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Abstract. Delayed robot systems, even of low degree of freedom, can produce phenomena which are well
understood in the theory of nonlinear dynamical systems, but hardly ever occur in simple mechanical mud_e]s. '_T'n
illustrate this, we analyze the delayed positioning ol a single degree of freedom robot arm which leads to an infinite
dimensional dynamical system. Restricting the dynamics to a four dimensional center manifold, we show _lhnt
the system undergoes a codimension two Hopf bifurcation for an infinite set of parameter values. This [me_dcs
a mechanism for the creation of two-tori in the phase space and gives a theoretical explanation for self-excited
quasiperiodic oscillations of force controlled robots. We also compare our results with experimental data.
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1. Introduction

Itis well known that force controlled robots tend to lose robustness or even stability depending
on the environment they are in contact with. Since force disturbances, like the Coulomb
friction, may cause large fluctuation in the contact force between the robot end effector and
the environment (or workpiece), the application of great proportional control gains is necessary
to reduce this error. However, large gains often cause instability. There are several proposed
explanations for this type of instability at high gains, including, e.g., Craig [3], Asada and
Slotine [2], and Vischer and Khatib [ 1 8]. In contrast to these studies, the experimental evidence
presented in this paper suggests that the most important cause of instability is the effect of
sampling time and the related delay in digital control. Without modeling these effects, one
can neither give an accurate description of the loss of stability nor explain the appearance of
nonlinear oscillations.

Continuous models, like those of An er al. [1] or Eppinger and Seering [4], can explain why
force controlled robots tend to lose their stability more easily than their position controlled
counterparts. At the same time, these models leave us without any conclusion for the optimal
choice of sampling times. Whitney [19, 20] presents some analytical stability results for di gital
f?rce control, but his models are too simple to account for the contact between the two basic
vibratory systems: the soft force sensor and the environment. The simulation results of Kuno
et al. [10] emphasize the possible destabilizing effect of sampling showing instability in force
c;:unlmllec! robot systems at a sampling time near 0.1 ms. However, in many cases, e.g., for
;;n T}Till:‘ﬂﬂ;ﬂenld! hjfbnd pqsumnf_fﬂrce cnntrul!ed Newcastle robot stqdied in this paper, the

g delay is substantially higher than this value. Only models including the effect of
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Fig. 1. Mechanical model of force control.

sampling were successful to explain the often unexpected stability properties of the Newcastle
robot, which was originally designed for turbine blade polishing (Steven and Hewit [16]).

In this paper we study two robot systems which are closely related to the Newcastle robot
mentioned above. First, we briefly discuss some experiments on a kinematically simplified
version of the robot (single-axis force control in a limited domain of the workspace). We present
stability charts constructed from experimental data and compare them with results obtained
from a linear stability analysis of the system. We also discuss a truly nonlinear phenomenon,
the occurrence of quasiperiodic oscillations with two or three frequencies slichtly above the
stability limit, We then propose a simple model which turns out to capture some of these
nonlinear effects. This model contains time delay and admits a stability chart which has the
same structure as that of the Newcastle robot. We study our infinite dimensional model usine
center manifold reduction, normal forms, and the methods of bifurcation theory to obtain
closed form analytical results. These results indicate the existence of a two dimensional
invariant torus and one or two limit cycles within a four dimensional center manifold in
the infinite dimensional phase space of the model. These invariant manifolds in the model
system explain the occurrence of quasiperiodic and periodic oscillations in the underlying
physical system. We also present numerical results which confirm our analytical calculations.
Finally, we discuss how more sophisticated modeling could explain the occurrence of stable
three-frequency motions in real robot structures.

2. Stability Experiments on Digital Force Control

[n order to obtain clearly arranged experimental results, we used a single-axis force control
implementation of the hybrid controlled Newcastle robot and studied it only near a certain point
of the workspace (see Stépdn et al. [14] for details). Although the corresponding mechanical
model describes only one DOF of the robot, it still has two mechanical degrees of freedom
(see Figure 1) corresponding to the two general coordinates ¢; and q2. Note that ¢ is the
displacement of the first block relative to the second. The coordinates are zero when the
spring forces are zero. The control force is denoted by 2, m refers to the mass, and b and *
stand for the damping factor and stiffness, respectively. The subscripts r, s, and e refer to the
robot manipulator, force sensor, and environment, respectively.

In practice, the manipulator inertia 1, is much greater than the inertia of the sensor ms.
The sensor damping by is also small compared to the manipulator damping b,.. The force sensor
is soft (i.e., kg is small) as suggested by Whitney [20] or Craig [3]. The dynamic behavior of a
force controlled robot becomes fairly complicated when the environment is also an oscillatory
system (see Figure 1) and this subsystem has a relatively low natural frequency \/k./m. and
slight damping b.. Since the force sensor is in contact with the environment, the two blocks
representing them appear through the joint inertia my + m, in the equations of motion. We
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Fig. 2. Stability chart of force controlled robot.

experimentally identified the values of the mechanical parameters to find

m, =~ 2500kg, b, = 32Ns/mm,

ms = 0.95kg, b;=0.002Ns/mm, ki;=445N/mn
me = 4.43kg, be = 0.0025 Ns/mm, A, = 13.3 N/mm.

Regarding these parameter values we note that the mass of the end effector is included in .,
and the relatively high value of the parameters m, and b, is due to the high gear ratio at a ball
SCTew.

The above model can be thought of as the coupling of two 1 DOF subsystems. If 112, + 1, &
0, then the “manipulator subsystem” is a strongly overdamped system with a relative damping
factor x, = 3.16. In case of m, — oo, the “sensor/environment subsystem” is characterized

by wos = 103.7 rad/s, ks = 0.004; hence it is a slightly damped oscillatory system with a
natural frequency of about 16.5 Hz.

We will assume the control force in the form

Q(t) = pr(Fd = .{:sq[(tj - 7)) +k5q;(tj —-T1), t€ [t‘j,tj +7) 3=01,...

(1)
':‘his agrees with the scheme suggested by Raibert and Craig [12] where the constant desired
orce
Fqy=50N

was set during tl?e experiments. The sensed force is substituted as Fs = k¢q) using the sensor
spring deformation ¢;. There are only two parameters left which were a

il; : lly varied in the

stability experiments: the proporti in K e .
; ' portional gain K, and the samplin Wi

the time of the jth sampling is ¢; = j7. ! PURG thivie: 72 VIR, e bt ninie,

o p:ust?:;uy th in the plane u.f these two parameters is presented in Figure 2. The robot
grammed to touch the environment, a steel cantilever beam, at a specified point of
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Fig. 3. Self-excited quasipeniadic oscillation and its spectrum: = = 45 [ms], i, = 50.

the workspace. The crosses refer to parameter values for which the task was accomplished

successfully, while the circles refer to self-excited vibrations which did not settle, i.e.. the
desired equilibrium of the robot was unstable. The frequencies of these oscillations along the
stability limit are also shown above the stability chart.

Although we could not investigate cases of sampling times less than 6 ms with the processor
we used, the peculiar structure of the stability region is possibly the saime 1o that recion, oo, Our

linear stability analysis also confirmed the experimental results, as shown by the continuous
lines in Figure 2. To obtain these lines, we considered the linearized equations

;. my q " b +bs b, ) Fh)
My My + Mg + M, q2 b b+ b, ( q2

(01)(2)=(2)

where @ is the same as in (1). The stability of the equilibrium

(*Tm) N ( Fu/ks )

q20 Fy/k,

can be studied by transforming equations (1)-(2) into a five dimensional discrete mapping and
applying Jury’s criterion (Kuo [11]). An outline of this lengthy calculation is given in Stépdn
etal. [15] for a 1| DOF case.

We would like to draw attention to the self-excited quasiperiodic oscillations with two or
even three different frequencies in the shaded domain of the parameter plane in the vicinity of
a “corner” of the stability region. Figure 3 presents a typical time history of a vibration in that
parameter region together with its spectrum, which clearly shows three distinct frequencies
All three frequencies are indicated above the stability chart in Figure 2, and they all have ﬂn
obvious connection with the theoretical frequency lines determined from the linear theory

Hnjﬁrever, the proof for the existence of these quasiperiodic oscillations as well as tfieir
analytical approximation require nonlinear methods, Following Takens [17], Guckenl;eimer
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Fig. 4. Mechanical model of robot control via a kinematic constraint.

and Holmes [5] provide results from bifurcation theory in a form applicable to these problems,
but the necessary calculations are rather complex and one usually has to appeal to some
symbolic computation package to cope with them. In that case one has no direct control
over the individual steps of the computations and special care must be taken to ensure the
correctness of the symbolic code and the initial data (and the credibility of the results). As

a first step in this program, we now present a similar but simpler model where closed form
analytical calculations are possible without symbolic manipulations.

3. Nonlinear Analysis of Delayed Robot Control

Figure 4 shows a model of robot control through a kinematic constraint. An actuator provides
the constrained velocity of the body on the left, and the position of the end-effector with mass
m is measured by the coordinate ¢;. The two bodies are connected by a flexible element of
stiffness k. The damping is neglected to simplify the calculations. The equations of motion
can be written as

Q1) +wp(ai(t) — (1) =0, G2 =glai(t 7)), (3)
where w, = \/k/m is the natural frequency of the uncontrolled system (i.e., ¢» = 0) and the
function g in the feedback is odd and C* smooth near the origin:

9(q) = —xq1 +eqi +---. (4)

If x and ¢ are positive, this function is locally a good approximation for the saturation-like or
degressive nonlinearity of the actuator. We assume a purely analog time delay 7 in the control,

The delay of an analog controller is somewhat different from the sampling time of a digital
one, but its effect on the stability of the system is similar.

3.1. LINEAR STABILITY

First, we investigate the stability of the ¢; = 0 position. Let us introduce the nondimensional-

ized time letting ¢ := t/7 and dropping the tilde immediately. The nondimensionalized delay
T’, the gain K, and the quality factor E will then read

T=71wn, K=x/wn, FE=clwn. (5)

Up to cubic order, equation (3) of motion can be transformed into a three dimensional system
for the new variable x = (x, 3 23)7 = (¢ ¢, ;)T of the form

x(t) = Lx(t) + Rx(t — 1) + f(x(t - 1)),
where

B i 0 00 0
L=10 0 1], R= 0 00|, f(x)= 0 ,
0 <770 -KT3 00 ETz3

(6)
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Fig. 5. Stability chart of delayed robot control

The associated characteristic function 1s

which is analyzed in Stépén [13] in detail. It turns out, that all the infinitely many characteristic
roots A; of D(A, T, ') have negative real parts in the stability domains shown in Figure 5. The
number of characteristic roots with positive real parts is also indicated by encircled numbers.
The stability limits in the parameter plane (7, /\') are given by

’ 9
K,y (T) = (“UHI H ((Hh + L +j) N e B F— (8)
P 2T
which can be calculated using the D-subdivision method [13].

Note that the stability chart of system (3) in Figure 5 has a structure similar to the
experimental stability diagram in Figure 2. In particular, one recovers the same “corner
points” along the stability limit. They are denoted by Py, (k = 1,2,...) (see Figure 5) and are
located at the intersections (T}, i) of the corresponding stability limit curves:

— e —1
I{{Q}(T) = I{{k)(T) = Tk = \/.?_k 5 ) I{k = Jk K
Vit

k=42 + 2+ D2+ (-5, k=1,2,... 9)

At these points there are two pairs of pure imaginary characteristic roots and all the other
roots have negative real parts:

< - =
Ah,.kh=:bwh=:l:1(-i+hw), h=0,k; Rel;j<0, j#0,k. (10)
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The nondimensionalized vibration frequencies wy, are also shown in Figure 5 above the
stability chart.

It can be proved that for £ > 0 supercritical Hopf bifurcations occur along the stability
limits, which implies the existence of stable periodic oscillations in the system above these
limits. Note, however, that quasiperiodic oscillations may also appear in some sectors of the
parameter plane at the points P, where the linear analysis suggests Hopf bifurcations of
codimension 2 (see (10) above). In the following we will focus our attention on the analysis
of the system around these critical points,

3.2. OPERATOR DIFFERENTIAL EQUATION FORMULATION

Mathematically speaking, equation (6) is a retarded differential difference equation which
can also be viewed as an infinite dimensional dynamical system. As it 1s shown in Hale
[6] or Kuang [9], it can either be described in the form of a retarded functional differential
equation

0

k(t) = /[dA(ﬂ}]x(t+ 9) + f(xe(=1)), (1)
—1

where A is a matrix function of bounded variation defined on the interval [—1,0] by

_R, ifd=—1
A(Y) = 0, ife(-1,0), (12)
L, ifd=0

or in the form of an operator differential equation
i;:Ax;-&-.’F(xt), (1:3)

where the linear operator A and the nonlinear F act on the linear vector space H of continu-
ously differentiable functions u : [—1,0] — C*. In particular,

4 u(4) if ¥ € [-1,0)
9) — J dv u(?), : :
Au(?) i Lu(0) + Ru(—1), ifd =0 y B
< Jo, if ¥ € [-1,0)
FWW) =\ fu(-1)), ife=0 (14)

Both in equations (11) and (12), the function x, € H is defined by the shift of time
x (V) =x(t+9), Je[-1,0].

We will also need the space H* of continuously differentiable functions v : [0, 1] — C*. We
now define a bilinear form ( , ) : H* x H — R by

0 0
(v, u) = v*(0)u(0) + f / V(€ — O)[dA(D)|u(€) dE, ueH,veMH" (15)
d=—1E=1

For the details of how this form arises naturally in the eigenfunction representation of system
(13), see Hale [6].
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3.3, FOUR DIMENSIONAL CENTER MANIFOLD

As the analysis in Section 3 shows, in the neighborhoods of the points I, of the parameter
space the nonlinear stability of the fixed point x;(¢)) = 0 is not determined by the eigenvalues
of the linearized problem. (Simple calculation shows that the characteristic roots obtained
in (10) in fact coincide with the eigenvalues of the operator A.) As far as the true local
nonlinear behavior is considered near the P.’s, Hopf bifurcations of codimension 2 can occur
near the degenerate equilibria (see Guckenheimer and Holmes [5]). This phenomenon can be
studied on a four dimensional center manifold embedded in the infinite dimensional phase
space. A first order approximation to this center manifold is given by the center subspace of
the associated linear problem, which is spanned by the corresponding infinite dimensional
eigenvectors Sy, So, Sk, Sx corresponding to the four critical characteristic roots in (10). This
approximation is usually not adequate and one has to compute a second order Taylor-series
expansion of the center manifold. However, the nonlinear terms in equation (3) have a discrete
symmetry: they are invariant under the transformation ¢ — —¢. As a result, the equations
contain no quadratic terms which insures that the center subspace is a good approximation up
to second order. This simplifies the calculations tremendously, as in other similar applications
of center manifolds for delay-differential equations (see Stépdn [13]).

In order to calculate the above-mentioned four eigenvectors of the operator A .., at the
critical parameter point P, the matrices

0
, Ry = g 00 (16)

—~(Jk—1)3 00,

e
—.}'T

L

o il
i O
o e O

have to be substituted into the definition (14) of A where the integer j; is given as in
formula (9). The eigenvectors satisfy

.A(Hsh = Ahsh, ho= 0, k.

In accordance with formulas (10), (14) and (16), this equation is equivalent to the linear
boundary value problems

d . m
g Sh(?) =ih+ D)7 si(9), 9 €[-1,0),

L(k)sn(0) + Rixysn(—1) = i(2h + 1)';* sn(0), h=0,k.

The solution functions

1
sp(9) =| 2h+1)F |LCAHDNER2Y - p o & (17)
—(2h +1)2%

and their complex conjugates §,, h = 0, k give the critical right-hand eigenvectors of the
operator A(,. Its critical left-hand eigenvectors ny,, h = 0, k satisfy

Afk}nh = ihnh, h - 0, k,
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where the adjoint operator Afy, is defined by

V(Y1) if ¥ € (0,1] )
Alav(y) = o _ ;. WeEeH".
(¥) {{“un+mnﬂy if ) =0

The solutions of the corresponding boundary value problems assume the form
(H] )h %ﬂ ]TT (2 Myt
np(¥) =cn | —i@h+1)% | CRHEDY - p =0k, (18)
I

where the complex numbers ¢, h = 0, k come from the orthonormality conditions
(¢, Sh)k) = iny, LA =0,k (19)

The subscript & refers to the fact that Ay from (12) and (16) needs to be substituted in the
bilinear form (15), and § is the Kronecker symbol. For the case [ = h, equation (19) assumes
the form

0
IT'IE(O)S;;(U) j.:,_ — 1 % /T_ ﬁ ": -+ ]ﬁ"n,r” LE) o i = 1 h = 0. k. (2
—1i
After substituting (17) and (18) into (20), o1ie obtuin: i ving expression for the complex

coefficient in ny:
8 2. —6(2h + 12 +i(-=1)"(Gr = )7
72 25k — 62k + D22 + (jx — D

Following Hale [6] and Hassard et al. [7], we now decompose the solution x;(¢/) into com-

ponents lying in the center subspace and components transverse to the center subspace. We
let

xt((9) = > yu(t)sn(@) + Y n(t)sn(¥) +w(t)(?), Pe[-1,0], teR,
h=0,k h=0,k

Cp = h=0A\. (21)

where
yh(t) = (nhix[){k)'.l h = D‘,k

are the coordinates of x; in the directions of s, h = 0, k (center subspace), and the infinite
dimensional vector

w(t) = x; — 2Re (yo(t)so + yx(t)sk), w(t) €H
gives the remaining part of x;. We can write
Yn(t) = (np,Xe) k) = (A", Xe) k) + (0h, F(Xe) ) (k)
= An(np, X¢) k) + 0k (0)F (x¢)(0)

'.'1'3

8
x (wi1()(—1) + 2Re (yo(t)so1(—1) + yk(t)ski (1)) .

= i(2h + 1) yn(t) + ehE
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This yields the transformed system of differential equations

10 ; 0 0 Yo
W 0 0 A W

[ coEC\/ 7} ,%3 (wi(—=1) + 2Im (yo + (=1)*yx))? + h.o.t. \

e E\/72 = (wi(=1) + 2Im (yo + (=1)*yx))® + hot. |
\ h.o.t. /

ra| =

where h.o.t. stands for higher order terms of no importance later, and the corresponding
equations for gp and ;. has been omitted to simplify formulation.

As explained above, the above system has a four dimensional center manifold which is

tangent to the four dimensional (yo, ¥, ¥, Ji) plane. In our new coordinates, it assumes the
form

w = O(lyol*, |yx[*)-

This shows that using the complex variables

“1 = Y0, <2 = Yk,

the cubic truncation of system (6) restricted o . con nifold at >an be cast in the
form
43
: } i : _ Yy ~ a3 =
2| = iwpz) +icoE/j} T (z1 = 21+ (=1)%(22 = 22))°. (22a)
: : . .1 > k 3
Z2 = w2z + ik Ey/ 75 rq (z1 = Z1 + (=1)%(22 — 32))". (22b)

The corresponding two conjugate equations complete the four dimensional system.

3.4. NORMAL FORM

To simplify the analysis of the equations (22a-b) on the center manifold, one can put these
equations in normal form through a further near-identity change of variables (see, e.g., Guck-
enheimer and Holmes [5]). The corresponding normal form in the case of two pairs of pure
imaginary eigenvalues was first derived by Takens [17] and later studied by Guckenheimer
and Holmes [5] in more detail. We use the basic normal form of Takens [17] without the
standard simplifying transformations used in [5] and [17] to reduce the number of parameters.

This way, we have two more terms in our normal form but we obtain the results directly in
terms of the physical parameters of the problem.

Let us introduce the bifurcation parameters
=T =Tk, p2=K— Ky (23)

at the kth critical point P where k = 2,3,... As shown in Takens [17], for small values of
1 and po the dynamics of system (22) near the origin is described by the truncated normal
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form
o= ri(bipn + biape + anry + anri), (24a)
ra = ra(bayger + b + ”21?'? + “11?‘%}, (24b)
P1 = wo+O(r))? (24c)
92 = wi +O(r|)%, (24d)

where the polar coordinates ry, 12, 1, @2 are related to our previous complex variables by the
transformation z; = r;e'%7, j = 1,2. This normal form is only valid for nonresonant cases
which means

miwy + mawy # 0

holds for all possible nonzero integers mj, my satisfying || + [ma| < 4. As one can see

from (10), this nonresonance condition is violated for & = 1 when a 1:3 resonance occurs.
Here we do not deal with this resonant case, and will assume that & > | holds.
The coefficients b;; are just the derivatives of the critical characteristic roots with regard

to the bifurcation parameters:

33&.:. 8}\;;
bl | = = 3 by; =
J I <] O ;
Iy =pa=0 =
This calculation can be carried out via the implicit differentiation of the characteristic function

(7) with regard to T" and I, which (upon substitution of the critical parameter values Ty, K
(k =2,3,...)) yields

b — (Je — 1)m 2(jx — 3) . B it G = D) |
T T 4Ge -3+ Gk - 122 T 4Gk =37+ (e — 1P

(G — D7 60k — 1) — 4(=1)* 5 (2k + 1)

by = + : = . ;

. Vir (2 — 6(2k + 1)2)2 + (ji — 1)
\/}E (k. = 1)

by =

(26 — 6(2k + 1)2)2 + (jk — 1)>7>

To obtain the coefficients a;; usually takes a vast amount of calculation. First, one has
to compute the coefficients in the Taylor series of a near identity transformation which puts
system (22) to the normal form (24), then obtain the coefficients in (24) as functions of the
Taylor coefficients of system (22). Due to the symmetry of the nonlinearity in this problem,
there are no quadratic terms in the Taylor expansion of the right-hand side of system (22). As

a result, the cubic terms in the normal form (24) are exactly the corresponding cubic terms in
system (22). Namely, we have

3T , — 7
2011 = app = —*GE\/E Y Imeg;, a2 = 2a = (—I)L+I6E1/jg 3 Im cg,

where ¢, ¢, must be substituted from (21).
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3.5, ANALYSIS OF THE TRUNCATED NORMAL FORM

A quasiperiodic solution of system (24) with frequencies close to wy and wy manifests itself
as a fixed point (7100, r200) of equations (24a-b) (with r;09 > 0), which must satisfy

2 =
oo | _ [ an ap bu b\ (1
500 az| a2 ba b2 ) \ p2 )’

or, equivalently,

I . 2
T = — ((5jk —3) —4(=1)*(2k + l}m“ iy + Jema (25a
3k /B ; )

I ~/ ; 2
T = — —(k + 3) + 2(=DF2k + 1)jx)= g1 + j2p2 , 25b
00 3JL\/IE { (..-" ) Tk m M . ( )
for k = 2, 3,... and for positive quality factor £. Equations (25) define an invariant torus in

the phase space of equations (24) provided
2 . b el o ﬁ ki =
pa > py—5 max{—(5jr —3) —4(—1)"(2k + 1)jk, O +3) = 2(=1)"(2k + 1)jc }, (26)
Tji

which defines a sector in the parameter plane for each k£ > 2 emanating from the point Fj.
We have drawn these sectors in the stability chart of Figure 5 for & = 2,3,4. In case of 1,
the numerical values in (9) are as follows:

k=2, ja=231, Th=2V31/n, K,;=230V313

and the sector in question is given by

5
K—-K; > ;ﬂ (T'—T3) and K — K; > _9:-:5511r
Clearly, the dynamics on the invariant torus (25) is described by equations (24c—d). There-

fnre the frequencies of the motion on the torus are O((r 00, r200)°) close to the frequencies of

: (2k + 1)-resonant torus. Generally, a 1 : (2k + 1)-resonant torus is filled with periodic
ﬂrhits and the higher the value of k the longer the common period of these orbits is. Hence
we can conclude that the higher the index of a given “corner point” Py the more aperiodic
the motion on our two-torus appears in numerical experiments. Whether the motion on the
invariant torus we found in (25) is actually quasiperiodic or periodic depends on the values of
the parameters (since 100 and 7200 depend on the parameters, too). One can easily see that for
almost all values of the parameters k, E, u1, and pu, the right-hand sides of equations (24c¢)
and (24d) will be rationally independent. In other words, with the exception of the parameter
values falling in a measure zero everywhere dense subset of the sector (26), the invariant torus

(25) of the truncated normal form (24) will contain quasiperiodic trajectories. Even if we

happen to pick parameters from the measure zero “resonant set”, the corresponding periodic

motions on the torus will look more and more aperiodic as we increase k. All these properties
are clearly inherited by system (22) and our original model system (3) provided the torus we
found is structurally stable. To check this one has to check the stability type of the torus. The
linearization of the two dimensional subsystem (24a-b) around the fixed point (190, 7200)

(T —T):
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Fig. 6. The unfolding at Ps.

shows that these points in the (71, 72) plane are of saddle type, i.e. the corresponding invariant
torus is normally hyperbolic. One can show (see, e.z., looss and Mielke [8]), that for most
parameter values the strength of this hyperbolicity is enough o ensure the preservation of
the invariant torus under the effect of the “tail” of the normal form. Unfortunately, the peri-
odic or quasiperiodic trajectories on the persisting tori are all (orbitally) unstable. One can,
however, also look for periodic solutions for system (24) of the form (7, 72) = (70, 0) or

(r1,7m2) = (0,720) with frequencies close to wp or wy, respectively. Straightforward calcu-
lations show that there are always two stable limit cycles of these types coexisting with the
unstable invariant torus.

The full unfolding of the system (24a-b) at P is presented in Figure 6. The points lying
on the 7; and r, axes represent the limit cycles, the point in the positive quadrant refers
to the torus. These orbits also survive in system (3) together with the three dimensional
heteroclinic manifolds connecting them to the torus. The reason for this is that the limit
cycles have open domains of attraction and the two branches of the unstable manifold of the
torus still intersect this domain under the effect of higher order terms. For similar reasons the
heteroclinic connection between the unstable equilibrium and the two-torus also survives the
effect of higher order terms. As a result, the stable and unstable manifolds of the persisting
invariant torus keep acting as natural boundaries of domains of attraction, and separate the
phase space into regions with different asymptotic behaviors.

As a verification of these results, Figure 7 shows the projection of some numerical solutions
from the four dimensional center manifold onto a three dimensional coordinate space. The
unstable torus is plotted based on the value of (7100, T200) calculated from (25) (after a
transformation back into the real phase space of equations (22)). The two limit cycles are also
obtained from our analytical calculations. The two solutions approaching the corresponding
limit cycles are produced by numerical simulation. Undoubtedly, the simulation shows good

agreement between the real dynamics of system (22) and the bifurcating objects calculated
from the normal form (24).
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Fig. 7. Trajectories projected from the center manifold.

4. Conclusions

The nonlinear vibration analysis of this simplified delayed robot control was motivated by
some experiments on a digitally controlled robot. The stability charts in Figures 2 and 5
(related to the systems in Figures 1 and 4, respectively) display the same structure in the
plane of parameters. In both cases these parameters have the same physical meaning: they
characterize the sampling time or time delay, and the proportional gain. The models are also
similar in the sense that they both contain past effects and slightly damped oscillators.

As we noted earlier, the stability charts have critical points where self-excited quasiperiodic
oscillations may occur. In both cases, these vibrations generically exist, but there are important
qualitative differences between them:

— Experiments on force control: the (apparently) quasiperiodic oscillations are stable (sur-
viving for a long period of time shown in Figure 3). They appear in a sector close
to the stability limit (see the shaded region in Figure 2), and have either two or three
characteristic frequencies.

— Analytical and numerical investigation of simplified delayed system: the quasiperiodic
oscillations exist for almost all values of the parameters (in a measure-theoretical sense)
and are unstable (see the unfolding in Figure 6). They appear in a sector opposite to the
stability domain (see the shaded region in Figure 5), and contain motions with only two
basic frequencies.

At this point, we have not yet carried out a similar bifurcation analysis for more sophisti-
cated models of the real force-controlled robot. However, we can give an explanation for the
partial discrepancy (discussed above) between our results and experiments. It is very likely
that unstable quasiperiodic oscillations also exist in case of a force controlled robot, but they
are hard to detect in experiments. Stable quasiperiodic oscillations do not exist in our simpli-
fied delayed system because the nonlinearity we considered is symmetric (see equation (4)).
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For a real force controlled robot the saturation at the actuators is typically described by some
asymmetnc nonlinearity since the equilibrium in question is at (o Where the actuators are
under load (see equation (2)). Thus, second order terms should also be included in the power
series of the nonlinearity which would break the discrete symmetry of the model and would
create a sitwation which s ncher as far as possible bifurcations are concerned. Research in
progress suggests that if one does include symmetry breaking quadratic terms in the analysis,
the normal form (24) will admit stable invariant two-tori for a large set of parameter values,

Using an asymmetric model we also hope to be able to explain the three-frequency motions
observed in the experiments. As it is shown by Guckenheimer and Holmes [5], the point
(100, 200) (see the unfolding in Figure 6) may undergo a Hopf bifurcation as the parameters
are varied, which means the creation of a three-torus in the phase space of system (22).

We believe that these experimental and theoretical results highlight the complexity of
force-controlled robot systems and show that the understanding of the underlying nonlinear

dynamics cannot be complete without the implementation of the sample time and delay in our
models.
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