartic case, and up to t̄ = 5 in the quintic case (see Fig. 4).

Finally, we illustrate continuous dependence on initial conditions for the cubic and quartic RNS equations, as established in
Theorems 2.1 and 2.2. Fig. 5 shows that decreasing the size of the perturbation parameter ε in (34) indeed leads to slower error
growth.

Blasius boundary layer

Similarity solution
Here we consider a similarity solution to the zero-pressure-gradient boundary layer over a flat plate accredited to Blasius

(White [13]). For this flow, the Prandtl boundary-layer equations give

u(x, y) = U f ′(ξ), |v(x, y)| � |u(x, y)|, (35)

where U is a reference velocity outside the boundary layer, prime denotes differentiation with respect to the variable ξ =
y
x

√
U x
ν

,
and f satisfies the ODE

2 f ′′′
+ f f ′

= 0. (36)

The boundary conditions for f are f (0) = f ′(0) = 0 and f ′(∞) → 1. Solving (36) with these boundary conditions gives
f ′′(0) = 0.33206. From (35), we obtain

τexact (x) = ρU

√
νU

x
f ′′(0), γexact = 0, σexact = 0, λexact (x) =

ρU 3

2νx2 f ′′2(0), ηexact = 0. (37)
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Fig. 4. Evolution of the τ and γ profiles in the cubic, quartic, and quintic RNS equations for the channel flow. At the nondimensional time t̄ = 0, the profiles agree
with the exact solution.

Fig. 5. Evolution of the τ and γ profiles for ε = 10−3 and ε = 10−4 in the cubic and quartic RNS equations for the channel flow.

Validation
We use (37) to obtain initial and boundary conditions for our simulation of the RNS equations (14), (19) and (21). We solve

these equations over the spatial interval x ∈ [1, 2] with U = 1 m/s, ν = 10−3 m2/s, and ρ = 1.0 kg/m3. For these parameter
values, the Reynolds number is Re = 103, at which the boundary-layer equations are a good approximation to the Navier–Stokes
equations, and hence can be compared to corresponding RNS solutions. Fig. 6 shows such a comparison with the percentage error
in τ and γ for the cubic, quartic, and quintic RNS equations.

The error growth is faster than in the previous channel flow example, but still remains below 1% up to one convective time unit.
Notably, the error in the quartic RNS is now significantly less than in the cubic RNS. The quintic RNS, however, is less accurate than
the quartic, because the terms neglected in the boundary layer approximation vanish in the quartic RNS, but not in the quintic RNS.
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Fig. 6. Percentage of error in τ+ and γ as a function of time for the Blasius profile.

Fig. 7. Evolution of the τ and γ profiles in the cubic, quartic, and quintic RNS equations for the Blasius boundary layer flow. At the nondimensional time t̄ = 0,
the profiles agree with the exact solution.

For this example, the qualitative accuracy of the RNS systems is evidenced by Fig. 7. Even the cubic RNS solutions remain
qualitatively accurate up to t̄ = 2 convective time units, but the quartic RNS systems perform significantly better.

Viscous flow near a stagnation point

Similarity solution
For a viscous stagnation point flow, the Navier–Stokes equations (1) yield the similarity solution

u (x, y) = Bx F (ξ) , (38)

where F satisfies the ODE

F ′′′
+ F F ′′

+ 1 − F ′
2

= 0, (39)

with prime denoting differentiation with respect to ξ = y
√

B
ν

. The parameter B is proportional to the ratio of a reference velocity
U and a reference length L (White [13]).
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Fig. 8. Percentage of error in τ and γ as a function of time for the viscous stagnation point flow.

The boundary conditions for (39) are F(0) = F ′
= 0 and F ′(∞) = 1. Solving (39) numerically with these boundary conditions

yields F ′′(0) = 1.23259. From the velocity expression (38), we find that

τexact (x) = Bρ
√

νB F ′′(0)x, γexact (x) = −B2ρx, σv (x) = 0.0, (40)

λexact (x) =
B4ρ

ν

[
F ′′(0)

]2 x, ηexact (x) = −2

√
B

ν

B4ρ

ν
F ′′(0)x .

Validation
For the numerical solution of the RNS equations, we obtain initial and boundary conditions from (40). We solve the equations

on the spatial domain x ∈ [0, 1m] with B = 1 s−1and ν = 10−2 m2/s; the corresponding Reynolds number is Re = 100, which is
well within the validity of the laminar stagnation flow approximation.

Fig. 8 again shows limited error growth. In this simulation, however, the 1% error bar is reached in 0.1 nondimensional time
units, indicating faster error growth than in earlier examples. While the quartic RNS is an order of magnitude more accurate for γ

than the cubic RNS, the two sets of equations perform equally well for τ . The quintic model shows a much improved estimation
for the evolution of τ .

As for qualitative accuracy, we show the time evolution of the τ and γ profiles in Fig. 9. In all cases, qualitative closeness to the
approximate analytic solution is maintained for convective times up to t̄ = 1.

Fluid oscillation over an infinite plate

Analytical solution
For an unsteady parallel laminar flow, the Navier–Stokes equations reduce to

ut = −
1
ρ

px + νu yy . (41)

The pressure gradient can only be a function of time for this flow, and hence can be absorbed into the velocity by a change of
variables leading to a homogeneous diffusion equation (White [13]).

For an oscillating wall with u(0, t) = U0 cos ωt with zero velocity far from the wall, the velocity field is of the form

u(y, t) = f (y)eiωt . Substitution into the above-mentioned diffusion equation leads to f = e−η cos(ωt −η), where η = y
√

ω
2ν

. The

real part of u(y, t) is then given by

u(y, t) = U0e−η cos(ωt − η). (42)

With (42) at hand, we find that

τexact (x) = −ρνB[cos ωt − sin ωt],

γexact (x) = −2ρνB2 sin ωt,

σexact (x) = 2ρνB3
[sin ωt − cos ωt],

λexact (x) = −4ρνB4 cos ωt,

ηexact (x) = 4ρνB5
[cos ωt − sin ωt], (43)

where B =
√

ω/ (2ν). Note that all the above quantities are independent of x .
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Fig. 9. Evolution of the τ and γ profiles in the cubic, quartic, and quintic RNS equations for the stagnation point flow. At the nondimensional time t̄ = 0, the
profiles agree with the exact solution.

Fig. 10. L2 error in τ and γ as a function of time for flow oscillating over an infinite plate.

Validation
Again, (43) provide initial and boundary conditions for our RNS simulations. We select U0 = 1 m/s, ν = 10 m2/s, and

ω = π 1/s; we solve the cubic, quartic, and quintic RNS equations for 0 ≤ x ≤ 1 m. The corresponding Reynolds number is
Re = 0.1, which is consistent with the Stokes-flow approximation present in (41). Fig. 10 shows that the L2 error in τ and γ

remains below 3% for up to 0.1 nondimensional time unit. In addition, the quartic model predicts γ two orders of magnitude more
accurately than the cubic model.

In this example, we observe qualitative correctness for the RNS systems on long timescales. Shown in Fig. 11, the τ and γ

profiles stay qualitatively close to the exact solution for up to four nondimensional time units; the errors appear uniformly bounded
for all times.

5.1. Steady and unsteady lid-driven cavity flow

As our final example, we use direct numerical simulation of a lid-driven cavity to test the accuracy of the RNS equations. The
simulations are performed with a staggered-grid multidomain spectral method (Kopriva [8] and Jacobs et al. [9]). The computational
model consists of a square whose upper boundary is a lid moving at a constant speed.
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Fig. 11. Evolution of the τ and γ profiles in the cubic, quartic, and quintic RNS equations for the stagnation point flow. At the nondimensional time t̄ = 0, the
profiles agree with the exact solution.

Fig. 12. (a) Streamlines at the steady state of a lid-driven cavity flow at Re = 400. (b) Comparison of a u-velocity profile along the midplane for the steady state of
a lid-driven cavity at Re = 400.

The Reynolds number Re = 400 of the flow is based on the velocity of the lid and the length of the square’s side. The flow is
started from a quiescent state that develops into a steady state. The steady-state solution is characterized by three vortices, as shown
by the streamlines in Fig. 12(a). This steady-state solution agrees with previously published results by Ghia et al. [4], as seen in
Fig. 12(b).

At the steady state, we evaluate the y-derivatives of the velocity to be used as initial conditions for the RNS equations. The
boundary conditions for the RNS equations at x = 0 m and x = L = 1 m are zero because of the zero derivatives at the corners of
the cavity.

Figs. 13 and 14 show that up to time t̄ = 1, the skin friction τ remains within 1% of its steady state value for both the cubic and
the quartic RNS equations. Over the same time period, γ shows errors in the order of 10%. Qualitative correctness holds up to time
t̄ = 2 for γ , and up to t̄ = 3 for τ .

Fig. 15 compares τ for the initial unsteady cavity flow. The velocity gradients at t̄ = 5.0 are used as initial conditions for the
RNS equations. At later times, the computed τ values from the RNS equations are compared with the simulation. We find that at
time t̄ = 5.1, the RNS equations compare reasonably with the simulation. Although at t̄ = 5.2, the RNS equations show substantial
deviation from the Navier–Stokes simulation, the τ profile is still qualitatively correct. With initial conditions re-set at t̄ = 5.1,
the RNS equations again remain accurate for times of order 0.1; qualitative accuracy again persists somewhat longer, but is lost by
t̄ = 5.5.
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Fig. 13. Errors in the cubic RNS simulation of the lid-driven cavity flow. The (absolute) errors 1τ and 1γ are shown as functions of the location for different
times; the L2-errors 12τ and 12γ are shown as functions of the nondimensionalized time.

Fig. 14. Same as Fig. 13, but for the quartic RNS simulation of the lid-driven cavity flow.

Finally, we compare the local u-velocity reconstructed from the truncated expansion (5) using the cubic and quartic RNS
simulations. Figs. 16 and 17 compare true and reconstructed u velocities at select x and y locations near the y = 0 boundary
during the initial unsteady phase of the cavity flow.

The conclusion from figures Figs. 16 and 17 is that the skin-friction and pressure-gradient evolution obtained from the RNS
equations is suitable for short-term velocity field prediction near the wall away from corners. A general discussion on velocity
reconstruction from instantaneous skin-friction and wall-pressure measurements is given by Bewley and Protas [12].

6. Conclusions

In this paper, we have derived a hierarchy of evolution equations for two key wall-based quantities, the skin friction and the
wall-pressure gradient, in two-dimensional incompressible flows. The resulting RNS equations are well-posed for smooth enough
initial data. Defined over the flow boundary, the RNS equations offer reduced spatial dimensionality over the full Navier–Stokes
equations; as a result, typical computation times for the RNS equations are a fraction of those for the Navier–Stokes equations.

For instance, on a 2.2 GHz Intel Xeon processor, our spectral Navier–Stokes simulation of the lid-driven cavity flow
(programmed in Fortran90) required about 1 min of CPU time to compute the velocity field over the convective timescale 1t = 0.2.
By contrast, on a slower ULTRASPARC-III 750 MHz processor, our spectral RNS simulation of the same problem (programmed
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Fig. 15. Comparison of skin-friction values predicted by a Navier–Stokes simulation (“code”), and by the cubic and quartic RNS simulation for the initial unsteady
phase of the lid-driven cavity flow at Re = 400. (a) Initial condition at t̄ = 5.0 (b) Simulation at t̄ = 5.1 (c) simulation at t̄ = 5.2 (d) Same as (c) but with initial
conditions re-initialized at t̄ = 5.1.

Fig. 16. The u-component of the lid-driven cavity velocity field at t̄ = 5.0 and t̄ = 5.1 at different locations near the y = 0 boundary. “NS” refers to Navier–Stokes
simulations; “cubic” refers to cubic RNS simulations.

Fig. 17. Same as Fig. 16, but for the quartic RNS simulation.

in MATLAB) required only about 1.4 s for the cubic RNS and 1.9 s for the quartic RNS equation. The RNS equations, however,
rely on updated boundary conditions and hence cannot be solved without observing the flow at two discrete boundary points.

Our numerical simulations on a range of benchmark problems show quantitative accuracy for short-to-intermediate times: the
RNS equations produced less than 1% error over times that range from 0.1 to 3 nondimensional time units in different problems.
The error growth was noticeably faster in the lid-driven cavity flow, where corner effects result in large wall-normal derivatives that
are not captured by truncations of (5). In their envisioned application in flow control, however, the RNS equations should be more
useful as qualitative reduced-order models rather than exact numerical tracking tools. In most of our examples, the RNS equations
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remained qualitatively accurate for times between one and 10 nondimensional time units. Over longer times, the equations require
periodic re-initialization for sustained qualitative accuracy.

Our results are directly applicable in unsteady separation control when combined with the analytic approach of Alam et al. [1]. In
that approach, the solution of the skin-friction equation (7) was controlled via two-point boundary actuation to satisfy the kinematic
separation conditions of Haller [6]. The velocity derivative σ , however, was obtained from observations rather than from a model.
We expect an improvement in the controller derived in [1] once the present RNS equations are used to obtain predictions for σ .
This is explored in ongoing work.

Reduced spatial dimensionality comes at a price: higher-order RNS equations include higher-order spatial derivatives, both in
the equations and in the boundary conditions. Over a certain order, the computation of derivatives becomes too expensive and the
advantage of reduced spatial dimensionality is lost. For this reason, we only expect the cubic and quartic RNS equations to be
effective in flow-control applications, unless the equations are posed between boundary points with known velocity derivatives.

In the present work, we have tested the RNS equations numerically for Reynolds numbers up to 103. In this range, assuming a
two-dimensional flow geometry is reasonable for a number of applications. The behavior of the RNS hierarchy for higher Reynolds
numbers is expected to be more delicate. We plan to study this question in future work.

Three-dimensional extensions of the present work are possible as our initial results indicate in Section 3. In that case, the
RNS equations are defined over two-dimensional boundary domains and hence require boundary conditions observed along
one-dimensional curves. Such observations are possible via two-dimensional arrays of skin-friction and pressure sensors, thus
applications to three-dimensional flow modelling and control appear feasible.
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Appendix A. Well-posedness for the RNS equations

A.1. Well-posedness for the cubic RNS equations

A.1.1. Function space
We consider the PDE system (14) with the boundary conditions (15). We will first show that (14) has a unique solution for the

homogeneous boundary conditions

τ(0, t) = τ(L , t) = 0, γ (0, t) = γ (L , t) = 0, σ (0, t) = σ(L , t) = 0, (44)

on the function space

X = B3
× B2

× B1,

where

Bn
= {u ∈ Hn([0, L]) : u(0) = u(L) = 0}. (45)

On the space X , we define the norm

‖U‖
2

= ‖(τ, γ, σ )‖2
=

∫ L

0
{|τ |

2
+ |τx |

2
+ |τxx |

2
+ |τxxx |

2
+ |γ |

2
+ |γx |

2
+ |σ |

2
+ |σx |

2
}dx

= 〈τ, τ 〉 + 〈τx , τx 〉 + 〈τxx , τxx 〉 + 〈τxxx , τxxx 〉 + 〈γ, γ 〉 + 〈γx , γx 〉 + 〈σ, σ 〉 + 〈σx , σx 〉

= 〈〈τ, τ 〉〉3 + 〈〈γ, γ 〉〉1 + 〈〈σ, σ 〉〉1, (46)

where 〈〈v, v〉〉n = 〈v, v〉 + 〈vx , vx 〉 + 〈vxx , vxx 〉 + · · · + 〈∂n
x v, ∂n

x v〉.
The homogeneous boundary conditions (44) and the Eqs. (14) imply

τxx (0) = τxx (L) = 0, γxx (0) = γxx (L) = 0. (47)

Differentiating the first equation in (14) twice, we obtain

τxxt = 2ντxxxx + νσxx ,
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which gives

0 = 2ντxxxx (0) + νσxx (0),

0 = 2ντxxxx (L) + νσxx (L),

by (44). Combining these last two equations with the third equation in (14) leads to

σxx (0) = σxx (L) = 0, τxxxx (0) = τxxxx (L) = 0. (48)

A.1.2. Evolution equation formulation
Next we rewrite system (14) in the evolution equation form

ut = Au + f (u), (49)

where

A =

 2ν∂xx
0

−ν∂xxxx

0
2ν∂xx

0

ν

0
ν∂xx

 , f (u) =


0

−
1
νρ

ττx

−
2
νρ

τγx

 . (50)

By a classic result of Pazy [10], the linear operator A is the infinitesimal generator of a C0 semigroup T (t) with ‖T (t)‖ ≤ Meωt ,
if A satisfies the following conditions:

(i) A is closed and the domain of A, D(A), is dense in X .
(ii) The resolvent set ρ(A) = {λ ∈ C: (λI − A)−1 exists} of A contains an interval (ω, ∞) such that for all λ > ω, the resolvent

operator

RA (λ) = (λI − A)−1 (51)

satisfies

‖Rn
A (λ) ‖ ≤ M(λ − ω)−n . (52)

Since A is a linear combination of closed differential operators, A is closed. Moreover, the domain of A contains C∞
×C∞

×C∞

which is dense in X .Hence, the conditions in (i) are satisfied.
To show that (ii) is also satisfied, we have to identify the spectrum of A. To this end, we expand τ , γ , and σ into Fourier series:

τ =

∞∑
n=1

an sin kn x, γ =

∞∑
n=1

bn sin kn x, σ =

∞∑
n=1

cn sin kn x .

(Here we have implicitly extended all three functions to the interval [−L , 0] in an odd manner.) Using (47) and (48), we obtain

τxx = −

∞∑
n=1

k2
nan sin kn x, τxxxx =

∞∑
n=1

k4
nan sin kn x,

γxx = −

∞∑
n=1

k2
nbn sin kn x, σxx = −

∞∑
n=1

k2
ncn sin kn x, (53)

after integration by parts. Here the equality signs are meant in the sense of L2 convergence; the wave number is kn = 2nπ/L .
By (50) and (53), the spectrum of A is the union of the spectra of the three-by-three matrices

Akn =

−2νk2
n

0
−νk4

n

0
−2νk2

n
0

ν

0
−νk2

n

 ,

which are found to be

σ
(

Akn

)
=

{
−2νk2

n,

(
−

3
2

± i

√
3

2

)
νk2

n

}
.

Therefore, the spectrum of A lies in the negative complex half-plane bounded away from zero.
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Although the spectrum of A is confined to the negative complex half-plane, A is not self-adjoint, and hence we cannot directly
conclude the boundedness of exp(At) from its boundedness in the eigenbasis. Establishing well-posedness for (49), therefore,
requires more than just the boundedness of the spectrum of the linear part. For instance, the linear system

ut = Au,

u(x, 0) = u0(x),

with A defined in (50) is not well-posed on the space X̃ = L2
× L2

× L2, because the norm of

exp(Akn t) = e−
3
2 k2

n t



2
√

3
cos

(√
3

2
k2

n t +
π

6

)
0

2
√

3k2
n

ik−2
n sin

(√
3

2
k2

n t

)
0 e−

1
2 k2

n t 0

2
√

3
ik2

n sin

(√
3

2
k2

n t

)
0

2
√

3
cos

(√
3

2
k2

n t −
π

6

)


does not admit a k-independent upper bound of the form K eαt (cf. Gustaffson et al. [5]).

We proceed by defining

F = (λI − A)U,

or, in component form,

f1 = λτ − 2ντxx − νσ,

f2 = λγ − 2νγxx ,

f3 = λσ − νσxx + ντxxxx .

The norm of F can then be written as

‖F‖
2

= 〈〈 f1, f1〉〉3 + 〈〈 f2, f2〉〉2 + 〈〈 f3, f3〉〉1

= 〈〈λτ − 2ντxx − νσ, λτ − 2ντxx − νσ 〉〉3 + 〈〈λγ − 2νγxx , λγ − 2νγxx 〉〉2

+ 〈〈λσ − νσxx + ντxxxx , λσ − νσxx + ντxxxx 〉〉1. (54)

We find that

〈〈λτ − 2ντxx − νσ, λτ − 2ντxx − νσ 〉〉3 = λ2
〈〈τ, τ 〉〉3 + 2λν〈〈τ, −2τxx − σ 〉〉3 + 〈〈2τxx − σ, 2τxx − σ 〉〉3

= λ2
〈〈τ, τ 〉〉3 − 2λν〈〈τ, σ 〉〉3 + 4λν〈〈τx , τx 〉〉3 + 〈〈2τxx − σ, 2τxx − σ 〉〉3

≥ λ2
〈〈τ, τ 〉〉3 − 2λν〈〈τ, σ 〉〉3, (55)

and

〈〈λγ − 2νγxx , λγ − 2νγxx 〉〉2 = λ2
〈〈γ, γ 〉〉2 − 4νλ〈〈γ, γxx 〉〉2 + 4ν2

〈〈γxx , γxx 〉〉2

= λ2
〈〈γ, γ 〉〉2 + 4νλ〈〈γx , γx 〉〉2 + 4ν2

〈〈γxx , γxx 〉〉2

≥ λ2
〈〈γ, γ 〉〉2; (56)

furthermore,

〈〈λσ − νσxx + ντxxxx , λσ − νσxx + ντxxxx 〉〉1

= λ2
〈〈σ, σ 〉〉1 − 2λν〈〈σ, σxx 〉〉1 + 2λν〈〈σ, τxxxx 〉〉1 + 〈〈νσxx + ντxxxx , νσxx + ντxxxx 〉〉1

≥ λ2
〈〈σ, σ 〉〉1 + 2λν〈〈σ, τxxxx 〉〉1 = λ2

〈〈σ, σ 〉〉1 + 2λν〈〈σxx , τxx 〉〉1

≥ λ2
〈〈σ, σ 〉〉1 + 2λν[〈〈σ, τ 〉〉3 − 〈〈σ, τ 〉〉1]. (57)

Using the estimates (55)–(57) in (54), we obtain

‖F‖
2

≥ λ2
〈〈τ, τ 〉〉3 − 2λν〈〈τ, σ 〉〉3 + λ2

〈〈γ, γ 〉〉2 + λ2
〈〈σ, σ 〉〉1 + 2λν[〈〈σ, τ 〉〉3 − 〈〈σ, τ 〉〉1]

= λ2
〈〈τ, τ 〉〉3 + λ2

〈〈γ, γ 〉〉2 + λ2
〈〈σ, σ 〉〉1 − 2λν〈〈σ, τ 〉〉1

≥ λ2
〈〈τ, τ 〉〉3 + λ2

〈〈γ, γ 〉〉2 + λ2
〈〈σ, σ 〉〉1 − λν[〈〈σ, σ 〉〉1 + 〈〈τ, τ 〉〉1]

≥ (λ2
− λν)‖U‖

2
≥ (λ − ν)2

‖U‖
2

for all λ > ν.
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Thus, for all λ > ν, we obtain

‖U‖

‖F‖
≤

1
λ − ν

.

Consequently, the resolvent RA (λ) defined in (51) satisfies

‖RA (λ) ‖ ≤
1

λ − ν
,

or, equivalently,

‖Rn
A (λ) ‖ ≤ ‖RA (λ) ‖

n
≤

1
(λ − ν)n .

We, therefore, conclude that property (52) is satisfied for ω ≡ ν > 0, and hence A is an infinitesimal generator of a C0 semigroup
T (t) with

‖T (t)‖ ≤ eνt .

A.1.3. Existence for the full cubic RNS equations
For system (49), Pazy [10] shows that if A is the infinitesimal generator of a C0 semigroup on X , and f : X → X is

continuously differentiable, then (49) has a unique (classical) solution u over the time interval [t0, tmax). Moreover, if tmax < ∞,
then limt→tmax ‖u(t)‖ = ∞.

We have already shown that A is an infinitesimal generator of a C0 semigroup. We now prove that f (u) is continuously
differentiable in u. We first observe that f is defined and uniformly continuous on a dense subset of the complete space
X = B1([0, L]) × B2([0, L]) × B2([0, L]). As a result, f can be extended continuously to the whole of X .

For u = (τ, γ, σ ) and h = (h1, h2, h3) ∈ X , we can write

f (u + h) − f (u) = −
1
νρ

 0
h1τx + h1xτ + h1h1x

2(τh2x + h1γx + h1h2x )

 ,

which gives

Du f (u) = −
1
νρ


0 0 0

τx + τ
d

dx
0 0

2γx 2τ
d

dx
0

 ,

a map continuous in X with respect to the norm ‖.‖ defined in (46). Therefore, the cubic RNS equations with homogeneous
boundary conditions are well posed: they have unique classical solutions that depend continuously on the initial conditions.

A.1.4. Inhomogeneous boundary conditions
We reconsider the system (14) with the boundary and initial conditions (15). Under the change of variables

τ = τ ′
+

1
L

[(L − x)T0(t) + xTL(t)] = τ ′
+ F(x, t),

γ = γ ′
+

1
L

[(L − x)px (0, t) + xpx (L , t)] = γ ′
+ P(x, t),

σ = σ
′

+
1
L

[(L − x)S0(t) + x SL(t)] = τ ′
+ H(x, t),

system (14) becomes

τ ′
t = 2ντ ′

xx + νσ ′
+ νH − Ft ,

γ ′
t = 2νγ ′

xx −
1
νρ

τ ′τ ′
x −

1
νρ

τ ′Fx −
1
νρ

Fτ ′
x −

1
νρ

F Fx − Pt ,

σ ′
t = νσ ′

xx − ντ ′
xxxx −

2
νρ

τ ′γ ′
x −

2
νρ

τ ′ Px −
2
νρ

Fγ ′
x −

2
νρ

F Px − St (58)

which has a different linear part than (14) does. However, we can view (58) as

ut = Au + g(u),
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where A is given in (50) and g has quadratic, linear and constant terms in u. It is straightforward to check that g is continuously
differentiable on X , thus all our previous arguments remain valid, and the existence of a unique solution with continuous dependence
on initial data is proved.

A.2. Existence and uniqueness for higher-order RNS equations

A.2.1. The linear part
To derive the nth equation of the RNS system of order N with N ≥ n ≥ 3, we take the (n − 3)th y-derivative of Eq. (10), then

subtract from that the second x-derivative of the (n −2)th-order RNS equation. Carrying out this procedure for only the linear parts
of the equations, we obtain the linear part of the nth-order RNS equation, which we explore below.

With the notation

un
= ρν

∂nu

∂yn ,

the linear part of (10) becomes

∂t (u
3
+ ∂2

x u1) = 2ν∂2
x u3

+ νu5
+ ∂4

x u1.

Taking the (n − 3)th derivative of this last equation with respect to y, we obtain

∂t (u
n

+ ∂2
x un−2) = 2ν∂2

x un
+ νun+2

+ ∂4
x un−2. (59)

This last equation is also valid for n = 1, 2, except that the terms containing un−2 are absent. Taking the second x-derivative of
(59) and letting n → n − 2, we find that

∂t (∂
2
x un−2

+ ∂4
x un−4) = 2ν∂4

x un−2
+ ν∂2

x un
+ ∂6

x un−4. (60)

Subtracting (59) from (60), we obtain

∂t (u
n

− ∂4
x un−4) = ν∂2

x un
+ νun+2

− ∂4
x un−2

− ∂6
x un−4. (61)

Next, we add to (61) the equation

∂t (∂
4
x un−4

+ ∂6
x un−6) = 2ν∂6

x un−4
+ ν∂4

x un−2
+ ∂8

x un−6,

which we obtain from (59) by taking the fourth x-derivative and letting n → n − 4. The resulting equation is

∂t (u
n

+ ∂6
x un−6) = ν∂2

x un
+ νun+2

+ ∂6
x un−4

+ ∂8
x un−6, (62)

in which the order of the y-derivative on the left-hand side has decreased by 2 compared to (61).
We repeat the above order-reduction procedure until only ∂t un is left on the left-hand side of the equation. This happens when

the superscript of u in the second term of the left-hand side reaches −1 or −2; this indicates that the corresponding term is absent.
In the case of n = 4k + i with i = 1, 2, the resulting linear equation is

un
t = ν∂2

x un
+ νun+2

+ ν∂n−i+2
x ui

;

in the case of n = 4k + 2 + i with i = 1, 2, the resulting linear equation is

un
t = νun

xx + νun+2
− ν∂n−i+2

x ui .

When n + 2 > N , the term containing the superscript n + 2 is absent, because we truncate the Taylor-expansion of u at order N .
In summary, the linear part of the N th order RNS system, say in the case of N = 4K + 1, is of the form

u1
t = 2ν∂2

x u1
+ νu3,

u2
t = 2ν∂2

x u2
+ νu4,

u3
t = ν∂2

x u3
+ νu5

+ ν∂4
x u1,

u4
t = ν∂2

x u4
+ νu6

+ ν∂4
x u2,

...

u4k+i
t = ν∂2

x u4k+i
+ νu4k+i+2

+ ν∂4k+2
x ui ,

u4k+i+2
t = ν∂2

x u4k+i
+ νu4k+i+2

+ ν∂4k+4
x ui ,



182 M.S. Kilic et al. / Physica D 217 (2006) 161–185

...

u4K
t = ν∂2

x u4K
+ ν∂4K

x u2,

u4K+1
t = ν∂2

x u4K+1
+ ν∂4K+2

x u1, (63)

where i = 1, 2, and all terms are evaluated at y = 0. The structure of the RNS system for other values of N is similar.
We consider the N th order RNS system (63) on the function space

X = B N
× B N−1

× · · · × B2
× B1,

where Bn is defined in (45). On X , we define the norm

‖U‖
2

=

{
〈〈u1, u1

〉〉N +
1

√
2
〈〈u2, u2

〉〉N−1

}
+

1
2
{〈〈u3, u3

〉〉N−2 + 〈〈u4, u4
〉〉N−3} + · · · +

1

2(N−1)/2
〈〈u2k+i , u2k+i

〉〉1,

where i = 1 or 2, and

〈〈u, v〉〉n = 〈u, v〉 + 〈ux , vx 〉 + 〈uxx , vxx 〉 + · · · + 〈∂n
x u, ∂n

x v〉.

We observe that the homogeneous boundary conditions imply

∂2
x uN

= 0, ∂2
x uN−1

= 0,

∂
2 j+2
x uN−2

= 0, ∂
2 j+2
x uN−3

= 0, j = 0, 1,

∂
2 j+2
x uN−4

= 0, ∂
2 j+2
x uN−5

= 0, j = 0, 1, 2,

...

∂
2 j+2
x u1

= 0, j = 0, 1, 2, .., m = (N − 1)/2.

We again let

F = (λI − A)U,

where A is the linear operator appearing on the right-hand side of the RNS system (63). We estimate the norm of F as

‖F‖
2

= 〈〈 f1, f1〉〉N +
1

√
2
〈〈 f2, f2〉〉N−1 +

1
2
〈〈 f3, f3〉〉N−2 + · · · +

1

2(N−1)/2
〈〈 fN , fN 〉〉

= 〈〈λu1
− 2ν∂2

x u1
− νu3, λu1

− 2ν∂2
x u1

− νu3
〉〉N +

1
√

2
〈〈λu2

− 2ν∂2
x u2

− νu4, λu2
− 2ν∂2

x u2
− νu4

〉〉N−1

+
1
2
〈〈λu3

− ν∂2
x u3

+ ν∂4
x u1

− νu5, λu3
− ν∂2

x u3
+ ν∂4

x u1
− νu5

〉〉N−2

+
1

2
√

2
〈〈λu4

− ν∂2
x u4

+ ν∂4
x u2

− νu6, λu4
− ν∂2

x u4
+ ν∂4

x u2
− νu6

〉〉N−3

+
1
4
〈〈λu5

− ν∂2
x u5

+ ν∂6
x u1

− νu7, λu5
− ν∂2

x u5
+ ν∂6

x u1
− νu7

〉〉N−4

+ · · · +
1

2(N−1)/2
〈〈λuN

− ν∂2
x uN

+ ν∂4
x uN−2

± ν∂ N−i+2
x ui , λuN

− ν∂2
x uN

+ ν∂4
x uN−2

± ν∂ N−i+2
x ui

〉〉1

≥ λ2
〈〈u1, u1

〉〉N + 2λν〈〈∂x u1, ∂x u1
〉〉N − 2λν〈〈u1, u3

〉〉N + · · · +
1
2
λ2

〈〈u3, u3
〉〉N−2

+ λν〈〈∂x u3, ∂x u3
〉〉N−2 − λν〈〈u3, u5

〉〉N−2 + λν〈〈∂2
x u3, ∂2

x u1
〉〉N−2 + · · · +

1
4
λ2

〈〈u5, u5
〉〉N−4

+
1
2
λν〈〈∂x u5, ∂x u5

〉〉N−4 −
1
2
λν〈〈u5, u7

〉〉N−4 +
1
2
λν〈〈∂x u5, ∂5

x u1
〉〉N−4 + · · ·

...

+
1

2(N−1)/2

{
λ2

〈〈uN , uN
〉〉1 + 2λν〈〈∂x uN , ∂x uN

〉〉1 − 2λν〈〈∂x uN , ∂3
x uN−2

〉〉1 + 2λν〈〈∂x uN , ∂ N−i+1
x ui

〉〉1

}
. (64)

Based on the estimates∣∣∣−λν〈〈u1, u3
〉〉 + λνN 〈〈∂2

x u3, ∂2
x u1

〉〉N−2

∣∣∣ = | − λν〈〈u1, u3
〉〉1|

≤
1
2
λν[〈〈u1, u1

〉〉1 + 〈〈u3, u3
〉〉1],
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|〈〈u1, u3
〉〉N | = |〈〈∂2

x u1, ∂2
x u3

〉〉N−2| + |〈〈u1, u3
〉〉1|

= |〈〈∂3
x u1, ∂x u3

〉〉N−2| + |〈〈u1, u3
〉〉1|

≤
1
2
[〈〈∂3

x u1, ∂3
x u1

〉〉N−2 + 〈〈∂x u3, ∂x u3
〉〉N−2] + |〈〈u1, u3

〉〉1|

≤
1
2
[〈〈∂x u1, ∂x u1

〉〉N + 〈〈∂x u3, ∂x u3
〉〉N−2 + 〈〈u3, u3

〉〉1],

〈〈∂x u5, ∂5
x u1

〉〉N−4 ≤
1
2
[〈〈∂x u5, ∂x u5

〉〉N−4 + 〈〈∂5
x u1, ∂5

x u1
〉〉N−4]

≤
1
2
[〈〈∂x u5, ∂x u5

〉〉N−4 + 〈〈∂x u1, ∂x u1
〉〉N ],

we deduce the general relations

〈〈un, un+2
〉〉N+1−n ≤

1
2
[〈〈un+2, un+2

〉〉N−1−n + 〈〈un, un
〉〉N+1−n],

〈〈∂x un, ∂n
x u1

〉〉N+1−n ≤
1
2
[〈〈∂x un, ∂x un

〉〉N+1−n + 〈〈∂x u1, ∂x u1
〉〉N ].

Combining these last two inequalities with (64), we find that for λ > 0,

‖F‖
2

≥ (λ2
− λν)‖U‖

2
≥ (λ − ν)2

‖U‖
2,

which again implies

‖Rn
A (λ) ‖ ≤ ‖RA (λ) ‖

n
≤

1
(λ − ν)n .

Therefore, property (52) is again satisfied for the resolvent of A, and hence for ω ≡ ν > 0, the linear system (63) admits a C0

semiflow T (t) with

‖T (t)‖ ≤ eνt .

This proves the existence, uniqueness and C0 regularity of solutions of the N th-order linearized RNS system.

A.2.2. The full nonlinear system
We now extend the above regularity result to the full N th-order RNS system

ut = Au + f (u), (65)

where Au represents the right-hand side of (63), and f (u) denotes the quadratic terms. By the result of Pazy [10], system (65) is
well-posed if f : X → X is continuously differentiable.

Let {ei }
N
i=1 be the standard basis of RN . We observe that by the definition of the space X , the map

fl,m1,n1,m2,n2 : X → X, (66)

u 7→ el
(
∂m1

x un1
) (

∂m2
x un2

)
, (67)

is continuously differentiable if

m1 ≤ l − n1, m2 ≤ l − n2. (68)

All terms in the N th-order RNS system are of the general form (66); a systematic review of these terms reveals that they all satisfy
(68). (We omit a detailed listing of the nonlinear terms for brevity.)

We conclude that the function f (u) in (65) is continuously differentiable, and hence the N th-order RNS system with
homogeneous boundary conditions admits unique solutions that are continuous with respect to the initial data. The case of
inhomogeneous boundary conditions follows as in the case of the cubic RNS system (cf. Appendix A.1).

Appendix B. Derivation of the cubic RNS equations in 3D

Subtracting the x-derivative of the third equation in (22) from the z-derivative of the first equation, we obtain

∂t (uz − wx ) + uxzu + ux uz + u yzv + u yvz + uzzw + uzwz − wzx u − wx uz − wyzv − wyvz − wzzw − wzwz

= ν(uxxz + u yyz + uzzz − wxxx − wyyx − wzzx ). (69)
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Evaluating (69) at z = 0 and using the no-slip boundary conditions, we obtain[
uzt
]

z=0 =
[
νuzzz + νuzxx + νuzyy − νwzzx

]
z=0 .

By incompressibility, this last equation yields[
uzt
]

z=0 =
[
2νuzxx + νuzyy + νvzxy + νuzzz

]
z=0 . (70)

The same argument applied to the v-component of the Navier–Stokes equations gives[
vzt
]

z=0 =
[
2νvzyy + νvzxx + νuzxy + νvzzz

]
z=0 . (71)

We continue by taking the z-derivative of Eq. (69) to obtain

∂t (uzz − wzx ) + uxzzu + 2uzx uz + ux uzz + uzzyv + 2uzyvz + vu yvzz + uzzzw + 2uzzwz

+ uzwzz − wzzx u − 2wzx uz − wx uzz − wyzzv − 2wyzvz − wyvzz − wzzzw − 3wzzwz

= ν(uzzxx + uzzyy + uzzzz − wzxxx − wzyyx − wzzzx ). (72)

Evaluation at z = 0 then gives[
uzzt

]
z=0 =

[
−2uzuzx − 2uzyvz − uzwzz + ν(2uzzxx + uzzyy + uzzzz + vzzxy)

]
z=0 .

We use incompressibility to rewrite this last equation as[
uzzt

]
z=0 =

[
ν(2uzzxx + uzzyy + uzzzz + vzzxy) − uzuzx − 2uzyvz − uzvzy

]
z=0 . (73)

Similarly, we obtain[
vzzt

]
z=0 =

[
ν(2vzzyy + vzzxx + vzzzz + uzzxy) − vzvzy − 2vzx uz − vzuzx

]
z=0 . (74)

Differentiation of (72) with respect to z gives

∂t (uzzz − wzzx ) + uzzzx u + 3uzzx uz + 3uzx uzz + ux uzzz + uzzzyv + 3uzzyvz + 3uzyvzz

+ u yvzzz + uzzzw + 3uzzzwz + 3uzzwzz + uzwzzz − wzzx u − 3wzzx uz − 3wzx uzz − wx uzzz

− wyzzzv − 3wyzzvz − 3wyzvzz − wyvzzz − wzzzzw − 4wzzzwz − 3wzzwzz

= ν(uzzzxx + uzzzyy + uzzzzz − wzzxxx − wzzyyx − wzzzzx ),

which, at z = 0, becomes[
uzzzt − wzzxt

]
z=0 = [−3uzzx uz − 3uzx uzz − 3uzzyvz − 3uzyvzz − 3uzzwzz − uzwzzz

+ 3wzzx uz + 3wyzzvz + wzzzzw + 4wzzzwz + 3wzzwzz

+ ν(uzzzxx + uzzzyy + uzzzzz − wzzxxx − wzzyyx − wzzzzx )]z=0.

Imposing incompressibility on this last equation, we find that[
uzzzt

]
z=0 = [−uzxxt − vzxyt − 3uzzx uz − 3uzx uzz − 3uzzyvz − 3uzyvzz + 3uzzuzx

+ 3uzzvzy + uzuzzx + uzvzzy − 3uzxx uz − 3vzxyuz + 3uzxyvz + 3vzyyvz + 3uzx uzx

+ 6uzxvzy + 3vzyvzy + ν(uzzzxx + uzzzyy + uzzzzz − uzxxxx − vzyxxx − uzxyyx )

− ν(vzyyyx + uzzzxx + vzzzyx )]z=0. (75)

Using (71), we can rewrite (75) as[
uzzzt

]
z=0 = [−ν(2uzxxxx + uzyyxx + vzxyxx + uzzzxx ) − ν(2vzxyyy + vzxxxy + uzxxyy + vzzzxy) − 3uzzx uz − 3uzx uzz

− 3uzzyvz − 3uzyvzz + 3uzzuzx + 3uzzvzy + uzuzzx + uzvzzy − 3uzxx uz − 3vzxyuz + 3uzxyvz

+ 3vzyyvz + 3uzx uzx + 6uzxvzy + 3vzyvzy

+ ν(uzzzxx + uzzzyy + uzzzzz − uzxxxx − vzyxxx − uzxyyx − vzyyyx − uzzzxx − vzzzyx )]z=0.

After cancellations due to incompressibility, the above equation becomes[
uzzzt

]
z=0 = [−ν(3uzxxxx + 3uzyyxx + uzzzxx + 3vzxxxy + 3vzyyyx + 2vzzzxy − uzzzyy − uzzzzz)

− 2uzzx uz − 3uzzyvz − 3uzyvzz + 3uzzvzy + uzvzzy − 3uzxx uz − 3vzxyuz + 3uzxyvz

+ 3vzyyvz + 3uzx uzx + 6uzxvzy + 3vzyvzy]z=0. (76)
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A similar argument yields[
vzzzt

]
z=0 = [−ν(3vzyyyy + 3vzyyxx + vzzzyy + 3uzxyyy + 3uzxxxy + 2uzzzxy − vzzzxx − vzzzzz)

− 2vzzyvz − 3vzzx uz − 3vzx uzz + 3vzzuzx + vzuzzx − 3vzyyvz − 3uzxyvz + 3vzxyuz

+ 3uzxx uz + 3vzyvzy + 6vzyuzx + 3uzx uzx ]z=0. (77)

Then Eqs. (70), (71), (73), (74), (76) and (77) can be summarized as the cubic three-dimensional RNS system (24).
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