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In this paper we develop methods to show the existence of orbits homoclinic or heteroclinic to periodic orbits, 
hyperbolic fixed points or combinations of hyperbolic fixed points and/or periodic orbits in a class of two-degree-of- 
freedom, integrable Hamiltonian systems subject to arbitrary Hamiltonian perturbations. Our methods differ from 
previous methods in that the invariant sets (periodic orbits, fixed points) are created, and become hyperbolic, as a result of 
the interaction of the perturbation with a resonance in the unperturbed system. This results in a very degenerate situation 
that requires a combination of geometric singular perturbation theory, higher-dimensional Melnikov-type methods, and 
transversality theory. We establish a simple energy-phase criterion which gives a fairly complete picture of the complex 
dynamics associated with orbits homoclinic to the resonance. We apply our methods to a two-mode truncation of the 
driven nonlinear Schrodinger equation first studied by Bishop et al. In this example we show that as the energy is increased 
at resonance, orbits homoclinic to hyperbolic periodic orbits are created in pairs in a global bifurcation that is best 
described as a saddle-node bifurcation of homoclinic orbits. 

1. Introduction 

The development of perturbation methods for finite degree-of-freedom, integrable Hamiltonian 
systems is an old subject, going back well over 100 years. As with any perturbation method, the 
structure or form of the unperturbed system plays an important role in the development of the method. 
Since the unperturbed system is assumed integrable, action-angle variables are particularly useful for 
expressing it in the most simple form. For an n degree-of-freedom system, this coordinate representa- 
tion renders transparent the geometrical interpretation that the 2n-dimensional phase space is foliated 
by n-dimensional tori. 

Two major theorems resulting from the evolution of perturbation methods for finite degree-of- 
freedom, integrable Hamiltonian systems in this setting are the Kolmogorov-Arnold-Moser (KAM) 
theorem and Nekhoroshev’s theorem (see e.g. Arnold et al. [l] for a recent summary and survey of the 
latest results). The KAM theorem is concerned with the preservation of n-dimensional elliptic tori on 
which the motion is nonresonant (thus, an infinite time result) and Nekhoroshev’s theorem addresses 
the issue of the deviation of the action variables of the perturbed system from those of the unperturbed 
system over finite time scales. Recent extensions of “KAM like” results have been obtained by Poschel 
[2] and Eliasson [3] who consider the preservation of nonresonant elliptic tori of dimension smaller than 
n and Treschev [4] and de la Llave and Wayne [5] who consider the preservation of tori of dimension 
less than n that are hyperbolic in stability type (i.e. “whiskered tori”). The hyperbolicity in the results 
of Treshchev and de la Llave and Wayne is created by the perturbation. We note that in all of these 
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results the unperturbed systems are (essentially) expressed in action-angle variables. This has the 
important consequence that all dynamical phenomena in the unperturbed system are elliptic in stability 
type. We will discuss the significance of this statement to our work shortly. 

Perturbation results have also been obtained in the situation where the unperturbed system is 
expressed as a combination of action-angle variables and variables that allow for exponential growth 
and decay. Graff [6] has considered a “KAM-type” situation where the unperturbed problem has a 
submanifold foliated by invariant tori. Restricted to this submanifold, the dynamics is elliptic and 
described by action-angle variables. Transverse to this submanifold, the dynamics is hyperbolic. He 
proves that a Cantor set of tori is preserved and that the preserved tori have stable and unstable 
manifolds. Arnold [7] and Holmes and Marsden [8] consider a situation similar to that of Graff, yet 
with the added condition that the stable and unstable manifolds of the tori intersect nontransversely. 
They then develop a perturbation method in the spirit of Melnikov [9] for determining the existence of 
transversal intersection of the stable and unstable manifolds of the non-resonant tori that survive under 
perturbation. Arnold used these intersecting manifolds in a specific example for the construction of 
transition chains which are the mechanism for what is now referred to as Arnold diffusion. Homes and 
Marsden’s work removed certain restrictions from Arnold’s work and extended it to a larger class of 
systems. 

In this paper we develop techniques for studying general Hamiltonian perturbations of a class of 
two-degree-of-freedom, integrable Hamiltonian systems under hypotheses that are quite different from 
those previously studied. As in the work of Graff, Arnold, and Holmes and Marsden mentioned above, 
our unperturbed system is expressed in a mixture of action-angle variables and variables that can 
describe homoclinic and heteroclinic behavior. The key new feature of our analysis is that in the 
unperturbed system we have a reronance in the action-angle variables. We describe our situation more 
fully. 

The geometrical manifestation of our coordinate representation is that the unperturbed integrable 
system contains a two-dimensional, normally hyperbolic invariant two-manifold that has three-dimen- 
sional stable and unstable manifolds that coincide along a branch. The dynamics on the normally 
hyperbolic two-manifold is described by action-angle variables. Hence, typically, we expect this 
manifold to be filled with periodic orbits, unless the frequency vanishes at some particular value of the 
action. We refer to this situation as resonance and it leads to a circle of fixed points on the 
two-manifold. This resonant behavior in the action-angle variables is the focal point of our analysis. 
Each point on the circle of fixed points is connected (in general) to another fixed point on the circle by 
a heteroclinic orbit. These heteroclinic orbits are part of a foliation of the three-dimensional stable and 
unstable manifolds of the normally hyperbolic two-manifold. Evidently, the dynamics near this circle of 
fixed points can be dramatically altered by the perturbation. We will see that, under general conditions, 
the perturbation “blows up” the circle of fixed points so that the dynamics restricted to the normally 
hyperbolic two-manifold near the resonance consists of the standard situation of a finite number of 
elliptic and hyperbolic fixed points with periodic orbits surrounding the elliptic points and homoclinic or 
heteroclinic trajectories connecting the hyperbolic points. Our goal will be to give conditions for the 
existence of orbits in the full four-dimensional phase space that are homoclinic or heteroclinic to the 
orbits created in the resonance. 

There are three separate steps in the process. One involves analyzing the perturbed dynamics, 
restricted to the normally hyperbolic, invariant two-manifold, near the resonance. The approach here is 
standard and involves well known “resonance resealings” from nonlinear oscillation theory. Another 
step requires showing the existence of orbits homoclinic to the normally hyperbolic invariant two- 
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manifold. Basically, this is accomplished through a higher-dimensional Melnikov-type analysis. The 
final step is the most difficult and represents the most innovative part of this work. The goal is to 
“match” orbits homoclinic to the normally hyperbolic invariant two-manifold with trajectories on this 
manifold in both forward and backward time. This will give rise to the existence of orbits homoclinic or 
heteroclinic to specific orbits on the two manifold. The analysis is complicated by the presence of a 
“boundary layer” near the resonance and by the fact that we are concerned with perturbations of 
nontransversal intersections of manifolds. We analyze this situation using the geometric singular 
perturbation theory of Fenichel, that is based on foliations of stable and unstable manifolds, in 
combination with energy-type arguments that are suited for Hamiltonian systems. An interesting result 
of our analysis is that the existence of these homoclinic and heteroclinic orbits in the full four- 
dimensional phase space can be shown to depend only on an energy-phase criterion that is obtained 
from a reduced, one-degree-of-freedom Hamiltonian system. 

The significance of the class of systems under consideration is that they frequently appear in 
applications. In particular, they arise in studies of the model interactions of parametrically excited 
plates, shells, and surface waves (see, e.g., Feng and Sethna [lo-121, Feng and Wiggins [13], and Yang 
and Sethna [14]). The techniques developed in this paper are related to the non-Hamiltonian methods 
for a similar class of systems developed in KovaEii: and *Wiggins [15]. The motivation for that work was 
to understand modal interactions in the damped, driven nonlinear Schrodinger equation. We will use 

the Hamiltonian version of that example to illustrate our results. 
This paper is organized as follows. In section 2 we formulate the problem and discuss the standard 

form of the systems under consideration. In section 3 we describe the resulting geometrical structure of 
the phase space of the unperturbed standard form. In section 4 we discuss some general properties of 
the perturbed system based on perturbation theory for normally hyperbolic invariant manifolds as well 
as the fibering of the stable and unstable manifolds of normally hyperbolic invariant manifolds by 
one-dimensional curves. These curves consist of initial conditions that approach the same trajectory on 
the normally hyperbolic invariant manifold. Section 5 contains the main analytical results. In this 
section we develop the techniques for proving the existence of specific orbits homoclinic or heteroclinic 
to trajectories near the resonance. In section 6 we discuss mechanisms for chaos associated with these 
homoclinic orbits and in section 7 we apply our methods to a specific example: a two-mode truncation 
of the driven nonlinear Schrodinger equation that was derived by Bishop et al. [16,17]. An interesting 
feature of this example is that as the energy is increased at resonance, orbits homoclinic to hyperbolic 
periodic orbits are created in pairs in a global bifurcation that is best described as a saddle-node 

bifurcation of homoclinic orbits. 

2. The formulation of the problem and the standard form 

Let us consider a two-degree-of-freedom Hamiltonian system given by 

(2.14, 

P-lb) E 
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where U C [w+ and V C IwP are open sets, p is a p-dimensional vector of parameters, and 

System (2.1) is derived from the Hamiltonian H = ZZ,, + EH,, which is assumed to be C’+’ smooth 
(r 2 2) in its arguments. For E = 0 system (2.1), will be called the unperturbed system, while for E > 0 
(2.1), will be referred to as the perturbed system. Note that (2.1), is an integrable Hamiltonian system 
on which we make two structural assumptions: 

Wl) 

0-W 

There exist Zr, Z, E U, Zr < Z, such that for any (I, CL) E [I,, ZJ x V (2.la), has a hyperbolic 
fixed point X,(Z; p) and a homoclinic trajectory xh(t, I; p), which connects X0 to itself. 
(Resonance) There exists Z, E (I,, Z2) such that 

Remark 

ZV4l(%(Z,; P), Z,; CL) = 0, W,; 1.4 = ~fW&U; 1.4, 1; CL)] lIzIr z 0. 

2.1. If m(Z,; p) happens to be zero, our theory can still be applied provided there exists 

II 2 2 such that D~[ZZ&(Z; p), I; P)]],=~, = 0 if 1 I i I n - 1, but D~[ZZ,,(X,(Z; P), I; ,u)]],=,, Z 0 (see 
also remark 2.3). 

Remark 2.2. Assumption (H2) can be replaced by 

(H2’) (Resonance) For every Z E [Zr , Z,] 

Q&l(x,(Z; P), Z; CL) = 0 . 

A system satisfying assumption (H2’) arises e.g. in the study of the Hamiltonian 1: 2 : 2 resonance (see 
Haller and Wiggins [IS]). In fact, even if (H2) holds we will transform (2.1), in a neighborhood of (x, 
Z,, 4) to a form which satisfies (H2’) and will work with that form. We will comment on the necessary 
modifications corresponding to (H2’) as we proceed further. 

Let us assume now that (H2) holds. We will primarily be interested in the behavior of orbits with 
their Z coordinates in a neighborhood of the value Z,, which we call resonant, since the frequency 
corresponding to the angular variable 4 vanishes for this value of Z at x = X,(Z,; P). We can 
Taylor-expand the Hamiltonian H about Z, to obtain 

H(x, Z, 4; CL, c) = Q(x, Z,; r-l) + D,H,(x, Z,; CL) AZ + $D;H,,(x, I,; p)(AZ)’ 

+ cZ$(.x, Z,, 4; P) + cQH,,(x, Z,, 4; ,u) AZ + 0’((AZ)3, Ed, c2) , 

where we have introduced the notations 

(2.2) 

Z=Z,+AZ, &(x, Z,, 4; P) = Z&(x, Z,, 4; CL, 0) . 

We can derive the Hamiltonian equations associated with (2.2) in the canonical way to obtain 

i = .ZD,Z&(x, Z,; P) + JD,D$Z&, Z,; P) AZ + C?(E, (AZ)2) , 

i = -cD,ZZ,(x, Z,, 4; p) + B(cAZ, c2) , 

$J = D&(x, Z,; CL) + @Z&(x, Z,; CL) AZ + ED&(X, Z,, 4; CL) + 0((AZ)‘, E AZ, c2) . (2.3) 
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What we have now is a Hamiltonian system localized near the resonant “slice” (x, I,, 4) of the phase 
space of (2.1),. It is valid for trajectories which stay close to this slice but we have not specified yet 
what we consider close. We now let 

AI=rpfE, 77E[-%%l~ (2.4) 

with no > 0 fixed but as yet undetermined constant. 

Remark 2.3. In case of the situation described in remark 2.1, one can introduce a different scaling by 
letting AZ = 7~““. We will not pursue the analysis of that case in this paper but adapting all what follows 

to it would be straightforward. 

If we set E = 0 in (2.3) then use (2.4), we obtain the equations 

i=o, 4 = D,&(x, 1,; CL) . C-b), 

Normally, this system would not give us extra information since by setting E = 0 we restrict the domain 
of Z to the single value Z, (see (2.4)). However, we will let Z vary in equation (2.5), in the interval 

[Z, - X&Q, Z, + v’T~,J. As a result of this, we can no longer hope that (2.5), is equivalent to (2.1), in a 
neighborhood of the resonance and it is not true indeed, as we will see. However, system (2.3) 
rewritten in the form 

with & = Z, - v%nO, & = Z, + XL+, is equivalent to (2.1), near Z, and it can be considered as a 
perturbation of (2.5), (7 is a function of I). Hence, we have associated a fictitious unperturbed system 
of the form (2.5), to our original unperturbed problem (2.1), in a way, that the associated perturbed 
system (2.5), coincides with our original perturbed problem (2.1), in a neighborhood of the hyper- 
surface (x, I,, 4). We will analyse this associated (singular) perturbation problem which will prove to 
reveal more features of the behavior of (2.1), near the resonance. Throughout the analysis we will refer 
to (2.5), as the standard form. It can be derived (using our original canonical symplectic form 
o = dx, A dx, + d4 A dZ) from the Hamiltonian H, which we now rewrite from (2.2) as 

When we derive the Hamiltonian vectorfield corresponding to (2.6), we have to keep in mind, that 77 is 
a notation for an expression containing I. At this point, the only reason why we use v%n instead of AZ 
is to emphasize its order of magnitude. 
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We finally point _out an important feature of the standard form: it satisfies hypotheses (Hl) and (H2’) 
with Z, = I,, Z, = Z,. In this sense it is similar to (2.1)” with hypothesis (H2’) assumed, the only 
difference being that the right-hand side of (2.5), has no Z dependence. As we will see, this similarity 
will enable us to apply our results (with slight modifications) to the original perturbation problem (2.1), 
in the case when assumption (H2’) holds. 

3. The unperturbed standard form 

In the following we would like to discuss some features of (2.5), under assumptions (Hl) and (H2) 
which are essential from the point of view of our analysis. We loosely follow the exposition of Kovacic 
and Wiggins [15] for a similar set-up, which the reader might want to consult for more details. 

3.1. Invariant manifolds 

Let us fix some small E ~0. Then, according to (Hl), for every p E V system (2.5), possesses a 
two-dimensional invariant manifold (with boundary) SB,, defined by 

&I = {(x9 Z, 441.x =x,(Z,; P), ZE[I;, Q, 4 EP}. 

,sQ, can be considered as the embedding of the annulus 

2 = [?,, ?,I x s’ 

in the four-dimensional phase space 9, a fact which we will use frequently. As a consequence of 
assumption (H2), all of do consists of equilibria. We note that s$!~ depends on Z_L, but this will be 
suppressed in our notation. It is easy to see that Sa, has a three-dimensional stable manifold W”(Sa,) and 
a three-dimensional unstable manifold W”(&,), which coincide in the homoclinic manifold r, (see fig. 

r. c w”c0,) n w*cZ,) 

X 
0 u 0 

s’ 

Fig. 1. The geometry of the unperturbed standard form. 
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1). This degenerate situation (nontransversal intersection of W”(.$,) and W”(Sa,)) is the consequence of 
the integrability of (2.5), and changes under generic perturbations in (2.5),. 

Consider now a fixed solution xh(t, I,; p) running on the homoclinic loop of (2.5a),. This solution 
induces a natural parametrization on Z, given by 

By uniqueness of solutions, every point in r, can be uniquely characterized by a triple (tn, I, 4). Note 
that t, measures the time of flight for the solution 
reference point ~~(0, I,; k). For more discussion 

xh(t, Zr-; p) from the point i”(- t,; I,; .i) to the fixed 
on this parametrization see Wiggins [19]. 

3.2. The dynamics in r, and ~4~ 

Let us examine the dynamics on ‘y,, a little more closely. Solutions of (2.5), on Z, can be written in the 
form 

(3.2) 

which shows that trajectories in r. approach equilibria in 9eo asymptotically in forward and backward 
time. This is a consequence of the fact that as t--, &co, DIZZo(xh(t, I,; p), I,; p) tends to zero 
exponentially fast (see (H2)), and the resulting improper integral in (3.2) converges. In other words, 

exist and yo(t, I, 40; CL) lies on an orbit asymptotic to fixed points with the same Z coordinate in do. If 

yo(+w, Z7 400; P) = Yo(- m, I, +o; p) then yo(t, I, 40; CL) is a homoclinic solution, otherwise it is a 
heteroclinic trajectory connecting two different points of do. The way to decide in which category yo(t, 
I, +o; p) falls is to compute the net change of the angular variable 4 along its orbit. This change is given 

by 

A+(P) = j- &Ho(xh(c 1,; CL), 4; cL) dt, 
--m 

(3.3) 

and will be referred to as the phase shift. If A4 = 2nrr, n E Z, then all points in Sa, are homoclinic 
points, while A4 # 2nn yields heteroclinic connections between different points of Sa, (see fig. 2). Once 
we have fixed Z, (we can have more than one isolated resonant value in our original problem), A+ is a 
function of ZJ only. Therefore, for a given value of CL, either all the points in ~4~ are homoclinic or all of 
them are heteroclinic. In either case the phase shifts are the same for all the points in Sa,. 
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2n 
i,=I,-/3l, 

Fig. 2. Heteroclinic orbits with equal phase shifts. 

4. The perturbed standard form 

4.1. Persistence of the invariant manifolds 

In this section we will primarily be concerned with the fate of the invariant manifolds of the 
integrable structure we have just described under small perturbations of the kind in (2.5),. As it is 
shown in Wiggins [19], manifolds of the type of Sa, are normaZly hyperbolic. Normal hyperbolicity 
roughly means that the rate of stretching and contraction in the normal bundle of &‘,, dominates that of 
the tangent bundle, i.e. the dynamics of (23, is more “robust” in the directions complementary to Sa, 

than on &. This property can be checked via generalized Liapunov-type numbers defined in Fenichel 
[20]. What is important for us is that normally hyperbolic invariant manifolds (together with their local 
stable and unstable manifolds) smoothly persist under small perturbations and are close to the original 
manifolds. Since we will heavily use these results, we list them more precisely in the form of a 
proposition. We first define the set 

which is a closed tubular neighborhood of ~4~. 

Proposition 4.1. There exists E,, > 0 such that for every E E [0, E,,] there exists a two-dimensional 
normally hyperbolic manifold (with boundary) ~4~, which has the following properties: 

(i) 94, is C’ diffeomorphic to Sa, and can be represented as a graph in the form 
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where X,(Z, 4; CL) is C’ smooth in I, 4, E and Z_L 
(ii) &lE is locally invariant under the flow of the standard form (2.5),, i.e. solutions starting in &c can 

leave dz only through atie. 
Moreover, there exist three-dimensional manifolds W~,,(Sa,) and WyO,(~,), such that 

(iii) W;,,(.P~~) n W~o,(.dE) = de 
(iv) There exist 8, > 0 such that W~,J~(&!,) n ZJ”O is C’ E-close to Ws*“(s9J n U”? 

(v) WL(%) and WX%) are locally invariant, i.e. any solution of (2.5), starting in Ws,,(Se,) n fTJ*O 
(respectively WyO,(&,) n U”O) either approaches ~4~ as t* +m (respectively t-+ --co) or crosses 
a u8f 

Proof. The proof follows from the persistence theorem of Fenichel [20] applied to (2.1),, as it is 
explained in detail in Wiggins [19]. See also KovaEic and Wiggins [15] for more discussion on this topic. 

- 

Remark 4.1. The locally invariant local stable and unstable manifolds of proposition 4.1 can be 
extended to global (locally invariant) stable and unstable manifolds in the usual way: 

ws(dE) = u ,s,6(w;,,(~z) n u’o) , w”(4) = u ,,,4,k(Wo,(4) n u9 , 

where 4:(.) denotes the phase flow map of (2..5),. 

4.2. The dynamics in Wf,,(dE) and W~O,(Sa,) 

We have now some understanding of the fate of the geometric structure of (2.5), under perturbation 
but it is far from complete. We will also need to know more about the behavior of trajectories within 
WOO, and Wlb,(~4~). At this stage we know that they either leave these manifolds in finite time 
crossing the “top” or the “bottom” of US0 or they are asymptotic to SQ,, but we have no means to 
decide what actually happens to given trajectories. A more tight control over the behavior of 
trajectories can be gained from a result of Fenichel [21] concerning singular perturbation problems of 
this kind. Fenichel was able to prove the existence and persistence of a smooth family of curves, called 
fibers, which foliate Wi;F(&E). The fibers of the family are usually not invariant individually under the 
flow but the family itself is invariant, i.e. fibers are mapped to fibers by the flow. Each fiber intersects 
dc in a unique point, which we call the basepoint of the fiber, and fibers of the unperturbed problem 
deform smoothly into fibers of the perturbed problem. The remarkable feature of this fibering is the 
following: a solution starting on a fiber of WsO,(&E) will be asymptotic to the trajectory in de,, which 
runs through the basepoint of the fiber, as long as the latter one stays in &e (a similar statement holds 
for WyO,(&E)). This fact makes it possible to predict the asymptotic behavior of orbits in W~;~(SA~), 
which will be of central importance to us. For this reason, we again formulate the necessary details of 
this informal discussion more precisely, partly following KovaEiE and Wiggins [15]. We will state the 
results for the fibering of WtO,(dE) but, of course, similar statements are true for WrOC(.!zlE). From now 
on, if we speak about the distance of objects in the phase space, denoted by d(-, *), we will mean it, unless 
we say otherwise, to be measured in the (x, I, 4) coordinates, as opposed to the variables (x, 7, (6). 

Proposition 4.2. There exist a,, .Q > 0 such that for every E E [0, cO] there exists a two-parameter 
family SE = U pEds f”,(p) of C’ smooth curves (stable fibers) f:(p) (with boundary), such that the 
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following hold: 

(i) 9: = (We,, U dE) n 17% and f”,(p) fl .& = p. 
(ii) 9: is C’-’ in p (the basepoint of the Jiber f:(p)) and in E. 

(iii) 91 is a positively invariant family, i.e. 4F(f”,(p)) Cf”,(4:(p)) for any t 20 and p E s&, with 

4:(P) E 4. 
(iv) There exist C,, A,>0 such that if y~fE(p), then I+f(y)-+~(p)I<C,e-hsrfor any t?O with 

4;(P) E 4. 

Proof. See Fenichel [21] but watch for the differences in notation and terminology. See also Kovacii: 
and Wiggins [15] for more features of the fibering and a detailed example. 0 

Remark 4.2. It is important to realize that Sg is just the family of (pieces of) orbits of the 
unperturbed standard form which form W%,(Sa,). Hence, the stable fibers of &, are just the 
unperturbed trajectories in W~,,(Js,) and the basepoints of these fibers are the equilibrium points in sBO 
to which these trajectories are asymptotic in forward time (see section 3.2). This enables us to find out 
more about the orbit structure of W~&dE). Let yO(t, I, &o; p) b e a solution of (2.5), (see (3.2)). We 
assume that t is big enough so that y,(t, I, $,,o; ZA) has already entered U60 (see proposition 4.2). Thus 
the orbit containing yO(t, I, &o; EL) is exactly the fiber f 8( p,,) with basepoint pO = y,( +m, I, &o; /A). Let 
us consider an orbit y, of the perturbed standard form (2.5), and assume that yO(t, I, &; ZJ) is c-close to 
y, outside Uao (since y,,(t, I, &,; ZA) spends a finite time outside Uk, it is feasible to assume the existence 
of such a y,, as shown in fig. 3). Then, according to (ii) of proposition 4.2, d( p,,, p,) = O’(E). Moreover, 

Fig. 3. The significance of fibering. 
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if y, E dE is an orbit of the perturbed standard form with p, E -ye then, by (iv) of proposition 4.2, a 
solution y,(t) in y, is asymptotic to a solution r,(t) in 3:) as t increases, as long as y,(t) stays in & (see 
fig. 3). In particular, if the orbits crossing an 0(e) neighborhood of p,, in 58, all stay in dE then y,(t) will 
be asymptotic to s$, too. More specifically, if, e.g., all the orbits crossing a neighborhood of pO are 
periodic orbits then y,(t) will be asymptotic to a periodic orbit of S&E for small enough positive E. 

4.3. The dynamics in ~4~ 

In order to be able to explore the dynamics near s(e, via the idea of fibering, we need to know the 
dynamics on Sa, itself, as it is clearly seen from remark 4.2. The question we need to answer is whether 
the dynamics on .G& is Hamiltonian and if so, how can we describe it at least approximately. We first 
prove a technical lemma which will not be stated in its full generality, but rather in a form adapted to 
our problem. Throughout the lemma d will refer to exterior differentiation and i,w will denote the 
interior product of the vectorfield X with the form w. 

Lemma 4.3. Let (9, w) be a four-dimensional symplectic C’ manifold with (locally defined) 
coordinates x = (xi, x2) E R* and z = (zl, z2) E R’, and with the symplectic form w = dx, A du, + dz, A 
dz,. Consider a one parameter family of two-dimensional Ck submanifolds Sa, C 9, with 1~ k i r and 
E E [0, EJ, of the form 

where f = ( f, , f2) and g = (g, , g2) are (locally defined) Ck+l functions with fi, gi: R* + I% j = 1, 2. We 
further assume that H is a C* function on 9, and for any E E [0,&J, .G$ is an integral manifold for the 
Hamiltonian vectorfield X,: 9-, T.9 defined by 

i.+o = dH . 

Then, for E sufficiently small, 
(i) (s&, W,) is a two-dimensional symplectic Ck manifold with 0, = w 1 A$, 

(ii) X, = X, 1 Sa, is a Hamiltonian vectorfield on Sa, with Hamiltonian %$ = H 1 ds, i.e. 

i,G,=dX~. E 

Proof. We first show that (3, defines a symplectic structure on &. On S& we have 

hj = ED,lgjdZ1 + Dz2( fi + egj)dz, , j = I,2 , 

implying 

4 = w,,gxqf2 + Eg,) - k,(fi + ~g,Pzlg2W, * dz2 + 4 A dz2 

= (1+ O’(e))dzl A dz, , (4.1) 

from which we conclude that, for E sufficiently small, W, is a nondegenerate 2-form on SQ,. Let 
e, = (f + eg, Id,): R* * ‘9 be the embedding of &. Then 
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dG, = d(ezw) = ezdw = 0, (4.2) 

which shows that (5, is closed (e: denotes the pull-back of e,). But (4.1) and (4.2) together imply 
statement (i) of the lemma. 

To show (ii) we consider an arbitrary p, E e,‘(&E) and u E T,rW’. We can write 

ixFd~,lW = e*4p,lKXdpJ7 4 = o[e,(p,)I(de,de,‘X,(e,(p,)), k4 

= w[e,(p,)l(X,H(e,(p,)), %4 = ~fG,(p,Wv4 = 4~Y9[p,l(4 

= d%[P,I(U) 3 

which concludes the proof. 0 

Remark 4.3. The dimensional restriction on z in lemma 4.3 is not essential but simplifies the proof of 
(i). Furthermore, f can be a function of zi only. 

Remark 4.4. Lemma 4.3 is easy but not trivial because it is obviously not true for arbitrary invariant 
manifolds of the Hamiltonian dynamics generated by H, e.g. for stable and unstable manifolds of 
equilibria. These latter manifolds cannot be viewed as graphs over two variables which are canonically 
conjugate, as it is readily seen from the structure of the stable and unstable subspaces of the equilibrium 
in the linearized problem (see also Lerman and Umanskii [22] for a more specific result on the form of 
the stable and unstable manifolds of equilibria on a four-dimensional symplectic manifold). 

We now return to system (2.9, and use the previous lemma to obtain the following 

Proposition 4.4. Let us consider the standard system (2.~5)~ restricted to its invariant manifold sY~. 
For E small enough, the restricted dynamics is Hamiltonian with Hamiltonian 

with m(Z,; CL) being the same as in hypothesis (H2) of section 2, and with the restricted symplectic form 

0, = (1 + O(E))@ A dl. (4.4) 

Proof. We can directly apply lemma 4.3 with z, = 4, z2 = Z and f = X,(Z,; CL) to obtain (4.4). 
Furthermore, from proposition 4.1 and lemma 4.3 we see that 

where we have used (Hl). If we Taylor-expand (4.5) in Z about Z = I,, and use proposition 4.1, (Hl) 
and (H2), we obtain (4.3). 0 

We now make use of the suggestive notation defined in (2.4) introducing the change of variables 
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This change of variables is not canonical since 

(1 + Bi(&))& A dZ = v%(1+ 0(E))@ A dn , (4.6) 

but this also shows that if we introduce the new restricted Hamiltonian 

with 

(the 6’(c) term is just the same that appeared in (4.6)) then we can derive the leading order 
Hamiltonian dynamics of dE from (4.7) in the canonical way (i.e. using the symplectic form d+ A &) to 
obtain 

which we call the restricted system. Resealing the time in (4.9) by letting S- = fit, denoting d/d? by ’ 

and setting E = 0, we arrive at the equations 

77’ = -D,Wv, 4; CL), ~‘=D,,%~4w4, (4.10) 

with Hamiltonian X(77, 4,; CL), which we call the reduced system (see Fenichel [21]). We will consider 
the reduced system to be defined on the annulus A = [-Q, r],,] x S’. Notice that (4.10) describes a 
simple one-degree-of-freedom potential problem: m(Z,; p) can be thought of as a mass of a particle and 
ZZ,(X,(Z,; Z-L), Z,, 4; Z..L) can be viewed as the potential of the forces acting on the particle. Measured in 
the (n, 4) coordinates, the orbits of this potential problem perturb by an amount of O(fi) into the 
orbits of (4.9), so just by analyzing this simple system we can obtain some information about the orbit 
structure of the restricted problem (4.9). However, we have to be careful at this point for two reasons: 
1. Orbits of the reduced system might leave the annulus A in finite time or might perturb to orbits of 

this kind in (4.9). In either case, the part of the orbit outside A is meaningless for us. 
2. Certain orbits of the reduced system (e.g. orbits homoclinic to singular equilibria, heteroclinic orbits) 

might not perturb smoothly into nearby orbits of (4.9). 
To tackle these problems we introduce the following 

Definition 4.1. We say that an orbit y of some Hamiltonian system defined on A = [-Q,, q,,] X S’ is 
an internal orbit if both of the following are satisfied: 
(i) y is either a periodic orbit or an orbit homoclinic to a hyperbolic fixed point, 

(ii) y is bounded away from a A. 
Since for small F tiE is an embedding of 2, hence diffeomorphic to A, we will interchangeably speak 

about internal orbits in A, A” and SB, . 

Remark 4.5. y is considered to be a homoclinic orbit if it connects points which have equal 77 
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coordinates and equal 4 coordinates mod 27~. In specific applications one can also allow y to be a 
heteroclinic orbit if it is structurally stable with respect to the class of perturbations considered. 

It is clear from definition 4.1 that internal orbits do not intersect nor are they asymptotic to the 
boundary of A, and this property is obviously preserved for sufficiently small perturbations. Further- 
more, in case of small perturbation of the Hamiltonian system, internal orbits deform smoothly into 
nearby orbits of the perturbed system. The reason why we have also excluded nonsingular equilibria 
from the definition of internal orbits will become apparent shortly. 

Finally, we remark that the restricted and reduced systems can also be derived in the case when 
assumption (H2’) holds, but the reduced system will not be a potential problem in general. We will see 
this in more detail in section 5.4. 

5. The existence of orbits homoclinic to the resonance 

In this section we will give conditions for the existence of orbits of the standard form (2.5), which are 
asymptotic to internal orbits of the restricted system (4.9) in forward and backward time. Our goal will 
be to formulate these conditions in terms of the reduced system, hence simplify our original problem to 
the analysis of a simple potential problem in the neighborhood of the resonance. To achieve this, we 
have to discuss several geometric and technical issues. We will primarily be concerned with the 
transversal intersection of certain invariant manifolds of the standard form and frequently refer to the 
following trivial but important observation: 

Remark 5.1. Let us suppose that 9, and Sp, are two manifolds invariant under the flow of the 
standard form. Let us further assume that p E 9, fl Yzsp,, and P’, and ~7~ intersect transversally at p. Then 
Y’, and Lfz intersect transversally all along the orbit of the standard form which contains p. This readily 
follows from the invariance of the manifolds, and from the fact that the phase flow map is a 
diffeomorphism. (The same statement may not be true for the closure of the orbit through p). 

Before starting the analysis of this chapter, we point out one more time that for small E 2 0 ~4~ is a C’ 
embedding of the annulus A in the four-dimensional phase space &. We will sometimes refer to points 
or orbits in ~4, and then consider them in another context as points or orbits in A. This should cause no 
confusion by the one-to-one correspondence between the two manifolds for fixed E. We will consider 
different dynamics on &,: the flow of the reduced system and the flow of the restricted system. From 
the viewpoint of perturbation theory, it is quite natural to “copy” these dynamics together in the 
annulus A and examine how close certain orbits of the restricted system are to certain orbits of the 
reduced system. 

5.1. The intersection of tiS, W’(L$~) and W”(tiC) with E,(h) 

Let us start by defining 

E,(h) = {(x,z, 4) 1 Wx, 1, 4; CL, &I= h) 

to be the perturbed energy surface with energy h (see (2.6) for the form of H we use). In the following 
we will examine the intersection of ,pP, with certain perturbed energy surfaces. 
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First, we need an easy technical lemma, which will be stated in a form incorporating the case of 
assumption (H2’). Namely, we will allow the graph of Sa, (i.e. X0) to depend explicitly on Z as well. 
From this point, D (without subscript) will refer to the gradient operator in the variables (x, I, 4). 

Lemma 5.1. 

DH(s$ = (-ED+R(D,X,,)~J, v?D,X’, .zD$T) + 6’(~~‘~). 

Proof. Let us consider first the x-component of DH 1 dE. Differentiating X, (see proposition 4.1) with 
respect to t we have 

JD,H ( ~-4~ = i ) se, = (0,X0 + O(E))(- D, ST’,,) 

= -ED+ XD,x, + 0’(e3’*) , (5.1) 

where we used (4.3) and (4.7). If we left-multiply both sides of (5.1) by 1-l = -.Z, we obtain 

D,H ( cd6 = ED+ XJD,x, + O(E~‘~) , 

which, after transposition, proves the statement of the lemma for the first two components of DH 1 dE. 

For the second two components, using the notation of lemma 4.3, we can write 

D(,,+)H 1 dE = ez(dH) = d(eTH) = d& = (tiD,SY, ED,+, X) + O‘(E~‘~) , 

which completes the proof. 0 

Now we turn to the question of the intersection of E,(h) and tiE and formulate the following 

Proposition 5.2. Let us assume that -yO is an internal orbit of the reduced system (4.10) with 
X’ I ‘y,, = h,. Then, for any p E y,, there exists Ed > 0 and an open neighborhood UP C A with p E U, such 
that for 0 < E < Ed the following are satisfied: 
(i) Any orbit y, C A of the restricted system (4.9) with yE n UP # 0 is an internal orbit. Moreover, if 

XE 1 yE = h then E,(h) intersects Sa, transversally in -y,. 
(ii) There exists an orbit y: C A with yZ n UP # 0 which is C’-’ G-close to yO. 

Proof: By definition, internal orbits are structurally stable which, together with (4.9), immediately 
implies (ii) of the proposition. Also, since internal orbits are not isolated, statement (i) is obvious with 
the exception of transversality. 

Let us consider an orbit -y, with yE fl U, Z 0 and XE 1 y, = h. We want to show that the energy surface 
E,(h) intersects ,rQ, transversally in ye. The manifold Sa, satisfies the equation 

x=x,(Z,+;El), (5.2a) 

while the energy surface E,(h) is described by 

H(x, Z, (6; P, E) = h . (5.2b) 

For the transversal intersection of the two manifolds it suffices to show that at the intersection the 
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defining functions in (5.2) are independent. Therefore, it is sufficient for us to show that, for small E, 
0 E lR3 is a regular value for the map 

where r/, is an open set of @ which does not contain points of dE fl E,(h) other than those contained in 
-y,. It is easy to see that 

(5.3) 

where Id, denotes the two-dimensional identity matrix. We now select a p, E -y,. Then, for E small 
enough there exists p0 E U, such that p0 lies in an internal orbit 7, of the reduced system, which is C’-’ 
v%-close to ‘y,. We want to show that DG, ( p, is surjective. Since 7, is 
Taylor-expand (5.3) at p,, which, together with lemma 5.1, yields 

C’-’ G-close to To, we can 

DG, 1 P, = 

1 0 - D,X; + O(vZ) O(G) 

0 1 - D,if -I- O(V-E) Q’(G) 

ED+ %‘D,X; + Q(E~‘*) -ED+ %‘D,X; + O’(E~‘*) vZD,X + 0)(~~‘~) ED,X + 0(e3’*) I , (5.4) 

where the leading order terms of the right-hand side are evaluated at p,, E ‘y,,, and we have used the 
notation Z. = (Xi, 2,‘). 

It is easy to check that the determinant of the minor which contains the first three columns of (5.4) 
equals v’ZD,Tt’[(, + O(E~‘*), while the determinant computed on the first, second and fourth columns 
of (5.4) equals ED,%‘/ pg + a(& 3’2). Since p0 is not an equilibrium (this is why equilibria were not 

considered in definition 4.1), one of these determinants is always nonzero, hence DG, lp is surjective E 
for small positive E. But then remark 5.1 completes the proof. 0 

Using proposition 5.2 we can obtain information about the intersection of certain energy surfaces 
with W”(tiE) and W”(J&). We can actually prove the following 

Proposition 5.3. Let us assume that 3/O is an internal orbit of the reduced system (4.10). Then, for any 
p E -y,, there exists Ed > 0 and an open neighborhood UP C A with p E Up such that for 0 < E < e,, the 
following are satisfied: 

(9 

(ii) 

(iii) 

For any 3: orbit of the restricted system with +yE rl Up # 0 and HE ) 7, = h, the energy surface E,(h) 
intersects W”(.dE) and W”(dE). 
At least one connected component of the intersection W”(de) fl E,(h) (respectively W”(.dE) rl 
E,(h)) is transversal and identical to W”(y,) (respectively W”(y,)). 
For sufficiently small 8, with 0 < E G S,,d 1, W”(y,) U W”(y,) n U% is approximated with an error 
of Q(E, 8:) by the manifold F. C To satisfying the following equations: 

K,(x, 1,; P) = H&K; P), 1,; P) 9 %(I, 4; P) = h . 
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Proof: We will prove the proposition for W”(.@&) because the case of lV(&,) is analogous to that. 
Let us select some orbit ‘y, of the restricted form (4.9) with the properties as in proposition 5.2. We fix 
some small S, > 0 and introduce the notation 

Note that 9: is a three-dimensional manifold with boundary and X7,” = J-JZ~ - a&,. 
Consider a point p, E 3:. Using proposition 5.2 we immediately see that E,(h) transversally intersects 

891 at p, . Since TP,(aY’pEu) C Tp, 9’:) we conclude that E,(h) is transversal to S,U itself at p, . Since 
transversality can be expressed as a rank condition on the inclusion maps of E,(h) and YpEu, it must hold 
in some $%3:, (relatively) open subset of 9: with p, E %‘i,. Thus E,(h) has a nonempty transversal 
intersection with 3 %, , which proves (i). Counting the dimensions of the two manifolds we conclude that 
E,(h) fl % 8, is a two-dimensional manifold with boundary thus E,(h) intersects YI locally transversally 
in a two-dimensional manifold %;, with a+?;, C -y,. This construction can be performed for any p, E yEy,, 

thus we can construct a two-dimensional manifold %,U with 8%: = y,. Now %e,U is a locally transversal 
intersection of P’pEu with E,(h) but, by remark 5.1, it is also a globally transversal intersection. Moreover, 
since %z c W”(dE) u dE and %t n dE = y,, we have W”(y,) = 91, which completes the proof of (ii). 

Decreasing S,,, if necessary, we obtain from proposition 4.2 that “/, consists of the base-points of a 
smooth one parameter family Fz of perturbed stable fibers, all having the same energy. This implies that 
Ws,,(y,) = Fs (but it does not mean that the fibers in FE are invariant under the dynamics of the 
perturbed standard form). We also know from (ii) of proposition 4.2 that the two-dimensional manifold 
Fz is C’-’ E-close to a two-dimensional submanifold Fi of Z, which contains a one-parameter family of 
unperturbed stable fibers. Since the unperturbed fibers contain trajectories of the form (3.2), by 
hypothesis (H2), sufficiently close to &,, they can be approximated with arbitrary small error by curves 
in Z, with I = constant, $ = constant (D,Z& in (3.2) tends to zero exponentially fast in a neighborhood 
of SB,). Therefore, if 6, > 0 is sufficiently small, specifying a one-parameter family FS, of curves in 
Z, fl Us0 with Z = constant, r#~ = constant, such that X,(Z, 4; IL) = h, we can approximate F: with an 
error of 0(62,, E) as claimed in (iii) of the proposition (see fig. 4). An D(E) error comes from the fact 
that we use r, instead of WfO,(,!zlE), and an 0’(8:) error comes from the fact that we consider the fibers 
as curves with Z = constant, 4 = constant within U ‘9 Clearly, the same reasoning applies in the case of 
Wr,,,(y,) yielding the set Fl, which concludes the proof of (iii) with F0 = $f, U ig. 0 

Remark 5.2. In proposition 5.3 we have only asserted that W’(-y,) C E,(h) fl W”(sB,) and W”(y,) C 

E,(h) n W”(.L~~). In particular, we did not claim that e.g. W’(y,) = E,(h) rl W’(.S&). In fact, E,(h) fl 

W”(tic) can have several connected components and precisely one of these connected components is 
equal to W’(-y,). 

Remark 5.3. If ‘y, E dE is an orbit homoclinic to some equilibrium q, E d, then by _W”(y,) 

(respectively W”( -y,)) we mean the connected component of W”( q,) (respectively W”( 4,)) in 9 which 
contains 3:. 

5.2. The intersection of W”(Se,) and W”(.JA~) 

Our goal in this section will be to establish the existence of some “weakly recurrent” dynamics in a 
neighborhood of dP. By recurrent we mean the existence of solutions which are contained in W;,,(S~~) 
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Fig. 4. The approximation of Ff = Wa,(y,) by PO C r,. 

and hence leave a neighborhood of de, but return after some time to the same neighborhood, as they 
are also contained in Ws(&C). The weakness of this recurrency comes from the fact, that Ws,,(Sa,) and 
Wll,,(sS,) are only locally invariant (see proposition 4.2) and a trajectory, at least a priori, may leave 
them as I--, km. 

The usual way to study the intersection of stable and unstable manifolds of a normally hyperbolic 
invariant manifold is the higher-dimensional Melnikov-analysis (see e.g. Wiggins [19]). In particular, 
Holmes and Marsden [8] study the intersection of invariant manifolds in two-degree-of-freedom 
Hamiltonian systems (see also Guckenheimer and Holmes [23] and Wiggins [19]). In all these cases the 
analysis proceeds as follows: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Explore the geometry of the unperturbed normally hyperbolic manifold .& and its stable and 
unstable manifolds, IV”(&) and W”(J&,). Assume that the stable and unstable manifolds have 
a common connected component r,. 
Find some nontrivial recurrent set YO (e.g. periodic solution, n-torus) within do that smoothly 
persists under small perturbation, and locate W”(YO) and W”(.YO) within W”(.&,) and W”(JQ. 
Perturb this structure and measure the splitting of Ws(YE) and W”(Y=) in a coordinate system 
attached to TO. Using an idea of Melnikov [9] for time periodic perturbations of planar systems, 
derive a computable expression (usually called the Melnikov-function) for the leading order 
term of the distance of IV”(.LY~) and W”(YE). 
Find the zeros of the Melnikov function and use the implicit function theorem to show that it 
indeed indicates an intersection of Ws(YE) and W”(Y~)), and give conditions for the intersection 
to be transversal. 
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In our case, step 1 was discussed in section 3 with &, = &,,, but we cannot perform step 2 for the 
following reason: our Sa, consists of equilibria most of which (with the possible exception of a finite 
number of them) will be destroyed under small generic perturbations in the standard form. We will 
therefore skip step 2 and carry out step 3 and step 4, but with .#E instead of Ye, i.e. we will look at the 
intersection of W”(Sa,) and W”(Sa,) directly. Technically speaking, this is an easier problem since we 
have to determine the splitting of hypersurfaces in C? and measure their distance along only one 
direction, which is transversal to both of them. At the same time we will not get as strong results as in 
the standard Melnikov analysis, because we will not be able to predict the existence of trajectories 
which stay in W”(94,) n W”(s&) for all times. (Later, we will be able to make predictions like this, but 
we will need the idea of fibering of Wio,(dz) rl Wyo,(dE), as it was explained in section 4.2.) 

Let us first define the energy-difference function 

= &M4; CL), 4, 4; CL) - ~&,(4; cc), 4, 4 -W(P); CL) 

(with A+(p) defined in (3.2)), and the set 

(5.5) 

which is clearly the set of transversal zeros of AX in A. Note that if Zl is not empty then it consists of a 
set of C#J = constant lines. This is a feature, however, which will not necessarily hold in the case of 
assumption (H2’). 

We will now formulate a result concerning the intersection of W”(&) and W”(dE) in terms of AX 
and A& We will not spell out all the lengthy details which are in common with the standard Melnikov 
analysis, but rather try to focus on the differences. One of these differences is the fact that our 
unperturbed standard form (2.5), is usually not Hamiltonian. We remark that KovaEiE [24] used a 
similar construction to measure the splitting of the stable and unstable manifolds in a general dissipative 
context. The Hamiltonian nature of our problem brings a simplification compared to his results and our 

assertions are different from his. The reader may also consult Wiggins [19] for details of related 
calculations. 

Lemma 5.4. Let us suppose that there exists b E V such that Zi is not empty and p = (;i, 4) E Zi . 

Then, there exists E,, such that if E < E,, then 

6) 
(ii) 

(iii) 

W”(dJ f-l W”(.d,) = r, # 0. 
The intersection of W”(.G&) and W”(Sa,) is transversal along an orbit y, of the standard form. 
There exists 6, > 0 and a trajectory y,,(t, Z, + G+j, c&; G) of (2.5), of the form (3.2), such that 
y,,(f, Z, + fi+j, c#+,o; @) is E-close to y, outside of iY*O and 

yo(-~,Z*+fi~,~~;~)= 

(See fig. 5 for illustration.) 

(5.7) 
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Fig. 5. Statement (iii) of lemma 5.4. 

(iv) alJ’O has an open neighborhood IV% such that c n NSO is C’-’ Si-close to a manifold f0 rl N60 
where ?0 C r, satisfies 

(v) (i)-(iv) are also satisfied for p values sufficiently close to r_L. 

Proof: We first note that since (2.5a), is a Hamiltonian system, Z, satisfies the equation 

This, together with the parameterization of -y,, in (3.1) shows that a normal to f, at a point described by 
the parameters (t,, I, +,,) is given by 

where D again refers to the gradient taken in the variables (x, I, 4). For small E > 0 both W”(Sa,) and 
lV(Sa,) intersect n transversally in two points, yi and yz, respectively, which are locally unique and 

may coincide. We define the signed splitting distance of W”(S~~) and W”(J&) at (to, I, +,J as 
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It can be shown (see the references mentioned above) that d can be written as 

where M is the Melnikov-function given by 

with the solution y,, in the form as in (3.2) and { , } denoting the canonical Poisson-bracket. 
Evaluating (5.9) we find that 

where we have introduced the notation 

(5.11) 

For small E we Taylor-expand (5.10) to obtain 

M(t,, I,+,,; P) = AX($; E*) f Q(G). (5.12) 

Using (5.8) and the implicit function theorem we see that if D, A%!?($; Z-L) # 0 then for Z.L = /.i, small 
positive E and any Z = 1 =_‘r + ~%?j E: [I1 , ?;I, the distance function in (5.8) has a transverse zero 
O(E)-close to (t,,(i), j, c#+,(c#J)). Th is means that IV(&) and W”(sB,) intersect transversally in an orbit 
y, which has a point O(c)-close to the point of Z, with parameters (To, Z, &). Based on this, (5.5) and 
(5.10)-(5.12) imply (i) and (ii) of the lemma. It also follows from the standard Melnikov theory, that 
the solution y,,(t - t,, I, c#J,,o; p) used in (5.4) is O(c)-close to y, outside some fixed small neighborhood 
of &, which proves (iii). By construction, the zero set of the Melnikov function is a subset 2, of Z,. 2, 

has the property that it is C’-’ c-close to Z” outside Us0 provided E is small. We will show that the set 
Z,, defined in (iv) of the lemma, can be _used as a local approximation for 2,. The advantage of using f0 
instead of 2, to approximate r, is that Z, is defined in terms of the coordinates of the phase space, i.e. 
independent of the parameterization of Z,. 

Choosing S,, small enough, we can make the difference 4 - +,, to be of 0(6:), as it was pointed out in 
the proof of proposition 5.3. Hence in a neighborhood NSO of US0 the set 2, satisfies 

where v(t,) = 6(6 E). By the implicit function theorem, if +,, is a transverse zero of A%‘($; ZL) then an 
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open subset of 2, satisfies 

from which (iv) follows. Finally, a standard application of the implicit function theorem proves (v). 
cl 

Remark 5.4. The Melnikov-function in (5.9) is formally the same as the one obtained in Holmes and 
Marsden [8] for a class of two-degree-of-freedom Hamiltonian systems, however, it has a very different 
meaning. Their Melnikov-function gives a criterion for the existence of transverse homoclinic orbits of 
such periodic orbits which are bounded away from resonances and completely encircle the annulus. Our 
study will be concerned with internal orbits, some of which are periodic orbits created by the 
perturbation that do not encircle the annulus. 

5.3. Orbits asymptotic to internal orbits: the energy-phase criterion 

In this section we will put together all the results we have listed in sections 4 and 5. Our ultimate goal 
is to gain some understanding of the dynamics of the perturbed system (2.1), near the manifold de. It is 
important to note that we will only use three ingredients in formulating our results: 1. Our knowledge 
about the unperturbed geometry of the standard form, embodied in the phase shift AC/J. 2. The 
dynamics of the reduced system. 3. The structure of the transverse zero set 2; of the energy difference 
function AX, and the structure of the set 

Z- ={(77,~)EA1(71,cp+A~(~))EZ=}, CL 
(5.13) 

which is just the counterpart of ZL in the following sense: trajectories of (2.5),, which are asymptotic to 
a point of ZL in forward time, are asymptotic to the corresponding point in Z; in backward time. We 
remark that Zi # 0 implies ZP # 0. Finally, we emphasize that all the distances mentioned in theorem 

5.5 are measured in the coordinates (x, I, 4). 

Theorem 5.5. Let us assume that (Hl) and (H2) hold, and (see fig. 6) 
(Al) There exists G E V such that Zi # 0, 
(A2) yl and y0 are internal orbits of the reduced system (4.10) with yl n Zi = pi = (77, 4) E A and 

~;nz; =p;=(q, $-A~(~))EA, 

0 6 -A4’(ii) a; 2n ” 

Fig. 6. Visualization of assumptions (Al)-(A3) in theorem 5.5. 
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(A3) yi intersects 2; transversally at pi and -yi intersect Z, transversally at ~0. 

Then, there exists .q, > 0 such that for 0 < E < E, the following are satisfied: 

(9 

(ii) 

(iii) 

(iv) 

The perturbed system (2.1), has two internal orbits, 7:) y, E .dE which are C’-’ V&close in A to 
yi and ~0, respectively. 
The perturbed system (2.1), also has two internal orbits, 7:) 7, c de such that 5: intersects Zi 
transversally at 6,’ with d( p”:, p,‘) = o’(C) E in A, and q, intersects ZE transversally at b, with 
d(p”,, ~0) = O(vZ) in A. Moreover, W”(y:) intersects W”(?,) and W”(Y,) intersects W”(Y”:) 
in transverse heteroclinic orbits yi and yt, respectively (see fig. 7a). 
There exists 6, > 0 and a trajectory yO(t, I, + G+j, & /I) of (2.5), of the form (3.2) such that yO(t, 
Z, + ~ij, C&O; p) is O(c)-close to the orbits y: and yz outside of U”” and 

yo(+cQ, Z, + -f/l, 40; fi) = PO+ 7 Yd-03, Z, + *;i, 40; CL) = PO 7 

as seen in fig. 7a. 
If yO+ = y; in (A2) then r: = 7,’ = r; = yi, and yt = yt is a transverse homoclinic orbit to y,‘, 

such that (iii) still holds (see fig. 7b). 
(v) (i)-(iv) are also satisfied for p values sufficiently close to /.i. 

Proof: We will prove the theorem for the standard form for convenience, which directly implies the 
same results for the perturbed system near the resonance. Statement (i) immediately follows from 
proposition 5.2 so we turn to the proof of (ii). 

Using assumptions (Al)-(A3) and the definition of Zi and Zi , we can appeal to lemma 5.4 to infer 
that W”(dE) intersects W”(dE) transversally in a two-dimensional manifold r,. By construction, Zt 
contains the basepoints of unperturbed stable fibers which form the manifold f0 of (iv) of lemma 5.4. By 

Fig. 7a. Statement (ii) of theorem 5.5. 
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Fig. 7b. Statement (iv) of theorem 5.5. 

(ii) of proposition 4.2 and remark 4.2, the basepoints of the stable fibers contained in c form a set Zi,+ 
which is C’-’ ticlose to Zi, hence intersects 7: transversally O(G)-close to pl. By (iv) of 
proposition 4.2 this means that r, contains an orbit yi which is positively asymptotic to r:. Also, by 
lemma 5.4, there exists an unperturbed trajectory y,Jt, 1, + v-Gj, &,; 6) satisfying statement (iii) of this 
theorem in relation with yi. We know that yt C r,, hence it intersects 8U60 fl Wk,(sQ,) Q(E)-close to 
the intersection of yO(t, Z, + v%j, &,o; F) with au% II Wyo,(do). Again, using remark 4.2, we conclude 
the existence of an internal orbit 7, C s& containing the basepoint p”, of an unstable perturbed fiber 

fz(F,) with d(E, pi)= Q(e), and y: intersects fr(p”;). By (iv) of proposition 4.2 and by 
proposition 5.2 this implies that yi C W”(y:) fl W”(T,). We can repeat the same construction in 
reverse time for y0 to establish the existence of a heteroclinic orbit yt and an internal orbit 7: such that 
y: C W”(y;) fl W”(y”:). We also obtain that the statement regarding yt in (iii) is satisfied. Hence, we 
have proved (ii) and (iii) with the exception of showing that y: and yi are in fact transverse heteroclinic 
orbits, which we now turn to. We will prove transversality for yi, since the case of y: is completely 
analogous. 

We will first show that if H 1 yi = h, then E,(h) intersects r, transversally in yt . If q, = yt fl a@” n 

Wf,,(.s$), then it suffices to prove that 7’,JE,(h) rl W’(s$)) has a one-dimensional subspace not 
contained in TJT,) = TJT” rl W”(s&,)). According to proposition 5.3, for fixed sufficiently small 6, > 0 
and E > 0 with 0 < E G S,e 1, E,(h) rl W”(J&!~) is locally O)(E, ai)-close to a manifold satisfying 
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By lemma 5.4, Z, is locally approximated with an error of O(E, S i) by a manifold satisfying 

(514b) 

In accordance with our discussion above, we have to show that the map 

x 

ii i 

K_l(~, Z,; CL) - &(x,(Z,> F), Z,; F) 
G,:NB+R3, I H AW4; i;) 

1 
7 

4 x,u, 4; G) - h 

is a submersion around q0 = 4, + Q(E, Si), as in the proof of proposition 5.2. We compute DG, to 
obtain 

At q0 D,Ho # 0 and we assume that D,,Holp, = 0(&J # 0 (if DxlH,,~qo = 0 then we can repeat the 
following argument with D,,Ho[,o = 6‘(6,) # 0). The determinant of the matrix L, which contains the 
first, third and fourth columns of DG,, can be seen to equal 

det(L,) = -D,JZ,D, AXD& = -ED,,H,D~ AXD,X + o(~~/~), 

from which we have 

where, for notational simplicity, D denotes differentiation in 7 and 4. In (5.15) we used the fact that by 
construction, the 4 coordinates of q,, and pl differ by an O(Si) amount, while their Z coordinates may 
differ by an O(e) amount, since both of them are contained in the phase space F. 

Now DAXjpo+ is the normal of 2; at pi, and JDX is tangent to yl at pi, thus by assumption (A3) of 
the theorem, (L,)] 4. is nonsingular for small E > 0 and sufficiently small S,,, as we see from (5.15). 
Consequently, DG, has maximal rank in a neighborhood of qO, implying the intersection of E,(h) with 
Z, to be transversal at q, for small positive E, Then, by remark 5.1, E,(h) and Z, intersect transversally 
along yi. 

* Let E,(h) C E,(h) be an open subset of E,(h) 

i:,(h) n r, = (&(h) n w”(sa,)) 9 6%) n WY.%)) 

with E,(h) n r, = yi. By the above discussion, 
is a codimension-two submanifold of Z?;,(h). From 

proposition 5.3 we know that E,(h) n W”(Sa,) is a codimension-one submanifold of Z?:,(h). Hence at 

any P E Y:, T&(h) n W”(4) = T,(W’(Y:)) contains a one-dimensional subspace which is not 
contained in T,(E,(h) fl W”(J~~)) = T,(W”(y,)). This implies that 

T,(~“(Y:)) + T,(w”(?L)) = T,(&(h)) = T,(E,(Z0) 

at anypEyT, which concludes the proof of (ii) of the theorem. 
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As for (iv), we now recall that by proposition 5.2 all the orbits of the restricted system passing 
through a UP0 neighborhood of pi have different energies, since each of them lies in a transversal 
intersection of its energy surface with dE. Then, repeating the proof of (ii) we obtain, that p”; must lie 
in 7; = 7: from which (iv) follows. Finally, as in lemma 5.4, an application of the implicit function 
theorem proves (v). 0 

Using the structural stability of internal orbits and the property of the fibering of the local stable and 
unstable manifolds of &= given in (i) of proposition 4.2, we can be more specific about the heteroclinic 
connections established in theorem 5.5. In particular, we have the following 

Corollary 5.6. Let us assume that hypotheses (Hl), (H2) and assumptions (Al)-(A3) of theorem 5.5 
are satisfied. Then the following hold: 

0) 

(ii) 

If r; and y0 are distinct periodic orbits then yi and yt are transverse heteroclinic orbits 
connecting periodic solutions (see e.g. fig. 8a). If yl = y0 is a periodic orbit then y: = yf is a 
transverse homoclinic orbit connecting a periodic solution to itself. 
If yi and y0 are distinct homoclinic orbits then yi and yb are generically transverse heteroclinic 
orbits connecting saddle points to periodic solutions, but in degenerate (or symmetric) cases they 
might be transverse heteroclinic orbits connecting saddle points. If yi = y0 is a homoclinic orbit 

0 6 -A’$@) I m 2x 

Fig. 8a. Transverse heteroclinic orbits connecting periodic solutions. 
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Yf = Y2” 

/- 
-c--. / 

-. 
,’ -\ 

, 
,’ 

‘. 

,’ Pi 

Fig. 8b. Transverse homoclinic orbit to a saddle point. 

then yi = yz is a transverse homoclinic orbit connecting a saddle point to itself (see e.g. fig. 8b). 
(iii) If one of -yt and yO - is a homoclinic orbit and the other is a periodic orbit, then one of y: and yz is 

a transverse heteroclinic orbit connecting a saddle point to a periodic solution, while the other is a 
transverse heteroclinic orbit connecting periodic solutions (see e.g. fig. 8~). 

Fig. 8c. Transverse heteroclinic orbits between periodic solutions and between a saddle point and a periodic solution. 
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As we noted before, the sets 2; and 2; consist of C#J = constant lines in A. These lines are usually 
intersected by different types of internal orbits of the reduced system, so even within one problem we 
can obtain different kinds of connections from the variety listed in corollary 5.6. Also, we will typically 
obtain families of connections since an internal orbit, which intersects, say, Zi transversally has a 
neighborhood filled with internal orbits transverse to Zc. Hence via the energy-phase criterion of 
theorem 5.5, we can get a fairly complete understanding of the orbit structure near the resonance in the 
perturbed system (2.1), . We are able to predict different kinds of motions doubly asymptotic to a dE, 
and by (i)-(iii) of the theorem, we are able to locate these connections with a good precision. 

In general, the energy-phase criterion may indicate no homoclinic or heteroclinic connections for 
some internal orbits in a given problem. This does not means that these orbits do not have transverse 
homoclinic orbits. If they have, however, those orbits enter and leave a small neighborhood of the 
given internal orbit before they approach it asymptotically. These “nonsimple” connections cannot be 
detected by the Melnikov-type method used in lemma 5.4. 

At this point we remind the reader that the constant q0 in (2.4) has not been specified yet. As long as 
no = 6(l), as E-+ 0, all our results are independent of the concrete choice of Q. The basic principle is 
that one should select an no value such that all orbits of the reduced system (4.10) which are bounded in 
C#J are internal orbits in the annulus A = [-Q, q,] x S’. These are the very orbits which can be 
attributed to the presence of the resonance Z = Z,. In section 7 we will see an example for such a suitable 
choice of no. 

5.4. The case of hypothesis (H2’) 

Throughout the previous sections we have analyzed system (2.1), assuming that hypotheses (Hl) and 
(H2) held. We now sketch the same procedure under hypotheses (Hl) and (H2’). We will see that, 
although the key results are similar, there are slight differences in their formulation. Since (H2’) 
already ensures the presence of a whole resonant manifold 

4, = {(x,Z, 4) E 9 Ix = X,(Z; PU), (Z,4) E A) , 

with A = A” = [I,, Z,] X S’, we consider (2.1), to be in standard form already. Notice, however, that in 
this case do has an explicit Z-dependence, a feature which is responsible to a large extent for the 
upcoming differences in the treatment of assumption (H2’). For convenience, we let I1 = Z1 and & = Z2, 
and with this change of notation we can use most of our findings related to the unperturbed standard 
form (2.5), for the unperturbed system (2.1), with (H2’). One important difference is that our new 
phase shift 

WV; CL) = 1 W4,(~h(t, 1; CL), 1; P) dt , (5.16) 
--m 

is Z-dependent. Most of the phase-space structure of (2.1), changes the same way under perturbation as 
it was described in section 4. In particular, we have a perturbed normally hyperbolic manifold Sa, with 
locally invariant local stable and unstable manifolds discussed in section 4.1, which admit fiberings, as 
described in section 4.2. Lemma 4.3 applies again and yields a Hamiltonian dynamics on dE. Since we 
have introduced no resealing this time, our restricted Hamiltonian will be slightly different, and can be 
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cast in the form 

where h, = H,(X,(Z; p), I; /J) is a constant by hypothesis (H2’). Once again, we can define the 
restricted system 

i = -ED@ X(Z, 4; p) + O(E2) ) 4 = &DIX(Z, c#J; p) -t O(E2) ) 

and the reduced system 

z’=-ytm44;/4, (P’=D,w,+;I*), (5.17) 

where X(1, 4; P) = H,(X,(Z; ~1, 1, 4; P). A s we indicated at the end of section 4.2, this reduced 
system is generally not a potential problem, but the analysis of the relation of the reduced dynamics to 
the “full” dynamics goes along the same lines as earlier. Lemma 5.1 still holds in the form 

which again leads to proposition 5.2 concerning the intersection of energy surfaces containing internal 
orbits with J&?~. Proposition 5.3 also holds, giving information about the intersection of energy surfaces 
with W”(dE) and W” (z&). Similarly to (5.5), we can define the energy-difference function 

with Ab(Z; II) defined in (5.16). The transverse zeros of AX constitute a set 

As we remarked earlier, this zero set is not necessarily a union of r#~ = constant lines: it is generally a 
union of smooth nonintersecting curves. The Melnikov-analysis of lemma 5.4 works the same way as for 
the case of hypothesis (Hl) but we have to substitute I for Z, + ~jj. We again define the counterpart of 

Z; by 

and obtain the following 

Theorem 5.7. Let us assume that (Hl) and (H2’) hold, and 
(Al) There exists ji E V such that Zi Z 0, 
(A2) y 0’ and 70 are internal orbits of the reduced system (4.16) with yl n Zs = pl = (f, 4) E A and 

y; n Z; = p; = (I, C$ - A$@; CL)) E A, 
(A3) yl intersects Zi transversally at pl and y0 intersect Z, transversally at ~0. 

Then, there exists E,, > 0 such that for 0 < E < q, the following are satisfied: 

(i) The perturbed system (2.1), has two internal orbits, r:, 7, C tiE which are C’-’ E-close in A to 
-yJ and 70, respectively. 
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(ii) The perturbed system (2.1), also has two internal orbits, y:, 7; C dz such that T: intersect ZE 
transversally at p,’ with d( p”,’ , p,‘) = O(e) in A, and 7, intersect ZE transversally at p”, with 
d(p”;,p,)=O(e) inA. M oreover, IV(y:) intersects W”(y”,) and W”(y;) intersects W”(y”:> in 
transverse heteroclinic orbits y: and yt, respectively. 

(iii) There exists 8, > 0 and a trajectory y,,(t, 7, C&O; CL) of (23, of the form (3.2) (with the necessary 
modifications) such that yo(t, f, C&O; b) is O(E)-close to the orbits yi and yt outside of Us0 and 

yo(+cQ, I, 4”; F) = PO+ , YJ-a, z400; CL) = PO . 

(iv) If yi = y0 in (A2) then y: = ?: = y, + r,, and yi = y: is a transverse homoclinic orbit to y:, 

such that (iii) still holds. 
(v) (i)-(iv) are also satisfied for p values sufficiently close to F. 

Proof: Most of the proof is virtually the same as that of theorem 5.5. The argument for transversality 

yields the expression 

implying that for the matrix L, containing the first, third, and fourth column of DG, 

det(L,)Iqo = ~Dxl&,lqo[(D A% JDX)I,; + O(E, ai)1 , 

holds with D denoting derivatives with respect to I and 4. This allows the same conclusion as in 
theorem 5.5. I3 

We complete this section by noting that a corollary identical to corollary 5.6 could be stated in 
relation with theorem 5.7 too, but it is omitted for brevity. 

6. Chaos associated with orbits homoclinic to resonances 

We will discuss the ramifications of some of the phenomena listed in corollary 5.6. First we consider 
the case when the perturbed system (2.1), has transverse homoclinic or heteroclinic orbits connecting 
periodic solutions and also study a certain bifurcation of transverse homoclinic orbits. Next we turn to 
the case of a homoclinic orbit connecting a saddle-saddle type fixed point in J&~ to itself. Our methods 
do not apply immediately to the case of a saddle-center with a homoclinic orbit, which may arise in 
systems with an at least two-dimensional parameter CL, or with certain symmetries. For a general 
treatment of the saddle-center the reader is referred to Lerman [25], Mielke et al. [26], and the 
references cited therein. With a little bit of extra work (not detailed here) the energy-phase criterion 
applies to this case as well and gives results similar to the local results mentioned above on a larger 
domain. 

6.1. Dynamics near orbits connecting periodic solutions in the resonance 

Since this issue has been widely investigated and deeply understood, we simply invoke the 
Smale-Birkhoff homoclinic theorem (Smale [27]) to obtain the following 
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Theorem 6.1. Let us assume that hypotheses (Hl) and (H2) or (H2’) are satisfied and assumptions 
(Al)-(A3) hold. Let us further assume that y of = y0 of theorem 5.5 or theorem 5.7 is a periodic orbit 
in A. Then certain iterates of appropriately defined Poincare maps near yi = y: have Smale-horseshoes 
on the energy surface containing yt = yt. 

Theorem 6.1 implies that the Poincare maps mentioned above possess invariant Cantor-sets on which 
they are homeomorphic to a full shift on N symbols. It follows from the structural stability of 
horseshoes that nearby energy surfaces also contain horseshoes in their dynamics. For more information 
on issues related to theorem 6.1 the reader is referred to Guckenheimer and Holmes [23] or Wiggins 

1191. 
We remark that if yl and y0 are distinct periodic orbits of the reduced system then transverse 

heterocfinic connections between their perturbed counterparts can be destroyed by arbitrarily small 
further perturbation. However, since both of them are embedded in families of periodic orbits, and 
subsets of these families intersect 2: and 2,) respectively, transversally, the family of heteroclinic 
connections between the two sets of periodic orbits is stable. If -yi and y0 are identical periodic 
solutions, sufficiently small perturbation will preserve the homoclinic connection between them. 

6.2. Saddle-node bifurcation of homoclinic orbits 

Since the reduced system (4.10) is Hamiltonian, one periodic internal orbit indicates the existence of 
a one-parameter family of internal orbits. As we have seen earlier, internal orbits are energetically 
isolated, hence the periodic orbits in this family will have different energies. The majority of the orbits 

in such a family have transversal intersections with the zero sets ZL and Z; (which of course includes 
the case of no intersection at all) but there might be an orbit, say, y0 in the family which is tangent to 
these sets. This suggests the presence of a periodic internal orbit yE in .G$~ of the perturbed system 

(2.1),, which energetically separates periodic internal orbits with no (or k) homoclinic connections from 
those with two (or k + 2) transversal homoclinic orbits. If we consider the energy as a bifurcation 
parameter, the appearance of two homoclinic orbits at the energy of yE is reminiscent of the saddle-node 

bifurcation of a fixed point, thus we will use this term for it in our discussion. 

Theorem 6.2. Let us assume that (Hl)-(H2) hold and let 3/O be a periodic orbit of the reduced system 
(4.10) contained in a one-parameter family of periodic internal orbits which are bounded in +. Assume 
further that -yO is tangent to Zl and Zi at the points (0, 4) and (0, 6 - A+(p)), respectively. Then, for 
E > 0 small enough the perturbed system (2.1), has a periodic internal orbit ‘y,, C’-’ G-close to -yO such 
that W’(r,) and W”(y,) have a quadratic tangency along a homoclinic orbit. Moreover, yE divides ,~4~ 
locally into two regions, one containing periodic solutions with a number k E Z of transverse homoclinic 
orbits, the other containing periodic orbits with k + 2 transverse homoclinic orbits. 

Proof: For simplicity assume that Zl is connected (the proof will work for any of the connected 
components) and let X’ ] y,, = h,. Then, as it was mentioned in the proof of theorem 5.5, for small E Zi 
perturbs into a set Zl,, in ~4~ given by 

where g is a C’-’ function. Dividing (4.7) by XG we obtain that the level curves of the restricted 
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Hamiltonian satisfy the equation 

with resealed energy values h. Since D, X(0, 4; /A) #O, by the implicit function theorem (6.1) is 
equivalent to 4 = G(n, h; p, ~2) in a neighborhood of (0, 4) where G is C’-* in its arguments. 
Consider the equations 

(6.2) 

which, by assumption, are solved by (7, h, vZ) = (0, h,, 0). The implicit function theorem implies the 
existence of a smooth solution (n(p, v%), h(p, 6)) around (0, h,, 0) provided 

~G~:G~c,o,~~;,,o, # 0 (6.3) 

holds, as it can be checked easily from (6.2). Substituting G for 4 in (6.1) and differentiating with 
respect to h, then differentiating twice with respect to v yields 

which together with hypothesis (H2) implies that (6.3) is satisfied for small E (Dd %(O, r$; P) Z 0 since 
0,X(0, 4; p) = 0 and ‘yO is not an equilibrium). Hence we have obtained that the restricted system has 
a periodic internal orbit ye, C’-’ fi-close to 3/O in A which has a quadratic tangency with Zl,E (see fig. 

9). 
Consider now aUSO with O< E + 8, + 1, as in the proof of lemma 5.4. Let us define the set 

Wk = Ws,,(&,) fl aU60 which is a two-dimensional manifold by the transversal intersection of the two 
manifolds in its definition. Moreover, using the fibering of W&,(A!~) we conclude that W& is a C’-’ 
graph over an open subset of tiE. In other words, the fiber projection 7rs: 9: ---, s&, , x E f: (p) I+ p is a 
C’-’ diffeomorphism restricted to Wi (see section 4.2 for notation). It follows immediately that 
C”(y,) = Wio rl Ws,,(y,) is a smooth closed curve in W& since C”(y,) = rr,‘(y,), as shown in fig. 10a. 

Next we define the set Wk = W”(Sa,) rl dUso. (Note that again, Wyo,(dE) fl aUS C Wio is a two- 
dimensional graph over dE). Recall that solutions of (2.1), contained in W”(.&) are C’ E-close to 
solutions in W”(s8,) outside U “O. These latter solutions intersect au% transversally when they approach 

f 

Fig. 9. The intersection of ye and Z:,. 
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dE again, thus Wi has a component W&* diffeomorphic to an open two-dimensional disk. Clearly, WiO* 
contains a closed smooth curve C’(r,) = Wii fl W”( ye), as seen in fig. lob. If we denote the energy of 
the orbit 7, by h, = H 1 ‘y, and introduce the set E, = E(h,) n dUao then obviously C”(y,), C”(y,) C E, 
holds. Moreover, n--r (Z,‘,,) will intersect E, in exactly one point q,. Applying theorem 5.5, this 
means that q, = cs(y,) f-7 ~YY,), as shown in fig. 10~. In the figure we used the fact that an open subset 
of E, around C”(y,) U C”(y,) is a two-dimensional graph over Se,, a property of (2.1), which survives 
small perturbations. 

What remains is to observe that since E, is locally a graph over ,G$, we can extend the fiber 
projection rr, from the compact subset C’(r,) to an open neighborhood Xof C”(y,) in E,,,. If we denote 
this extension by 17, then it is not hard to see that the image of X under I& will look like as in fig. 11. 
Since n,(C”(y,) tl X) and yE lie on different sides of ZL,E in L&, have a single common point, and ‘y, 
has a quadratic tangency with Zi,E, we conclude that 17,(C”(‘,) n X) and 7, have a quadratic tangency 
in Sa,. But 17, is a C’-’ diffeomorphism (r 5 2) thus C”(y,) and C”(y,) have a quadratic tangency in E,. 
NOW E, is a local cross section within E(h,), which implies the first statement of the theorem. 

Finally, we see that -y, is a Jordan curve in ,&, thus orbits inside 7, will not intersect Zz,E. At the 
same time, by the smoothness of the family of periodic orbits, nearby orbits outside yE will have two 
transversal intersections with ZL E. For these periodic internal orbits the proof of theorem 5.5 does not 
apply with ~Jixed. However, our above construction of the extended fiber-projection II, does apply and 
proves the second statement of the theorem (see fig. 11 for the geometry of this construction). •i 

Theorem 6.2 helps us to unveil the mechanism of the saddle-node bifurcation of homoclinic orbits. 
Figure 12 shows the creation of two transverse homoclinic orbits through the quadratic tangency of the 

Fig. 10a. The proof of theorem 6.3. 
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Fig. lob. The proof of theorem 6.3 (cont.) 

-.. 
I 

Fig. 10~. The proof of theorem 6.3 (cont.) 
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Fig. 11. The appearance of two transversal homoclinic orbits. 

Fig. 12. The mechanism of the saddle-node bifurcation of homoclinic orbits. 
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two cylindrical manifolds W”(zzZe) and W”(sB,). Here the bifurcation parameter is the energy h which is 
varied through a neighborhood of the bifurcation value h,. We assumed a particular situation in which 
the orbits contained inside ‘y, have lower energies than 7,. We also assumed that ZL,, has one connected 
component as in fig. 9. As we mentioned and indicated in theorem 6.2, if Zl_ has more than one 
connected component and we again vary the energy as a parameter then a tangency of the orbit 
corresponding to some value of h increases the number of transverse homoclinic orbits by two. An 
example of this repeated saddle-node bifurcation will be considered in section 7. 

6.3. Dynamics near orbits homoclinic to a saddle-saddle in the resonance 

We start by changing hypothesis (Hl) slightly. From now on we will assume that for system (2.1), the 
following holds: 

(Hl’) There exist I,, Zz E U, I1 < I, such that for any (I, p) E [fl, $1 x V (2.la), has a hyperbolic fixed 
point X,(Z,; CL) and a pair of homoclinic trajectories, xh(t, I,; p) and xh’(t, I,; p), which connect X0 
to itself, as viewed in fig. 13a. 

Remark 6.1. For future considerations, in fig. 13a we have assumed (without loss of generality) that 
X,(Z,; EL) = 0, and the local stable and unstable manifolds of the origin are defined by x2 = 0 and x1 = 0, 
respectively. This assumption is just a convenient choice of coordinates and does not affect the results. 

By adapting (Hl’), we preserve the features of our unperturbed geometry in (2.1), which were 
discussed in section 3, but we also add a new element to it: another homoclinic manifold ri connecting 
ti,, to itself, as shown in fig. 13b. If (H2) also holds we can repeat the analysis of the previous sections 
to detect some orbits of the standard form which perturb from orbits in r;, and are homoclinic to the 
resonance in the sense as it was meant in section 5. We define the phase shift Ac$‘(~) as in (3.3), but 

Fig. 13a. Hypothesis (Hl’). 

I=?, 

x s’ 

.r; 

Fig. 13b. The geometry of the unperturbed standard form under (Hl’). 
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with xh’(t, I; CL) instead of xh(t, I; p). Then we define the energy-difference function AX’ as in (5.5) 
using A4’( CL) instead of Ac#J( p), and the sets 2:’ and ZI- as in (5.6) and (5.13), but with AX’ and 

A+‘(p). We will assume that for the two phase-shifts 

(H3) A+‘(P) = -Am 

holds which is satisfied, e.g. for a system studied in Haller and Wiggins [18]. By the symmetry assumed 
in (H3), we have AX’(4; CL) = A%‘(+ - Ac$J( p); CL), which implies 2:’ = ZP and ZL’ = Zi. It follows 
that whenever the energy-phase criterion of theorem 5.5 indicates an orbit homoclinic to the resonance 
in the perturbed system (2.1), then another connection arising from the perturbation of r; exists on the 
“other side” of dE. For concreteness, we assume that for p E (pi, kz) the reduced system (4.10) has a 
pair of internal orbits rz and -y i, connecting the saddle points s1 and s2 in the annulus A with equal VJ 
coordinates and with 4 coordinates &, and &,,, respectively, satisfying C& = A, + 27~. By this latter 
condition on the angles, we will identify s1 and s2 in A and use the single notation s,, for both. In fig. 14a 
we show the homoclinic internal orbits -yt and yi together with the saddle point s,, in A. We also 
assume that ZL’ = Z; and Zh- = Zd are located in A as in fig. 14a. More specifically, they intersect 
both the internal orbits -yE and -yE of the reduced system. We have also indicated two distances, d, and 
d, in fig. 14a for which we assume (cf. remark 6.2) that there exists CL* E (pi, b) such that 

(H4) lim d, = lim d, =O. 
fi-+** CL-p* 

If we introduce local coordinates in the usual way such that the local stable and unstable manifolds of s,, 
become coordinate axes, and d, and d, are small enough then they equal the distance of p:- and p:‘, 

respectively, from the origin s,,. The configuration depicted in fig. 14a is typical in potential-type 
reduced systems like (4.10). 

Applying the energy-phase criterion (i.e. theorem 5.5 and corollary 5.6) to the situation drawn in fig. 
14a, we obtain that for small E > 0 the perturbed system (2.1), has two transverse homoclinic orbits, yt 
and yi as seen in fig. 14b, arising from the perturbation of r, and r;, respectively. The energy-phase 
criterion guarantees the existence of two more orbits but we do not deal with those for the moment. 
Note in fig. 14b that we have introduced local coordinates around the saddle point S, into which s0 
perturbs: (ii, A) are local coordinates on W~,C(~E), while (&, K) parametrize Wyo, (s,). The (x”,, &) 

coordinate system is complementary to directions in Se, and is close to the coordinate system (x1, x2) 
shown in fig. 13a,b. The coordinates (K, A) are defined around S, in Sa,, and locally K = 0 on the 
one-dimensional stable manifold of S, in Sa, (which contains the perturbed internal orbit 7:) and A = 0 
on the one-dimensional unstable manifold of s, in dE (which contains the perturbed internal orbit yi). 
To sum up, WsJs,) is defined by (x”,, K) = (0,O) and Wb,(s,) is defined by (&, A) = (0, 0). 

Fig. 14a. Assumption about the internal orbits -y: and -yi, and the sets Z: and Z;. 
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Fig. 14b. Transverse homoclinic orbits obtained from the energy-phase criterion. 

Remark 6.2. The reason why we require (H4) to hold is that we want pi’ and pi’ to fall in the 
domain of definition of the local coordinate system described above in which the dynamics is 
topologically equivalent to the linearized dynamics at s,. This fact is used in a great deal regarding the 
“local map” around s, when one tries to construct a horseshoes on the energy surface E(H]J (cf. 
Holmes [28]). 

The transverse homoclinic orbits y: and y,” can be schematically represented in the coordinates 
discussed above as in fig. 15, where the distances d, and d, are those shown in fig. 14a. Here we used 
(iii) of theorem 5.5 which asserts that the transverse homoclinic connections stay close to unperturbed 
fibers outside of lJQ for small E. The situation in fig. 15 was analyzed by Holmes [28] and - with more 
details - in Wiggins [19]. We will not invoke the construction of a chaotic invariant set near the saddle 
point, only verify the geometric conditions for chaos found in Holmes [28]. For details of the 
construction the reader may consult the two references mentioned above. 

Following Holmes [28], we define the following manifolds: 
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K?___________ 4 

______-__-- 

v 
WI”,,’ % ) 

Fig. 15. Schematic representation of y: and yp. 

with positive constants I, p,, p, to be specified later. It is easy to see that the manifolds defined in (6.4) 
are solid 3-tori which are transversal to the flow of the perturbed system (2.1), for small positive E. We 
also define 

2; = 2” n E”(HI,~) , (+u = 2; n w;~,(s,), 

iZS, = 2:” r-7 E”(HI,E) , US = 2; n w;oc(s,) . 

Note that us and CT” are circles lying in the stable and unstable manifolds of s,, respectively. We 
introduce the notations 

for the intersection points of the transverse homoclinic orbits with the circles CT’ and CT”. In view of the 
newly defined geometric objects, we have redrawn fig. 15 in fig. 16 more carefully. As we see in the 
figure, the angles 0, and OS, at which the two orbits enter and leave the domains bounded by us and CT”, 
can be approximated with an error of O(E, 6 i) by the angles corresponding to the straight lines K = d, 

and A = d,. As it was used in the proof of theorem 5.5, these lines approximate unperturbed stable and 
unstable fibers with an error of O(E, Si), which have their basepoints in 2: and 2;. It turns out from 
the analysis of Holmes [28] that the magnitude of the angles 0, and 0, is a crucial factor of the local 
dynamics around s,. 

Fig. 16. Local geometry around s,. 13,:=8: = 0: and O,:=ei = 0:. 
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For fixed E we linearize the perturbed flow at s, to obtain the eigenvalues *1 for the eigenspace 
tangent to the coordinate space (x”,, Tz) and +Gk for the eigenspace tangent to de, with some k, 
I > 0. Since E is small, 1 > Gk, as it is assumed in Holmes [28]. We have now all the ingredients to state 
and prove. 

Theorem 6.3. Let us assume that hypotheses (Hl’), (H2)-(H4) and assumption (Al) of theorem 5.5 
hold. Moreover, suppose that 7: and -yi are internal orbits of the reduced system (4.10) homoclinic to 
the saddle point s,,, which intersect the sets 2: and Z, (defined earlier) as shown in fig. 14a. Then, for 
sufficiently small E > 0 there exists Ap > 0 such that if 1 p - p *I < Al then: 

(i) An appropriately defined Poincare map of system (2.1), has an invariant Cantor set on the energy 
surface E”(H],). On the invariant set the Poincare map is homeomorphic to a subshift of finite type 
on four symbols with (irreducible) transition matrix 

A= l 
1 0 1 0 

10 
0 1 
0 1 10 1 0 1. 

0 1 

(ii) Cantor sets homeomorphic to this invariant set also exist on energy surfaces close to E”(H(J. 

Proof: First we set 
According to Holmes 
condition 

0 < E < q,, where E,, is the same appearing in the statement of 
[28], to construct the Poincare map above we have to satisfy 

theorem 5.5. 
the technical 

(6.5) 

which affects the definition of 2: and 2:. We also select some sufficiently small Ap > 0 in accordance 
with remark 6.2. Assuming that (6.5) is satisfied, Holmes shows that (i) of our theorem 6.2 holds 
provided there exists a small nonzero positive number S such that 

/tan 0, tan O,] < -S + & exp[(l- &)ln t], (6.6) 

with 0, and 0, as defined in fig. 16, and for some suitable choice of r and p, in (6.5). Let us fix some 
r > d,, d, (see fig. 16). The distances V, and V, shown in fig. 16 can be computed as 

V,‘jlW, V, = r2 - (r - d,)’ . (6.7) 

Then, as discussed earlier, fig. 16 yields the estimates 

tan 0, = + + B(E, 6:) , 
” 

tan 0, = + + 0(e, iji), 
s 

which imply that 

dd 
/tan 0, tan O,] = * 

V” v, 
+ 0(&, 6;). 
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We can now choose small positive &I such that if E < &I then 

dd 
(tan 0, tan @,I < 2 u 

VUVS . 
(6.8) 

On the other hand, if we choose p, = r + VZ then using, say, the first equation of (6.7) we obtain 

Since we have 

(llvz)(l/k)-1 

= exp 

we can choose positive Ed such that if E < E* then 

Clearly, there exists positive Ed such that if E < eg then 

2d,d, 
vu vs 

(6.9) 

(6.10) 

But (6.8)-(6.10) show that selecting E < min (.Q, &i, Em, Q) sufficiently small we can find S > 0 verifying 

(6.6). We choose p, > 2 &“‘r to satisfy (6.5), which completes the proof of (i). Finally, the structural 

stability of horseshoes and (v) of theorem 5.5 proves (ii). 0 

We do not repeat the results for the case when hypothesis (H2’) holds, only point out that it is again 
possible. The difference compared to theorem 6.3 is the fact that the sets 2: and 2; do not necessarily 
look like as those in fig. 14a, which would make the formulation of the assumptions for a theorem 
analogous to theorem 6.3 slightly more complicated. 

We close this section by noting that the set-up of fig. 14a implies the presence of another pair of 
transverse homoclinic orbits yz’ and yp' , as indicated in fig. 17. However, the results of Holmes [28] are 

not applicable to study the interaction of these two orbits. We found that other approaches to construct 
horseshoes also fail for these orbits, as well as for the previously discussed orbits in case hypothesis 
(H3) is not satisfied. It appears that the energy level “bounding” the resonance does not admit 
horseshoes in system (2.1), if (H3) and (H4) do not hold. This may be related to the fact that the 
topology of the horseshoes below and above these energy levels are different and the transversality of 
these invariants sets is momentarily lost at the critical values of the energy. 

7. An example 

this section apply our to an The system study arises a two-Fourier- 
truncation of damped and nonlinear Schrodinger that is in Bishop 
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Fig. 17. The four homoclinic orbits y:, yi, y:’ and yp’. 

et al. [16,17]. The theory of KovaEic and Wiggins [15] was used to study this problem in the dissipative 
case. We study the same system, but with zero dissipation. For the details of the derivation of the 
two-mode model from the nonlinear Schriidinger equation we refer the reader to Bishop et al. [16]. 

The equations that we will study are given by 

i, = (k2 - 21)x, + fx; + $x,x; + E r 

j= -_E (nj21-x:-x:cosfp ) 
> 

4=z-1++Q& 

which are of the following form: 

sin 4 , (7.11, 
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aH, aH, 
‘l= ax2 -+&ax’ 

aH, aH, 
~2=---E-, 

2 ax, ax1 

i-,!$ g.!$+,!?$, 

where 

and 

The reader can easily see that these equations have the general form of (2.1),. (Note: in making the 
correspondence between (7.1), and the equations studied by KovaEiE and Wiggins [15] the substitution 

( x1, x2, I, 4)+ (x, y, I, -r) must be made.) Note that there are two parameters in (7.1), - k and ZY 
Hence, in our notation for the general theory Z.L = (k, r). 

7.1. The geometric structure of the unperturbed system 

The unperturbed system is given by 

-j =_k2X _-x2x aH 
1 2 412 

+1x3=-d 
42 ax 7 

2 

a&l 
f, = (k2 - 21)x, + ix; + 3x,x; = --g- , 

1 

wl i=()= -- 
a4 ’ 

(7*I), 

It can easily be shown that the x1-x2 component of (7.1), has a hyperbolic fixed point at (x1, x2) = (0, 
0) for all Z > 4 k2, which is connected to itself by a pair of homoclinic orbits, thus system (7. 1)0 satisfies 
our hypothesis (Hl) (it also satisfies (Hl’)). Furthermore, 

.ae, = {(x,7 X2YZT 911 x1 = x2 = 0, Z > ;k2} (7.2) 

is a two-dimensional, normally hyperbolic invariant manifold, connected to itself by a symmetric pair of 
three-dimensional homoclinic manifolds (described more fully in KovaEii: [24] and KovaEiE: and Wiggins 
[ 151). Introducing 

r, = WS(do) n W”(dlJ = {(x1, x2, 1, 4) 1 f&,(x,, x2,0 - f&,(0, 0, 1) = 0, x + O> 7 

we have a homoclinic structure like that shown in fig. 13b. 
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The dynamics on Sa, 
Using (7.1), and (7.2), the vector field restricted to SB, is easily seen to be 

i=O, $=I-1. 

We see that a resonance occurs at Z = 1 giving rise to a circle of fixed points on SB,, thus hypothesis (H2) 
of section 2 is satisfied. 

The phase shifts 

In KovaEii: and Wiggins [15] the phase shift A+ is calculated for orbits heteroclinic to points on the 
circle of fixed points. There are two cases, depending on the value of k; 

O<k<f: 

A+(k) = 2 tan -‘(y)+-$tanh-‘($$). 

The phase shift, as a function of k, is graphed in fig. 18. 

7.2. The geometric structure of the perturbed system 

As a result of the symmetry (x1, x2, I, 4)+(-x,, -x2, I, +), s&, and zZO are identical (in other 
words, (x1, x2) = (0, 0) i s a fixed point of the x,-x2 components of the equation for both the 
unperturbed and perturbed systems). This greatly simplifies some of our analysis, in particular, the 
computation of the perturbed system restricted to J&. 

The dynamics on ~4~ 
Using equations (2.2), (4.8), and the fact that X,(Z,; p) = (0, 0), we find the Hamiltonian of the 

reduced system of the form 

Fig. 18. The graph of A& 
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Hence, from (4.10) the reduced system is given by 

$ = -k/zcos cp ) 4’=lj. (7.3) 

Notice that (7.3) is just the equation for the familiar simple pendulum. This system has a hyperbolic 
fixed point at 

and an elliptic fixed point at 

PO = (0, $4 . 

The hyperbolic fixed point is connected to itself by a pair of homoclinic orbits (see fig. 19). We now fix 
some 7. > 2V?%, so that all the rotational orbits and separatrices of the pendulum are internal orbits, 
in accordance with our discussion at the end of section 5.3. 

7.3. The energy-phase criterion and the existence of homoclinic orbits 

We are now In a position to apply the theory of section 5 and determine the existence of orbits 
homoclinic to the periodic orbits inside the resonance as well as orbits homoclinic to the saddle fixed 
point. This amounts to applying the energy-phase criterion as formulated in theorem 5.5. A simple 
calculation gives 

AX(4; r, k) = X(77, 4; r) - X(7,4 -A+(k); r) = 0 j sin 4 - sin($ - A4) = 0. (7.4) 

Fig. 19. The phase portrait of the reduced system. 
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It is easy to see that (7.4) has two solutions given by 

and 

Using (7.12), we can show that for Ac#.J(~) = 0, 27~ we have D, A%(+; r, k) = 0 at c#+ = in, $1r and 
&= $r , $n, i.e. D, AX is zero at the C$ values of the hyperbolic and elliptic fixed points in the 
resonance. According to fig. 18 this means that for A4 E [0, 21~1 there are two values of k for which 
A%(+ ; r, k) = 0 and D, AX(4; r, k) = 0. Using the 6, periodicity of A %‘($ ; I’, k), it follows that there 
is a set A of countable infinity of k values (converging to k = 1 from above and below) for which 
D, A@+; r, k) =O. 

Using (7.5) and (7.6) we have 

defined for k @ A. 

For A4 = 0 mod 21r (k E A), Zz,l and Z,,i are not defined but would be located at 4 = d rr, $IT. As 
AC+ increases, ZJ,i moves from 4 = BIT monotonically towards SIT (with 4 increasing) and Z,,i moves 
monotonically towards SIT (with C#J decreasing), reaching these points at A4 = 21r, where they again 
cease to be defined. 

Similarly, for A+ = 0 mod2n (k E A) Zl,* and ZJ,* are not defined but would lie at $7~. As Ac$ 
increases, Zl,* moves monotonically from 4 = HIT towards 2~ (with 4 increasing) and Zi,2 moves 
monotonically towards in (with 4 decreasing), reaching these points at Ac$ = 21r, where they cease to 
be defined. Also, at A4 = 1~ ZL,* coincides with Z,,i and Zz,i coincides with Z,,*. This variation of the 
sets Z:,r and Zc,2 repeats itself more and more rapidly as the parameter k approaches i (see fig. 18). 

In figs. 20a-c we plot the location of Zi,,, Z,,,, Zi,,, and Z,,* for a value of A$ between 0 and IT, 
for A+ = IT, and for a value of A4 between 7~ and 27~, respectively. These three plots also indicate the 
main qualitatively different behaviors possible. We discuss each situation individually, but first, we want 
to introduce some terminology. As vertical lines, ZL,i and Z;,l are tangent to the right and left, 
respectively, extremal (in 4) points of a unique periodic orbit. All periodic orbits surrounding this orbit 
are intersected by Zi,i and Z,,i in two unique points, respectively (the homoclinic orbits are 
intersected in one point). The periodic orbits inside this periodic orbit do not intersect Zi,, and Z,,i. 
We refer to the region outside this special periodic orbit as the 1 -accessible region, denoted R,,. 
Similarly, a Z-accessible region can be defined using ZL,2 and ZP,2 and will be denoted R,,. 

In figs. 20a-c we indicate the l-accessible and 2-accessible regions. From our earlier discussions, 
periodic orbits that are in both R,, and R,, have eight transverse homoclinic orbits, and periodic orbits 
that are neither in R,, nor R,, have no (simple) transverse homoclinic orbits. (The reason the numbers 
are O-4-8, rather than O-2-4, is because the symmetry of the system effectively doubles the number of 
transverse homoclinic orbits.) The saddle point q0 has 8 transverse homoclinic orbits. Thus, for 
0 < A$ < rr and 7~ < A+ <HIT the interior of the resonance (i.e., the interior of the region bounded by 
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f z+ Z- 
_&I 

)I, 1 11.2 2 C.2 

111 0 Homo&tic Orbits 

R2A :m 4 Homoclinic Orbits 

RIA qR 2A ’ m 8 HomoclinicOrbits 

Fig. 20a. The energy-phase criterion for Ac$ E (0, m) 

I + I 
z zP,l , = z; 2 J& z; 2 

2 ’ 

0 Homoclinic Orbits 

R~A=R2A : u 4HomdiiicOrbits 

Fig. 20b. The energy-phase criterion for A4 = 7~. 
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0 Homocliic Orbits 

RIA :m 4 Homdinic Orbits 

RIA sR 2A : n 8 HomdinicChih 

Fig. 2tk. The energy-phase criterion for A,$ E (?r, 24. 

the transverse homoclinic orbits connecting qo) is partitioned into three regions; one containing periodic 
orbits that have no transverse homoclinic orbits, one containing periodic orbits that have four 
transverse homoclinic orbits, and one containing periodic orbits that have eight transverse homoclinic 
orbits. In passing between these regions a saddle-node bifurcation of homoclinic orbits occurs as 
described in section 6. Concerning chaos, associated with each transverse homoclinic orbit to a 
hyperbolic periodic orbit is a Smale-horseshoe with its attendant chaotic dynamics (cf. theorem 6.1). 
Unfortunately, the orbits homoclinic to the saddle point do not satisfy hypothesis (H4) of section 6.2, 
hence theorem 6.3 does not apply. 
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Note added in proof 

After this manuscript was submitted Gregor KovaEiE announced some results in ref. [29] for periodic 
internal orbits, covering (i) of our corollary 5.6 and theorem 6.1. His proof for transversality makes 
extensive use of the second assumption of our hypothesis (H2) and does not generalize to the case of 
the normally hyperbolic 2-manifold of equilibria in our hypothesis (H2’). 
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