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Pamplona, Spain
4Department of Chemistry, West Virginia University, Morgantown, WV 26506-6045, USA

E-mail: cjaffe@wvu.edu

Received 19 August 2009, in final form 3 November 2010
Published 7 January 2011
Online at stacks.iop.org/Non/24/527

Recommended by B Leimkuhler

Abstract
We present a detailed analysis of invariant phase space structures near higher-
rank saddles of Hamiltonian systems. Using the theory of pseudo-hyperbolic
invariant surfaces, we show the existence of codimension-one normally
hyperbolic invariant manifolds that govern transport near the higher-rank saddle
points. Such saddles occur in a number of problems in celestial mechanics,
chemical reactions, and atomic physics. As an example, we consider the
problem of double ionization of helium in an external electric field, a basis
of many modern ionization experiments. In this example, we illustrate our
main results on the geometry and transport properties near a rank-two saddle.
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1. Introduction

In the theory of chemical reactions the rates and product distributions are determined by the
bottlenecks that restrict transport in the classical phase space [1–3]. In the simplest case a
single bottleneck exists and is associated with a fixed point that is stable in all but one degree
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of freedom. In other words, the fixed point corresponds to a simple or rank-one saddle [2]. In
more complicated situations additional bottlenecks can occur. They can be arranged in series,
parallel or some combination thereof. Again, geometrically these bottlenecks correspond to
rank-one saddles. If the bottlenecks occur in series, then the rate of reaction is given by the flux
through the most restrictive bottleneck. On the other hand, when there is more than a single
possible outcome to a reaction, the bottlenecks occur in parallel and the rates and product
distributions will be governed by relative limiting rates associated with the bottlenecks in the
various paths leading from reactants to products.

The question of the existence and relevance of saddles with rank greater than one has
interested chemists for decades [4–10]. Few concrete results exist in this challenging subject.
One of the earliest, the Murrell–Laidler theorem [4, 5], implies that the reaction path, that is,
the path of steepest descent, will not pass through a saddle of rank two or greater. The proof
of this theorem, for rank-two saddles, is based upon the existence of a path on the potential
energy surface that connects two minima with a maximum energy less than that of the rank-
two saddle. This path passes through a rank-one saddle with less energy than the rank-two
saddle. Note that the minima may correspond to reactants, intermediates or products and may
be either local or global minima. The extension of this theorem to saddles of higher rank is
straightforward.

The placement of these minima is clearly determined by the rank-one saddles. Similarly,
rank-two saddles are responsible for the placement of the rank-one saddles. To make this clear,
consider two rank-one saddles that are connected by a ridge. Following this ridge from one
saddle to the other, there will be a point of maximum energy. This point corresponds to a
saddle of rank two. These arguments can be extended to higher order; two rank-n saddles will
be connected by a ridge; the point of maximum energy along this ridge will correspond to a
rank-(n + 1) saddle.

Unfortunately the role of higher-rank saddles, beyond that of the ordering of the lower-
rank saddles, remains obscure. For the most part this is because attention has focused on
the morphology of the potential energy surface (often called the energy landscape) whereas
questions concerning transport are properly formulated in the classical phase space. For years
the same issue has hindered progress in the identification of the transition state, namely the
true surface of no return, in systems having more than two degrees of freedom [1–3].

We have recently reported in these pages [2] a formalism that enabled us to construct,
for the first time, the higher-dimensional geometrical structures that regulate the transport
from the reactants to the product regimes. These structures, which include dividing surfaces,
separatrices and transition states, lie at the heart of the theory of reaction dynamics as developed
by chemists and is known as transition state theory [11–16]. While this theory was initially
developed in the study of chemical [11] and nuclear [12] reactions, in retrospect one recognizes
that it can be applied in much broader situations ranging from the transport of small masses in
the solar system [17, 18], through chemistry [3, 19] and atomic physics [20–23] to the dynamics
of nucleons within the nucleus [24].

In this paper we use these same techniques to explore the phase space geometry of saddles
of rank greater than one. In the next section we review our previous work with regard to
transport across rank-one saddles and outline the difficulties that occur when it is applied to
situations involving saddles of higher rank. In the third section we turn our attention to saddles
of higher rank (n ! 2). Here we prove the existence of surfaces of codimension one that
can be used to partition the energy shell and to characterize the transport in phase space. In
section 4 we apply these results to a prominent problem from atomic physics, the correlated
double ionization of helium in an external electric field [25]. This event takes place through
the Stark saddle which is of rank two. We summarize our results in section 5.
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2. Rank-one saddles

Consider a Hamiltonian H(p, q) having n degrees of freedom [2]. The state or phase space of
this system will be 2n-dimensional, having both a coordinate and momentum for each degree
of freedom. The dynamics of the system are determined by Hamilton’s equations of motion,
a set of 2n first-order differential equations. The phase flow is governed by the occurrence of
bottlenecks associated with fixed points defined as

ṗi = −∂H(p1, . . . , pn, q1, . . . , qn)

∂qi

= 0,

q̇i = ∂H(p1, . . . , pn, q1, . . . , qn)

∂pi

= 0

for i = 1, . . . , n. Of particular importance are fixed points that are unstable in the first degree of
freedom and stable in the remaining (n−1) degrees of freedom. These fixed points correspond
to simple or rank-one saddles. In what follows the first degree of freedom is assumed to be the
unstable, or reactive, degree of freedom.

The geometry of these points is relatively simple. In the immediate vicinity of the fixed
point, which is taken as the origin, the Hamiltonian can be shown to have the form [2]

H(p, q) = 1
2
(p2

1 − λ2
1q

2
1 ) +

1
2

n∑

i=2

(p2
i + ω2

i q
2
i ) + f (I1, p2, . . . , pn, q2, . . . , qn),

where f (I1, p2, . . . , pn, q2, . . . , qn) = O(qk
i p

l
j ), k + l ! 3, λ1 > 0 and I1 = 1

2 (p2
1 − λ2

1q
2
1 ).

The equations of motion are given by

ṗ1 =
(

1 +
1
λ1

∂f

∂I1

)
λ2

1q1, q̇1 =
(

1 + λ1
∂f

∂I1

)
p1

and

ṗi = −ω2
i qi − ∂f

∂qi

, q̇i = pi +
∂f

∂pi

for i = 2, . . . , n.
Note that if p1 = q1 = 0 then ṗ1 = q̇1 = 0. This set of conditions defines a (2n − 2)-

dimensional invariant manifold

C =
{

(p, q) ∈ R2n :
1
2

n∑

i=2

(p2
i + ω2

i q
2
i ) + f (0, p2, . . . , pn, q2, . . . , qn), q1 = 0, p1 = 0

}

.

This is the centre manifold of the fixed point at the origin. Taking the intersection of this
manifold with the energy shell

Eh = {(p, q) ∈ R2n : H(p, q) = h > 0}

defines a (2n − 3)-dimensional normally hyperbolic invariant manifold (NHIM)

Ch = Eh ∩ C =
{

(p, q) ∈ R2n :
1
2

n∑

i=2

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, q1 = 0, p1 = 0

}

.
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The NHIM is the fundamental object in the theory of transport through the phase space
bottleneck. It possesses a pair of stable and unstable manifolds,

Ws(Ch) =
{

(p, q) ∈ R2n :
1
2

n∑

i=2

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, p1 = −λ1q1

}

,

Wu(Ch) =
{

(p, q) ∈ R2n :
1
2

n∑

i=2

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, p1 = λ1q1

}

.

Each of these manifolds can be partitioned into two parts, a forward part and a backward part,

Ws
f (Ch) =

{

(p, q) ∈ R2n :
1
2

n∑

i=2

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, p1 = −λ1q1 ! 0

}

,

Wu
f (Ch) =

{

(p, q) ∈ R2n :
1
2

n∑

i=2

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, p1 = λ1q1 ! 0

}

,

Ws
b (Ch) =

{

(p, q) ∈ R2n :
1
2

n∑

i=2

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, p1 = −λ1q1 " 0

}

,

Wu
b (Ch) =

{

(p, q) ∈ R2n :
1
2

n∑

i=2

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q1, . . . , qn) = h > 0, p1 = λq1 " 0

}

.

The forward and backward parts of these two manifolds

Wf (Ch) = Ws
f (Ch) ∪ Wu

f (Ch),

Wb(Ch) = Ws
b (Ch) ∪ Wu

b (Ch)

join to yield two (2n − 2)-dimensional invariant tubes that, respectively, correspond to the
forward and backward reactive tubes [26–33]. They are embedded in the (2n−1)-dimensional
energy shell and hence are codimension one surfaces. Consequently, the states within these
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tubes remain confined to the tubes and flow from the interior of Ws
j into the interior of Wu

j

(where j = f or b) [2]. It should be noted that the intersection of the forward (backward)
tubes is just the NHIM

Ch = Ws
f (Ch) ∩ Wu

f (Ch),

Ch = Ws
b (Ch) ∩ Wu

b (Ch).

Two transition states can now be defined as cross-section surfaces in each of the forward and
backward reactive tubes,

TSf (Ch) =
{

(p, q) ∈ R2n :
1
2
p2

1 +
1
2

n∑

i=2

(p2
i + ω2

i q
2
i )

+ f (I1, p2, . . . , pn, q2, . . . , qn) = h > 0, q1 = 0, p1 ! 0

}

,

TSb(Ch) =
{

(p, q) ∈ R2n :
1
2
p2

1 +
1
2

n∑

i=2

(p2
i + ω2

i q
2
i )

+ f (I1, p2, . . . , pn, q2, . . . , qn) = h > 0, q1 = 0, p1 " 0

}

.

These are, respectively, the forward and backward transition states. Their union is a (2n − 2)-
dimensional sphere (q1 = 0) and their intersection is simply the NHIM (a (2n−3)-dimensional
sphere). And finally, we observe that all states exterior to the two reactive tubes do not react,
that is, they are confined to either reactant or product regions of phase space for all time.

2.1. Extension to higher-rank saddles

The question immediately arises: Can similar arguments be applied to the case of higher-rank
saddles? The simple answer is that they can be applied but do not yield impenetrable barriers in
the energy shell [1] and, consequently, are of little interest in the study of transport. Consider a
Hamiltonian system having n degrees of freedom and possessing a fixed point corresponding
to a rank-m saddle. The centre manifold will be (2n − 2m)-dimensional, its intersection with
the energy shell will be a (2n − 2m − 1)-dimensional NHIM. This NHIM will possess stable
and unstable manifolds. These manifolds will be of dimension (2n − 2m) or equivalently of
codimension (2m−1) in the energy shell. Clearly, only in the case of a rank-one saddle m = 1
do these geometrical constructs provide impenetrable barriers. Similarly, the transition states
are also of codimension-(2m − 1) and thus will not partition the energy shell into reactant and
product regions.

The question remains as to whether or not these arguments can be modified so as to define
impenetrable barriers in the cases of saddles having rank greater than one. This is the subject
of the rest of this paper. In summary, new ideas are needed to construct transport barriers near
higher-rank saddles. The rest of this paper is devoted to this subject.

3. Higher-rank saddles

Our focus here is the Hamiltonian flow geometry in the vicinity of a rank-m saddle. The
linearized flow geometry is integrable, and hence its codimension-one transport barriers can
be located explicitly. Unlike in the rank-one case, however, extending these barriers to the
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full nonlinear system cannot be accomplished through classic normally hyperbolic invariant
manifold theory [34] because of the unboundedness of the barriers.

The classic theory of normally hyperbolic invariant manifolds only applies to compact
manifolds such as spheres. This is not merely a technicality: unbounded invariant manifolds
will, in general, not persist under the addition of the nonlinear terms. Hence, there is no
immediately applicable result that would guarantee the nonlinear continuation of the non-
compact set Ch or of its stable and unstable manifolds.

Our discussion concludes with a theorem identifying conditions under which nonlinear
analogs of the linear transport barriers exist near higher-rank saddles. Instead of using normally
hyperbolic invariant manifold theory, we rely on ideas from the theory of pseudo-hyperbolic
invariant manifolds.

3.1. Phase space geometry for linearized Hamiltonian flow

Consider the quadratic Hamiltonian

H2(p, q) = 1
2

m∑

i=1

(
p2

i − λ2
i q

2
i

)
+

1
2

n∑

i=m+1

(
p2

i + ω2
i q

2
i

)
. (1)

The origin p = 0, q = 0 admits (n − m) elliptic directions within the centre subspace Ec;
rotations within this subspace are governed by the (n−m) frequencies ωi . The origin also has
an m-dimensional stable subspace Es and an m-dimensional unstable subspace Eu.

Exponential growth and decay in Es × Eu is governed by the eigenvalues {λi}mi=1 and
{−λi}mi=1, respectively, of the linear Hamiltonian system generated by (1). We assume that the
largest eigenvalue is λ1 is strictly positive, and the rest are ordered in the fashion

− λ1 < −λ2 " · · · " −λm " 0 " λm " λm−1 " · · · " λ2 < λ1. (2)

Observe that λ1 is assumed strictly larger than λ2. For the rank-one saddles, one has
λ2 = −λ2 = 0. The eigenvalue configuration and the phase space structure for the Hamiltonian
(1) is sketched in figure 1.

3.1.1. Strong stable and unstable subspaces. We define two invariant subspaces within each
of Es and Eu by writing

Es = Es
1 × Ês, Eu = Eu

1 × Êu. (3)

Here the strong stable subspace, Es
1, is the invariant subspace spanned by the eigenvector

corresponding to the exponent −λ1. Similarly, the strong unstable subspace Eu
1 is spanned

by the eigenvector corresponding to λ1. As seen from (3), the (m − 1)-dimensional invariant
subspace Ês is the span of the eigenvectors corresponding to the eigenvalues −λ2, . . . ,−λm.
Solutions in this subspace decay to the origin no faster than exp(−λ2t). Similarly, the
(m − 1)-dimensional invariant subspace Êu is the span of the eigenvectors corresponding
to the eigenvalues λ2, . . . , λm. Solutions in this subspace grow no faster than exp(λ2t).

3.1.2. Pseudo-stable and pseudo-unstable subspaces. We now define the λ2-unstable
subspace of the origin, Eu

λ2
, as the maximal invariant subspace in which the norm of solutions

grows, stays constant, or decays no faster than exp(−λ2t). Note that Eu
λ2

is a (2n − 1)-
dimensional subspace of the form

Eu
λ2

= Ec × Ês × Eu, (4)

and contains all eigenvectors of the linearized Hamiltonian flow except for the one
corresponding to the strong stable subspace Es

1. For this reason, we also refer to Eu
λ2

as a
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Figure 1. The (a) eigenvalue configuration and (b) phase space structure for the quadratic
Hamiltonian H2.

Figure 2. The geometry of the (a) pseudo-unstable and (b) pseudo-stable subspaces.

pseudo-unstable subspace, because although it contains stable directions as well, these stable
directions are weaker than the strong stable dynamics in Es

1. This property renders Eu
λ2

to be
a codimension one normally hyperbolic invariant manifold for the quadratic Hamiltonian H2.
The geometry of Eu

λ2
is sketched in figure 2.

Similarly, we define the λ2-stable subspace, Es
λ2

, as the maximal invariant subspace in
which the norm of solutions decays, stays constant, or grows no faster than exp(λ2t). Note
that Es

λ2
is also a (2n − 1)-dimensional subspace of the form

Es
λ2

= Ec × Es × Êu,

often called a pseudo-stable subspace. This subspace is also a codimension one normally
hyperbolic invariant manifold for the quadratic Hamiltonian H2. The geometry of Es

λ2
is also

sketched in figure 2.
Note that both the pseudo-stable and the pseudo-unstable subspaces are normally

hyperbolic invariant manifolds, i.e. stretching and contraction rates in the direction transverse
to them dominates stretching and contraction rates in directions tangent to them. Due to
their non-compactness, however, these manifolds are not unique: there are infinitely many
other manifolds whose geometric and dynamic properties are similar to those of Es

λ2
and Eu

λ2
.
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Figure 3. Non-uniqueness of the pseudo-unstable manifold Eu
λ2

. Note that the manifold Ẽu
λ2

has
the same asymptotic and geometric features as Eu

λ2
does.

For instance, there are infinitely many smooth invariant surfaces that are (1) tangent to Eu
λ2

at the origin, (2) contain solutions that do not decay to the origin in backward time faster
than exp (−λ2t) and (3) do not grow in forward time faster than exp (λ1t). These manifolds
intersect the stable subspace Es in solutions that are tangent to Ês . The non-uniqueness of the
pseudo-unstable manifold Eu

λ2
is illustrated in figure 3.

While the pseudo-unstable manifold Eu
λ2

and the pseudo-stable manifold Es
λ2

are not
unique, they are normally hyperbolic, as noted above. This property makes them a priori
more robust under perturbations of H2 than other subspaces. For instance, the span of all
eigenvectors of the linearized Hamiltonian flow except for the one corresponding to λ2 is also
a codimension one invariant subspace, but is not normally hyperbolic, because the growth
rate exp (λ1t) inside this subspace is stronger than the growth rate exp (λ2t) transverse to this
subspace. As a result, this subspace is not expected to survive under general perturbations to
the Hamiltonian H2.

3.1.3. Transition state geometry for the linearized Hamiltonian flow. Unlike classic stable
and unstable subspaces, the pseudo-stable and pseudo-unstable subspaces, Es

λ2
and Eu

λ2
, are

not disjoint: their intersection is the (2n − 2)-dimensional subspace

C = Es
λ2

∩ Eu
λ2

= Ec × Ês × Êu

that contains all centre directions, as well as the weaker stable and unstable directions. The
geometry of the normally hyperbolic invariant manifold C is shown in figure 4.

Consider now the intersections of C with the quadratic energy surface

Eh =
{
(p, q) ∈ R2n : H2(p, q) = h > 0

}
.

This intersection,

Ch = Eh ∩ C =
{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i )

+
1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i ) = h > 0, q1 = 0, p1 = 0

}

,

is, strictly speaking, not normally hyperbolic: it has a neutrally stable direction normal to the
energy surface. The set Ch is, however, normally hyperbolic within the energy surface Eh.
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Figure 4. The geometry of the normally hyperbolic invariant manifold C.

We will call Ch the pseudo-NHIM and reserve the term NHIM for the intersection of the
centre manifold with the energy shell. It is important to recognize that the pseudo-NHIM
Ch is not bounded and consequently classic normally hyperbolic invariant manifold theory
is not applicable [34]. This is reflected in the fact that, geometrically, Ch is diffeomorphic
to near-critical energy surfaces of a Hamiltonian with a rank-(m − 1) saddle. Such a near-
critical energy surface contains S2n−2m (a saddle-type invariant sphere), as well as the stable
and unstable manifolds of this sphere, which are each diffeomorphic to S2n−2m × Rm−1.

The surface Ch is a (2n − 3)-dimensional manifold. It has codimension one (i.e. (2n − 2)-
dimensional) stable and unstable manifolds within the energy surface Eh, given by

Ws(Ch) =
{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i )

+
1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i ) = h > 0, p1 = −λ1q1

}

, (5)

Wu(Ch) =
{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i )

+
1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i ) = h > 0, p1 = λ1q1

}

. (6)

These manifolds can be partitioned into a forward part and a backward part, given by

Ws
f (Ch) =

{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i )

+
1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i ) = h > 0, p1 = −λ1q1 ! 0

}

,

Wu
f (Ch) =

{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i )

+
1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i ) = h > 0, p1 = λ1q1 ! 0

}

,
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Ws
b (Ch) =

{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i )

+
1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i ) = h > 0, p1 = −λ1q1 " 0

}

,

Wu
b (Ch) =

{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i )

+
1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i ) = h > 0, p1 = λ1q1 " 0

}

.

The forward and backward parts of these two manifolds join to form two (2n − 2)-
dimensional invariant sets

Wf (Ch) = Ws
f (Ch) ∪ Wu

f (Ch),

Wb(Ch) = Ws
b (Ch) ∪ Wu

b (Ch).

We call Wf (Ch) the forward-reacting tube and Wb(Ch) the backward-reacting tube [26–33].
They are embedded in the (2n − 1)-dimensional energy shell and hence are codimension one.
Consequently, the states within these tubes remain confined to the tubes and flow from the
interior of Ws

j into the interior of Wu
j (where j = f or b) [2].

We can define two transition states globally for the linearized Hamiltonian flow by H2.
These transition states are cross-section surfaces in each of the forward and backward reactive
tubes, defined as

TSf (Ch) =
{

(p, q) ∈ R2n :
1
2
p2

1 +
1
2

m∑

i=2

(p2
i − λ2

i q
2
i )

+
1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i ) = h > 0, q1 = 0, p1 ! 0

}

,

TSb(Ch) =
{

(p, q) ∈ R2n :
1
2
p2

1 +
1
2

m∑

i=2

(p2
i − λ2

i q
2
i )

+
1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i ) = h > 0, q1 = 0, p1 " 0

}

.

These are, respectively, the forward and backward transition states. Their union is a (2n − 2)-
dimensional unbounded surface and their intersection is the pseudo-NHIM, Ch. We sketch the
geometry of the forward and backward transition states for the quadratic Hamiltonian H2 in
figure 5.

3.2. Phase space geometry for the full Hamiltonian flow

We now extend the geometry described above for the linearized Hamiltonian flow to the full
nonlinear system. Near the origin p = 0, q = 0, the full n degrees of freedom Hamiltonian
can be written in the form

H(p, q) = 1
2

m∑

i=1

(
p2

i − λ2
i q

2
i

)
+

1
2

n∑

i=m+1

(
p2

i + ω2
i q

2
i

)
+ f (I1, p2, . . . , pn, q2, . . . , qn) (7)
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Figure 5. The forward and backward transition states, TSf (C) and TSb(C), respectively. The
transition states within the energy surface {H2 = h} are obtained by taking the intersection of
TSf (C) and TSb(C) with that energy surface.

where f (I1, p2, . . . , pn, q2, . . . , qn) = O
(
qk

i p
l
j

)
, k + l ! 3 and I1 = (1/2λ1)(p

2
1 − λ2

1q
2
1 ).

More specifically, f denotes a Cr+1 function with r ! 1. If H(p, q) does not have the form
of (7), one needs to apply normal-form theory to transform the Hamiltonian into this form. It
can be achieved if the ratios of the eigenvalues λ1/λj with j = 2, . . . , m are not rational or
close to rational (see appendix A).

For the Hamiltonian flow generated by H , we seek nonlinear continuations of the stable
and unstable manifolds of Ch in each energy surface. Unlike in the rank-one saddle case, the
extension of such surfaces cannot be concluded from classic normally hyperbolic invariant
manifold theory [34]. The primary reason for this is the non-compactness of the set Ch. Even
if we intersect Ch with a bounded ball centred at the origin, the resulting intersection is neither
in-flowing nor out-flowing invariant, and hence Fenichel’s classic results from [34] cannot be
invoked to conclude the persistence of the intersection set under the addition of higher-order
terms to the Hamiltonian.

To circumvent this problem, we focus on the nonlinear continuation of the pseudo-stable
and pseudo-unstable subspaces, Es

λ2
and Eu

λ2
. Their continuation turns out to exist under

condition (2): we refer to a nonlinear continuation of Es
λ2

as a pseudo-stable manifold Wps(0)

of the origin; a nonlinear continuation of Eu
λ2

is called a pseudo-unstable manifold Wpu(0) of
the origin. We sketch the geometry of the pseudo-unstable manifold in figure 6.

The manifolds Wps(0) and Wpu(0) are invariant, but not necessarily as smooth as the
Hamiltonian flow map

P t : R2n → R2n,

(p0, q0) '→ (p(t), q(t)) .

In contrast to classical stable and unstable manifolds, most solutions in Wps(0) do not
tend to the origin in forward time, and most solutions in Wpu(0) do not tend to the origin in
backward time. Solutions in Wps(0), however, can only grow at speeds slightly above exp(λ2t)

while they are close to the origin. Likewise, solutions in Wpu(0) can only grow in backward
time at speeds slightly above exp(λ2t) while they are in the vicinity of the origin.
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Figure 6. The geometry of the pseudo-unstable manifold Wpu(0).

We have seen that even Es
λ2

and Eu
λ2

are non-unique in terms of their main defining
properties. As a result, pseudo-stable and -unstable manifolds are also non-unique. This
means that there will be infinitely many invariant manifolds with the above properties, all
tangent to Es

λ2
and Eu

λ2
at the origin, but departing more and more from each other away from

the origin. The following theorem summarizes the main properties of the pseudo-stable and
pseudo-unstable manifolds.

Theorem 1. Assume that condition (2) holds, and define the constant

r̄ = min (Int [λ1/λ2] , r) , (8)

with Int [ · ] referring to the integer part of a number; recall that r ! 1 is the degree of
smoothness for the Hamiltonian H defined in (7). Then the p = q = 0 fixed point of the full
Hamiltonian H admits a (non-unique) (2n − 1)-dimensional class C r̄ pseudo-stable manifold
Wps(0) and a (non-unique) (2n−1)-dimensional class C r̄ pseudo-unstable manifold Wpu(0);
these manifolds are tangent to the subspaces Es

λ2
and Eu

λ2
, respectively, at the origin.

If the function P t (p, q) is small enough globally in the C r̄+1 norm (which can always be
achieved by smoothly deforming the Hamiltonian outside a small enough neighbourhood of
the origin), then for the constant

a = exp [(λ2 + λ1/Int [λ1/λ2]) /2] ,

we have

Wps(0) =
{

(p, q) ∈ R2n : sup
t!0

∣∣P t (p, q)
∣∣ a−t < ∞

}

, (9)

i.e. Wps(0) consists of solutions that grow at most at the rate at . Similarly,

Wpu(0) =
{

(p, q) ∈ R2n : sup
t"0

∣∣P t (p, q)
∣∣ a−t < ∞

}

. (10)

Proof. The existence of Wps(0) and Wpu(0) with the above properties can be proved by
applying Irwin’s theorem [35, 36] on pseudo-stable manifolds in the current context. We spell
out the details for Wps(0); the proof being identical for Wpu(0) in backward time.

First, note that for any fixed t > 0, the splitting Es
λ2

⊕ Eu
1 of R2n is invariant under the

linearized time-map DP t (0). The estimates
∥∥DP t (0)

∥∥
Es
λ2

= eλ2 < a, (11)
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and
∥∥DP t (0)

∥∥−1
Eu

1
= e−λ1 < a−ρ (12)

hold simultaneously for some constant a > 0 and integer ρ ! 1, whenever

eλ2 < a < eλ1/ρ . (13)

Such a constant a > 0 always exists if we select

ρ = Int [λ1/λ2] . (14)

In that case, the choice of

a = exp [(λ2 + λ1/Int [λ1/λ2]) /2] (15)

ensures that (13) holds.
Conditions (11) and (12) are precisely the two main conditions of Irwin’s theorem in [35].

As a result, whenever (14) holds, Irwin’s theorem guarantees the existence of a (non-unique)
class-Cρ pseudo-stable invariant manifold Wps(0) that is tangent to the subspace Es

λ2
at the

origin. To be precise, the degree r̄ of smoothness of Wps(0) is the minimum of r , the
smoothness of the time-t map P t , and ofρ, which gives the expression (8). The characterization
(9) of the pseudo-stable manifold follows from general expressions in [35] and [36] after we
set a as in (15). #

Note that theorem 1 limits the degree of smoothness of the manifolds Wps(0) and Wpu(0)

to the integer part of the eigenvalue ratio λ1/λ2, no matter how smooth the full Hamiltonian
H is. This is not merely a technical limitation of our proof: most pseudo-hyperbolic invariant
manifolds are less smooth than the underlying dynamical system.

To see this loss of smoothness in a simple example, consider the linear dynamical system
ẋ = λ2x, ẏ = λ1y with λ1 > λ2. (In this model example, the single weakly unstable x

direction replaces all centre-, stable and unstable directions in the more general setting of
theorem 1). This two-dimensional model system has infinitely many pseudo-stable manifolds
that are all tangent to the y = 0 axis at the origin. Each such manifold can be written in the
form y = Cxλ1/λ2 for some real constant C. Observe that unless C = 0, the maximum degree
of differentiability for any pseudo-stable manifold at the origin is just Int[λ1/λ2], even though
the underlying linear dynamical system is arbitrarily many times differentiable.

Based on the above result, under conditions (2) and (8), codimension one pseudo-stable
and pseudo-unstable invariant manifolds exist at the origin of the phase space. They intersect
any nearby energy surface

Ẽh =
{
(p, q) ∈ R2n : H(p, q) = h > 0

}

transversely in the isoenergetic surfaces

W
ps
h = Wps(0) ∩ Ẽh, W

pu
h = Wpu(0) ∩ Ẽh,

which are codimension one within Ẽh.
For any h > 0 small enough, the intersection

C̃h = W
ps
h ∩ W

pu
h

is a smooth continuation of the surface Ch defined in (5). This is the case because W
ps
h and W

pu
h

are smooth perturbations of Es
λ2

and Eu
λ2

near the origin, and the latter two surfaces intersect
transversely; hence their intersection smoothly perturbs under small enough perturbations. We
conclude that C̃h is diffeomorphic to near-critical energy surfaces of an (n − 1) degrees of
freedom Hamiltonian with a rank-(m − 1) saddle. We sketch the geometry of C̃ and C̃h in
figure 7.
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Figure 7. The manifold C deforms into C̃ under the addition of higher-order terms to the quadratic
Hamiltonian H2. The intersection of C̃ with the energy surface Eh is denoted by C̃h.

We note that C̃h is an r̄ times continuously differentiable manifold, as it is the transverse
intersection of two manifolds of the same degree of smoothness. Since the Hamiltonian H is
of class Cr for any positive r , the real limitation on r̄ is the ratio of the two Lyapunov exponents,
λ1 and λ2. A Taylor expansion for C̃h near the origin is only guaranteed to exist up to order r̄ .

The stable manifold of C̃h is given by

Ws(C̃h) = W
ps
h ,

a codimension one surface within the energy surface Ẽh. Similarly, the unstable manifold
of C̃h,

Wu(C̃h) = W
pu
h ,

is a codimension one surface within Ẽh.
The manifolds Ws(C̃h) and Wu(C̃h) will be small deformations of their linearized

counterparts, Ws(Ch) and Wu(Ch) (see (5)). In analogy with their linear counterparts, Ws(C̃h)

and Wu(C̃h) can be partitioned into two parts: a forward part and a backward part, which satisfy

Ws
f (C̃h) =

{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i ) +

1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, p1 = −λ1q1 ! 0

}

,

Wu
f (C̃h) =

{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i ) +

1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, p1 = λ1q1 ! 0

}

,

Ws
b (C̃h) =

{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i ) +

1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, p1 = −λ1q1 " 0

}

,
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Wu
b (C̃h) =

{

(p, q) ∈ R2n :
1
2

m∑

i=2

(p2
i − λ2

i q
2
i ) +

1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i )

+ f (0, p2, . . . , pn, q2, . . . , qn) = h > 0, p1 = λ1q1 " 0

}

.

The forward and backward parts of these two manifolds

Wf (C̃h) = Ws
f (C̃h) ∪ Wu

f (C̃h), Wb(C̃h) = Ws
b (C̃h) ∪ Wu

b (C̃h)

join to yield two (2n − 2)-dimensional invariant tubes that, respectively, correspond to the
forward and backward reactive tubes [26–33]. They are embedded in the (2n − 1)-dimensional
energy shell and hence are codimension one. Consequently, the states within these tubes remain
confined to the tubes and flow from the interior of Ws

j into the interior of Wu
j (where j = f

or b) [2].
We define two transition states as cross-section surfaces in each of the forward and

backward reactive tubes,

TSf (C̃h) =
{

(p, q) ∈ R2n :
1
2
p2

1 +
1
2

m∑

i=2

(p2
i − λ2

i q
2
i ) +

1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i )

+ f (I1, p2, . . . , pn, q2, . . . , qn) = h > 0, q1 = 0, p1 ! 0

}

,

TSb(C̃h) =
{

(p, q) ∈ R2n :
1
2
p2

1 +
1
2

m∑

i=2

(p2
i − λ2

i q
2
i ) +

1
2

n∑

i=m+1

(p2
i + ω2

i q
2
i )

+ f (I1, p2, . . . , pn, q2, . . . , qn) = h > 0, q1 = 0, p1 " 0

}

,

the forward and backward transition states. Their union is a (2n − 2)-dimensional unbounded
surface and their intersection is simply the pseudo-NHIM, C̃h. And finally, we observe that all
states exterior to the two reactive tubes do not react, that is, they are confined to either reactant
or product regions of phase space for all time.

The main differences between Ws(C̃h) and the stable manifold of a pseudo-NHIM in the
rank-one saddle case are:

• The manifold Ws(C̃h) is constructed as a pseudo-stable manifold, and hence it is non-
unique. However, it is tangent to the unique pseudo-stable subspace, Es

λ2
, and hence its

Taylor expansion is unique to order r̄ .
• The manifold Ws(C̃h) is guaranteed to be of class C r̄ .
• Typical solutions in Ws(C̃h) do not tend to C̃h in forward time, but cannot leave C̃h at

rates faster than exp [t (λ2 + λ1/Int [λ1/λ2]) /2] while near C̃h.

Similar comments can be made for Wu(C̃h).

4. Application: two-electron atoms

When higher-dimensional saddles with more than one unstable direction are present it is only
natural for the multiple unstable directions to compete with each other during the passage
through this saddle and for one direction to dominate over the others depending on the relative
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values of the Lyapunov coefficients [39]. A prominent example of such behaviour comes from
atomic physics, and specifically from the threshold ionization behaviour of highly excited two-
electron atoms like helium [40]. This phenomenon was first described by Wannier [41] in the
context of his famous threshold law: simply stated, if one assumes that the electrons (denoted as
e) and the nucleus (denoted as Z) are in the linear configuration eZe, then double ionization has
to takes place by both of the electrons moving away from the nucleus totally symmetrically; the
slightest asymmetry in their dynamics will cause one of the electrons to fall towards the nucleus
and the other one to move away from it. So, not surprisingly, correlated double ionization is
much more difficult to arrange than its alternatives, and will, in an ensemble of many random
initial conditions and configurations, be washed out by the antisymmetric electron exchange.

In our recent investigation of helium ionization in external fields [39], we found precisely
this connection, namely that of the two unstable directions that the rank-two saddle (the
Stark saddle) supports, the totally symmetric one (leading to non-sequential, correlated double
ionization) is slower than the antisymmetric one, which leads to the exchange of electrons. This
finding also explains why classically, for arbitrary initial configurations, in a symmetrically
excited helium atom usually one electron moves towards the nucleus while the other moves
away. The relative rates of crossing the associated barriers are of course related to the Lyapunov
exponents. As the rate of the antisymmetric process is greater than that of the symmetric mode,
the antisymmetric mode dominates.

More generally, the scattering of electrons from ions in the presence of fields, especially
time-dependent ones, is finding many applications in laser–matter interaction physics today
[25]. The correlated double ionization of helium in the presence of an intense laser field
has served up a big surprise to physicists: In strong contrast to the static-field scenario, the
non-sequential, correlated double ionization rates are found to be several orders of magnitude
greater than the uncorrelated mechanism allows, making this phenomenon one of the most
dramatic manifestations of electron–electron correlation in nature [42–59]. The precise
mechanism that makes correlation so effective is far from settled and subject to intensive
research, both experimental and theoretical. Thus far, the so-called re-collision (or three-step)
scenario [43, 44], in which the ionized electron is hurled back at the ion after absorbing a
lot of energy from the laser field and dislodges the core electron, seems in best accord with
experiments. Moreover, many of the important features can be understood classically [25].

The re-collision scenario combines electron–ion scattering with the passage through the
rank-two Stark saddle [49, 60, 61] and therefore offers a huge arena for fundamental research.
The effect of time-dependent external fields is outside the scope of this work, but we are
confident that the research on the effect of static fields detailed below will be a useful stepping
stone in that direction.

4.1. The model

The simplest system which ionizes non-sequentially is a helium atom in a static electric
field [49, 60, 61]. This is a three-body problem. The three particles are the nucleus and
two electrons. The mass of the nucleus is taken to be infinite. This is a simplification of
the problem that is easily remedied if needed without affecting the results presented here.
Atomic units are used, thus the mass of the electrons are taken to be unity. All energies are
given in hartrees. The charge of the nucleus is +2 while the electrons have charge −1. This
system has six degrees of freedom. The three degrees of freedom associated with the centre
of mass are neglected as a direct result of the assumption of the nucleus having infinite mass.
The six degrees of freedom describe the two vectors that point from the nucleus to each of
the two electrons. This is illustrated in figure 8. The z-axis is defined to be in the direction
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Figure 8. The physical coordinates. The physical variables are chosen to be the cylindrical
coordinates and corresponding momenta of each of the electrons.

of the electric field. Each of the vectors describing the positions of the two electrons are
represented in cylindrical coordinates, (ρ1,ϕ1, z1) and (ρ2,ϕ2, z2). An additional integral of
the motion exists, namely the angular momentum about the z-axis defined by the electric field.
Consequently, the problem can be reduced to one of five degrees of freedom, which is standard
for the n-body problem in a static electric field, see [37, 38].

The presence of the electric field gives rise to a Stark barrier. To ionize classically
the electrons must escape over this barrier (quantum-mechanically they can also ionize by
tunnelling under the barrier). If the external electric field is taken to be constant the Hamiltonian
system defining the problem is autonomous. The Stark barrier gives rise to a fixed point in the
ten-dimensional phase space associated with the five degrees of freedom. This fixed point is a
rank-two saddle. In other words, it has three stable or elliptic directions (central directions) and
two unstable or hyperbolic directions. One of the unstable directions is associated with the non-
sequential (or correlated) ionization (He → He2+ + 2e−) while the second unstable direction
is associated with the non-sequential (or correlated) exchange (He+ + e−(A) → He+ + e−(B))
of electrons.

The initial Hamiltonian is given by

H = 1
2

(

P 2
ρ1

+
P 2
ϕ1

ρ2
1

+ P 2
z1

)

+
1
2

(

P 2
ρ2

+
P 2
ϕ2

ρ2
2

+ P 2
z2

)

− F(z1 + z2) − 2
√
ρ2

1 + z2
1

− 2
√
ρ2

2 + z2
2

+
1

√
ρ2

1 + ρ2
2 − 2ρ1ρ2 cos(ϕ1 − ϕ2) + (z1 − z2)2

. (16)

The first two terms are the kinetic energy of the two electrons. The third term represents
the interaction of the two electrons with the electric field. Here the scalar F represents the
strength of the electric field. The fourth and fifth terms are the attractive interactions between
the nucleus and the two electrons and the last term is the repulsive interaction between the
two electrons. This Hamiltonian accounts for the motions of the electrons with respect to the
nucleus.

The Hamiltonian (16) has six degrees of freedom. One of these can be eliminated by
making use of the existence of the additional constant of the motion: the projection of the
angular momentum on the z-axis. To achieve this we introduce a new set of coordinates
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defined by the following linear canonical transformation G:

r = (ρ1 − ρ2)/2 R = (ρ1 + ρ2)/2

ϕ = ϕ1 − ϕ2 & = ϕ1 + ϕ2

z = (z1 − z2)/2 Z = (z1 + z2)/2

Pr = Pρ1 − Pρ2 PR = Pρ1 + Pρ2

Pϕ = (Pϕ1 − Pϕ2)/2 P& = (Pϕ1 + Pϕ2)/2

Pz = Pz1 − Pz2 PZ = Pz1 + Pz2 .

(17)

The transformed Hamiltonian is given by

H = P 2
r + P 2

R

4
+

P 2
z + P 2

Z

4
+

(Pϕ + P&)2

2(r + R)2
+

(Pϕ − P&)2

2(r − R)2
− 2FZ − 2

√
(r + R)2 + (z + Z)2

− 2
√

(r − R)2 + (z − Z)2
+

1

2
√

r2 cos2(ϕ/2) + R2 sin2(ϕ/2) + z2
. (18)

It is evident that H is independent of &, therefore P& is an integral of the motion and can be
taken to be a parameter. In this manner the Hamiltonian (18) is reduced to one having five
degrees of freedom.

4.1.1. The fixed point. The fixed point of the Hamiltonian vector field is readily obtained
by setting the right-hand side of Hamilton’s equations of motion equal to zero: first note that
the vector field only has a fixed point provided that P& = 0. Next observe that since the
Hamiltonian is a sum of the kinetic and potential energies, all of the momenta must also
equal zero, Pr = PR = Pϕ = Pz = PZ = 0. And finally, assuming F > 0, the location
of the fixed point is given by r = z = 0, ϕ = π , R = Rs = rs/2 = 31/4/(2

√
F) and

Z = Zs =
√

3rs/2 = 33/4/(2
√

F), where rs =
√√

3/F . The energy of the fixed point

is H0 = −6/rs = −6
√

F/
√

3. Also note that symmetry of the stationary configuration is
characterized by the C2v point group.

4.2. The normal modes

The normal modes are defined by the dynamics in the immediate vicinity of the saddle point.
To investigate these dynamics one first shifts the origin to the saddle point and then expands
the Hamiltonian in a Taylor series about the saddle point. The constant term gives the energy
of the saddle point and the linear term is identically equal to zero as the origin is a fixed point.
The quadratic term is used to define the normal mode variables by requiring that it takes the
form

H2 = 1
2 (P 2

U − λ2
UU 2) (A1, unstable, λ2

U = (
√

19 − 1)/r3
s )

+ 1
2 (P 2

u − λ2
uu

2) (B2, unstable, λ2
u = (

√
13 + 2)/r3

s )

+ 1
2 (P 2

V + ω2
V V 2) (A1, stable, ω2

V = (
√

19 + 1)/r3
s )

+ 1
2 (P 2

v + ω2
vv

2) (B2, stable, ω2
v = (

√
13 − 2)/r3

s )

+ 1
2 (P 2

φ + ω2
φφ

2) (B1, stable, ω2
φ = 2/r3

s ). (19)

Observe that the first two terms correspond to parabolic barriers and the last three terms
correspond to harmonic oscillators.
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Table 1. The normal mode frequencies. Shown here are the stabilities, symmetry properties and
frequencies of the five normal modes. Note that the frequencies of the unstable modes are imaginary
and that the point group of the stationary configuration is C2v .

Mode Stability Irreducible representation Frequency

U Unstable A1 1.21389ı F3/4

V Stable A1 1.53327 F3/4

u Unstable B2 1.56815ı F3/4

v Stable B2 0.839251 F3/4

φ Stable B1 0.936687 F3/4

Methods for the construction of transformations to normal mode variables are well
known [37, 38, 62]. The transformation, which we denoted as R, is given by

R = Rs + (U cosα − V sin α)/
√

2 PR =
√

2(PU cosα − PV sin α)

Z = Zs + (U sin α − V cosα)/
√

2 PZ =
√

2(PU sin α + PV cosα)

r = (u cosβ − v sin β)/
√

2 Pr =
√

2(Pu cosβ − Pv sin β)

z = (u sin β + v cosβ)/
√

2 Pz =
√

2(Pu sin β + Pv cosβ)

ϕ = (2
√

2/rs)φ + π, Pϕ = (rs/(2
√

2))Pφ,

(20)

where α = π
2 − 1

2 arctan
[
3
√

3/7
]

and β = π
2 − 1

2 arctan
[
3
√

3/5
]
.

A straightforward group-theoretical analysis [63] identifies the symmetry properties of
the normal modes. The point group of the saddle point configuration is C2v . The irreducible
representations of the five normal modes are + = 2A1 + B1 + 2B2. The symmetry properties
and frequencies of the normal modes are given in table 1.

It is easy to obtain the higher-order terms of the Hamiltonian, i.e. the terms H3, H4, . . .,
in normal mode variables.

4.3. The normal form

Standard methods pioneered by Deprit [64] are used to transform the Hamiltonian into normal
form. The first step in this process is to transform the quadratic terms of the Hamiltonian into
normal form. Once the canonical transformation that takes the quadratic terms into normal
form is known, the cubic and higher-order terms of the Hamiltonian are transformed into these
variables. It should be noted that at this stage the higher-order terms are not yet in normal
form. Transforming these higher-order terms into normal form is accomplished by a sequence
of Lie–Deprit transformations [38]. While in principle this is a straightforward process, in
practice the transformation of the higher-order terms is not trivial and requires the use of
computers.

4.3.1. The quadratic terms. For rank-two saddles the normal form for the quadratic term of
the Hamiltonian is

H2 = λ1 P1 Q1 + λ2 P2 Q2 + ı ω3 P3 Q3 + ı ω4 P4 Q4 + ı ω5 P5 Q5. (21)

Note that the first two terms are the unstable modes while the final three modes are stable. The
transformation, denoted D, of the quadratic term of the Hamiltonian from the normal mode
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variables (19) into the normal form (21) is well known,

U =

√
1

2λ2
(P2 − Q2) PU =

√
λ2

2
(P2 + Q2),

V = ı

√
1

2ω3
(P3 − ıQ3) PV =

√
ω3

2
(P3 + ıQ3),

u =

√
1

2λ1
(P1 − Q1) Pu =

√
λ1

2
(P1 + Q1),

v = ı

√
1

2ω4
(P4 − ıQ4) Pv =

√
ω4

2
(P4 + ıQ4),

φ = ı

√
1

2ω5
(P5 − ıQ5) Pφ =

√
ω5

2
(P5 + ıQ5),

(22)

where λ1 = λu > λ2 = λU > 0, and ω3 = ωV > 0, ω4 = ωv > 0, ω5 = ωφ > 0.
Several observations are critical at this juncture. First note that the ratio of λ1/λ2 =
(
√

13 + 2)/(
√

19 − 1) is irrational and independent of the strength of the electric field F .
Additionally, the ratios of the three frequencies are also irrational and independent of the field
strength, ω3/ω5 = (

√
19 + 1)/2, ω4/ω5 = (

√
13 − 2)/2 and ω3/ω4 = (

√
19 + 1)/(

√
13 − 2).

This is important as it indicates that small divisors should not be an issue. Secondly, note that
the modes have been ordered so as to satisfy (2). And finally note that, if the higher-order
terms in the Hamiltonian are truncated, then the five quantities P1 Q1, P2 Q2, ıP3 Q3, ıP4 Q4

and ıP5 Q5 are integrals of the motion.

4.3.2. Higher-order terms. The purpose of transforming the higher-order terms of the
Hamiltonian into normal form is to obtain expressions for these terms as a function of the
five invariants identified in the previous subsection. This is accomplished by a sequence of
(N − 2) Lie–Deprit transformations [2, 3]. The result will be a Hamiltonian that is in normal
form up to and including terms of the N th degree. If the Hamiltonian H is truncated at this
level, the resulting Hamiltonian K is integrable. This is due to the fact that the frequencies λi

and ωi’s are incommensurate. We use Deprit’s method [64] to construct these transformation.
Each of the (N − 2) Lie–Deprit transformations transforms the next level of the

Hamiltonian into normal form. Thus, the first transformation changes the cubic term of the
Hamiltonian H3 into normal form, the second transforms the quartic term H4 into normal form,
etc. We denote the entire series of transformations as NF .

Consider the j th transformation. Each transformation involves two parts. In the first
part the normal form of the (j + 2)th-degree term (i.e. the j th order term) of the Hamiltonian
Kj+2 and the associated generating function Wj+2 are constructed. In the second part the
generating function Wj+2 is used to construct the transformation equations: P = P(P †, Q†)

and Q = Q(P †, Q†) where P † and Q† are the transformed variables. In addition, the higher-
order terms in the Hamiltonian are transformed into the new variables. Observe that both Kj+2

and Wj+2 are sums of monomials of degree (j + 2) in the phase space variables.
The construction of the normal form of the (j + 2)th-degree term of the Hamiltonian is

straightforward. This is due to the fact that the quadratic term of the Hamiltonian H2 has
already been transformed into normal form (21). As a consequence, the Lie operator defined
by this normal form will transform a monomial of a given degree into another monomial of
the same degree. Thus, when the Lie operator acts on either a term of the Hamiltonian or the
generating function, it returns a function that is of the same degree. As a consequence, it is
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Table 2. Number of monomials in the phase space variables P
†
k ’s, Q

†
k ’s of the normal-form

Hamiltonians K =
∑12

j=2 Kj/(j −2)! and of the generating functions W =
∑12

j=3 Wj /(j −3)! to
order ten. The coefficients of these monomials are presented in the supplementary data (available
at stacks.iop.org/Non/24/527).

Order 0 1 2 3 4 5 6 7 8 9 10

K 5 0 15 0 35 0 70 0 126 0 210
W 72 220 596 1450 3232 6768 13304 25052 45008 78296

easy to split the intermediate Hamiltonians into the terms that belong to the kernel of the Lie
operator, e.g. the monomials that are kept in the normal-form Hamiltonian and the terms that
belong to the image of the Lie operator and must be incorporated to the generating function,
after being multiplied by an appropriate constant, see the details in [65].

After the Hamiltonian is transformed into normal form to a given degree the higher-order
terms are truncated. The resulting Hamiltonian K is integrable. This is a consequence of
the real and imaginary frequencies being incommensurate. As a direct consequence the two
reactive modes associated with the two hyperbolic degrees of freedom decouple. Similarly,
the three elliptic modes associated with the centre manifold also decouple. Furthermore the

quantities P
†
k Q

†
k for k = 1, . . . , 5 are integrals of the motion of the dynamical system defined

by K . The action variables Ii are given by I1 = P
†
1 Q

†
1 , I2 = P

†
2 Q

†
2 , I3 = ı P

†
3 Q

†
3 ,

I4 = ı P
†
4 Q

†
4 and I5 = ı P

†
5 Q

†
5 , Hamiltonian K reads as

K(I1, I2, I3, I4, I5) =
N∑

n=2

Kn(I1, I2, I3, I4, I5) (23)

with

Kn(I1, I2, I3, I4, I5) =
∑

i+j+k+l+m=n/2

aijklm I i
1 I

j
2 I k

3 I l
4 Im

5

where the sum is over all i, j , k, l and m such that i + j + k + l + m = n/2. Also note that if n

is odd, then Kn = 0. The three constants of the motion, I3, I4 and I5 are the classical action
variables associated with the three non-reactive degrees of freedom. The integrals I1 and I2

are associated with the reactive coordinates. The coefficients, aijklm, are to be obtained via a
normal-form construction.

4.3.3. Transformation to 10th order. While that the construction of the Lie–Deprit transform
is conceptually simple, the size of the calculations requires the use of computers. The difficulty
is immediately apparent when one considers the number of terms contained in each of the terms
in the Hamiltonian and the generating function. The number of terms of H and W are given
in table 2.

The normal form of the Hamiltonian given in (16) to 10th order (that is, to degree N = 12)
was obtained with an electric field strength given by F = 0.137. The 0th, 2nd, 4th and
6th degree coefficients aijklm defined in (23) are given in table 3. The Hamiltonian and the
generating function to 10th order (N = 12) are given in the supplementary data (available
at stacks.iop.org/Non/24/527). Note that the monomial a00000 is a constant term equal to the
energy H0 of the fixed point.

The occurrence of small divisors in the denominators of the monomials forming the
generating functions is possible. Even when this can occur for particular combinations of
the frequencies, we have not observed behaviour of this nature. We discuss this next.
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Table 3. Coefficients for the 0th, 2nd, 4th and 6th degree terms in the normal-form Hamiltonian.
Terms of odd degree are identically equal to zero. The higher-degree terms can be found in the
supplementary data (available at stacks.iop.org/Non/24/527).

a00000 −1.687 451 192 67

a10000 0.353 125 532 133 a01000 0.273 349 588 055
a00100 0.345 269 120 501 a00010 0.188 987 049 505
a00001 0.210 928 348 692

a20000 0.020 105 729 600 9 a11000 0.013 190 467 283 3
a02000 0.006 349 431 444 84 a10100 0.060 858 000 660 6
a01100 0.000 094 753 810 357 3 a00200 0.023 170 420 249 6
a10010 0.004 517 654 827 51 a01010 −0.001 072 908 520 62
a00110 0.0079 424 987 096 1 a00020 0.003 686 841 487 45
a10001 0.008 790 443 952 04 a01001 −0.000 331 815 657 835
a00101 0.026 313 927 435 3 a00011 0.148 845 254 292
a00002 0.006 920 986 351 91

a30000 0.000 152 170 579 737 a21000 −0.003 184 944 571 42
a12000 0.000 508 958 521 844 a03000 0.000 330 681 134 588
a20100 0.004 621 933 901 59 a11100 −0.008 814 229 637 32
a02100 −0.000 584 305 387 516 a10200 0.002 839 597 094 90
a01200 −0.001 294 136 207 96 a00300 −0.000 630 993 650 544
a20010 −0.000 572 340 996 592 a11010 −0.001 443 414 920 42
a02010 −0.000 488 826 934 323 a10110 −0.004 934 441 776 54
a01110 −0.002 114 817 985 54 a00210 −0.004 859 672 108 43
a10020 0.001 143 585 135 86 a01020 −0.000 242 743 590 196
a00120 0.002 166 490 287 42 a00030 0.000 150 191 479 323
a20001 0.004 195 821 643 95 a11001 −0.001 537 470 241 27
a02001 −0.000 468 867 739 930 a10101 −0.001 903 202 659 67
a01101 −0.002 110 357 355 99 a00201 0.003 428 040 946 51
a10011 −0.055 593 544 668 3 a01011 −0.003 157 146 413 92
a00111 0.077 571 413 495 9 a00021 −0.428 516 226 894
a10002 0.003 577 541 199 08 a01002 −0.000 635 133 922 605
a00102 0.004 669 795 919 56 a00012 0.462 244 626 534
a00003 0.000 970 880 875 134

4.3.4. Error estimates for the normal form. Truncating the higher-order terms of the normal
form introduces an error. The typical method of estimating the size of this error is to compute
the upper bounds for the remainder terms that are to be truncated. This procedure is laborious
and often the bounds obtained are not sharp enough.

An alternative procedure is followed here. Instead of seeking the bounds for the monomials
appearing in the remainder, we identify the neighbourhood of the fixed point in which the error
introduced in the truncation process is sufficiently small. This is achieved using two different
techniques.

(i) Consider the five integrals of motion Ik for k = 1, . . . , 5 of the truncated normal-form
Hamiltonian K . These integrals commute with K , i.e. {Ik, K} = 0 for k = 1, . . . , 5.
The corresponding polynomials, which we denote I ∗

k and are obtained from the Ik’s using
the inverse Lie transformation, are not integrals of the full Hamiltonian. They do not
commute with H , {I ∗

k , H } ,= 0 for k = 1, . . . , 5. The goal is to define a volume (ball) in
phase space surrounding the fixed point such that the quantities |{I ∗

k , H }|/|H | evaluated
within this ball have an upper bound that is sufficiently small.
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To implement this idea a ball, in phase space, of radius 1/10 was defined. Then 100 random
phase points within this ball were chosen and the value of the quantities |{I ∗

k , H }|/|H |
calculated for k = 1, . . . , 5. This yielded 1.082795... × 10−13 as an upper bound. The
Poisson brackets are proportional to the rate at which the approximate integrals of the
motion I ∗

k vary with time.
These calculations were carried out in the variables defined by (17). The canonical
transformation to these variables from the normal-form variables to the new set of variable
(i.e. the variables P † and Q†) is given by

T −1 = R−1 ◦ D−1 ◦ NF−1.

In these variables the actions are given by Ik = T −1(P
†
k Q

†
k ). The Hamiltonian in these

variables is given in (18).
(ii) Compare the Hamiltonian (18) with the Hamiltonian obtained by back transforming the

normal-form Hamiltonian K . More concretely, calculate the Hamiltonian T −1(K). Then
subtract the Taylor expansion to order 10 of (18) T −1(K)−

∑12
j=2 Hj/(j − 2)!. The result

is zero. To avoid this, modify the HamiltonianK slightly. Apply the inverse transformation
to the modified normal-form Hamiltonian defined as K̄ =

∑12
j=2 K̄j /(j − 2)! where

K̄j = Kj for 2 " j " 12, K̄11 = K11 + K12/12 and K̄12 = 0 and then subtract the
Taylor expansion of (18) to obtain T −1(K̄)−

∑12
j=2 Hj/(j − 2)!. Evaluate the expression

|T −1(K̄) − H |/|H |. This error term is of the order of O((Pk, Qk)
13), i.e. it is of the form

O((Pk, Qk)
N+1) for an arbitrary N . Thus this quantity represents the first term of the

global truncating error function.
As in the case of the first integrals, a sample of 1000 random phase points that lie within a
nine-ball of radius 1/10 centred at the fixed point was chosen. Then the error term defined
above was evaluated for these points. This yields an estimation of the relative error of the
truncation procedure. The mean value for this error is 3.841425... × 10−9.

Both checks indicate that, within nine-balls of radius 1/10 centred at the fixed points in
phase space (ten-dimensional), reliable estimates of the relative error between Hamiltonians is
of order of 10−9 while the independent check of the approximate integrals of motion is of order
10−13. This implies that all the geometrical structures inside these balls, namely, the nonlinear
continuation of the pseudo-NHIM, their stable and unstable manifolds and the transition states
are all constructed with a global error of 10−9 or less. Consequently, we are confident of our
results within this tolerance.

4.3.5. Theorem 1 revisited. Theorem 1 addresses the existence of the pseudo-NHIM and it
stable and unstable manifolds. It states a number of conditions and restrictions that must be
satisfied. Central to these requirements are the two Lyapunov exponents, λ1 and λ2. Their
values are given in table 1. The ratio of these exponents is λ1/λ2 = (

√
13 + 2)/(

√
19 − 1) =

1.29184... . The theorem guarantees that the manifolds of interest are of at least class C r̄ where
r̄ is the integer part of the ratio of the exponents r̄ = Int[λ1/λ2] = 1. Thus these surfaces are
guaranteed to be at least of class C1 in the neighbourhood of the rank-two saddle where the
normal-form computations are valid.

If the condition eλ2 < a < eλ1/ρ where ρ = Int[λ1/λ2] = 1 and a = exp[(λ2 +
λ1/Int[λ1/λ2])/2] is satisfied then Irwin’s theorem [35, 36] is applicable. Evaluating this
inequality yields 1.31435 . . . < 1.36784 . . . < 1.42350 . . . thus theorem 1 is applicable in the
present case.

In the exercise described above we constructed the manifolds of interest to 10th order
(12th degree, N = 12). As the theorem only guarantees that these manifold are of class
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Figure 9. Logarithm of the estimate of the error in the integrals of the motion versus the degree to
which the calculations were carried. The line is a linear fit to the data.

C1 one might have expected difficulties to occur. Nevertheless, the estimations of the tail of
the normal-form transformations made in the previous subsection suggest the good behaviour
of the approximations to the degree we have carried out the computations. The errors in
the approximate integrals of motion and in the estimates based on the composition of the
Hamiltonians decrease as we increase N . In figure 9 we plot the logarithm of the estimate
of the error in the integrals versus the degree to which the calculations were carried. Here
we have fixed a ball in phase space of size 1/10 centred at the rank-two saddle and take the
maximum values of |{I ∗

k , H }|/|H | for k = 1, . . . , 5 for the different approximations I ∗
k for

different N ’s. Note that I ∗
k are polynomials of degree N . We see that this measure of the error

appears to vary linearly with the order of the calculation.
As a conclusion, even when a high-order of smoothness of the manifolds cannot be

guaranteed, the simulations show that the approximations of the geometrical structures through
high-order normal forms are well behaved in the neighbourhood of the rank-two saddle.

4.4. The dynamical implications

In addition to obtaining the transformed or normal-form Hamiltonian (23), the normalization
algorithm also yields the transformation equations between the normal mode variables as
defined in (19) (also see table 1) and the normal-form action-angle variables, that is,

U = U(I1, . . . , I5, θ1, . . . , θ5) PU = PU(I1, . . . , I5, θ1, . . . , θ5),

V = V (I1, . . . , I5, θ1, . . . , θ5) PV = PV (I1, . . . , I5, θ1, . . . , θ5),

u = u(I1, . . . , I5, θ1, . . . , θ5) Pu = Pu(I1, . . . , I5, θ1, . . . , θ5),

v = v(I1, . . . , I5, θ1, . . . , θ5) Pv = Pv(I1, . . . , I5, θ1, . . . , θ5),

φ = φ(I1, . . . , I5, θ1, . . . , θ5) Pφ = Pφ(I1, . . . , I5, θ1, . . . , θ5).

(24)

The normal-form Hamiltonian is integrable and we can immediately write down the time
development of action-angle variables. The actions are constants of the motion and the angles
develop linearly in time,

Ii(t) = Ii(0),

θi (t) = νi t + θi (0)
(25)

for i = 1, . . . , 5 and where the angular frequency is

νi (I1, . . . , I5) = ∂K(I1, . . . , I5)

∂Ii

. (26)
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These expressions can be substituted directly into (24) giving the time development of the
normal mode variables. Substituting these results into (20) and then into (17) yields the time
development of the original physical variables.

In the subsections that follow we will use these results to examine the character of the
dynamics confined to the various manifolds discussed above. In particular, we will examine
the dynamics in both the normal mode and the original physical variables.

4.4.1. The centre manifold and the NHIM. The centre manifold of the rank-two saddle is a
six-dimensional manifold embedded in the full ten-dimensional phase space. It is specified by
setting the values of the action-angles variables associated with the two hyperbolic degrees of
freedom equal to zero,

I1 = 0 θ1 = 0,

I2 = 0 θ2 = 0.
(27)

The centre manifold is foliated by a three-parameter family of invariant three-tori. The
parameters can be taken to be the action variables of the elliptic degrees of freedom (I3,
I4, I5). The corresponding angle variables (θ3, θ4, θ5) provide a coordinate system on each of
the invariant tori.

Consider the action space defined by the three elliptic action variables. This space is
a representation of the centre manifold. Every point in it corresponds to an invariant torus
and is characterized by the value of the energy K(0, 0, I3, I4, I5). Specifying the value of
the energy defines a two-dimensional surface in the three-dimensional elliptic action space.
This surface is a representation of the NHIM. Each point in the surface corresponds to an
invariant torus, which is embedded in the NHIM. The three corners of the NHIM, that is, the
points where the NHIM intersects the three action axes correspond to periodic orbits. These
orbits are fundamental dynamical modes of the NHIM. The orbits associated with these three
fundamental modes are shown in figures 10 and 11. In the first figure the dynamics are shown
in terms of the normal mode variables and in the second the same orbits are shown in the
physical coordinate space. For these and all subsequent examples the energy is taken to be
0.025 hartrees above the barrier height.

In figure 10 we take advantage of the fact that normal modes decouple in the vicinity of the
saddle point and plot the dynamics in the five two-dimensional phase spaces corresponding
to each of the normal modes. Note that in each of these three examples the dynamics are
confined to the origin of the two subspaces associated with the hyperbolic degrees of freedom.
They satisfy (27) and consequently are confined to the NHIM. The differences between these
three orbits are seen in the phase spaces associated with the stable or elliptic modes. The
periodic orbit associated with the stable A1 mode is seen in figure 10(a). Here the values of
the action variables in the B1 and B2 modes are equal to zero, I4 = 0 and I5 = 0. Similarly,
in figures 10(b) and 10(c) the periodic orbits associated with the stable B2 and B1 modes are
shown. For the B2 mode I3 = 0 and I5 = 0, and for the B1 mode I3 = 0 and I4 = 0.

The orbits seen in figure 10 are shown in the physical coordinate space in figure 11. In
figure 11(a) we see the stable A1 mode. A consequence of choosing& = 0 is that the dynamics
are confined to the yz-plane. The fixed point corresponds to both electrons sitting at rest at the
two dots. Note that as the two electrons cross above the saddle point their momenta are mirror
images, and consequently, the two electrons are in phase as they traverse their own periodic
orbits in the physical coordinate space. The B2 mode is also confined to the yz-plane. The
coordinate space dynamics associated with this mode are shown in figure 11(b). Here, as the
electrons cross above the saddle point, the momenta are not mirror images but rather inverted.
The two electrons traverse symmetrical orbits but are out of phase with each other. And finally,



552 G Haller et al

Figure 10. The three fundamental modes embedded in the NHIM. These three dynamical modes
are shown in normal mode phase space representation: (a) the A1 normal mode, (b) the B2 normal
mode and (c) the B1 normal mode.

Figure 11. The three fundamental modes embedded in the NHIM. These three dynamical modes
are shown in the physical coordinates: (a) the A1 normal mode, (b) the B2 normal mode and (c) the
B1 normal mode.

the coordinate space dynamics for the stable B1 mode are shown in figure 11(c). This is the
only mode brings the electrons out of the yz-plane. Note that again, as for the A1 mode, the
momenta are mirror images and consequently the two electrons traverse their periodic orbit in
phase with each other.

The generic dynamical behaviour on the NHIM is a combination of these three normal
modes. An example is shown in figures 12 and 13. The first of these is the normal mode
phase space representation. Again, as the dynamics are confined to the NHIM, the first two
modes are confined to their origins. The difference between this and the previous examples
are that here all three modes are excited. That is, the dynamics are confined to a three-torus
embedded in the NHIM. In figure 13 we see the projections of this three-torus into the xy-,
xz- and yz-planes in the physical coordinate space.
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Figure 12. A generic trajectory confined to the NHIM shown in the normal mode phase space
representation.

Figure 13. The generic trajectory seen in figure 10 shown in the physical coordinates. The
trajectories of both electrons are shown in different colours. (a) shows the projections into the
xz-plane, (b) shows the projection into the xy-plane and (c) shows the projection into the yz-plane.

Figure 14. The unstable mode A1 embedded in the pseudo-NHIM shown in the normal mode
phase space representation.

4.4.2. The pseudo-normally hyperbolic invariant manifold. The pseudo-NHIM, C̃h, is a
seven-dimensional invariant manifold embedded in the nine-dimensional energy shell, Ẽh. It
is specified by requiring that the action-angle variables of the fast mode be equal to zero,
I1 = 0 and θ1 = 0, subject to the energy requirement K(0, I2, I3, I4, I5) = h. This manifold
is diffeomorphic to near-critical energy surfaces of a four degree of freedom Hamiltonian with
a rank-one saddle.

The dynamics on this surface are confined to invariant manifolds labelled by the four
action variables (I2, I3, I4, I5) associated with the four fundamental modes. Three of these are
the stable modes discussed just above. The fourth mode corresponds to the slow hyperbolic
mode (A1). While the elliptic actions (I3, I4, I5) are restricted to positive values, the hyperbolic
action I2 can take both positive and negative values. This mode is shown in figures 14 and 15.
In the normal mode picture, figure 14, we see that the system is confined to the origin in all but
one mode, the A1 hyperbolic mode. The projection of this mode into the physical coordinate
space is shown in figure 15. This is the mode that corresponds to the non-sequential double
ionization; as both electrons cross the saddle point (the dots) they ionize.
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Figure 15. The unstable mode A1 embedded in the pseudo-NHIM shown in the physical
coordinates.

In this example the energy in the A1-hyperbolic mode has been chosen to be 0.025 hartrees
above the saddle point. If energy had been chosen to be below the saddle point (I2 < 0),
the system would have been unable to surmount the barrier and both electrons would have
been reflected. This is simply an observation that the seven-dimensional pseudo-NHIM can
be partitioned into four disjoint volumes. The boundary between these four volumes is a
six-dimensional invariant manifold, i.e. codimension one in the seven-dimensional pseudo-
NHIM. It can be constructed from the stable and unstable manifolds of the NHIM and is
characterized by I1 = 0, θ1 = 0, I2 = 0, and K(0, 0, I3, I4, I5) = h. This manifold represents
an impenetrable barrier for dynamics confined to the pseudo-NHIM. This is illustrated in
figures 16 and 17. The difference in initial conditions of the two orbits seen in figure 16 is
that they are on opposite sides of the impenetrable barrier. The physical coordinate space
orbits are shown in figure 17. Initially the two trajectories are indistinguishable, however as
they approach the saddle point the slight difference in the initial conditions make their impact
and one of the orbits crosses the saddle point while the second is reflected. This is simply an
observation, as noted above, that the pseudo-NHIM is diffeomorphic to near-critical energy
surfaces of a four degree of freedom Hamiltonian with a rank-one saddle.

In summary, the dynamics on the pseudo-NHIM are confined to invariant manifolds that
can be labelled by the values of the four action variables (I2, I3, I4, I5) subject to the energy
condition, K(0, I2, I3, I4, I5) = h. The two orbits shown in figures 16 and 17 clearly show that
the pseudo-NHIM can be partitioned into distinct volumes associated with ionizing dynamics
and non-ionizing dynamics. The boundary between these volumes is given by the condition
I2 = 0. Clearly, this surface is of codimension one and consequently partitions the pseudo-
NHIM into dynamically distinct regions.

4.4.3. The stable and unstable manifolds of the pseudo-NHIM and the transition state.
The pseudo-NHIM C̃h possesses both stable Ws(C̃h) and unstable Ws(C̃h) manifolds. As
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Figure 16. Two trajectories embedded in the pseudo-NHIM shown in the normal mode phase
space representation. The initial conditions are chosen to be near identical but on opposite sides of
the separatrix in the PU -U phase space. Trajectory (a) passes over the saddle and ionizes, while
trajectory (b) does not have sufficient energy in the U -mode to surmount the barrier and is reflected.

Figure 17. Two trajectories seen in figure 15 shown in the physical coordinates. The trajectories of
the two electrons are shown in different colours. Trajectory (a) passes over the saddle and ionizes,
while trajectory (b) does not have sufficient energy in the U -mode to surmount the barrier and is
reflected, (c) a superposition of the two trajectories illustrating that they can only be distinguished
after approaching the transition state.

the pseudo-NHIM is seven-dimensional, its manifolds and the transition state will be eight-
dimensional, and thus, of codimension one in the nine-dimensional energy shell Ẽh. Moreover,
as both of the manifolds are invariant, they represent impenetrable barriers in the energy shell.
They can be partitioned into forward and backward parts, W

j
f (C̃h) and W

j
b (C̃h) where j = s

or u. The union of the forward (backward) parts of the two manifolds yields the forward
(backward) reactive tube Wf (C̃h) = Ws

f (C̃h) ∪ Wu
f (C̃h) (Wb(C̃h) = Ws

b (C̃h) ∪ Wu
b (C̃h))

[26–33]. All states confined inside the forward (backward) reactive tube cross the saddle point
and are said to ‘react’.

The flux through the forward and backward reactive tubes is of fundamental physical
interest. It can be calculated by constructing any cross-sectional surface of the reactive tube
and calculating the flux across the surface. The most convenient manner to accomplish this
is to construct a surface of no return, that is, one which is transverse to the flow through the
reactive tube (except at the boundary). The forward and backward transition states, defined as

TSf (C̃h) = {(I, θ) : K(I1, I2, I3, I4, I5) = h > 0, θ1 = 0, I1 ! 0} ,

TSb(C̃h) = {(I, θ) : K(I1, I2, I3, I4, I5) = h > 0, θ1 = 0, I1 " 0} ,
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Figure 18. Two trajectories embedded in the the energy shell. The initial conditions of these two
trajectories are chosen to be near identical. The difference being that they are on opposite sides
of the unstable manifold of the pseudo-NHIM. Trajectory (a) has sufficient energy in the B2 to
surmount the barrier, while that seen in (b) does not have sufficient energy and is reflected.

Figure 19. The two trajectories seen in figure 18 shown in the physical variables. Trajectory (a)
has sufficient energy in the B2 to surmount the barrier, while that seen in (b) does not have sufficient
energy and is reflected, (c) a superposition of the two trajectories illustrating that they can only be
distinguished after approaching the transition state.

are such surfaces. They are also codimension one surfaces and partition the energy shell into
reactant and product volumes. They are not invariant, and the reaction is said to occur when
the system crosses these surfaces.

The relationships between these three codimension one surfaces are illustrated in figures 18
and 19. In figure 18 we see the normal mode representation. These three surfaces have the
pseudo-NHIM in common, that is, all possible partitions of the energy among the three elliptic
modes and the slow hyperbolic mode are allowed. The difference between these three surfaces
occurs in the phase space associated with the fast (B2) hyperbolic mode. In this figure the
stable manifold is shown in red, the unstable is blue. The transition state bisects the stable
and unstable manifolds of the fast hyperbolic direction. Also shown in this figure are two
trajectories whose initial conditions are chosen to be on opposite sides of the stable manifold
(red). We see that as the orbits approach the saddle point the one is reflected and the other
passes through the transition state as it passes above the saddle point.

Finally, these two trajectories are also shown in the physical coordinate space in figure 19.
Again we see that as the two electrons approach the transition state (one from one side and the
other from the other side) that in the first case they pass over the saddle point and in the other
are reflected by the barrier.
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5. Summary

We have generalized the theory of rank-one saddles to rank-m (m ! 2) saddles. The
generalization is not straightforward as the stable and unstable manifolds of the NHIM are
not of codimension one in the energy shell. To make progress one must revert to the theory of
pseudo manifolds and use them to extend the NHIM. We call this extended manifold the pseudo-
NHIM. The stable and unstable manifolds of the pseudo-NHIM are surfaces of codimension
one and, consequently, they partition the energy shell. Once these manifolds are constructed, it
is straightforward to define the transition state which in turn can be used to formulate a theory
of transport.

We have applied these ideas to a simple but important physical system: the two-electron
atom. This model system is of considerable current interest as recent developments in
laser spectroscopy enables atomic and molecular physicists to interrogate physical systems
at energies in the vicinity of a rank-two saddle. We expect the results presented here will have
a significant impact in the interpretation of these results.

Other interesting applications where rank-m saddles occur abound. Two additional
examples include astrophysics, the restricted three-body problem which takes into account
the attitude of the primaries [66], and chemical reactions, the role of floppy modes in reaction
dynamics [67].
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Appendix A. Transformation to normal form for rank-m saddles

In this appendix we address the issue of transforming to normal form in the general case of a
rank-m saddle. As a starting point we assume that we have transformed to a set of canonical
variables such that the Hamiltonian has the form H = H2 +

∑
k=3 Hk where

H2(P, Q) =
m∑

i=1

λi Pi Qi + ı

n∑

i=m+1

ωi Pi Qi. (A.1)

The higher-order terms Hk , for k = 3, 4, . . ., are homogeneous polynomials of degree k in
the variables Pi and Qi’s. Methods for transforming the Hamiltonian into this form are well
known and the reader is referred to Laub and Meyer [37] and Meyer et al [38] for details.

Our goal is to transform the higher-order terms Hk into normal form via a nonlinear
canonical transformation. We start by defining the Poisson brackets of two functions

M and N that depend on P
†
i and Q

†
i ’s as {M, N } =

∑n
i=1(∂M/∂Q

†
i ) (∂N/∂P

†
i ) −

(∂M/∂P
†
i ) (∂N/∂Q

†
i ). Now, if the Lie operator associated with H2 is given by LH2(·) =

{·, H2}, a function X is said to be in normal form with respect to H2 if LH2(X) = 0. We pick
a monomial of degree . (we take . ! 3) given by

z. = α P
†
1

k1

. . . P †
n

kn

Q
†
1

j1

. . . Q†
n

jn
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where α is a non-null real or complex constant and
∑n

i=1(ji + ki) = . (with ji and ki’s
non-negative integers), we have that

{z., H2} =
(

m∑

i=1

(ji − ki) λi + ı

n∑

i=m+1

(ji − ki)ωi

)

z. = (β1 + ıβ2) z.. (A.2)

The fact that H2 is semisimple implies that the Lie operator LH2 is semisimple and the image
of a monomial of degree . is another monomial proportional to it, with proportional constant
β1 + ıβ2. Moreover, because of the semisimple character of LH2 , it is straightforward to
identify the kernel and the image of LH2 : a monomial z. belongs to ker LH2 if and only if
β1 = β2 = 0, otherwise it belongs to im LH2 .

Thus, given a homogeneous polynomial of degree ., say Y., it is composed by the sum
of monomials of the type z.. To put Y. in normal form means to split it into two parts,
one belonging to ker LH2 and the other that belongs to im LH2 . We proceed term by term
of Y.. So, once z. is picked, if β1 = β2 = 0, we keep it in the transformed Hamiltonian
(i.e. in the normal-form Hamiltonian) but if β1 ,= 0 or β2 ,= 0 we incorporate the monomial
(−1/(β1 + ıβ2)) z. to the generating function. Thus, we build the normal-form Hamiltonian,
K., and the generating function W. related to Y. by checking the conditions of (A.2) for all
the monomials that Y. is made of. By construction, K. and W. are homogeneous polynomials
of degree . and Y. = LH2(W.) + K. as we have split Y. into terms of the kernel and of the
image of LH2 .

The procedure is iterated over the degree . of the polynomials, so that, in the next step,
the Hamiltonian of degree . + 1 is handled in the same way as we explained for the degree
.. However, in order to advance from degree . to degree . + 1 one needs to compute a
sequence of intermediate Hamiltonians using the generating functions up to degree . and the
recurrences provided by the Lie triangle, as is customary in normal-form transformations.
This is achieved using the Lie–Deprit method [64], and the entire process is carried out to
the desired degree N . As a result of the transformation one constructs the normal-form
Hamiltonian, K = K2 + · · · + (1/(N − 2)!)KN , together with the generating function
W = W3 + · · · + (1/(N − 3)!)WN . We note that K2 ≡ H2 and one starts at degree 3 (order 1)
and ends up at degree N (order N −2). Thus the normal-form transformation consists of N −2
steps. The final steps consists in calculating explicitly the forward and backward normal-form
transformations using W and some recurrence formulas based on Lie triangles.

A sufficient condition for a given monomial to belong to ker LH2 is that ji = ki for
i = 1, . . . , n. There could be other combinations of the λi and ωi’s such that β1 = β2 = 0.
(Observe that the λi’s cannot be combined with the ωi’s to get a monomial in the kernel of
LH2 .) These combinations would lead to resonances and would appear when some of the
possible ratios λi/λj are rational (or the ratiosωi/ωj are rational). However, in many practical
applications the frequencies are incommensurate as is the case of the example of this paper.

By construction, in the absence of resonances the normal-form Hamiltonian depends on

the transformed variables, P
†
1 , . . . , P

†
n , Q

†
1 , . . . , Q

†
n only through the products P

†
1 Q

†
1 , . . . ,

P
†
n Q

†
n . This is a simple fact derived from (A.2). Indeed, in order to get the terms of K., for

each monomial z. of Y. one needs that ji = ki for i = 1, . . . , n, so the only terms kept on

K. are those monomials of the form α (P
†
1 Q

†
1 )j1 . . . (P

†
n Q

†
n )jn . This situation is ideal from

the point of view of the simplicity of the transformation to normal form. Indeed, once the
higher-order terms are truncated, the resulting Hamiltonian has all its n degrees of freedom

decoupled, therefore, it has n (real) integrals of motion I1 = P
†
1 Q

†
1 , . . . , Im = P

†
m Q

†
m,

Im+1 = ıP
†
m+1 Q

†
m+1, . . . , In = ıP

†
n Q

†
n . By inverting the integrals of motion I1, . . . , In,
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(possibly together with the rest of linear changes needed to put the quadratic part into normal
form), one obtains approximate integrals of motion for the initial Hamiltonian, that is, functions
I ∗

1 , . . . , I ∗
n that are approximate integrals of H in a neighbourhood where the normal-form

approach is valid.
Nevertheless it can occur that at a certain degree, the quantities β1 and β2 become close

to zero, therefore the coefficients of the generating function and the Hamiltonians at higher
degrees become large. This is the well known case of the appearance of small denominators.
The effect of these terms is the divergence of the transformations—in general the normal-form
transformations are divergent but can behave nicely in a neighbourhood of the rank-m saddle.
The greater the degree . is, the higher the probability that β1 and β2 become smaller. In the
application we show a couple of procedures to check that the generating function and the
normal-form Hamiltonian behave well in a neighbourhood of the fixed point and can be used
to make valuable simulations, even when their coefficients increase with the degree of the
expressions.

If resonances play a role in the Hamiltonian, it is no longer possible to decouple the n

degrees of freedom. The number of integrals that can be obtained after truncating the tail of
the normal form depend on the number of ratios λi/λj and ωi/ωj that are rational. In the
context of the present work we need at least to decouple the degree of freedom related to the
largest eigenvalue λ1. Thus, we would require that the ratios λ1/λj with j = 2, . . . , m are

not positive rationals or close to them. Then, the quantity I1 = P
†
1 Q

†
1 , would become an

integral of motion, regardless of the rest of hyperbolic and elliptic directions. By doing so the
Hamiltonian function is in the required form by the theory of section 3.
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