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Lapeyre, Hua, and Legras have recently suggested that the detection of finite-time invariant
manifolds in two-dimensional fluid flows, as described by Haller and Haller and Yuan, can be
substantially improved. In particular, they suggested~a! a change of coordinates to strain basis
before the application of Theorem 1 of Haller and~b! the use of a nondimensionalized time
computed from Theorem 1. Here we discuss why these proposed steps willnot result in a significant
overall improvement. We verify our arguments in a more detailed computation of the example
analyzed in Lapeyre, Hau, and Legras~the Kida ellipse!, as well as in a two-dimensional barotropic
turbulence simulation. While in both of these examples the techniques suggested by Lapeyre, Hau,
and Legras reveal additional thin regions of hyperbolicity near vortex cores, they also lead to an
overall loss of detail in the global computation of finite-time invariant manifolds. ©2001
American Institute of Physics.@DOI: 10.1063/1.1374242#
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Recent results have shown that mixing in two-
dimensional velocity fields with general time dependence
is governed by finite-time stable and unstable manifolds.
Haller proved a theorem on the existence of such struc-
tures in general velocity fields. In a commentary on this
theorem, Lapeyre, Hua and Legras have suggested tha
changing coordinates before the application of the main
theorem of Haller would lead to a significant improve-
ment in the detection of finite-time invariant manifolds.
They also proposed the strain rate as a general indicator
of such manifolds. In this paper we discuss why these
suggestions will, in general, not lead to significant im-
provements. We illustrate our arguments through de-
tailed computations of finite-time invariant manifolds in
two examples.

I. SUMMARY OF THE MAIN RESULTS OF HALLER
AND HALLER AND YUAN

In this section we recall the incompressible formulati
of the main theorem in Haller~H!, as stated in Haller and
Yuan ~HY!, for two reasons. First, we need a precise sta
ment of the results for our later arguments. Secondly, L
eyre, Hua, and Legras~LHL ! do not explicitly list our main
theorem, and hence the reader may find it helpful to se
precise statement of the result in question.

A. General formulation

Consider a two-dimensional~2D! velocity field

ẋ5u~x,t !, ¹•u50, ~1!

whereu is assumed to be smooth and given on a finite ti
interval I. Suppose that a trajectoryx(t) generated by this
velocity field is known. The Jacobian of the velocity fie
along x(t) is then given by the time-dependent matr
¹u(x(t),t), where¹ denotes differentiation with respect t
4311054-1500/2001/11(2)/431/7/$18.00
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x. We assume that on a closed time intervalI u,I, the rela-
tion det¹u(x(t),t),0 holds, i.e.,¹u(x(t),t) has real eigen-
values2l(t),0,l(t). Let e1(t) ande2(t) denote the unit
eigenvectors corresponding to2l(t) andl(t), selected in a
way so that they vary smoothly int. Introducing the matrix
of eigenvectors,T(t)5@e1(t),e2(t)#, we can then define the
following three quantities:

lmin5min
tPI u

l~ t !, a5min
tPI u

udetT~ t !u, b5max
tPI u]

uṪ~ t !u.

~2!

Note thata is never zero by definition.
Theorem 1.Suppose that for a fluid trajectoryx(t) of the

velocity field~1! we have, for all tPI u ,

det ¹u~x~ t !,t !,0, lmin.~21A2!
b

a
. ~3!

Thenx(t) is contained in a repelling material line over th
time interval Iu .

By a repelling material line we mean a material line th
is linearly unstable throughout the time intervalI u , i.e., in-
finitesimal perturbations normal to it grow strictly monoton
cally within any subinterval ofI u . In dynamical systems
terms, a repelling material line can be viewed as a tw
dimensional finite-time stable manifold to a fluid trajecto
in the extended phase space of the (x,t) variables~see H!.
Attracting material lines~finite-time unstable manifolds! can
be defined as material lines that are repelling in backw
time.

We finally note that the two inequalities in~3! are fully
equivalent to the five conditions listed in Eqs.~6! and~7! of
H when those are restricted to incompressible flows. Si
the commentary of LHL considers an incompressible
ample, we will stay with our discussion in that framewo
for simplicity. Also, we will follow the more compact~but
otherwise equivalent! notation developed in HY.
© 2001 American Institute of Physics
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B. Lagrangian coherent structures „LCS…

1. Definition of LCS

As proposed in H and discussed in detail in HY,La-
grangian coherent structures~LCS! in a turbulent flow can
be defined as material lines that are attracting or repelling
locally the longest time in the flow. More specifically, repe
ling LCS will be material lines that evolve from the loc
maximizing curves of the scalar field

Tu~x0 ,t0!5 E
øI u~x0 ,t0!

dt,

where øI u(x0 ,t0) refers to the union of all subinterval
within I over which the trajectory starting fromx0 at timet0

satisfies both conditions in~3!. Similarly, attracting Lagrang-
ian coherent structures~finite-time unstable manifolds! will
be material lines evolving from the local maximizers of
scalar fieldTs(x0 ,t0) that measures the time that a trajecto
spends in attracting material lines.

2. Theorem 1 and LCS

The significance of Theorem 1 is that it gives a low
bound forTu(x0 ,t0): This bound is the total length of tim
within I over which~3! are satisfied. Applying the theorem
in backward time yields a lower bound forTs(x0 ,t0). It then
remains to plot these two fields and extract their local ma
mizing curves. It turns out that instead of simply focusing
maximizing curves, one should generally look for local e
tremum curves ofTs(x0 ,t0) and Tu(x0 ,t0), including local
minimizing curves. LCS associated with local minimizin
curves will occur in flows with no-slip boundary condition
~cf. HY!.

3. Numerical detection of LCS

In practice, one checks the conditions of Theorem 1
a grid of initial conditions launched att5t0 to obtain the
discrete scalar fieldsTu(x0

i , j ,t0) and Ts(x0
i , j ,t0). The La-

grangian coherent structures detected in this fashion wil
the ones that admit a separation of Eulerian and Lagran
time scales: The second condition in~3! requires Lagrangian
particle speeds to dominate Eulerian deformation rates. F
rotating eddies may violate this condition, in which ca
their Lagrangian boundaries will not be fully detected by t
above procedure: parts of their bounding material lines co
out hazy or completely lost in the plots ofTu(x0

i , j ,t0) and
Ts(x0

i , j ,t0). Nevertheless, the numerical study of HY su
gests that most coherent structures in 2D turbulence adm
sufficient separation of Eulerian and Lagrangian time sca
that renders them visible to the above analysis. It appe
that one could even take such a time scale separation
defining property of robust coherent structures.

4. Extracting stronger LCS

If one’s interest is specifically to recoverstronglyrepel-
ling or attracting LCS in the flow, a systematic filtering
material lines with weaker hyperbolicity is possible as f
lows:
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~i! When calculatingTu(x0 ,t0), one can simply set a
positive thresholdl0 for admissiblelmin values before even
verifying ~3!. This amounts to calculating the scalar field

Tu~x0 ,t0 ,l0!5 E
øI u~x0 ,t0!
lmin>l0

dt. ~4!

This is actuallynot an ad hoc technique: it is proved in H
that the strength of hyperbolicity for structures detected
Theorem 1 is of the order oflmin2O(b/a). Therefore, one
can justifiably increase the admissiblelmin in the calculation
to filter out weaker LCS gradually. For an application of th
procedure, see HY.

~ii ! A further refinement is obtained from a closer i
spection of the proof of Theorem 1@see H, Eq.~21!#. The
proof reveals that the type of repelling LCS captured by
theorem repel nearby particles at an exponential rate with
approximate exponent* t0

t l(t)dt. Plotting, therefore, the

field

l u~x0 ,t0 ,l0!5 E
øI u~x0 ,t0!
lmin>l0

l~ t !dt, ~5!

instead ofTu(x0 ,t0) will further enhance the visibility of
strongly repelling LCS.

While these two techniques can be useful in a be
visualization of the structures obtained from Theorem 1, th
will also suppress other structures with weaker hyperbolic

II. THE MAIN POINTS OF THE
LAPEYRE–HUA–LEGRAS COMMENTARY

Lapeyre, Hua, and Legras propose two ways to impro
the applicability of Theorem 1 in Haller, or equivalently, i
incompressible counterpart, Theorem 1 of this note.

A. Change of frame

First, LHL propose to transform the velocity fieldu(x,t)
to a different frame along the trajectoryx(t) before the ap-
plication of Theorem 1. The coordinate system they sugg
is defined by the eigenvectors of the matrix

S~ t !5 1
2 ~¹u~x~ t !,t !1~¹u~x~ t !,t !!T!,

which is just the rate-of-strain tensor evaluated along
trajectoryx(t). Denoting the matrix of normalized rate-o
strain eigenvectors byR(t) and using the fact thatR21

5RT, the transformation can be written as

y5RT~ t !~x2x~ t !!. ~6!

In the transformed set of coordinates the underlying traj
tory x(t) satisfiesy[0, and the gradient of the transforme
velocity field ẏ5ũ(y,t) can be written along it as

¹ũ„0,t)5RT~ t !¹u~x~ t !,t !R~ t !2RT~ t !Ṙ~ t !. ~7!

Since the columns ofR(t) are unit vectors for allt, they
are orthogonal to the corresponding columns ofṘ(t). As a
result,RTṘ is a skew-symmetric matrix with zero diagon
nse or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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elements. This in turn implies that¹ũ has zero trace, i.e.,ũ
is incompressible with respect to the variabley. Conse-
quently, one can use Theorem 1 to check the finite-time
perbolicity of they50 trajectory.

As LHL point out, one can in principle pick any time
dependent proper orthogonal matrixR, compute the gradien
¹ũ in the new basis and apply Theorem 1 to the transform
equation. While the theorem is Galilean invariant, it is n
invariant under rotations by matricesR„t… that very fast
enoughin time ~cf. H!. As a result, if the eigenvectors o
S(t) rotate fast enough in time, the theorem may guaran
hyperbolicity in the new coordinates but not in the old on
or vice versa. LHL believe that this is typically the case a
declare the above change of coordinates before the app
tion of Theorem 1 a ‘‘substantial improvement’’ on the theo
rem.

B. Use of strain rate

The second suggestion of LHL concerns the definit
and visualization of Lagrangian coherent structures: Inst
of identifying Lagrangian coherent structures as extrema
Tu(x0 ,t0) andTs(x0 ,t0), they seek them as local extrema
the strain rate s(x(t),t) integrated over periods o
instability/stability detected along the trajectoryx(t). In
terms of the components of the transformed velocity fi
ũÄ(u,v), the strain rates is defined as

s5Asn
21ss

2, sn5]xu2]yv, ss5]xv1]yu,

and the integrated strain rate is

e„x0 ,t0)5 E
ø Ĩ u~x0 ,t0!

s~x~ t !,t !dt.

Here ø Ĩ u(x0 ,t0) refers to the union of all subinterval
within I over which the trajectory starting fromx0 at timet0

satisfies both conditions in~3! computed in strain basis.

III. ARE THESE IMPROVEMENTS?

Based on the analysis presented below, they arenot. We
shall give reasons why one should typically get similar
somewhat weaker results after implementing the suggest
of LHL. In Sec. IV we illustrate this by recomputingboth
conditions of Theorem 1 in strain basis as well as in
original basis, a task that LHL did not perform~cf. Sec. III of
LHL !. In Sec. V we also compare the two approaches on
barotropic turbulence simulation of HY. In both numeric
experiments the results will confirm the arguments given
low.

A. Change of frame

The main point of Haller was the proof of the gene
compressible version of Theorem 1. In that paper we con
ered a single example in which we only verified the fi
condition of Theorem 1 for illustration. However, we als
warned that this ‘‘first approximation’’ would not suffice fo
more complicated flows: The intervalsøI u(x0 ,t0) must be
Downloaded 06 Feb 2004 to 18.80.4.201. Redistribution subject to AIP lice
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determined by verifying both conditions given in~3!. ~This
more complete implementation was discussed and teste
HY.!

LHL appear to have overlooked this warning and bas
their modification on the first condition only and not the fu
theorem. Regarding the first condition, it is certainly true th
it may not be satisfied in the original frame while it is sat
fied in the strain basis, a point that LHL emphasize with th
example of the Kida ellipse. However, this can just as w
happen the other way around, too. Consider, e.g., the inc
pressible velocity field

u~x,t !5S 1 a~ t !

0 21 D x, ~8!

for which x50 is a uniformly hyperbolic fixed point~as seen
by direct integration! and hence is contained in the repellin
material line$x2[0% ~finite-time stable manifold! over any
finite time interval. The first condition of Theorem 1 is triv
ally satisfied forall timesalongx50. Passing to strain basis
this will not necessarily be the case. For instance, pick
a(t)52 sin2(50t), a uniformly bounded function with fas
oscillations, can produce a strain basis in whi
det@¹ũ„0,t)] is predominantly positive~see Fig. 1!. Since
the rare negative determinant values are very small in no
one would normally discount them in a numerical calculati
as errors, and conclude that the origin is not hyperbolic~in
strain basis!.

As for the second condition of Theorem 1, it essentia
requires that the rotation rateb of the eigenvectors of
¹u(x(t),t) be small compared to the norm of its eigenva
ues. For a typical fluid trajectory, the eigenvectors ofS(t)
rotate at a similar speed, and hence the termRT(t)Ṙ(t) will
also be ofO(b). For Theorem 1 to apply to this trajectory i
strain basis, the rotation speed of the eigenvectors
¹ũ„0,t), again of orderO(b), must be small compared t
the norm of its eigenvalues. SinceRT(t)Ṙ(t) is of order
O(b), the eigenvalues of¹ũ„0,t) areO(b)-close to those of
RT(t)¹u„x(t),t)R(t), or equivalently, to those o
¹u„x(t),t). Therefore, in strain basis the second condition
Theorem 1 will be of the type

lmin1O~b!.O~b!,

where b and lmin are computed in theoriginal basis. In
general, this condition requires the same order of separa

FIG. 1. The quantity det¹ū(0,t) for the example velocity field~8!, shown
over two periods of the functiona(t).
nse or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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between Eulerian and Lagrangian time scales as the se
condition in ~3!. Therefore, for fluid trajectories launche
from a generic initial grid, one should not expect a ma
improvement from passing to strain basis in the calculati

The above argument applies to generic fluid trajector
In a given problem with special symmetries or special ti
scales onemayget different results using Theorem 1 in th
‘‘lab frame’’ or rotating frame. In certain regions of the flow
the lab frame may give a somewhat sharper result, while
other regions the strain frame or some other frame may
vail as a better choice.

From a computational point of view, however, it do
not seem to be efficient to experiment with all possib
choices of frame for a more complex velocity field. Perfor
ing the time-dependent change of coordinates~6! along each
trajectory for all times does increase computation time a
introduces further numerical errors. In particular, to obtainb

in strain basis, one has to differentiate the components of¹ũ
in time. These components already contain time derivativ
so one ends up taking second derivatives in time.

In summary, passing to a strain basis, as suggeste
LHL, should not lead to major improvements in the applic
tion of Theorem 1 for most velocity fields. However, it ma
lead to additional numerical errors that affect the analy
We shall illustrate this in Secs. IV and V.

B. Use of strain rate

As LHL say, the introduction of the strain rate is a he
ristic way to improve the extraction of Lagrangian cohere
structures. They expect the scalar fielde„x0 ,t0) to admit
maxima along repelling material lines that are sharper t
those of the instability time fieldTu(x0 ,t0).

This is certainly a reasonable expectation for stron
repelling material lines, and hence the use of the strain
will indeed increase the visibility of the strongest Lagrang
coherent structures while suppressing weaker ones. H
ever, such a systematic filtering can be more efficien
achieved by~a! raising the admissible hyperbolicity thres
old lmin in the calculation~b! and/or plotting the integral o
l(t), which gives an approximation of the true Lagrangi
stretching rate~cf. Sec. I B 4!. The error in this approxima
tion is known to beO(b/a), which is small compared to
l(t) since otherwise Theorem 1 would not apply to beg
with. Also, changing the hyperbolicity threshold gives
smooth and gradual way of filtering out weaker LCS.

In summary, the heuristic use of the fielde(x0 ,t0) may
improve the visibility of the strongest LCS while it sup
presses weaker ones. At the same time, the non-heuristic
of a hyperbolicity threshold in the calculation ofTu , as sug-
gested in HY, allows a localization of LCS at all levels
strength.

Again, we illustrate this point on examples in the fort
coming two sections.

IV. COMPARISON ON THE KIDA ELLIPSE

A. Change of frame

To check the claim that passing to strain basis subs
tially improves the applicability of Theorem 1, we verifie
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both conditions~3! in the ‘‘lab frame’’ as well as in strain
basis. We performed the calculations both on the time in
val @0,2# chosen by LHL, as well as on the longer interv
@0,4#. Just as LHL, we restricted ourselves to forward-tim
calculations, aiming to locate repelling LCS~finite-time
stable manifolds!. As an independent point of reference, w
first employed a Direct Lyapunov Exponent~DLE! calcula-
tion that identifies LCS as local extrema of the deformat
gradient field@see Haller~H3D! for details#. The results of
these calculations are shown in Figs. 2~a! and 2~d!. Below
these pictures we present the plots ofTu(x0,0) in the original
frame @Figs. 2~b! and 2~e!# as well as in the strain basi
proposed by LHL@Figs. 2~c! and 2~f!#. As we indicated ear-
lier, we have not been able to find any overall ‘‘substantia
improvement: parts of the plots are more visible in stra
basis~note the structures near the core of the vortex!, while
other parts in the original basis. In either basis, the main L
is fairly well identified by Theorem 1, and is in agreeme
with the more detailed structure obtained from the DLE c
culation. ~For a discussion on the shortcomings of the DL
calculation, see Haller~H3D!.#

B. Use of strain rate

To evaluate the use of integrated strain rate plots as
posed to hyperbolicity time plots, we repeated the above
culations with the same parameter values. Here we o
show the results for the@0,4# time interval as the difference
among different techniques become more visible on t
longer interval.

In Fig. 3~a! we show the implementation of both tech
niques proposed by LHL: We plot thee(x0,0) field based on
the evaluation of Theorem 1 in strain basis. As we discus
in Sec. III B, one expects similar or better identification
LCS by implementing the two filtering techniques describ
in Sec. I B 4. Figures 3~b!–3~d! indeed confirm this. In par-
ticular, Fig. 3~b! shows the plot of the hyperbolicity time
field Tu(x0,0,1.5) @cf. formula~4!#, while Figs. 3~c! and 3~d!
show the fieldsl u(x0,0,1.5) andl u(x0,0,2.5), respectively
@cf. formula ~5!#. Again, as the pictures show, we have be
unable to detect any ‘‘substantial’’ improvement resulti
from the implementation of the suggestions of LHL. In fa
Fig. 3~a! showsweakerresults than the others. Also note th
the local advantage of the LHL algorithm near vortex co
disappears if one employs thel-filtering of Sec. I B 4: The
results shown in Fig. 3~c! are sharper both near the vorte
cores as well as away from them.

V. COMPARISON ON 2D BAROTROPIC TURBULENCE

In order to test our arguments given in Sec. III furthe
we also examined the spatially and temporally more comp
problem of two-dimensional barotropic turbulence. We
considered the simulation already studied in HY and imp
mented both suggestions of LHL in the calculation.

The velocity field was generated by the barotropic t
bulence solver of A. Provenzale~for more details and refer
ences, see HY!. The flow is doubly periodic on the spatia
domain @0,2p#2, and the velocity field we considered wa
given on the time interval@50,99#. ~The simulation started
nse or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 2. ~Color! Computation of repel-
ling LCS att50 in the spatial domain
@0,10#3@25,5# using different meth-
ods:~a! DLE up to t52; ~b! hyperbo-
licity map up tot52; ~c! hyperbolic-
ity map in strain basis up tot52; ~d!
DLE up to t54; ~e! hyperbolicity map
at t54; ~f! hyperbolicity map in strain
basis att54.

FIG. 3. ~Color! Further comparison of
repelling LCS for the Kida ellipse us-
ing different methods:~a! Implementa-
tion of both improvements propose
by LHL ~strain basis1use of strain
rate!; ~b! hyperbolicity map forlmin

.1.5, i.e., theTu(x0,0,1.5) field; ~c!
integration ofl(t) for lmin>1.5, i.e.,
the l u(x0,0,1.5) field;~d! integration of
l(t) for lmin>2.5, i.e., the
l u(x0,0,2.5) field.
Downloaded 06 Feb 2004 to 18.80.4.201. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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436 Chaos, Vol. 11, No. 2, 2001 G. Haller
with Gaussian vorticity distribution att50. We started our
LCS analysis att550, by which time robust coherent stru
tures had already formed.!

In Fig. 4 we show the hyperbolicity time fieldTu(x0,50),
reproduced from HY. In contrast, Fig. 5 shows the plot of t
field e(x0,50) suggested by LHL. In this comparison a ‘‘su
stantial improvement’’ is even more difficult to claim: Th
e(x0,50) is fairly noisy and misses details of several LCS
background turbulence. It does provide an ‘‘edge detectio
of the strongest structures, but a smoother and mathem
cally more rigorous filtering of hyperbolicity can be obtain
from the use of theTu(x0,50,1.5) field, whose plot we repro
duce in Fig. 6. Again, the advantage of usingTu(x0,50,l0) is
that one can ‘‘sweep through’’ coherent structures of diff
ent strength by varyingl0 continuously. The only advantag
of following the suggestions of LHL appears to be the fa

FIG. 4. ~Color! Hyperbolicity time plot for two-dimensional barotropic tur
bulence.

FIG. 5. ~Color! The plot of theeu(x0,50) field, proposed by Lapeyre, Hua
and Legras, for the turbulent velocity field analyzed in Fig. 4.
Downloaded 06 Feb 2004 to 18.80.4.201. Redistribution subject to AIP lice
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that Fig. 5 indicates rings of high hyperbolicity around vo
tex cores, as noted by Lapeyre~L!.

VI. CONCLUSIONS

In this note we examined two recently proposed te
niques by LHL, who have announced improvements of
main theorem of H for the extraction of finite-time Lagran
ian coherent structures from unsteady 2D velocity fields. T
proposal of LHL involves~a! passing to a basis defined b
the time-dependent eigenvectors of the rate of strain ten
beforethe application of Theorem 1 of H~or, equivalently,
Theorem 1 of HY for incompressible flows! and ~b! identi-
fying Lagrangian coherent structures as extrema of the i
gral of strain rate, as opposed to the hyperbolicity time fie

We gave arguments as to why the above two steps w
in general, not yield any improvements over the direct ap
cation of the results of H and HY. On the contrary, the n
merically sensitive computation proposed in~a! and thead
hoc diagnostic tool suggested in~b! may in fact lead to
weaker results in the numerical implementation
Theorem 1.

We illustrated our arguments on two examples. First,
recomputed the Kida ellipse problem considered by LH
with and without their proposed improvements. A main d
ference in our calculation is that wefully implemented Theo-
rem 1 as opposed to the partial implementation of LHL.
agreement with our arguments, we have not seen any ov
improvement in the results.

As a second example, we considered a numerically m
challenging example, the velocity field obtained from a tw
dimensional barotropic turbulence simulation. For this pro
lem the scheme proposed by LHL performed noticea
weaker than a straight implementation of Theorem 1.

Based on all the above, we have not found any evide
that would support a ‘‘substantial,’’ or as a matter of fa
any overall improvement over our results. We rush to a
that there may be special flows for which a prelimina
change of coordinates to strain basis~or some other frame!

FIG. 6. ~Color! Same as in Fig. 4, but with hyperbolicity thresholdl051.
nse or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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would yield benefits that supersede the numerical errors
troduced in the process. We also acknowledge that cer
details of coherent structures~such as hyperbolic strips nea
vortex cores! may be better visible in strain basis for a typ
cal fluid flow—while other details are better visible in the la
frame or in some other frame. However, the overall qua
of the results will not change, a fact that is due to the v
nature of the conditions of Theorem 1: A significant chan
in the validity of the first condition will only occur in frame
that rotate fairly fast, but such frames will typically als
violate the second condition of the theorem~cf. Sec. III A!.

No doubt that future improvements on Theorem 1 m
in fact perform better in the basis of strain eigenvectors o
some other basis. There is certainly room and need for s
improvements: One would ideally like to have a verifiab
sufficientand necessarycondition for finite-time hyperbolic-
ity as opposed to the mere sufficient criterion provided
Theorem 1. An ideal criterion would actually be fully fram
independent ~physically objective, not just Galilean
invariant!—thereby eliminating any possible debate abo
the best choice of frame for its application.
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