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Lapeyre, Hua, and Legras have recently suggested that the detection of finite-time invariant
manifolds in two-dimensional fluid flows, as described by Haller and Haller and Yuan, can be
substantially improved. In particular, they suggesteda change of coordinates to strain basis
before the application of Theorem 1 of Haller afig) the use of a nondimensionalized time
computed from Theorem 1. Here we discuss why these proposed stepstdsult in a significant
overall improvement. We verify our arguments in a more detailed computation of the example
analyzed in Lapeyre, Hau, and Legk#se Kida ellipse, as well as in a two-dimensional barotropic
turbulence simulation. While in both of these examples the techniques suggested by Lapeyre, Hau,
and Legras reveal additional thin regions of hyperbolicity near vortex cores, they also lead to an
overall loss of detail in the global computation of finite-time invariant manifolds. 2@1
American Institute of Physics[DOI: 10.1063/1.1374242

Recent results have shown that mixing in two- x. We assume that on a closed time interyat Z, the rela-
dimensional velocity fields with general time dependence tion deWVu(x(t),t)<0 holds, i.e.Vu(x(t),t) has real eigen-
is governed by finite-time stable and unstable manifolds. values—\ (t)<0<\(t). Lete,(t) andey(t) denote the unit
Haller proved a theorem on the existence of such struc- eigenvectors corresponding tox (t) and\(t), selected in a
tures in general velocity fields. In a commentary on this  way so that they vary smoothly in Introducing the matrix
theorem, Lapeyre, Hua and Legras have suggested that of eigenvectorsT (t)=[e,(t),e,(t)], we can then define the
changing coordinates before the application of the main  following three quantities:

theorem of Haller would lead to a significant improve- .

ment in the detection of finite-time invariant manifolds. Nmin=MiN\(t), a=min[def(t)|, B=maX{T(t)|.
They also proposed the strain rate as a general indicator tely tely telyl

of such manifolds. In this paper we discuss why these 2)
suggestions will, in general, not lead to significant im- Note thata is never zero by definition.
provements. We illustrate our arguments through de- Theorem 1.Suppose that for a fluid trajectom(t) of the
tailed computations of finite-time invariant manifolds in velocity field(1) we have, for all €1,

two examples.

detVu(x(t),t)<0, N\pin>(2+ \/E)g. 3

. SUMMARY OF THE MAIN RESULTS OF HALLER

AND HALLER AND YUAN Thenx(t) is contained in a repelling material line over the

time interval |,.

In this section we recall the incompressible formulation By a repelling material line we mean a material line that
of the main theorem in HallefH), as stated in Haller and is linearly unstable throughout the time intervgl, i.e., in-
Yuan (HY), for two reasons. First, we need a precise statefinitesimal perturbations normal to it grow strictly monotoni-
ment of the results for our later arguments. Secondly, Lapeally within any subinterval ofl,. In dynamical systems
eyre, Hua, and LegradHL) do not explicitly list our main  terms, a repelling material line can be viewed as a two-
theorem, and hence the reader may find it helpful to see dimensional finite-time stable manifold to a fluid trajectory
precise statement of the result in question. in the extended phase space of thet) variables(see H.
Attracting material linegfinite-time unstable manifoldsan
be defined as material lines that are repelling in backward
Consider a two-dimension&2D) velocity field time.

X=u(x.t), V-u=0, 1) We finally not(_a that thg .two inequglities ®) are fully

equivalent to the five conditions listed in Eq6) and(7) of
whereu is assumed to be smooth and given on a finite timeH when those are restricted to incompressible flows. Since
interval Z. Suppose that a trajector(t) generated by this the commentary of LHL considers an incompressible ex-
velocity field is known. The Jacobian of the velocity field ample, we will stay with our discussion in that framework
along x(t) is then given by the time-dependent matrix for simplicity. Also, we will follow the more compadtout
Vu(x(t),t), whereV denotes differentiation with respect to otherwise equivaleninotation developed in HY.

A. General formulation
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B. Lagrangian coherent structures  (LCS) (i) When calculatingT,(Xq,t), one can simply set a
1. Definition of LCS positive threshold\, for admissible\ i, values before even

] ) . . verifying (3). This amounts to calculating the scalar field
As proposed in H and discussed in detail in HYg-

grangian coherent structured.CS) in a turbulent flow can (Xo,to: Ng) = dt. (4)
be defined as material lines that are attracting or repelling for

locally the longest time in the flow. More specifically, repel-
ling LCS will be material lines that evolve from the local
maximizing curves of the scalar field

Uly(xg.to)

Amin= Mo
This is actuallynot an ad hoctechnique: it is proved in H
that the strength of hyperbolicity for structures detected by

(Xo.tg) = f dt Theorem 1 is of the order of,,,—O(B/«). Therefore, one
0:°0 ' can justifiably increase the admissiblg;, in the calculation
Uly(xo.to) to filter out weaker LCS gradually. For an application of this
where Ul (Xo,to) refers to the union of all subintervals Procedure, see HY. _ _ _
within Z over which the trajectory starting fromy at timet, (i) A further refinement is obtained from a closer in-
satisfies both conditions if8). Similarly, attracting Lagrang- SPection of the proof of Theorem [see H, Eq.(21)]. The
ian coherent structure@inite-time unstable manifoldswill ~ Proof reveals that the type of repelling LCS captured by the

be material lines evolving from the local maximizers of a theorem repel nearby particles at an exponential rate with the
scalar fieldT¢(x,,to) that measures the time that a trajectory @PProximate exponenf; A(7)d7. Plotting, therefore, the

spends in attracting material lines. field
2. Theorem 1 and LCS lu(Xo,to,No) = J A(t)dt, 5
The significance of Theorem 1 is that it gives a lower Ulu(Xo.to)

Amin=A
bound forT,(xo,to): This bound is the total length of time o

within Z over which(3) are satisfied. Applying the theorem instead of T, (xo,to) will further enhance the visibility of

in backward time yields a lower bound f&g(x,to). It then  Strongly repelling LCS.

remains to plot these two fields and extract their local maxi- ~ While these two techniques can be useful in a better
mizing curves. It turns out that instead of simply focusing onvisualization of the structures obtained from Theorem 1, they
maximizing curves, one should generally look for local ex-Will also suppress other structures with weaker hyperbolicity.
tremum curves off((Xq,tp) and T,(Xq,tg), including local

minimizing curves. LCS associated with local minimizing Il. THE MAIN POINTS OF THE

curves will occur in flows with no-slip boundary conditions LAPEYRE-HUA-LEGRAS COMMENTARY

(cf. HY). Lapeyre, Hua, and Legras propose two ways to improve

) ) the applicability of Theorem 1 in Haller, or equivalently, its
3. Numerical detection of LCS incompressible counterpart, Theorem 1 of this note.
In practice, one checks the conditions of Theorem 1 for

a grid of initial conditions launched dt=t, to obtain the
discrete scalar fieldd,(x}j,to) and T¢(x5',t;). The La-
grangian coherent structures detected in this fashion will be  First, LHL propose to transform the velocity fieldx,t)
the ones that admit a separation of Eulerian and Lagrangiai® a different frame along the trajectokyt) before the ap-
time scales: The second condition(B) requires Lagrangian plication of Theorem 1. The coordinate system they suggest
particle speeds to dominate Eulerian deformation rates. Fags defined by the eigenvectors of the matrix
rotating eddies may violate this condition, in which case 1
their Lagrangian boundaries will not be fully detected by the S(t)= 3 (Vu(x(t),) +(Vulx(t),0) "),
above procedure: parts of their bounding material lines comevhich is just the rate-of-strain tensor evaluated along the
out hazy or completely lost in the plots af (x4 ,to) and trajectory x(t). Denoting the matrix of normalized rate-of-

Ts(xg' ,to). Nevertheless, the numerical study of HY sug-strain eigenvectors byR(t) and using the fact thaR !
gests that most coherent structures in 2D turbulence admit @ R", the transformation can be written as
sufficient separation of Eulerian and Lagrangian time scales
that renders them visible to the above analysis. It appears y=RT(O(x=x(1). ©)
that one could even take such a time scale separation asltathe transformed set of coordinates the underlying trajec-
defining property of robust coherent structures. tory x(t) satisfiesy=0, and the gradient of the transformed

velocity fieldy=ﬁ(y,t) can be written along it as

A. Change of frame

4. Extracting stronger LCS
Xracing songer === vU(0,) = RT(H) Vu(x(t), HR(H) — RT(OR(1). %
If one’s interest is specifically to recovstronglyrepel-

ling or attracting LCS in the flow, a systematic filtering of ~ Since the columns dR(t) are unit vectors for all, they

material lines with weaker hyperbolicity is possible as fol-are orthogonal to the corresponding columnsRgf). As a

lows: result, R'R is a skew-symmetric matrix with zero diagonal
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elements. This in turn implies th&tu has zero trace, i.ey detiVir(0.0]
is incompressible with respect to the variahle Conse-
guently, one can use Theorem 1 to check the finite-time hy-
perbolicity of they=0 trajectory.

e
As LHL point out, one can in principle pick any time- :
dependent proper orthogonal matRx compute the gradient ol |
VU in the new basis and apply Theorem 1 to the transformed :
equation. While the theorem is Galilean invariant, it is not ™

invariant under rotations by matricé®(t) that very fast
enoughin time (cf. H). As a result, if the eigenvectors of
S(t) rotate fast enough in time, the theorem may guaranteg|c. 1. The quantity de¥u(0yt) for the example velocity fields), shown
hyperbolicity in the new coordinates but not in the old onesover two periods of the functioa(t).

or vice versa. LHL believe that this is typically the case and

declare the above change of coordinates before the applica-

tion of Theoren 1 a “substantial improvement” on the theo- determined by verifying both conditions given (). (This

rem. more complete implementation was discussed and tested in
HY.)
_ LHL appear to have overlooked this warning and based
B. Use of strain rate their modification on the first condition only and not the full

The second suggestion of LHL concerns the definitiontheorem. Regarding the first condition, it is certainly true that

and visualization of Lagrangian coherent structures: Instealj M@y not be satisfied in the original frame while it is satis-
of identifying Lagrangian coherent structures as extrema ofi€d in the strain basis, a point that LHL emphasize with their
Ty(Xo,to) @andTe(Xo,to), they seek them as local extrema of example of the Kida ellipse. However, tr_us can just as well
the strain rate o(x(t),t) integrated over periods of happen the other way around, too. Consider, e.g., the incom-

instability/stability detected along the trajectorft). In  Pressible velocity field

terms of the components of the transformed velocity field 1 a(t)
u=(u,v), the strain rater is defined as u(x,t)= o —1/% ®
o=\oatos, on=dU—dw, os=do+au, for which x=0is a uniformly hyperbolic fixed poinas seen
and the integrated strain rate is by direct integrationand hence is contained in the repelling
material line{x,=0} (finite-time stable manifoldover any
finite time interval. The first condition of Theorem 1 is trivi-
e(Xg,tg) = X(t),t)dt. L _ . . .
(%o.to) ~f o(X(t).1) ally satisfied forall timesalongx=0. Passing to strain basis,
Ulu(Xo,to) this will not necessarily be the case. For instance, picking

Here UT,(Xo,to) refers to the union of all subintervals a(t)=2sirf(50t), a uniformly bounded function with fast

within Z over which the trajectory starting fromy at timet, osmllziuons, .can prqduce a .st.ram ba§|s |n. which
satisfies both conditions i(8) computed in strain basis. de{Vu(0,1)] is predominantly positivesee Fig. 1 Since
the rare negative determinant values are very small in norm,

one would normally discount them in a numerical calculation
Ill. ARE THESE IMPROVEMENTS? as errors, and conclude that the origin is not hyperb@tic

. strain basis
Based on the analysis presented below, theynatewe As for the second condition of Theorem 1, it essentially

shall give reasons why one should typically get similar oryqq jires that the rotation rat@ of the eigenvectors of
somewhat weaker results after implementing the suggestlor§u(x(t),t) be small compared to the norm of its eigenval-

of LHL In Sec. IV we illu§trate t_his by. recomputinlgo_th ues. For a typical fluid trajectory, the eigenvectorsS(f)
conditions of Theorem 1 in strain basis as well as in therotate at a similar speed, and hence the t&¥t)R(t) will
original basis, a task that LHL did not perfor(ef. Sec. Il of peed,

LHL). In Sec. V we also compare the two approaches on thglso_ be OfO_('B)' For The_orem 1 to apply to th|s_ trajectory in
. . . . Strain basis, the rotation speed of the eigenvectors of
barotropic turbulence simulation of HY. In both numerical ~~

experiments the results will confirm the arguments given beY U(0:t), again of order®(B), must be small compared to

low. the norm of its eigenvalues. Sind®'(t)R(t) is of order

O(B), the eigenvalues dFu(0,t) areO(B)-close to those of

RT(t)Vu(x(t),t)R(t), or equivalently, to those of
The main point of Haller was the proof of the general Vu(x(t),t). Therefore, in strain basis the second condition of

compressible version of Theorem 1. In that paper we considfheorem 1 will be of the type

ered a single example in which we only verified the first

condition 0?‘ Theorerrr)1 1 for illustration. Izowever, we also Amint O(8)=>O(B),

warned that this “first approximation” would not suffice for where 8 and \,,, are computed in theriginal basis. In

more complicated flows: The intervalsl (xo,tg) must be general, this condition requires the same order of separation

A. Change of frame
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between Eulerian and Lagrangian time scales as the secobdth conditions(3) in the “lab frame” as well as in strain
condition in (3). Therefore, for fluid trajectories launched basis. We performed the calculations both on the time inter-
from a generic initial grid, one should not expect a majorval [0,2] chosen by LHL, as well as on the longer interval
improvement from passing to strain basis in the calculation[0,4]. Just as LHL, we restricted ourselves to forward-time
The above argument applies to generic fluid trajectoriescalculations, aiming to locate repelling LCG@inite-time
In a given problem with special symmetries or special timestable manifolds As an independent point of reference, we
scales onenay get different results using Theorem 1 in the first employed a Direct Lyapunov ExponefLE) calcula-
“lab frame” or rotating frame. In certain regions of the flow tion that identifies LCS as local extrema of the deformation
the lab frame may give a somewhat sharper result, while igradient field[see Haller(H3D) for detaild. The results of
other regions the strain frame or some other frame may prehese calculations are shown in Figga)2and 2d). Below
vail as a better choice. these pictures we present the plotsigtx,,0) in the original
From a computational point of view, however, it does frame [Figs. 2b) and Ze)] as well as in the strain basis
not seem to be efficient to experiment with all possibleproposed by LHL[Figs. 2c) and Zf)]. As we indicated ear-
choices of frame for a more complex velocity field. Perform-lier, we have not been able to find any overall “substantial”
ing the time-dependent change of coordind®salong each improvement: parts of the plots are more visible in strain
trajectory for all times does increase computation time andasis(note the structures near the core of the vortevhile
introduces further numerical errors. In particular, to objain other parts in the original basis. In either basis, the main LCS

in strain basis, one has to differentiate the componentuof is fairly well identified by Theorem 1, and is in agreement

in time. These components already contain time derivativedVith the more detailed structure obtained from the DLE cal-

so one ends up taking second derivatives in time. culation. (For a discussion on the shortcomings of the DLE
In summary, passing to a strain basis, as suggested I§alculation, see HallefH3D).]

LHL, should not lead to major improvements in the applica-

tion of Theorem 1 for most velocity fields. However, it may B. Use of strain rate

lead to additional numerical errors that affect the analysis.

We shall illustrate this in Secs. IV and V. To evaluate the use of integrated strain rate plots as op-

posed to hyperbolicity time plots, we repeated the above cal-
B. Use of strain rate culations with the same parameter values. Here we only
show the results for thigd,4] time interval as the differences

As LHL say, the introduction of the strain rate is a heu- diff t techni b isibl thi
ristic way to improve the extraction of Lagrangian COherentfcl)r:ggrgint:ar(\a/;n echniques become more visibie on this

truct . Th t th lar fietky,ty) t dmit . . .
structures. They expect the scalar fialtk,t) to admi In Fig. 3@ we show the implementation of both tech-

maxima along repelling material lines that are sharper than, .
those of the i?]start))ility %ime field (X, to). P nigues proposed by LHL: We plot thefx,,0) field based on

This is certainly a reasonable expectation for strong| 'he evaluation of Theorem 1 in strain basis. As we discussed

repelling material lines, and hence the use of the strain ratt Czel():. I.” BI’ one ?xpeiﬁtstsmlflﬁr or bf:ttehr |.dent|f|§at|or.1b0;
will indeed increase the visibility of the strongest Lagrangian, y implementing the two Titering techniques describe

coherent structures while suppressing weaker ones. How" Sec. | B 4. Figures )-3(d) indeed confirm this. In par-

ever, such a systematic filtering can be more efficientl)}f?crdlaflt’ Fig(.) :fbs) Sth}NS th? pAlot ofh_tlhthyperbolicgy gme
achieved by(a) raising the admissible hyperbolicity thresh- 'E “E]Xo’f.’ Ia )I[C. grrlng a( )gj’lw 'eo 2'953' 4c) an 3 )I
old \ i, In the calculationb) and/or plotting the integral of show the fieldsl(x),0,1.5) andly(x,0,2.5), respectively

A\ (1), which gives an approximation of the true Lagrangian[Cf' formula (5)] Agaln,“as the p'.cuf,re.s show, we have bgen
stretching ratdcf. Sec. | B 4. The error in this approxima- unable to detect any “substantial” improvement resulting

tion is known to beO(B/a), which is small compared to frpm the implementation of the suggestions of LHL. In fact,
\(t) since otherwise Theorem 1 would not apply to beginF'g' 3(a) showsweakerresults than the'others. Also note that
with. Also, changing the hyperbolicity threshold gives athe local adyantage of the LHL_aIg_orlthm near vortex cores
smooth and gradual way of filtering out weaker LCS. disappears if one ?‘mp'oys thefiltering of Sec. | B 4: The

In summary, the heuristic use of the fiax,,t,) may results shown in Fig. 8) are sharper both near the vortex

improve the visibility of the strongest LCS while it sup- cores as well as away from them.

presses weaker ones. At the same time, the non-heuristic use
of a hyperbolicity threshold in the calculation f, as sug- V- COMPARISON ON 2D BAROTROPIC TURBULENCE

gested in HY, allows a localization of LCS at all levels of In order to test our arguments given in Sec. IIl further,
strength. we also examined the spatially and temporally more complex
Again, we illustrate this point on examples in the forth- yroplem of two-dimensional barotropic turbulence. We re-
coming two sections. considered the simulation already studied in HY and imple-
mented both suggestions of LHL in the calculation.
IV. COMPARISON ON THE KIDA ELLIPSE The velocity field was generated by the barotropic tur-

bulence solver of A. Provenzaléor more details and refer-

ences, see HY The flow is doubly periodic on the spatial
To check the claim that passing to strain basis substardomain[0,27]2, and the velocity field we considered was

tially improves the applicability of Theorem 1, we verified given on the time intervgl50,99. (The simulation started

A. Change of frame
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FIG. 2. (Color) Computation of repel-
ling LCS att=0 in the spatial domain
[0,10/xX[—5,5] using different meth-
ods:(a) DLE up tot=2; (b) hyperbo-
licity map up tot=2; (c) hyperbolic-
ity map in strain basis up to=2; (d)
DLE up tot=4; (e) hyperbolicity map
att=4; (f) hyperbolicity map in strain
basis att=4.

Frbprabad wls n ke fa N s o Sk rageaed & mas e 00

FIG. 3. (Color) Further comparison of
repelling LCS for the Kida ellipse us-
ing different methods(a) Implementa-
tion of both improvements proposed
by LHL (strain basis-use of strain
rate); (b) hyperbolicity map for\ yi
>1.5, i.e., theT,(xq,0,1.5) field; (c)
integration of\(7) for N ,;,=1.5, i.e.,
thel,(xq,0,1.5) field;(d) integration of
N(7) for ANpn=25, ie., the
I4(%0,0,2.5) field.
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Hyperbaolicity fime map Hyperbolicy lims mag for 2,27

' e

FIG. 4. (Colon Hyperbolicity time plot for two-dimensional barotropic tur- FIG. 6. (Color) Same as in Fig. 4, but with hyperbolicity threshalg= 1.
bulence.

that Fig. 5 indicates rings of high hyperbolicity around vor-

with Gaussian vorticity distribution at=0. We started our (€ cores, as noted by Lapeyfte).

LCS analysis at=50, by which time robust coherent struc-
tures had already formed. VI. CONCLUSIONS
In Fig. 4 we show the hyperbolicity time fielti,(x,,50),

reproduced from HY. In contrast, Fig. 5 shows the plot of the . I this note we examined two recently proposed tech-
field e(xo,50) suggested by LHL. In this comparison a “sub- Nidues by LHL, who have announced improvements of the

stantial improvement” is even more difficult to claim: The Main theorem of H for the extraction of finite-time Lagrang-
e(x,,50) is fairly noisy and misses details of several LCS inia" coherent strugtures from unstgady 2D velqcny f|§lds. The
background turbulence. It does provide an “edge detection’ProPosal of LHL involves(a) passing to a basis defined by

of the strongest structures, but a smoother and mathemaff€ time-dependent eigenvectors of the rate of strain tensor
cally more rigorous filtering of hyperbolicity can be obtained Peforethe application of Theorem 1 of kbr, equivalently,

from the use of tha,(xo,50,1.5) field, whose plot we repro- Theorem 1 of HY for incompressible flowsand (b) identi-
duce in Fig. 6. Again, the advantage of usiRgXe,50)\¢) is fying Lagrangian coherent structures as extrema of the inte-

that one can “sweep through” coherent structures of differ-9ral of strain rate, as opposed to the hyperbolicity time field.

ent strength by varying, continuously. The only advantage We gave arguments as to why the above two steps will,

of following the suggestions of LHL appears to be the tactin general, not yield any improvements over the direct appli-
cation of the results of H and HY. On the contrary, the nu-

merically sensitive computation proposed(@ and thead

hoc diagnostic tool suggested itb) may in fact lead to
WiksrENec BAcOin Tk I airain: Beeis weaker results in the numerical implementation of
1 Theorem 1.

We illustrated our arguments on two examples. First, we
recomputed the Kida ellipse problem considered by LHL
with and without their proposed improvements. A main dif-
ference in our calculation is that welly implemented Theo-
rem 1 as opposed to the partial implementation of LHL. In
agreement with our arguments, we have not seen any overall
improvement in the results.

As a second example, we considered a humerically more
challenging example, the velocity field obtained from a two-
dimensional barotropic turbulence simulation. For this prob-
lem the scheme proposed by LHL performed noticeably
weaker than a straight implementation of Theorem 1.

Based on all the above, we have not found any evidence
that would support a “substantial,” or as a matter of fact,
any overall improvement over our results. We rush to add

FIG. 5. (Color) The plot of thee,(xq,50) field, proposed by Lapeyre, Hua, that there may _be special f'9W5 f(_)r which a preliminary
and Legras, for the turbulent velocity field analyzed in Fig. 4. change of coordinates to strain bags some other frame
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No doubt that future improvements on Theorem 1 may
in fact perform better in the basis of strain eigenvectors or in
some other basis. There is certainly room and need for sudpgller, G., “Finding finite-time invariant manifolds in two-dimensional ve-
. ) O. Id ideally lik h ifiabl locity fields,” Chaos10, 99-108(2000.
|mprqvements. ne wou _' - eally I. e tO. ave a verl [a eHaIIer, G., “Distinguished material surfaces and coherent structures in 3D
sufficientand necessargondition for finite-time hyperbolic- fluid flows,” Physica D149, 248—277(2001).
ity as opposed to the mere sufficient criterion provided byHaller, G. and'Yuan, G, “Lagrangian_ coherent structures and mixing in
Theorem 1. An ideal criterion would actually be fully frame- _ two-dimensional turbulence,” Physica D47, 352-370(2000.
. . L : . Lapeyre, G., personal communicati(2001).
!ndependent (physmallly. OPJeCt'Ve not . just  Galilean Lapeyre, G., Hua, B. L., and Legras, B., “Comment on ‘Finding finite-time
invarian)—thereby eliminating any possible debate about invariant manifolds in two-dimensional velocity fields,  Chabs, 427
the best choice of frame for its application. (2001.
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