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ABSTRACT

We employ a recently developed single-trajectory Lagrangian diagnostic tool, the trajectory rotation average (TRA), to visualize oceanic
vortices (or eddies) from sparse drifter data. We apply the TRA to two drifter data sets that cover various oceanographic scales: the Grand
Lagrangian Deployment and the Global Drifter Program. Based on the TRA, we develop a general algorithm that extracts approximate eddy
boundaries. We find that the TRA outperforms other available single-trajectory-based eddy detection methodologies on sparse drifter data
and identifies eddies on scales that are unresolved by satellite-altimetry.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0099859

Meso and submesoscale vortices (or eddies) can trap and trans-
port material over large distances, thereby playing a crucial role
in the dynamics of our ecosystem. In order to expand our under-
standing of the transport of marine tracers, we need to accurately
and reliably track the evolution of vortical flow structures. Drifter
trajectories represent a valuable but sparse source of informa-
tion for this purpose. We utilize this information here to evaluate
a single-trajectory Lagrangian diagnostic tool that approximates
the local material rotation in the flow in a quasi-objective fashion.
Our findings on two distinct data sets suggest that this diag-
nostic accurately highlights material vortices from sparse drifter
data.

I. INTRODUCTION

Oceanic vortices (or eddies) are highly energetic coherent flow
structures that can transport material over large distances. Study-
ing the dynamics of eddies is key to understanding the dispersion
of marine tracers, such as biological nutrients and pollutants.1–5

Lagrangian eddies, generally referred to as elliptic Lagrangian coher-
ent structures (LCSs) in the dynamical systems literature,6 are mate-
rial objects that trap and transport floating particles over large
distances in the ocean in a coherent fashion. The size of such
eddies ranges from a few kilometers (submesoscale) to hundreds of
kilometers (mesoscale).

Mesoscale eddies have predominantly been inferred from
the sea-surface-height (SSH) field derived from satellite-altimetry
data.7–9 There is, however, increasing evidence that submesoscale
currents on the order of a few kilometers influence the marine
ecosystem at least as strongly as mesoscale eddies, especially along
coastlines and oceanic fronts.10,11 Despite this observation, subme-
soscale eddies are rarely studied in detail because their footprint in
the SSH field is weak or nonexistent. In contrast to the SSH field,
however, drifters follow ocean currents closely and, hence, resolve
small-scale features accurately.12 In addition, surface drifters pro-
vide information about the local ocean surface velocity field at a
very high temporal resolution. Ocean drifters are, however, sparsely
distributed in space, rendering most LCS diagnostics inapplicable
to their trajectories. Indeed, most mathematically justifiable algo-
rithms for the detection of elliptic LCSs require differentiation with
respect to initial conditions,6 which is unfeasible for sparse drifter
data.

Alternatively, elliptic LCSs can be viewed as coherently evolv-
ing sets of material trajectories in space. Based on this view, a
wide range of clustering methods for extracting elliptic LCSs have
been proposed (see Ref. 13 for a review). These objective methods
differ depending on the specific clustering algorithm and the dis-
tance metric they employ to define clusters. Common algorithms
include fuzzy clustering,14 spectral graph methods,15–17 and density-
based clustering methods.18 Their results, however, rely on user
defined input parameters such as the number of clusters, which a
priori determines the possible elliptic LCS to be detected by the
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method in the domain. This limitation becomes even more pro-
nounced for sparse drifters for which the number of eddies is a priori
unknown.

To extract elliptic LCSs from drifter data, one is forced to
rely on features of a single trajectory, such as trajectory length,
velocity, acceleration, and curvature. These features, however, are
all inherently non-objective (frame-dependent) quantities whereas
LCSs, as material objects, are objective, i.e., indifferent to coordi-
nate frame changes.6 Common single-trajectory methods, such as
the absolute dispersion,19 trajectory length,20,21 Lagrangian spin,22

maximal trajectory extent,23 trajectory complexity,24 and wavelet
ridge analysis,25,26 are limited in capturing elliptic LCSs as they are
either non-objective or lack direct physical connection to mate-
rial deformation in the fluid. Accordingly, while most of these
methods were originally introduced to visualize LCSs from truly
sparse trajectories, their application to drifter data has remained
rare (see Ref. 27 for a review). Notable exceptions include the fully
automated looper detection algorithms based on the Lagrangian
spin12,28–30 and the wavelet ridge regression.31 Both methods seek
to extract oscillatory motions from a time-series and lead to com-
parable results. The methodology employed by the authors in
Refs. 12 and 28–30 is an aggregate measure of rotation within
a time-series of the Lagrangian spin, whereas Lilly and Pérez-
Brunius31 quantify the instantaneous oscillatory motion of the veloc-
ity using signal processing techniques. As a consequence, ellip-
tic LCSs are visualized through looping (or oscillatory) trajectory
segments.

In order to distinguish looping from non-looping trajectory
segments, a user-defined threshold is inevitably required. In a prac-
tical setting, however, differentiating between looping and non-
looping trajectories proves to be challenging and hence finding an
appropriate parameter is far from trivial. A common approach is to
manually tune a threshold value for looping based on a subset of
trajectories. Although this provides a natural and intuitive way to
characterize elliptic LCSs, a considerable amount of information is
lost when one discards non-looping trajectory segments. It would be
more desirable to retain all trajectory information and associate to
each trajectory a Lagrangian diagnostic related to material rotation
in the flow. This rotational diagnostic could then be plotted over
evolving trajectory positions. This approach would provide a quali-
tative overview of individual vortical flow structures, without relying
on any chosen threshold.

Here, we propose to identify eddies from sparse drifter data
using the recently introduced adiabatically quasi-objective single-
trajectory diagnostics in Ref. 32. These diagnostics closely approx-
imate appropriate objective LCS diagnostics in frames satisfying
conditions that typically hold in geophysical flows. We show that
the adiabatically quasi-objective trajectory rotation average (TRA)
reveals elliptic LCSs (material eddies) at meso- and submesoscales
from sparse drifter trajectory data. We additionally compare the
vortical flow features extracted from the drifter-based TRA com-
putation with those obtained from other available Lagrangian
single-trajectory diagnostics such as the trajectory length20,21 and
the Lagrangian spin.12,22 We further validate the extracted features
with respect to Lagrangian averaged vorticity deviation (LAVD)33

computed from geostrophic ocean velocity fields derived from
satellite-altimetry data (AVISO).

II. DATA

A. Satellite-altimetry ocean-surface current product

(AVISO)

The two-dimensional, satellite-altimetry-derived ocean-surface
current product (AVISO) has been the focus of several coherent
structure studies.2,34,35 Using this product, the geostrophic veloc-
ity vg(x, t) of ocean currents is obtained from the remotely sensed
sea-surface height η as

vg(x, t) =
g

f

(

0 −1
1 0

)

∇η(x, t), (1)

where g is the constant of gravity and f is the Coriolis parameter. A
global, daily-gridded version of the sea-surface height profile with
a spatial resolution of (0.25◦ × 0.25◦) is freely available from the
Copernicus Marine Environment Monitoring Service.36

B. Drifter data sets

While satellite-based altimetry yields mesoscale velocity fields,
surface drifter observations provide direct estimates for the local
surface velocity field. In order to illustrate the range of applications
of the adiabatically quasi-objective single-trajectory rotation mea-
sure introduced in Ref. 32, we will focus on two drifter data sets:
the Grand Lagrangian Deployment (GLAD) and the Global Drifter
Program (GDP).

1. Grand Lagrangian Deployment (GLAD)

We consider the Coastal Dynamics Experiment (CODE)
drifters37 released during the Grand Lagrangian Deployment
(GLAD).34,38,39 In order to study relative dispersion statistics, around
300 drifters were deployed on 20–31 July 2012 in the northern
Gulf of Mexico, sampling various submesoscale features over several
weeks. The positions of the drifters were reported every 15 min from
which we estimate their velocities via finite differencing. In order to
highlight important circulation features, we focus on GLAD drifters
active from 10 to 17 August, restricting the domain of interest to

{(x, y) ∈ [89◦W, 86◦W] × [26◦N, 29◦N], t ∈ [222 doy, 229 doy]},
(2)

where doy is in short for day of year.

2. Global Drifter Program (GDP)

Additionally, we consider the Global Drifter Program (GDP)
data set, which contains more than 20 000 drifters released over
the past 40 years. At least 1000 of those drifters are now simul-
taneously active worldwide.40 These drifters report their positions
every 6 h. We specifically focus on a subset of drifters active from
4 September to 4 October 2006 in the Gulf Stream, i.e., in the
domain,

{(x, y) ∈ [72.5◦W, 65◦W] × [32.5◦N, 40◦N],

t ∈ [246 doy, 276 doy]}.
(3)

3. Drifter data preprocessing

As highlighted by the authors in Refs. 41–43, inertial oscilla-
tions have little effect on the overall motion of nearby particles as
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they periodically return to their starting position after one inertial
period. The anticyclonic looping arising from inertial oscillations,
however, impacts the drifter velocity profile without affecting sepa-
ration between nearby particles. In order to remove this unwanted
effect from our analysis, we apply a 6th-order low-pass Butter-
worth filter to the drifter trajectories with a cutoff period of Tcut

= 1.5Tinertial, as suggested by the authors in Refs. 12, 28, and 41.
Here, the inertial period is

Tinertial =
2π

2ω sin(y)
, (4)

where y is the latitudinal position of the drifter and ω = 7.27

× 10−5 rad

s
is the rotation rate of the Earth.

At mid-latitudes, inertial oscillations have time-scales of 1–2
days, whereas the dominant period of submesoscale and mesoscale
eddy motion is above 5 days.38 The characteristic time of subme-
soscale and mesoscale features, thus, greatly exceeds the inertial
period. Hence, the anticyclonic looping arising from high-frequency
diurnal inertial oscillations does not influence the relative disper-
sion of drifters in the submesoscale and mesoscale regimes.41 In this
paper, we target coherent structures whose time-scales are far above
the period of inertial oscillations.

The time interval of definition of a finite-time, temporally ape-
riodic dynamical system inherently determines the range of features
one can identify in that system. Submesoscale eddies have character-
istic time-scales of around one week, whereas mesoscale structures
arise over months. In contrast, coherent structures tied to inertial
oscillations have a temporal range of a few hours. Therefore, in the
exploration of short term features, inertial oscillations should not be
filtered out of the drifter trajectories.

III. METHODS

The drifter trajectories, x(t), satisfy the differential equation

ẋ(t) = v(x, t), x(t) ∈ U ⊂ R
2, t ∈ [t0, tN], x(t0) = x0. (5)

Here, x is the position, t is the time, and v(x(t), t) is the ocean-
surface velocity field implied by the drifter data. While open-ocean
mesoscale features are well captured by satellite-altimetry data,44

the drifter velocity v(x, t) in coastal regions generally differs from
the geostrophic velocity component vg(x, t) computed from AVISO
due to coastal influences (e.g., rivers) and windage.45 Features
derived from drifter trajectories, therefore, generally differ from
those obtained from ocean geostrophic velocities.

A. Trajectory rotation average

As already noted in Sec. I, LCSs of the velocity field are mate-
rial sets and, hence, their existence and location are objectives, i.e.,
indifferent to the observer. All traditionally analyzed features of tra-
jectory data (such as length, curvature, velocity, acceleration, and
looping) are, in contrast, observer-dependent and, hence, do not
allow for a self-consistent identification of LCSs. To this end,32,46

developed several quasi-objective diagnostic tools for single trajecto-
ries that do approximate objective features of trajectories in frames
verifying certain conditions. Inspired by the slowly varying nature

of geophysical flow data sets, we restrict our discussion to a fam-
ily of frames related to each other via slowly varying (or adiabatic)
Euclidean coordinate transformations,

x = Q(t)y + b(t), |Q̇|, |ḃ| � 1. (6)

Under such slowly varying frame changes, the velocity ṽ transforms
approximately as an objective vector, i.e.,

ṽ = QT(v − Q̇Ty − ḃ) ∼ QTv, (7)

where v and ṽ, respectively, denote the velocity in the original
and in the slowly varying frame. We call a diagnostic adiabatically
quasi-objective if in all frames related to each other via Eq. (6),
the diagnostic approximates the same objective quantity as long as
the frames satisfy a set of additional conditions. Those conditions
are specific to the quantity of interest [see Eqs. (9) and (10) for
examples].

We will apply such a single-trajectory rotation diagnostic here
for the first time to actual sparse drifter data. Similarly to Ref. 32, we
consider discretized drifter trajectories {x(ti)}

N
i=0 satisfying Eq. (5).

As shown in Refs. 32 and 46, the trajectory rotation average,

TRA
tN
t0

(x0) =
1

tN − t0

N−1
∑

i=0

cos−1 〈ẋ(ti), ẋ(ti+1)〉

|ẋ(ti)|ẋ(ti+1)|
, (8)

approximates a time-averaged trajectory rotation relative to the
overall rotation in the flow over the time interval [t0, tN], in a frame
of reference satisfying

∣

∣

∣

∣

∂v(x(t), t)

∂t

∣

∣

∣

∣

� |ẍ(t)|. (9)

Condition (9) expresses the requirement that Lagrangian time-scales
dominate Eulerian time scales. This requirement has been numeri-
cally verified for the AVISO data set in Ref. 46 and confirmed in
several experimental studies on surface drifters.37,47,48 As a second

condition for TRA
tN
t0

(x0) to be an adiabatically quasi-objective scalar
field (i.e., approximate an objective scalar field in qualifying frames),
the Lagrangian acceleration must dominate the angular acceleration
of the trajectory induced by the spatial mean vorticity,

∣

∣

∣

∣

ω(t) ×
ẋ(t)

|ẋ(t)|

∣

∣

∣

∣

�

∣

∣

∣

∣

d

dt

ẋ(t)

|ẋ(t)|

∣

∣

∣

∣

. (10)

This assumption has been found to hold on large enough domains
in the ocean.7,32,49,50

We associate to the trajectory x(t) over the time interval [t0, tN]

its corresponding TRA
tN
t0

(x0) value, where x0 = x(t0). Reconstruct-

ing the TRA
tN
t0

(x0)-field from sparse drifter trajectories via scattered
interpolation allows visualization of vortical flow structures. The

only parameter involved in the reconstruction of the TRA
tN
t0

(x0)-
field is the choice of the scattered interpolation method. As vortices
tend to be elliptic geometric objects, we use linear radial basis
function interpolation that favors such structures (see Appendix B
for further details). We then apply a spatial average filter of size
(0.25◦ × 0.25◦) in order to suppress noise but still retain small-
scale features. The size of this spatial filter coincides with the spatial
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resolution of the AVISO data set. Local maxima in the TRA
tN
t0

(x0)-
field mark centers of high material rotation and, hence, indicate
underlying rotational flow features.

B. Trajectory length

The trajectory length (also commonly referred to as
M-function) is a single-trajectory Lagrangian diagnostic that is
applicable to sparse sets of fluid trajectories.20,21 As pointed out by
Ruiz-Herrera,51,52 this diagnostic is non-objective and has no direct
relation to material stretching or rotation. It is nevertheless simple
to compute because the arc-length of a trajectory x(t) over the time
interval [t0, tN] starting at x0 is simply

MtN
t0

(x0) =

N−1
∑

i=0

|ẋ(ti)||ti+1 − ti|. (11)

In an attempt to visualize elliptic LCSs from a set of sparse drifter
data, we reconstruct MtN

t0
(x0) over a broader domain using lin-

ear radial basis functions coupled with a spatial average filter of

size (0.25◦ × 0.25◦), as done for the TRA
tN
t0

(x0). The authors in
Refs. 20, 21, and 53 suggest that dynamical regions in the flow
are separated by abrupt variations of MtN

t0
(x0). Specifically, oceanic

eddies are suggested to be signaled by sharp local minima of
MtN

t0
(x0).

C. Lagrangian spin

Considering looping trajectories as footprints of coherent
Lagrangian eddies,12,28–30 extract looping drifter segments using the
Lagrangian spin

�(ti) =
〈ez, ẋeddy(ti) × ẍeddy(ti)〉

1

2
|ẋeddy(ti)|2

, (12)

first introduced in Ref. 22. The term ẋeddy(ti) denotes the eddy veloc-
ity and ez = (0, 0, 1)T. In Ref. 29, the eddy velocity ẋeddy(ti) was
obtained by removing the background large-scale flow uavg from the
velocity ẋ(ti) of the drifters,

ẋeddy(ti) = ẋ(ti) − uavg. (13)

However, recent work points out that removing the background
mean current uavg results in misidentification of looper segments.12

Hence, we assume that the drifter velocity is dominated by the eddy
fluctuating component rather than the large-scale background flow,

ẋeddy(ti) ∼ ẋ(ti). (14)

The Lagrangian spin � quantifies the rotation of the velocity vec-
tor and is physically related to the vorticity. Evaluating Eq. (12)
along a Lagrangian particle trajectory provides an overall measure
of rotation within a time-series over the time interval [t0, tN]. Loop-
ing segments of a trajectory are characterized as intervals between
zero crossings of �. The duration of each segment of sustained posi-
tive or negative � is referred to as persistence. For each segment, we

define the period P as

P =
2π

|�∗|
, (15)

where |�∗| is the absolute value of the median of � over the seg-
ment. The time-series of the Lagrangian spin parameter is smoothed
using a 3-day median filter in order to suppress noisy observations,
as suggested by Lumpkin.12 Looping segments are defined as tra-
jectory intervals where the persistence exceeds the ad hoc chosen
threshold value of 2P, as proposed in Ref. 12. Decreasing this param-
eter might reveal additional looping segments, but may also lead to
false positives in the identification of loopers. Hence, the identified
loopers inherently depend on the choice of the minimum looping
period.

D. Lagrangian averaged vorticity deviation

Similar to the TRA, the Lagrangian averaged vorticity deviation
(LAVD) characterizes the local material rotation in the flow relative
to the overall rotation induced by the spatial mean of the vorticity.33

Computing the LAVD value for a trajectory x(t; x0, t0) over the time
interval [t0, tN], from the vorticity

ω(x(t), t) = ∇ × v(x(t), t)

gives

LAVDtN
t0

(x0) =
1

tN − t0

∫ tN

t0

|ω(x(s), s) − ω(s)|ds, (16)

where ω(t) denotes the spatially averaged vorticity at time t. There-
fore, even though the LAVD is a quantity associated with a single
trajectory, its computation requires the knowledge of the velocity
field over a large enough domain. This renders the LAVD diagnos-
tics inapplicable to sparse drifter data, even though it has been used
to visualize and extract vortices from gridded ocean velocity data
sets.7,33,54 Local maxima in the LAVD-field surrounded by nested,
closed, and nearly convex level curves highlight elliptic LCSs. In this
work, we apply the LAVD diagnostic to the AVISO data and com-
pare the eddies obtained in this way with those revealed by the TRA
from drifter data.

E. Validation of eddy boundary extraction algorithm

on numerical ocean model

We first validate the eddy boundary extraction algorithm pro-
posed in Appendix A on a numerical ocean model obtained from
the AVISO surface velocity field.36 In our text, we focus on the Agul-
has region, which contains a variety of mesoscale eddies analyzed
previously by several coherent structure studies.32,50 We specifically
consider the area of the Agulhas leakage,

U = {(x, y) ∈ [1, 6] × [−35, −30]}, (17)

over a period of 25 days. We first compute the LAVD from 200
× 200 densely gridded trajectories and then successively and ran-
domly subsample this trajectory set for a comparative calculation
of the TRA. The LAVD highlights three mesoscale eddies [see
Fig. 1(a)], whose boundaries are obtained using the algorithm of
Haller50 with the convexity deficiency set to 10−3. These three eddies
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FIG. 1. LAVD and TRA evaluated on the full and progressively subsampled AVISO data sets in the Agulhas region. (a) LAVD-field with full resolution (200 × 200). The red

curves denote the boundaries of the three LAVD-eddies. [(b)–(d)] Reconstructed TRA-field from 2000, 200, and 20 randomly selected trajectories. The white curves indicate

boundaries of the TRA-eddies. The black triangles indicate the final trajectory positions.

are clearly visible in the TRA-field [Figs. 1(b) and 1(c)], even after a

progressive subsampling of the trajectory density to
200

5◦ × 5◦
. Upon

a further decrease of the trajectory density to
20

5◦ × 5◦
, two out

of the three mesoscale features still persist in the TRA-field [see
Fig. 1(d)]. The third mesoscale feature is not captured by the TRA-
field only because no remaining trajectory samples that region after
the random sparsification we applied to the original trajectory data
set.
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FIG. 2. Averaged DICE coefficient plotted as a function of the averaged trajectory spacing per eddy diameter (a) and trajectory density (b). The error bars indicate the
minimum and maximum DICE coefficient attained within the corresponding set of trajectories.

We now quantitatively compare the TRA-eddies with the
LAVD-eddies using the DICE coefficient that measures the area
overlap between the corresponding eddies.55 We denote the domain
covered by the TRA-eddies by Area(TRAN,eddy), where N is the num-

ber of trajectories used to reconstruct the TRA-field. LAVD-eddies
that contain at least one trajectory are taken as groundtruth for eddy
detection with their domain denoted by Area(LAVDeddy). The DICE
coefficient for eddy detection comparison is then defined as

DICEN =
2(Area(TRAN,eddy) ∩ Area(LAVDeddy))

Area(TRAN,eddy) + Area(LAVDeddy)
. (18)

A DICE coefficient of 1 would indicate perfect overlap whereas 0
would indicate no overlap between LAVD-eddies and TRA-eddies.

We vary the number of trajectories from 10 to 2000 and ran-
domly subsample multiple times in order to obtain a statistical
estimate of the DICE coefficient for each trajectory density. In Fig. 2,
we plot the averaged DICE coefficient and its error bar as a function
of two quantities: the averaged trajectory spacing normalized by the
eddy diameter [Fig. 2(a)] and the trajectory density [Fig. 2(b)]. The
eddy diameter of the three LAVD-eddies in the Agulhas region is
around 100 km (∼ 1◦). The averaged trajectory spacing per eddy
diameter relates the averaged drifter spacing to the eddy length
scales we seek to resolve. Decreasing the drifter density (or, equiv-
alently, increasing the averaged spacing) leads to a drop in the DICE

coefficient. Even for very sparse data sets (e.g.,
average spacing

eddy diameter
∼ 1), it is possible to approximately identify coherent structures
with maximum DICE coefficients of around 0.6. Note, however, that
the results inevitably depend on the drifter distribution. If no drifters
are inside an eddy, then we do not expect the eddy to be visible in
the TRA-field.

GLAD drifters (to be analyzed in Sec. IV A) have an aver-

age spacing of 5 km and a trajectory density of around
10

deg × deg
.

The diameter of the smallest submesoscale eddies observed during
the GLAD experiment is around 25 km and the averaged drifter
spacing per eddy diameter is 0.2. GDP drifters (to be analyzed in
Sec. IV B) are on average separated by 150 km with an estimated tra-

jectory density of
0.2

deg × deg
. Mesoscale eddies have characteristic

widths ranging from 100 to 300 km12 and, hence, the averaged spac-
ing per eddy diameter ranges from 0.5 to 1.5. Based on the statistical
estimates of the DICE coefficient in Fig. 2, we expect to detect sub-
mesoscale and mesoscale eddies in the GLAD and GDP data sets
with reasonable confidence.

IV. RESULTS

A. Grand Lagrangian deployment (GLAD)

Drifters released in the GLAD experiment have mostly been
used to study dispersion in the ocean over a range of scales.38,39,41

Furthermore, the authors in Refs. 34 and 35 found a correlation
between the evolution of the drifters and nearby attracting LCSs
extracted from the geostrophic velocity field. Specifically, drifter
behavior agreed with the tiger tail pattern inferred from the chloro-
phyll distribution shown in Fig. 3. A chlorophyll plume extended
over more than 100 km from the outlet of the Mississippi River into
the open sea and coincided with an attracting LCS.34 The attract-
ing LCS (continuous black line in Fig. 3) is computed from the
geostrophic velocity field vg using backward trajectories over the
time interval [222 doy, 229 doy] according to Ref. 56. Drifters in the
proximity of the tip of the tiger tail organized themselves into long
filaments along the attracting LCS. Some of the drifters (in red)
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FIG. 3. Evolution of GLAD-drifters overlayed on the 8-day composite chlorophyll concentration (12 August 2012). Most drifters (white triangles) formed a long filament along
the chlorophyll plume (attracting LCS) extending deep into the Gulf of Mexico. Drifters additionally forming a visible tight cluster are colored red. The blue cross denotes the
outlet of the Mississippi River. The black line corresponds to the attracting LCS. (a) t = 222 doy. (b) t = 224 doy. (c) t = 226 doy. (d) t = 229 doy.

additionally exhibited some clustering, suggesting the presence of
an elliptic LCS close to the chlorophyll front.

Here, we seek to visualize vortices by reconstructing the
TRA-field from drifter data over the interval [222 doy, 229 doy]

using linear radial basis function interpolation. The TRA, shown
in Fig. 4, is plotted with respect to the final drifter positions
at time t = 229 doy. This plot reveals multiple rotational features
marked by local maxima of the TRA surrounded by a dense
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FIG. 4. Different material eddy diagnostics computed from the GLAD data set or the AVISO data set. The dashed black lines correspond to the isobaths

(−1000,−1500,−2000m) and highlight the coastal area. (a) Reconstructed TRA
229

222-field plotted with respect to the position of the drifters at time t = 229 doy. White
crosses indicate local maxima. (b) LAVD229

222-field computed from AVISO plotted at time t = 229 doy. The closed red curve denotes the eddy boundary extracted from the

LAVD229
222-field. (c) Reconstructed M

229
222-field plotted with respect to the position of the drifters at time t = 229 doy. Red crosses indicate local minima. (d) Cyclonic (red) and

anticyclonic (blue) loopers.

set of closed and almost convex contours. For comparison, we
include three further Lagrangian eddy diagnostics: the LAVD com-
puted from geostrophic velocity currents, the trajectory length (also
called M-function), and the Lagrangian spin computed from drifter
data.

1. Coastal area

We start by focusing on the area at the outlet of the Mississippi
River on the continental shelf. Coastal flows are regions of intense
mixing,45 often characterized by high potential vorticity and strong
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FIG. 5. Quasi-materially advected TRA
229

222

for the GLAD data set over t ∈ [222 doy,
229 doy] [(a)–(h)]. The black line denotes the
AVISO-based attracting LCS. Closed white
curves mark eddy boundaries extracted from

the drifter-based TRA using the algorithm
described in Appendix A. Closed red curves
indicate eddy boundaries obtained from the
AVISO-based LAVD computation. Triangles
indicate the positions of the drifters.
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FIG. 6. KE evaluated both on GLAD-drifters and on AVISO. The white and red eddies, respectively, indicate the eddies extracted from the drifter-based TRA-field and
the AVISO-based LAVD-field. The dashed black lines correspond to the isobaths (−1000,−1500,−2000m). The black line denotes the AVISO-based attracting LCS.

(a) Drifter-based KE
229

222-field at time t = 229 doy. White, dashed curves denote a subset of GLAD drifter trajectories contained currently in the same TRA-eddy. (b)

AVISO-based KE
229

222-field at time t = 229 doy. Red dashed curves denote a subset of AVISO trajectories contained currently in the same TRA-eddy.

horizontal shear, which are responsible for the formation of small-
scale eddies.57,58 Anticyclonic looping segments extracted from the
Lagrangian spin parameter confirm the presence of small-scale vor-
tices at the outlet of the Mississippi River [Fig. 4(d)]. Evidence for the
existence of submesoscale elliptic features and strong mixing areas
on the continental shelf is also found in the TRA-field [Fig. 4(a)].
Vortices are revealed in the TRA as local maxima surrounded by a
dense set of closed curves, indicating abrupt spatial variations. The
local maximum of the TRA at (88.6◦W, 28.1◦N) is surrounded by a
dense set of closed contours, thereby indicating high spatial gradi-
ents in the TRA-field. Close to the vortical flow features identified
by the TRA in the coastal area, the M-function displays two local
minima, respectively, at (88.6◦W, 28.2◦N) and (88.5◦W,27.8◦N)
[Fig. 4(c)]. Similarly to the TRA and the Lagrangian spin param-
eter, the M-function also indicates the existence of coastal eddies.
However, compared to the TRA, which displays a unique local max-
imum surrounded by a dense set of closed and convex curves, the
M-function displays multiple local minima surrounded by sparse
level sets, thereby indicating a region without sharp minima.

The LAVD-field displays no distinguished features close to the
outlet of the Mississippi River [Fig. 4(b)]. Eddy boundaries can be
selected as outermost (almost) convex contours around a local maxi-
mum in the LAVD-field.33 Passing from the LAVD-field to a discrete

set of closed curves requires specifying two parameters: the min-
imum length lmin of the perimeter of the eddy and the convexity
deficiency cd. The convexity deficiency is

cd =
|Acontour − Acontour,convex|

Acontour
, (19)

where Acontour is the area enclosed by the closed contour and
Acontour,convex is the area enclosed by the convex hull of the closed
contour. Similarly to Ref. 33, we set cd = 10−3. As a threshold for
the perimeter of the eddy lmin, we select lmin = 2πr, with r = 25 km
(∼ 0.25◦). This corresponds to the minimal length scales that can
reliably be resolved by the AVISO data set with a spatial resolution
of (0.25◦ × 0.25◦). The LAVD does not reveal the presence of coastal
eddies [Fig. 4(b)]. We attribute the mismatch between the LAVD
and the above discussed drifter-based diagnostics to the insufficient
resolution of the underlying ocean surface velocity close to the out-
let of the Mississippi River by the AVISO data set. Hence, in coastal
areas, the drifter-based TRA diagnostic captures the flow dynamics
with higher detail than the AVISO-based LAVD.

2. Open sea

The TRA highlights another family of elliptic LCSs close to
the chlorophyll plume extending from the outlet of the Mississippi
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FIG. 7. Lagrangian diagnostics evaluated on a subset of the GDP data set. (a) Reconstructed TRA
276

246-field plotted with respect to the position of the drifters (triangles) at

time t = 276 doy. White cross indicates a unique local maximum in the TRA
276

246-field. (b) Eddy boundary superimposed on the floating sargassum concentration inferred from

the Maximum Chlorophyll Index (MCI) at t = 276 doy. (c) Reconstructed M276
246-field plotted with respect to the position of the drifters (triangles) at time t = 276 doy. White

cross indicates a unique local maximum in the M276
246-field. (d) Cyclonic (red) loopers.

River to the open ocean [Fig. 4(a)]. The two local maxima marking
elliptic LCSs are located at (87.5◦W, 26.8◦N) and (87.3◦W, 27.4◦N).
Due to the close proximity of these extrema, it is, however, a priori
unclear whether they highlight two separate eddies or whether they

are part of the same mesoscale eddy. The cyclonic looping segments
confirm the presence of vortical flow features in this area [red tra-
jectories in Fig. 4(d)], but do not specifically highlight eddy bound-
aries. Inspection of the cyclonic trajectories suggests that they are
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originally part of two distinct eddies as they come from two separate
regions. Extracting looping trajectory segments from the time-series
of the Lagrangian spin is a powerful methodology. However, dis-
criminating between loopers and non-loopers requires an ad hoc
choice of the minimum sustained looping period of a trajectory. In
contrast, the TRA retains all trajectory information and allows visu-
alization of vortical flow structures from sparse drifter data using a
scalar diagnostic.

The investigated elliptic LCSs highlighted by the TRA and the
Lagrangian spin are also visible in the LAVD, which displays a nearly
convex vortical flow feature [closed red curve in Fig. 4(b)]. Com-
pared to the TRA, however, which indicates two separate albeit
closely located local maxima, the LAVD computation clearly reveals
a single mesoscale eddy.

In contrast to the aforementioned methods, the features result-
ing from the trajectory length diagnostic are far less pronounced
[Fig. 4(c)]. Indeed, the M-function displays multiple local minima,
which are only partially correlated with the eddies suggested by
the other methods. Furthermore, local minima in the M-function
are not sharp, as indicated by the sparsity of the surrounding level
curves. Hence, extracting eddy-related features from the M-function
is challenging as there exist no distinguishable sharp and closed
boundaries surrounding the local minima.

3. Eddy dynamics

In order to investigate the formation and evolution of the
elliptic LCSs inferred from the drifter-based TRA, we proceed by
quasi-materially advecting the TRA distribution over the time inter-
val [222 doy, 229 doy] (Fig. 5). True material advection would
require a spatiotemporally well-resolved velocity field. In our set-
ting, however, the velocity field is only sparsely known and, hence,
the advected structures are inherently non-material: At every time
step, the TRA-field must be approximated from the current drifter
distribution. As a consequence, the evolution of the extracted eddy
boundaries is not exactly Lagrangian. This implies that a set of
drifters may not stay inside an eddy over the full time interval. For
the same reason, the extracted eddies can potentially merge.

The closed white curves in Fig. 5 indicate eddy bound-
aries extracted from the TRA using the algorithm described in
Appendix A. The red closed curve denotes the truly materially
advected vortex boundary extracted from the LAVD at time t
= 229 doy. The LAVD-based eddy at t = 229 doy is materially
advected using the geostrophic velocity vg(x, t), whereas the eddy

boundaries inferred from the drifter-based TRA are quasi-materially
advected along drifter trajectories.

At t = 222 doy, the TRA suggests the presence of several small-
scale vortices at the outlet of the Mississippi River and at open
sea [Fig. 5(a)]. The submesoscale eddies close to the outlet of the
Mississippi River remain trapped in coastal areas and eventually
merge into a larger vortical flow feature. Over the time interval
[222 doy, 226 doy], the LAVD-based eddy does not coincide with
any of the eddies inferred from the TRA [Figs. 5(a)–5(d)]. The
white eddy initially located at approximately (88.5◦W, 27.5◦N) is
associated with the clustered red drifters identified in Fig. 3, thereby

confirming the existence of the submesoscale eddy along the chloro-
phyll front, which agrees with the observation put forward in
Refs. 35 and 34. The eddy develops along the attracting LCS and
then slowly detaches away from the oceanic front [Figs. 5(a)–5(f)].
Drifters are thereby coherently transported from the coastline into
the open sea. The drifter-based eddy evolving along the AVISO-
based attracting LCS eventually merges with the submesoscale eddy
originally located at (86.5◦W, 27.25◦N) to form a larger mesoscale
eddy at t = 228 doy [Fig. 5(g)]. Hence, elliptic LCSs generated
along oceanic fronts offer a transport mechanism for particles, car-
rying material over long distances away from the coastline into
the open sea. We point out that intersections between attracting
and elliptic LCS (such as at t = 222 doy) are physically inconsis-
tent as they imply contradicting material response. We attribute this
inconsistency to the fact that the attracting LCS is computed from
vg(x, t) whereas the white elliptic LCSs are computed from drifter
velocities.

Toward the end of the advection process, the LAVD-based
elliptic LCSs [red curve in Fig. 5(h)] approximates the mesoscale
eddy inferred from the TRA [white curve centered at approxi-
mately (87.5◦W, 27◦N) in Fig. 5(h)]. The red eddy shows no degree
of filamentation and remains coherent over the full time inter-
val. The white eddy results from the vortex merger between two
smaller eddies and is significantly larger than the red eddy. At
t = 229 doy, the circumference of the TRA-based white eddy and
the LAVD-based red eddy is 298.5 and 152 km. As the LAVD-
based eddy is a materially advected closed curve, it can neither
split nor merge with any other materially advected curve. Hence, by
construction, the LAVD is unable to capture vortex mergers. In con-
trast, the quasi-materially advected, TRA-based eddies can merge
into larger eddies. This follows because the evolving eddies are not
purely Lagrangian, given that the computation of the eddy bound-
ary from the TRA-field is independently carried out at each time
step.

Kinetic energy (KE) is frequently seen as an indicator of large-
scale coherent motion in the ocean.12,59,60 The averaged KE associ-
ated with a trajectory x(t) over the time interval [t0, tN] starting at x0

is

KE
tN
t0

(x0) =
1

2|tN − t0|

N−1
∑

i=0

|ẋ(ti)|
2|ti+1 − ti|, (20)

where KE is a non-objective, Lagrangian single-trajectory diagnos-
tics that bears similarities to the trajectory length diagnostic intro-
duced in Sec. III B. It is often used to visualize energetically domi-
nant flow structures both from AVISO61 and drifter data.12 Here, we
compute the AVISO-based KE-field from synthetic Lagrangian par-
ticle trajectories generated by the geostrophic velocity field vg(x, t)
in the region of interest [Fig. 6(b)]. The computed KE-field displays
a front-like feature coinciding with the attracting LCS responsible
for the transport drifters from the outlet of the Mississippi River
into the open sea. The drifter-based KE-field reconstructed from
drifter data shows a front-like feature reminiscent of the front vis-
ible in the AVISO-based KE [Fig. 6(a)]. The weakly spiraling feature
in the AVISO-based KE-field corresponds to the mesoscale elliptic
LCSs. Overall, however, both methodologies fail to clearly highlight
the oceanic eddies detected from TRA and LAVD. Hence, although

Chaos 32, 113143 (2022); doi: 10.1063/5.0099859 32, 113143-12

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

frequently related to coherent eddy motions, we conclude that the
kinetic energy is not conclusively linked to oceanic eddies in the
region of interest. Figure 6 also shows drifters (white) and AVISO
trajectories (red) released within TRA-based eddies. Overall, the real
and synthetic drifter trajectories divert from each other over time,
as expected. The difference is more pronounced in coastal areas
due to the influence of external factors such as the outflow of the
Mississippi-River.

The quasi-material advection of the TRA-based eddies sheds
new light on the origin and the formation of the mesoscale eddy
detected from the AVISO-based LAVD-field. Despite the minimal
amount of data, the TRA reveals eddy dynamics hidden in the LAVD
and KE.

B. Global Drifter Program (GDP)

In our second example, we focus on a set of drifters in the
western North-Atlantic. This oceanic region is characterized by a
strong and persistent formation of eddies arising from the mean-
ders of the Gulf Stream.62,63 On 4 October 2006, a floating sar-
gassum patch was detected by the Medium Resolution Imaging
Spectrometer (MERIS) on Envisat. This feature has a spiralling
shape that is also visible from satellite-altimetry data.2 This float-
ing sargassum patch is visualized in Fig. 7(b) using the Maxi-
mum Chlorophyll Index (MCI).64 Due to frequent cloud coverage,
such clear snapshots of floating material in the ocean are very
rare.

We use the TRA to extract the eddy highlighted by the spi-
ralling sargassum patch described in Ref. 2. We also compute two
further single trajectory metrics: the trajectory length diagnostic
[Fig. 7(c)] and the looping segments derived from the Lagrangian
spin [Fig. 7(d)]. We include a snapshot of the floating sargassum
patch that reveals the presence of an elliptic LCS [Fig. 7(b)]. Sim-
ilarly to the MCI, the TRA reveals a Lagrangian eddy centered at
(67.6◦W, 37.1◦N). Indeed, this eddy is visible as a distinguished local
maximum in the TRA-field surrounded by a dense set of closed and
convex contours [the zoomed inset of Fig. 7(a)]. The white eddy
boundary is extracted from the TRA using the algorithm proposed
in Appendix A with the same parameters presented in Sec. IV A 3.
The extracted eddy boundary underestimates the size of the sargas-
sum patch, but correctly approximates the location [Fig. 7(b)]. The
cyclonic looping exhibited by the two trajectories inside the eddy
additionally confirms the presence of an elliptic LCS [Fig. 7(d)] but
does not provide a specific estimate for the eddy boundary. The tra-
jectory length diagnostic shows a nearby maximum [the zoomed
inset of Fig. 7(c)], which is inconsistent with the generally sug-
gested footprint (local minima) for a coherent eddy in the M-field
(see Sec. III B).

Figure 8 shows the LAVD-field with AVISO trajectories (red)
launched backwards in time from true drifter positions at time
t = 276 doy. The mesoscale eddy inferred from the sparse drifter
distribution (white curve in the zoomed inset of Fig. 8) is in close
agreement with the LAVD-eddy (red curve in the zoomed inset of
Fig. 8). As expected, drifter and AVISO trajectories show similar
looping behavior inside the identified coherent structure, while they
largely differ in other regions.

FIG. 8. AVISO-based trajectories (red) and true drifter trajectories (white) super-
imposed on LAVD-field. The closed white and red curves in the zoomed inset,

respectively, indicate the TRA-and LAVD-eddy. Triangles denote drifter positions.

V. CONCLUSION

Lagrangian eddies (elliptic LCSs) are material objects
responsible for the transport of floating particles over large distances
in the ocean. They are, by their definition, frame-indifferent and,
thus, can only be reliably deduced from objective feature extraction
methods. The local ocean velocity is most accurately observed from
float trajectory data, which, however, is inherently non-objective,
representing an inconsistency that available eddy detection meth-
ods for sparse trajectories do not address. Those methods typically
describe eddies by extracting the looping segments of a trajectory,
but their definition of looping depends on the frame of the observer.
Furthermore, looping segments of a trajectory are most commonly
described by these methods in a statistical sense and, hence, are not
geared toward highlighting individual Lagrangian eddy boundaries
with high accuracy.

In this paper, we have proposed to tackle this inconsistency
from a dynamical systems perspective by applying the adiabati-
cally quasi-objective TRA diagnostic32,46 to sparse drifter data sets.
The TRA approximates an objective measure of material rotation in
frames satisfying specific conditions that generally hold in the ocean.
We have found that vortical flow features are related to regions of
high local material rotation identified as local maxima in the TRA-
field. The TRA highlights both submesoscale and mesoscale vortices
from sparse drifter data, as demonstrated in our two examples. Fur-
thermore, it also succeeds in characterizing the mixing and stirring
processes in coastal flow regions and captures the merger of two
originally distinct eddies. Contrary to other single trajectory diag-
nostics, both the TRA and the LAVD are physically related to the

Chaos 32, 113143 (2022); doi: 10.1063/5.0099859 32, 113143-13

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

local material rotation in the flow. In contrast to the LAVD, which
correctly highlights vortical flow features in sufficiently dense veloc-
ity data, the TRA can be applied to arbitrarily sparse drifter data,
given its lack of dependence on nearby drifter trajectories. Hence,
it incorporates valuable drifter data into the analysis of oceanic
coherent structures in a physically and mathematically justifiable
way. This proves to be especially useful in ocean regions where
satellite-altimetry data do not unravel the true ocean dynamics.

Importantly, the looper segments extracted from the
Lagrangian spin coincide with the features identified in the TRA.
However, a spaghetti plot of looping trajectory segments does not
immediately reveal transport barriers and eddy boundaries. Fur-
thermore, potentially valuable information is lost when we discard
non-looping trajectory segments based on a manually tuned thresh-
old parameter. The trajectory length diagnostic20,21 also tended to
show either minima or maxima near the material eddies high-
lighted by the local maxima of the TRA-field. This variation in
extremum types creates ambiguity in using the trajectory length as
a stand-alone indicator for detecting elliptic LCSs from sparse data
sets.

Apart from the visual inspection of the reconstructed TRA-
field, we have additionally presented an algorithm to extract approx-
imate eddy boundaries from sparse drifter data. As vortical flow
features are indicated by blobs close to local maxima in the TRA-
field, the proposed method resembles a blob detection algorithm.
Passing from a continuous scalar diagnostic field to a set of closed
curves inevitably requires introducing user-defined parameters. All
in all, however, the number of free parameters is comparable to
other multi-trajectory Lagrangian eddy detection methods.33,65 This
is noteworthy as these algorithms were originally designed assuming
knowledge of the underlying velocity field.
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APPENDIX A: EDDY BOUNDARY EXTRACTION

ALGORITHM

While various eddy extraction algorithms have been presented
in Refs. 16, 17, 50, and 68, these methods assume a trajectory den-
sity that is generally unavailable for drifter trajectories in the ocean.
Here, we propose an algorithm that extracts approximate eddy
boundaries from the topology of the reconstructed TRA-field. Vor-
tices are then identified by this algorithm as local maxima of the
TRA-field surrounded by a dense set of closed and convex curves
characterized by high spatial gradients.

Passing from a continuous scalar field to a set of discrete closed
curves representing eddy boundaries inevitably requires introduc-
ing threshold parameters. There are two main parameters involved
in Algorithm 1. The first user-defined quantity aids the identifica-
tion of the local maxima in the TRA-field. As we identify vortical
flow features with regions of high TRA, local maxima below a prede-
fined threshold TRAloc,max are neglected. Additionally, we also need
to specify the minimum number of drifters nd inside an eddy. As
elliptic LCSs are often observed via a dense clustering of multiple
drifters, this parameter is generally set to be greater than 1. In this

Algorithm 1. Extraction of approximate eddy boundaries from TRA
tN
t0
-field

Input: Trajectories over the time interval [t0, tN].

1. Reconstruct TRA
tN
t0

-field at time t using linear radial basis
interpolation. It is recommended to additionally filter the

resulting TRA
tN
t0

using a spatial average filter to reduce noise.

2. Find local maxima of TRA
tN
t0

which are above a threshold

TRAloc,max.
3. Compute for each closed level set surrounding a local maximum,

the averaged |∇TRA
tN
t0

| along the level set.

4. Find closed level set with the highest averaged |∇TRA
tN
t0

|, which
additionally

(a) has at least one local maximum of TRA
tN
t0

in its interior.

(b) contains at least nd-trajectories.

5. Take the convex hull of all the selected closed curves.
6. If two or more convex closed curves intersect, then take the

union of these curves.
7. Take the convex hull of the resulting closed curves.

Output: Approximate eddy boundaries at time t.
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FIG. 9. Comparison of TRA-fields obtained from different interpolation functions with the raw TRA plot for the GLAD data set at time t = 229 doy. Closed white curves

indicate eddies extracted from the reconstructed TRA-field. White crosses, circles, and squares denote local TRA maxima. Triangles indicate the position of the drifters.

(a) Linear rbf, (b) linear (C0-interpolation), (c) natural neighbor (C1-interpolation), and (d) scattered, raw TRA. Color and size of the triangles are related to the TRA-value
associated with each drifter.

work, the parameters are consistently set to TRAloc,max = .5TRAmax,
where TRAmax is the global maximum in the TRA-field and nd = 2,
as we expect multiple drifters to be part of the same coherent struc-
ture. Hence, our eddy extraction algorithm detects elliptic LCSs if at

least two trajectories are contained inside an eddy. By construction,
eddy boundaries are closed convex curves characterized by sharp
gradients. These curves do not necessarily coincide with level sets
of the TRA.
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APPENDIX B: SENSITIVITY ANALYSIS WITH RESPECT

TO THE INTERPOLATION METHOD

The features of the reconstructed TRA-field clearly depend

on the employed interpolation scheme, but we expect the topol-

ogy of the TRA-field to be robust with respect to the interpolation

method in the vicinity of sharp TRA maxima. Here, we verify the
persistence of such local maxima and the extracted TRA-eddies with
respect to common interpolants: linear radial basis function (rbf),
linear (C0-interpolant), and natural neighbor (C1-interpolant). The
reconstructed scalar fields will all be equally pre-and post-processed:
inertial oscillations are removed from the drifter trajectories and

FIG. 10. Same as Fig. 9 but for the GDP data set at t = 276 doy.
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a spatial averaging filter of size (0.25◦ × 0.25◦) is applied to the
reconstructed TRA-field.

Figure 9 shows the reconstructed TRA-field using linear rbf,
linear, and natural neighbor interpolation for the GLAD drifters.
For comparison, we also included the raw TRA plot. Two major
eddies are detected independent of the interpolation scheme [see
Figs. 9(a)–9(c)]. Both the linear rbf and natural neighbor interpo-
lation reveal three similar local maxima [white crosses/squares in
Figs. 9(a) and 9(c)]. On average, the white crosses and squares are
only separated by 1 km (∼0.01◦) and the average distance of the local
maxima to the closest drifter is around 3 km (∼0.03◦) in both cases.

The linear interpolant reveals three further local maxima
closely located to those suggested by the linear rbf and natural
neighbor interpolation scheme [white circles in Fig. 9(b)]. These
additional local maxima, however, are not strong enough to lead to
the emergence of new eddies. Furthermore, local maxima are located
in regions with dense TRA-values [see Fig. 9(d)]. All three inter-
polation schemes suggest the emergence of two robustly persisting
eddies.

We perform an analogous sensitivity analysis on the recon-
structed TRA-field for the GDP drifters at time t = 276 doy (see
Fig. 10). Local maxima of the linear rbf and natural neighbor inter-
polation are in close agreement with each other, whereas the linear
interpolant introduces two further local maxima. Again, these addi-
tional local maxima are weak and do not lead to the detection
of additional eddies. In summary, the eddy boundary extraction
algorithm consistently reveals a mesoscale eddy independent of the
interpolation scheme.

Overall, we find that the eddy location does not strongly
depend on the interpolation scheme at least in the two data sets con-
sidered in this paper. However, the exact shape and size of the eddies
vary as a function of the interpolation method. In very sparse data
sets, such as the GDP-data set, the identified eddy area may vary sub-
stantially under changes in the interpolation method. The location
of the largest local TRA maximum signaling the presence of an eddy,
however, is fairly robust with respect to the interpolation method.
Due to its inherent radial symmetry, linear rbf interpolation tends
to favor elliptic structures. In contrast, linear and natural neighbor
interpolation leads to sharper and non-smooth eddy boundaries.
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