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Model reduction of large nonlinear systems often
involves the projection of the governing equations
onto linear subspaces spanned by carefully selected
modes. The criteria to select the modes relevant for
reduction are usually problem-specific and heuristic.
In this work, we propose a rigorous mode-selection
criterion based on the recent theory of spectral
submanifolds (SSMs), which facilitates a reliable
projection of the governing nonlinear equations onto
modal subspaces. SSMs are exact invariant manifolds
in the phase space that act as nonlinear continuations
of linear normal modes. Our criterion identifies
critical linear normal modes whose associated SSMs
have locally the largest curvature. These modes
should then be included in any projection-based
model reduction as they are the most sensitive to
nonlinearities. To make this mode selection automatic,
we develop explicit formulae for the scalar curvature
of an SSM and provide an open-source numerical
implementation of our mode-selection procedure. We
illustrate the power of this procedure by accurately
reproducing the forced-response curves on three
examples of varying complexity, including high-
dimensional finite-element models.

1. Introduction

The invariance of modal subspaces in linear oscillatory
systems allows for a rigorous model reduction via
linear projection onto any select group of linear normal
modes [1]. For nonlinear systems, however, there are
no mathematical results confirming the relevance of
linear projection due to the general lack of invariance
of modal subspaces. Indeed, a model reduction principle
can only be justified mathematically if the reduced model
is defined on an attracting invariant set of the nonlinear
system [2]. Nonetheless, linear projection methods are
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routinely employed in the context of structural dynamics due to their simple implementation
(cf. [3/4], see [5] for a general survey).

In practice, the accuracy of such a reduction procedure is dependent on an ad hoc choice of
modes and hence needs to be verified on a case-by-case basis. A relevant example is an initially-
straight, nonlinear von Karman beam [6-9], where the axial and transverse degrees-of-freedoms
are coupled only by the nonlinearities. References [6,7] propose a selection of modes supported
by the physical understanding that a subset of axial modes should be included in the projection
basis to account for the nonlinear bending-stretching coupling. Indeed, this reduction happens
to result in an exact model reduction due to the presence of a slow manifold in this example,
as shown in [9]. However, such physical intuition of selecting relevant axial modes is already
unavailable upon a simple change in the geometry of the structure such as making the beam
initially curved. More generally, heuristic mode-selection criteria are expected to be increasingly
inaccurate as the size and the complexity of the underlying system increases.

Recent trends in nonlinear model reduction tackle these conceptual issues by constructing
reduced-order models (ROMs) using invariant manifolds [2,10-12]. While the computational
feasibility of such invariant manifolds for high-dimensional dynamical systems is a subject of
ongoing research, their relevance for nonlinear model reduction is certainly more appealing in
comparison to linear projection. In particular, the spectral submanifolds (SSMs) [11] allow the
reduction of the nonlinear dynamics into an exact, lower-dimensional invariant manifold in
the phase space. This SSM attracts all neighbouring solutions, which ensures exponentially fast
synchronization of general oscillations with their reduced model. The accuracy of the model can
be made arbitrarily high without increasing its dimension: one can simply compute higher-order
terms in a Taylor expansion for the SSM.

In this work, we leverage the theoretical relevance of SSMs to select a smaller set of modes
optimally for the purposes of reduction by modal projection. We perform this selection by
computing the local curvature of the relevant SSM in the modal directions. These directional
curvatures highlight the modes that would affect the nonlinear response most significantly.
Starting with an initial set of modes using linear mode superposition, we develop a procedure
to identify a linear subspace that captures the local curvature of the relevant SSM. We automate
this process so that the user obtains an optimal set of modes with minimal input.

After describing the basic set-up, we review the essential elements of SSM theory and its
numerical implementation in §3. We then introduce the geometric notions behind our proposed
nonlinear mode selection along with a motivational example in §4. The notion of the directional
scalar curvature of an SSM is developed in §5. Finally, in §6, we use the ROM generated from our
directional-curvature-based mode selection criterion to accurately reproduce the forced response
curves in finite-element examples.

2. Set-up

In this work, we focus on periodically forced mechanical systems of the form
MG+ Cq+Kq+S(q,9) =¢f(2t), 0<ek]l, (2.1)

where q(t) € R" is the vector of generalized coordinates; M € R"*" is the positive definite mass
matrix; K € R"*" is the positive semi-definite stiffness matrix; C € R"*" is the damping matrix
which is assumed to satisfy the proportional damping hypothesis, i.e. C=aK + M for some
o,BeR; S(g,9) = O(|q|2, lq1141, |¢|2) is the nonlinearity which is assumed to be of class C" in its
arguments for some integer r>1; and f is a T-periodic forcing function (T =2x/$2), with an
amplitude parameter ¢ > 0.

The proportional damping hypothesis enables us to simultaneously diagonalize the linear part
of system (2.1) using the undamped eigenmodes, 1; € R", defined as

Kujza)JZMM], ]:1,,7’1 (22)
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Without any loss of generality, we assume that the eigenmodes are mass-normalized, i.e.
(7, Muj) =8, (2.3)

where (S} denotes the Kronecker delta. We use the linear transformation q= Uu, where p €

R" denotes the vector of modal coordinates, and U = [uq,...,u,] € R"*" is the transformation
matrix composed of the eigenmodes of the undamped system, to express system (2.1) in modal
coordinates as

jii + 28iii + of i +sin, 1) = git), i€l,..m, (24)
where s;(i, 1) = (u;, SUp, UL)), & := 55 (uj, Cu;) and gi(t) := (;, ef (21)).
We then separate the nonlinear system (2.4) into two subsystems,
§i+ 260k + i€ +5i (), (€, ) =0ilt), i€, (25)
and
il + 2gjp0; + iy + 51 (6, ), G, 0) =9 (), j €], (2.6)

where system (2.5) is composed of a set of master modes I C {1, ..., n}, with the modal coordinates
denoted by &; and system (2.6) is composed of the enslaved modes J:={1,...,n}\I, with modal
coordinates denoted by 1. We denote by m the cardinality of I, i.e. the number of master modes in
the equation (2.5).

The main principle behind any projection-based model reduction technique lies in suitably
identifying the set I of master modes in a way, so that the ROM

E + 20w + 0l +5; (£,0),(6,0) =¢i(t), i€, 2.7)

gives a reasonably accurate approximation to the true evolution of the master modes in
equation (2.5). In the following, we develop a procedure to automate the selection of master
modes using SSM theory, which we review next.

3. Spectral submanifolds

Using the notation

i . 0 Lixn _ 0
) (0 ) (o hes)

we rewrite system (2.1) for ¢ =0 as the first order, autonomous system
z=DBz+ F(z), (3.2)
whose linearization at z =0 is given by
z=DBz. (3.3)

For each mode i of the second-order system (2.4), we denote the corresponding pair of eigenvalues
of the first-order system (3.3) by

A2i—1,h2i = (-Ci +,/¢2 - 1) w, i=1,...,n (3.4)

Hence, for any distinct eigenvalue pair Ap;_1, Ap; associated with mode i, we obtain a two-
dimensional invariant subspace E; of system (3.3). By linearity, we can generate higher-
dimensional invariant subspaces of system (3.3) by direct-summing such two-dimensional
subspaces. A spectral subspace [11] is a general invariant subspace of this type. For instance, the
spectral subspace Ej generated by the set I of master modes is given as

E:=E, (3.5)
iel

where @ is the direct-sum operator.
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An SSM [11] is an invariant manifold of system (3.2) that serves as the smoothest nonlinear
continuation of the spectral subspace of the linearized system (3.3). Specifically, the SSM
emanating from spectral subspace Ej, is defined as follows.

Definition 3.1. An SSM, M, corresponding to a spectral subspace Ej of the operator B is an
invariant manifold of the nonlinear system (3.2) such that

(i) M is tangent to Ej at the origin and dim(M) = dim(Ey) = 2m;
(ii) Mp perturbs smoothly from Ej under the addition of nonlinear terms;
(iii) M is strictly smoother than any other invariant manifold satisfying (i) and (ii).

The existence and uniqueness of such SSMs is guaranteed by the following theorem.

Theorem 3.2. Assume that

(i) the relative spectral quotient o (Ey) := Int(mingcj ReAr/max;er Rel;) satisfies o (Ef) <7,
(ii) the following low-order non-resonance conditions hold:

Y midi#h, kel 2<) mi<o(Ep),  mieN. (36)

iel iel
Then:

(i) There exists a class-C" SSM, Mj, for system (2.5)—(2.6) that is unique among all Co(En+l
manifolds that are tangent to Ej at (&, £,1,7)=0.
(if) My can locally be viewed as the image of an open set O C Ej under the embedding

¥:0— R

Theorem 3.2 is a restatement of the main theorem of Haller & Ponsioen [11] (theorem 3),
deduced from the more abstract results of Cabré et al. [13] (theorems 1.1 and 1.2). These results
form a part of the parametrization method, which also acts as a tool for the computation of these
invariant manifolds (see Haro ef al. [14]).

So far we have discussed SSMs for the autonomous (¢ =0) limit of system (3.2). Similarly,
however, SSMs can also be defined in the non-autonomous (e > 0) setting. In that case, for ¢ > 0
small enough, the role of the fixed point at z = 0 is taken over by a small-amplitude periodic orbit
ve created by the periodic forcing. This periodic orbit will have SSMs emerging from its spectral
subbundles that are direct products of the periodic orbit with spectral subspaces of the origin. An
SSM is then a fibre bundle that perturbs smoothly from a vector bundle y. x Ej under the addition
of the nonlinear terms, as long as appropriate resonance conditions hold. These conditions and
the existence and uniqueness results for non-autonomous SSMs are stated in theorem 4 of Haller
& Ponsioen [11], which is deduced from the abstract results on whiskers of invariant tori by Haro
& de la Llave [15] (theorem 4.1). We refer the reader to [16-18] for further applications of the
parametrization method to invariant manifolds attached to periodic orbits.

The fibres of the forced SSM inherit their topological properties and leading-order shape from
the unforced setting, for small enough & (cf. Breunung & Haller [19]). Hence, we intend to use
the autonomous SSM, Mj, in determining the influence of nonlinearity on the near-equilibrium
forced response.

(a) SSM computation

Theorem 3.2 allows us to approximate the SSM, Mj, around the origin as a graph n(x) over the
subspace Ej via a Taylor expansion, i.e.

ne(x) = (x, Wex) + O(x®), ke, (37)

H
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where
x= (&), (3.8)

and Wy = WkT € R2mx21 denote the matrix of SSM coefficients to be determined. As we will show,
the local curvature of M; provides a robust criterion for mode selection and the second-order
coefficients Wy are sufficient to compute for this purpose.

The explicit solutions for the coefficients Wy of the SSM can be found from a direct invariance
computation, as detailed in appendix B. The main equations we solve are of the form

Bk . Wk = _Rk/ ke ]/ (39)
where the Ry = R,{ € R¥™*2M are the quadratic coefficients extracted from the nonlinearities as
sk(x) = (x, Rex) + O(x1%),  ke], (3.10)

and By is a fourth-order tensor for each k € ], whose entries are given by
By = 24747 + ALAYS + AL AYS] + 250 (ATSL + ALS]) + w5, (3.11)

Here, we have followed the Einstein summation convention; the upper index is the row index
and the lower index is the column index of a matrix, and

0 Imx , '
AZ(—KI Tc?)' I<1=d1ag<{wz.2}i€,), Cr = diag ({2¢wi}ier) - (3.12)

In the context of the parametrization method, equations (3.9) are commonly called as
the cohomological equations, where we have chosen a graph style of parameterization for the
reduced dynamics on the SSM (see Haro et al. [14]). Several computational applications of the
parametrization method have developed algorithms to solve these equations (e.g. [20-22]). For
the second-order system (2.1), Veraszté et al. [23] have already developed matrix equations to
determine Wy (see eqns (E.7-E.9) in [23]), but their expressions were less amenable to numerical
implementation. The expressions developed here have been implemented in open-source Matlab
scripts [24].

4, Mode selection and directional curvature of SSM

(a) Initial mode selection based on modal superposition

The linearization of system (2.1),
Mij(t) + Cq(t) + Kq(t) = ef ($21), (4.1)

exhibits a unique periodic response at the same frequency 2, as that of forcing f [25]. Thanks
to modal superposition, this linearized periodic response can be accurately approximated using
a small set of eigenmodes along which the system is excited by the forcing f. Furthermore,
due to its hyperbolicity, the periodic response of the linearized system (4.1) would be a valid
approximation to the nonlinear periodic response of system (2.1) for small enough ¢ > 0 [26].
Hence, any projection-based ROM (2.7) must include the modes essential for reproducing the
linearized response in the master mode set I.

(b) Updating the set of modes based on directional curvatures of SSM

Let I C{1,...,n} be the minimal set indexing the modes required for reproducing the periodic
response of the linearized system (4.1) using modal superposition. The SSM, M;j, describes how
the dominant spectral subspace, Ej, of the linear system (4.1) deforms locally, upon inclusion of
nonlinear terms from system (2.1) in the limit of ¢ — 0.
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Ej — slave mode j

|_M, —SSM

PEeE M) :
projection onto mode j
(high curvature)

E, —master modal subspace

— Pger, (M) :
projection onto mode i

D e =

(low curvature)

E; —slave mode i

Figure 1. Geometric interpretation of our mode selection criterion: Computing the SSM, M;, for an initial mode set of /, then
projecting it onto modes and j yields the 2m dimensional manifolds ., (M) and pg, e, (M)) displayed by blue and red dashed
lines, respectively. The high curvature of pg ¢, (M) relative to that of p ¢, (M) prompts us to include mode in the master mode
set/,i.e.let/ — /U {j}, which gives us the updated projection subspace, £; ® E;, shaded in red. (Online version in colour.)

For a projection-based ROM to be effective, the master mode set I must be updated to capture
this deformation by appending further modes to the projection subspace Ej, if necessary. To assess
the leading-order deformation of the SSM over directions spanned by linear normal modes, we
use the directional curvatures of M;. Based on these directional curvatures, we will update the mode
set I to efficiently approximate the nonlinear response of system (2.1) via the ROM (2.7). Figure 1
gives a geometric sketch of this idea.

Let pg : R?" — E define the orthogonal projection from the full phase space R?" onto a spectral
subspace, E. Then pg(Mj) C E is a manifold of the same dimension as the SSM, Mj, provided that
E is selected such that E; C E. Therefore, projecting M; orthogonally onto E; @ Ej for each k€],
we obtain n — m new manifolds, one for each enslaved mode, of dimension 21, in the form

PE@E, MpD CET@E, ke]. (4.2)

The curvature of pg,E, (M) provides us with a notion of directional curvature for the SSM, My, in
the direction of mode k, as shown in figure 1.

Geometric intuition arising from figure 1 suggests that enslaved modes which have the largest
directional curvatures, such as mode j, must be included in a projection subspace used for
obtaining the ROM (2.7). This is because the projection subspace Ej & E; (dashed red curve
in figure 1) effectively captures the local deformation of M; in comparison to the projection
subspace E; @ E; (dashed blue curve in figure 1). Hence, mode j is influential in determining the
near-equilibrium nonlinear response and we propose that the master mode set should be updated
to include such modes, i.e. should be enlarged as I — I U {j}.

Before making this simple idea algorithmically precise, we motivate it with a small physical
example in the following section.

(c) Motivating example for mode selection

To motivate our proposed mode selection procedure, we consider a single-mass spring system
(figure 2a) that is a three-dimensional variant of a similar example considered by Touzé et al. [27]
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Figure 2. (a) A three-dimensional sketch of the single-mass spring system governed by equations (4.3)-(4.5). (b) Response
curves obtained with projections onto two linear spectral subspaces £, and £;, for two index sets l; = {1,2} and I, = {1, 3}.
Response curves obtained using the full system and the linearized system are also shown for reference. The vector ¢ =
(&1, m2, m3) denotes the set of generalized coordinates. (Online version in colour.)

and Breunung & Haller [19]. Using the same potential functional (see eqn. (14) in [27]), we obtain
the equations of motion

2
b1+ 2010161 + ol + 2L (367 + 0 +n})

2 2 2
w] + w5 + o
+w3im +ofeim + 2261 (68 + 15 + 13) =), (43)

2
. . a)
i + 2620212 + w3n2 + =2 (33 + 67 + 1) + winty

2 2 2
W] + w5 + w3

+ w3mns + S a— (Elz + 5+ n%) =f(t), (4.4)
2 “’% 2,2, 2 2
and i3 + 2¢3w3n03 + w3ns + > (3773 +& + 772) + w1361
2, 2, 2
wT + w5 + w
+ w3z + %ns (Slz +n3+ n§) =f3(t), (4.5)

where w; = \/k;/m are the eigenfrequencies and the ¢; are the viscous damping coefficients.

We choose w1 =2, wp =3, w3 =5, {1 =0.01, {, =0.02 and ¢3 =0.08 as model parameters. We
apply a harmonic forcing along the first mode, i.e. fi = F cos(§2f) with an amplitude of F =0.02
and leave the remaining modes unforced, i.e. let f, = f3 = 0. Hence, due to modal superposition,
only the first mode participates in the linearized response as all other modes are left unforced.
We are interested in obtaining the forced response curves around the first natural frequency w; of
the system. We compute the periodic response for the forcing frequency 2 values in the interval
[0.7w1, 1.3w1].

Although there are advanced, example-specific mode selection recipes in literature for
ROMs [28], perhaps the most straightforward and general strategy is to simply use a number
of low-frequency modes that comfortably span the forcing spectrum [29]. Accordingly, a two-
mode ROM would contain the modes 1 and 2 in a projection basis. We refer to this mode set as
I ={1,2}.
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To apply our proposed mode-selection criterion, we choose I = {1} as the initial master mode
set, motivated by the linearized response. Calculating the second-order coefficients of Mj,, one
readily observes from equation (4.4) to (4.5) that

2
Rk=<“’k0/2 8), ke(2,3}, (4.6)

since np = O(&11%). The coefficient matrices W, and W3, obtained from the solution of the
invariance equation (3.9) at second order are

0.0712 0.0008 —0.8778 0.1033
W2_(0.0008 —0.1428> and W3—<o.1033 0,0953)- (47)

Without a formal notion of scalar curvature at this point, we may treat || W2 as a measure of the
curvature of the SSM in the direction of slave mode k. Comparing ||W3||2 = 0.1428 with ||W3]l2 =
0.8886, we deduce that mode 3 has a significantly higher directional curvature in comparison to
mode 2. Our proposed criterion would update the master mode set as Ip — Ip U {3} to include
modes 1 and 3 in a two-mode projection basis. We refer to this mode set as I, = {1, 3}.

We compare the ROMs obtained from the two mode sets I; and I, with the full solution by
computing the forced response curves with the results shown in figure 2b. The two ROMs result
in remarkably different responses: a hardening response for I; and a softening response for I. As
figure 2b shows, the ROM obtained from the mode set I, based on the directional curvatures of
the SSM, correctly predicts the response and establishes the relative importance of mode 3 over
mode 2.

While the use of ||Wk||» as a scalar measure of directional curvature seems intuitive in this
simple example, we need a mathematical notion of directional curvature for arbitrary, finite-
dimensional SSMs to make our mode-selection criterion systematic. We will introduce such a
directional curvature next in §5.

5. Scalar curvature of an SSM and automated mode selection

We require a scalar quantity that is representative of the curvature of multi-dimensional
manifolds. For our purposes, the classic sectional curvature [30] loses its applicability beyond
two dimensions, since it depends on the choice of a two-dimensional plane in the tangent space
of the manifold. Therefore, we use an extension called the scalar curvature, which is obtained by
taking the trace of the Ricci tensor of the manifold [30]. In the following, we develop explicit
formulae for the scalar curvature of M along any given modal direction.

We first establish that our SSM approximation is a Riemannian manifold (Mj,g) with an
appropriate metric ¢ by expressing it as a graph over the master modal subspace E;. Let ¢ : E} —
R2("=™) denote the approximating function developed for the enslaved modes (1, 1)

(x, Wix), k=1,...,n—m,
@ (X) := (5.1)
2(x, WiepimAx), k=n—m+1,...,2(n—m),

where we have rearranged the indices of Wy such that Wy := Wy, where ] is the set of enslaved
modes. Our approximate manifold for the SSM is then given as

M; =graph(e) = {(x,¢ (1)) | x € Er}.

Let us denote by ¢ : E; © O — R?" the C*® embedding defined on an open neighbourhood O of
0 € Ej, given by

V()= (x, ¢ (). (5.2)

Define vector fields ey, . . ., ez, along ¢ by

d
ei(x) = %(X) S T,p(x)M]. (5.3)
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Then the components g;i: O — R of the standard metric ¢ on M inherited from the Euclidean
space R?" are given by

gii =(ei ), (5.4)
where (-, -) is the Euclidean inner product. The vector fields e; form a local frame on v(O), and at
¥ (0) they form an orthonormal basis of Ty, )M, since with the given embedding (5.2), we have
that gy(o) = 5;.

We now proceed towards the definition of the scalar curvature of M. For this, we require the
Ricci tensor, which is a 2-tensor whose coefficients are given as’

1’1']' = Rllzij’ (55)

where the Ri’jk are the coefficients of the Riemann curvature tensor, given explicitly in terms of the
Christoffel symbols 1"1;‘ as

! ! Il I
Ry = 0il — iy + I Ty — Ty, (5.6)
with
1
k 1
I = Egk (3igj1 + djgit — 41gif). (5.7)

where 9; is shorthand notation for 8/dx! (see [31] or [32], for instance).
These preliminaries allow us to define the scalar curvature of a Riemannian manifold (see [30],
for instance) as follows.

Definition 5.1. The scalar curvature of a Riemannian manifold (M, g) is the function given by
scalg := gijrij. (5.8)
In the following, we denote by curv(I) the scalar curvature of the manifold M; evaluated at the
origin.
Lemma 5.2. Let M denote the autonomous SSM corresponding to a master mode set I. Then the scalar
curvature of My at the origin is given by

2m

1
curv(l) = 3 > (— 0a0agup + 20a008ab — 0p9pSaa) (0)- (5.9)
a,b=1

Proof. This is a special case of a more general statement given on page 128 of [30]. We provide
a direct proof in appendix C. |

We can now make sense of the directional curvature discussed in §4 (figure 1). We may replace
the embedding ¢ given in (5.2) with Vi (x) = (x, G (x)), where we declare that

-y (x Wix)
or(x) = (2 x WkAx>> . (5.10)

Then the corresponding manifold graph(gy) is the projection of the full SSM to the 2m + 2
dimensional spectral subspace E; @ E, i.e.

graph(¢) = pe;er, (M) - (5.11)

Computing the scalar curvature of graph(gy) gives us the desired formula for the directional
curvature of the SSM, Mj, along mode k. In the following lemma, we provide ready-to-use
formulae for the scalar curvature of My, curv(l), and for its directional curvature along any
enslaved mode k, which we denote by curvy(I).

!We are using the Einstein summation convention here and throughout the entirety of this section for upper-lower pairs of
indices. We include the summation signs for clarity where the convention fails to work.
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Lemma 5.3. Let M denote the autonomous SSM corresponding to a master mode set 1. Then the scalar
curvature of M at the origin is given by

2m n—m
curvi =4 Y 3 [WEWE, +4(WE,AL) (WEoay) — WE)2 — WE A7 + WP A2 (512)
a,b=1 k=1

Furthermore, the scalar curvature of the projected manifold pg, e, (M), i.e. the directional curvature of My
along mode k, at the origin is given as

2m
curvi(D=4 Y [WE,WE, +4 (WL, AL) (WEA) — W) 2 — W A+ WEADP], kel
a,b=1
(5.13)
Proof. The proof is carried out in appendix D. n

Finally, the explicit formulae for directional curvature given in lemma 5.3 allow us to devise
an automated mode-selection procedure as follows:

1. Choose an initial master mode set I that approximates the linearized periodic response,
i.e. use linear modal superposition.

2. Compute the directional curvature curvy(I) of M; (see equation (5.13)) along each slave
mode kin theset [={1,...,n}\L

3. Choose a minimal subset P C | of slave modes that captures the directional curvatures up
to a user-defined tolerance 0 < p « 1. Specifically, we require that

Zke] |curvy ()] — ZkeP [curvi (D) <p
> ke leurvi(D)] -

(5.14)
4. Update the master mode setas I — I U P.

Additionally, if the user a priori specifies a desired number of modes N in the ROM, then the
steps 2—4 of the selection procedure may be repeated until the mode set reaches cardinality N. In
practice, the set P is robust with respect to the tolerance p and in the authors’ experience, p values
in the range 0.05 to 0.15 provide optimal output. A pseudo code of the automation algorithm is
given in Appendix E. A numerical implementation of this algorithm is downloadable in the form
of Matlab scripts [24].

Note that the initial mode set I in step 1 contains the master modes along which the SSM M;
is constructed and whose directional curvatures are used to identify the optimal mode set for
nonlinear model reduction in steps 2—4. Thus, the ROM returned by our algorithm is optimal for
a given initial mode set.

As discussed in §4a, the initial mode set I contains the modes essential for approximating the
forced response of the linearized system (4.1). This set clearly depends on the forcing and must
take into account any variations in the forcing function f(£2t), for instance, due to changes in the
forcing frequency £2 or the forcing shape.

For the computation of forced response curves in a small range of excitation frequencies, our
initial mode set I must contain the modes that reproduce the linearized periodic response over the
entire frequency range of interest. Thanks to modal superposition, such an initial mode set can be
easily determined. Depending on this initial mode set, we then identify the modal directions that
are the most sensitive to the system’s nonlinearities via the directional curvatures of the SSM M.
Thus, we obtain an optimal mode set for nonlinear model reduction over the frequency range of
interest. Next, we demonstrate this mode selection criterion in numerical examples.
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Figure 3. The directional curvatures of M, for an initial master mode set /y = {1, 2, 3, 4, 5} along each of the slave modes of

an nitially straight von Karmén beam. The axial modes 21and 22 display the most prominent directional curvatures, confirming
one’s physical intuition.

6. Numerical examples

(a) Straight von Karmdan beam

As our first example, we use an initially straight von Karman beam (e.g. [9]). Owing to the
bending-stretching nonlinear coupling, high-frequency axial modes are required in this problem
to approximate the full nonlinear response using ROMs (see [6,7]).

A finite-element discretization using cubic shape functions in the transverse direction and
linear shape functions in the axial direction leads to the general form given by equation (2.1).
We choose a linear viscoelastic damping model, resulting in the proportional damping matrix

K
C==K, 6.1
s 6)
where E is Young’s modulus and « is the material damping coefficient. Owing to this choice of

damping, S in equation (2.1) is a purely position-dependent, cubic nonlinear function given by
ij ijl
Sk(q) = aqi9; + by q:q;91, (6.2)

where the coefficients aZ and b;(ﬂ are polynomial stiffness coefficients.

We consider an aluminium beam, which we divide into 10 elements of equal size. The
model parameters are E=70GPa, « =0.1GPa-s, p=2700kgm > with geometric parameters
I=1m (length), 1 =1 mm (height) and b =0.1 m (width). We choose doubly clamped boundary
conditions, i.e. both axial and transverse displacements are constrained at both ends. We apply
a uniform-in-space, periodic-in-time external load in the transverse direction with an excitation
frequency of £2 =26rad s~1, which is between the eigenfrequencies of the first and second modes.
For the forcing amplitude, we take F =2.3 N.

To obtain a ROM via the proposed mode-selection procedure, we first choose an initial mode
set Ip = {1,2, 3,4, 5}, which accurately recovers the linearized periodic response. We then compute
the directional scalar curvatures of the SSM, Mj,, by first extracting the quadratic term Wy in each
direction k € ] via equation (3.9), and then substituting in the explicit formulae (5.13).

We plot the directional scalar curvatures along each mode in figure 3. As the figure shows,
our method automatically recommends that the axial modes 21 and 22 should be included in the
ROM (with the user-defined tolerance chosen as p = 0.05, cf. equation (5.14)), which confirms the
available physical intuition based on the nonlinear bending-stretching coupling.
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Figure 4. Axial displacement (a) and transverse displacement (b) at the fourth node of a von Kdrmén beam, forced periodically
with a loading amplitude F = 2.3 N and an excitation frequency £2 = 26 rad s—'. We compare the periodic response across
ROMs (see equation (2.7)) obtained from mode sets 1 = {1,...,10} and , = {1, ..., 5,21, 22}, along with the linearized
and full responses. (Online version in colour.)

Table 1. The relative error obtained from different ROMs of an initially straight von Kdrmdn beam. Note that the high-frequency
axial modes in the mode set /5, obtained from our automated mode selection procedure, are crucial for accurately approximating
the nonlinear response (figure 4).

modes in ROM (2.7) relative error e, (6.3)
lh=1{1,2,3,4,5} 0.22
h=1{1,2,34,5,6,7,8,9,10} 0.18
h=1{1,234,52,2} 0.03

We use a mass-weighted relative error norm to compare the accuracy of ROMs to the full
solution as

g —qllm
b= ——"—
1l

where 4(t) denotes the full solution, g,(t) denotes the reduced solution and || e |51 denotes the
mass norm defined as

(6.3)

nng:\/J[O M) (6.4)

where T is the minimal time period of the periodic response.

Table 1 compares the relative error ¢, of ROMs based on three different mode sets Iy, Iy, I,
where Ij is the mode set that accurately approximates the linearized periodic response using
modal superposition; I; is the set of the 10 lowest frequency modes used for comparison purposes;
and I, is the mode set obtained from the proposed mode-selection procedure. We plot the
periodic response of axial and transverse displacements at the 4th node of the beam (0.3] from
the constrained end) as a function of time in figure 4. Clearly, the axial movement of the beam is
not captured by the ROMs Iy, I; as they only contain low-frequency bending modes, an issue that
is automatically rectified by the proposed mode-selection procedure using the mode set I,.

To verify our predictions across a range of forcing amplitudes, we compute the periodic
response for increasing forcing amplitude at the same forcing frequency §2 =26 rad s~!, as shown
in figure 5. We note that the mode set I produces consistently good approximation for large
forcing amplitudes, where the ROM obtained from the heuristically chosen low-frequency modes
I1 diverges from the full solution branch. Furthermore, upon increasing the forcing amplitudes,
we observe a non-physical response for projection-based ROMs using the mode set I;, whereas the
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Figure 5. Steady-state response curves as functions of increasing forcing amplitudes at the excitation frequency 2 =
26rad s~". The jump on the left-hand side of the figure corresponds to a jump between two separate solutions, one of which
only exists for lower amplitudes, while the other one exists for larger amplitudes. (Online version in colour.)
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Figure 6. The directional curvatures of M, for an initial master mode set [y = {1, . . ., 5} along each of the slave modes of a
curved von Kdrman beam.

solution corresponding to I, remains numerically stable. We detail this phenomenon for forcing
amplitude F =2.44 N in appendix A.

(b) Curved von Karman beam

As a second example, we consider a curved beam in the form of a circular arch, such that its
midpoint is raised by 2 =5mm relative to its ends. We use the same geometrical and material
parameters as defined in §6a, except for the beam height, which is chosen as /1 =7 mm. We apply
time-periodic forcing on all transverse degrees of freedom with an amplitude of F =80N.

A distinguishing aspect of this example is that the curved geometry introduces a linear
coupling between the axial and transverse degrees of freedom of the beam. Hence, one can no
longer identify any axial or transverse modes for mode selection based on the same physical
intuition that we used for the initially straight beam (see §6a).

Once again, we choose an initial mode set Ip={1,...,5} that accurately reproduces the
linearized response. The directional curvatures of the SSM, Mj,, are shown in figure 6. Performing
our mode selection procedure with p=0.05 once more, we find that the master mode subset
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Figure7. A comparison of ROMs obtained from the mode sets , = {1, . . ., 10} (containing heuristically chosen low-frequency
modes) and , = {1, ..., 8,12, 17} (containing the optimal modes from Algorithm 1), including the full and the linearized
solutions at two different forcing amplitudes. The chosen frequency range is around the first undamped eigenfrequency of
the system, which is 208 rad s, We observe that both ROMs reproduce the full response at a low forcing amplitude (F = 20)
where the deviation from the linearized response is marginal. At a larger forcing amplitude (F = 80), however, only the optimal
mode set /, is able to approximate the full nonlinear response. (Online version in colour.)

should be updated by including slave modes {6,7,8,12,17}. We denote by I, ={1,...,8,12,17}
the updated mode set obtained with the proposed selection procedure.

We now compute the periodic response of the ROM (2.7), where the master mode set I =1,. We
compare our results to a ROM composed of a master mode set of the same size but heuristically
comprising the lowest frequency modes as Iy ={1,...,10}. The response curves are shown in
figure 7. Note that we generally expect a softening type behaviour for large enough forcing
amplitudes in the case of curved beams [33]. As figure 7 shows, our proposed mode selection
procedure (mode set I) systematically produces a reliable prediction of the steady-state response
compared to a heuristic choice (I1) of modes.

7. Conclusion

We have developed a systematic procedure to obtain an optimal set of modes for projection-
based reduced-order modelling of nonlinear mechanical systems. This nonlinear mode selection
procedure relies on the directional curvatures of the spectral submanifolds (SSMs) constructed
around the dominant modal subspaces. These SSMs form the centrepieces of near-equilibrium,
nonlinear steady-state response and facilitate an exact model reduction of the nonlinear response.

While the SSMs can also be directly used to approximate the steady-state response [19-21]
in nonlinear mechanical systems, their computational feasibility for realistic high-dimensional
problems is a subject of ongoing research. Our method relies on SSM theory, but still employs
the widely applied linear projection to obtain a ROM, which is straightforward to implement and
whose computational advantages are well understood.

We have shown through two beam examples that our mode selection criterion not only
confirms the physical intuition of selecting axial modes to capture the nonlinear bending-
stretching coupling but also provides accurate results when such case-specific intuition is not
available. The proposed nonlinear mode selection procedure, whose pseudo-code is given in
Algorithm 7, is openly available in the form of open-source Matlab scripts [24].

We have focused on periodically forced mechanical systems in this work, for which an initial
mode selection I is performed on the basis of modal superposition. The directional curvatures of
the SSM M are then used to optimally update the initial mode set for nonlinear model reduction.
The same principle is applicable to unforced systems, for which the role of the small-amplitude
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Figure 8. Axial displacement (a) and transverse displacement (b) at the 4th node of a von Kdrman beam, forced periodically
with a loading amplitude F = 2.44 N and an excitation frequency 2 = 26 rad s~'. We compare the periodic response across
ROMs (see equation (2.7)) obtained from mode sets , = {1,...,10} and , = {1,. .., 5,21,22}, along with the linearized
and full responses. (Online version in colour.)

Table 2. The relative error obtained from different ROMs of an initially straight von Karmén beam periodically forced with a
forcing amplitude F = 2.44 N and a forcing frequency of £2 = 26 rad s ' (cf. figure 8).

modes in ROM (2.7) relative error e, (6.3)
h=A{1...,5} 15.84
h=A{1,...,10} 15.25
Lh={,...,52,2} 0.11

periodic response is taken over by the trivial equilibrium in the € = 0 limit of system (2.1), which is
relevant for self-excited vibrations. In such applications, the only difference from the periodically
forced case would arise in making the initial mode selection, based on different considerations.
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Appendix A. Convergence issues for the von Kdrman beam example

In this appendix, we compare the same error estimates as in §6a, but for a larger forcing amplitude
F=2.44N. We obtain solutions for such large amplitudes by sequential continuation, i.e. by
incrementally increasing the forcing amplitude in steps and using the solution from the previous
step as an initial solution for the current step.

Table 2 shows the error values as in §6a, while figure 8 shows the comparison of axial and
transverse displacements for ROMs obtained using mode sets I; and I. From the figure, we
observe convergence to a non-physical response for transverse displacements using the mode set
I1, which contains heuristically chosen low-frequency modes. On the other hand, our proposed
mode selection procedure still provides a reliable approximation to the steady-state response
using mode set I.
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Appendix B. Derivation of the leading-order coefficients of the SSM

In this appendix, we use a direct invariance computation to obtain expressions for the leading-
order coefficients Wy of the SSM as in (3.7). We begin by computing the first and second
derivatives of

(@) =2 (x, WeAx) + O(al), ke (B1)

and
i) =2 (x, ATW,A + kaz)x> +O(xP), kel (B2)

We also need to extract the quadratic nonlinearities from sy,
5k() = (6, Rx) + O(xP), ke, (B3)

where we have used that n(x) = O(|x|?). Again, for uniqueness, we require that the Ry are
symmetric. We can now substitute the derivatives (B1) and (B2) into equation (2.6) to obtain

<x, [Z(ATWkA + WA + AL WiA + w2 Wi + Rk] x> +O(x) =0, keJ. (B4)

From this, we can deduce that, for our second-order approximation, the symmetric part of the
quadratic coefficient matrix should vanish for all k, which leads to the following set of linear
equations:

T
2ATWLA + WA + (A2> Wi + 20k (WiA + ATWy) + 0 Wi + Ry =0, ke]. (B5)

From here onwards summation is implied over repeated indices to simplify the notation. We can
write equation (B5) in a simpler form if we introduce the fourth-order tensor

Bk = Bl}jst e’ ® et ®e ® €q, (B6)
with
By, =2ALA] + ALAYS, + AL ALS] + 260 (18] + ALS]) + of535], (87)

where the upper index is the row index and the lower index is the column index of a matrix, and
8]? is the Kronecker delta. System (B5) can now be written as

Bk : sziRk/ ke]/ (BS)
where dot denotes the inner product of tensors, given by
Bk N Wk - Bl’;qstw;’qes ® et- (B9)

One can simply vectorize equation (B8) by rearranging the entries of Wy and Ry into vectors,
which leads to a 4m?-dimensional linear system of equations, readily solvable via a matrix
inversion. For a more systematic approach to the higher-order computation of the SSM that is
based on similar methodology, we refer the reader to Ponsioen ef al. [20,21].

Appendix C. Proof of lemma 5.2

Combining equations (5.5) and (5.8), we get that
curv(l) = ¢R, (0)

2m
=Y R%,(0), (C1)
b=1

where the second equality used that g;4(0) = gib 0)= 51’;. Before advancing any further, we note
that the 1"1;‘ vanish at 0 in our setting. This can be inferred from the general fact that Christoffel
symbols vanish at p € M for a chart that induces an orthonormal basis of T,M. Alternatively, a
substitution of the specific embedding v (from (5.2)) and the metric (5.4) into the formulae for Fl;‘
gives the same result.
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We may now proceed by inserting the formula for the Rg ik (5.6) into (C1), which yields

2m
curv(l) = Z (&zﬂfb — gy + s Ty, — Flfsrasb)(o)
b=1

2m
=" (T3 — 13 0): (€2)
b=1

Expanding the first half of this expression according to (5.7) gives

2m 2m

1
3 017, (0) = > 5 [augﬂl (205501 — 01850) + 8 (2000841 — aualgbb)] 0)
b=1 b=1

= % 22’”: [<3agal) (2glifsz) + g™ (20205801 — aaalgbb)] (0)
b=1

2m

1
2 ) 8% (20406851 — adygup) (0)
b=1
1 2m
) > (20406860 — 929ag10) (0)- ©3)
a,b=1

A similar computation for the second term yields

2m 2m

1
D WO =3 3 938w(0), (C4)
b=1 a,b=1

which proves (5.9).

Appendix D. Proof of lemma 5.3

Throughout this proof, we do not use the Einstein summation convention on the indices a and b,
but we use it on every other index. We only need to compute the terms appearing in (5.9). We start
by computing 9,0,gpp. First, we write ¥ out explicitly using its definition (5.2) and the definition
of ¢:
x
{x, Wqx)
V@)= @ pW) = : eR™. (D1)

2 (x, Wy Ax)

In the following, we will make use of

0 .
o5 (o We) =2W] (D2)
and
3 2m o )
52 WiAn) =2 ) (W AL+ WiA]) (D3)

i=1
We can now compute the smooth function gy, via the definition of the metric (5.4), using (D1),

(D2) and (D3)
by oy
o =55 5% 0
2

n—m N n—m [ 2m . .
1Y () e Y [Z (W], 4 + W) } | o)

k=1 k=1 Li=1
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Differentiating the above expression with respect to x* once yields

n—m n—m [ 2m . ) .
dugun(¥) =8 (W) Wi, +8 [Z (Wi A, + Wi Al xl:| (Wi Al +wpal),  (D5)
k=1 k=1 i=1

proceeding once more we obtain

n—m

Dagin) =83 [(w};ﬂ)2 + (Wi Al + wi,zAé)z} : (Do)
k=1

In particular, d,9,gpp is a constant function for a second-order approximation of the SSM. Note that
even if we would take a higher order approximation, evaluating the above function at 0 would
yield the same. Furthermore, (D6) is symmetric in 2 and b (by symmetry of Wf, ), and thus can be
used for both terms 9,9,gpy and 9,9p84q appearing in (5.9).

As for the term 9,9,g,,, we proceed in a similar manner. First, we compute g,, via (D2) and
(D3)

n—m ) ) n—m [ 2m o ) 2m

q0=4 Y (WE) (W) 44 Y [Z (W] 40+ W, a1) } [Z (WAL + WE45) } ,
k=1 k=1 Li=1 r=1

(D7)

then differentiating with respect to 1 once yields

n—m n—m

Wgab(x) =4 ) Wi, (Wll:,jxj ) +4) W, (WZ,iX")
k=1 k=1

n—m 2m
b Al I q b
+4Y (WAl + W A)) [2 (W40 + W43 xr}
k=1 r=1

n—m [ 2m .
+4 ) [Z (Wi 4+ W;;,IAD xz} (W}(’ﬂAZ + Wf,SAZ> , (D8)
k=1 Li=1

then differentiating with respect to x* yields

n—m
Bu0gap () =43 [(w}gﬂ)2 +(WEAD + Wﬁ’rA;)2]
k=1

n—m
+4 Y [we e, 4 (WEan) (Wheas) ] (D9)
k=1

Again, note that the same thing applies here as for (D6), namely, we have that even for a higher
order approximation of the SSM evaluating (D9) at 0 would yield the same constant function.
Now substituting both (D6) and (D9) into (5.9) gives (5.12).

For the second statement, we compute the scalar curvature of the manifold graph(¢y) with ¢
given in (5.10), as this is the same manifold as pg,g £, (M) (c.f. (5.11)). Explicitly, this means that we
repeat the same computation as given above, now with a different embedding V() = (x, @ (x)).
The only difference that arises with this change is that in the expressions for g;, and g,;, (equations
(D4) and (D7)) the summations over k are removed. Consequently, the entire proof carries over
with all summations over k removed. The result (5.13) now follows.
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Appendix E. SSM-based mode selection algorithm

Algorithm 1 Automation Algorithm (Implemented in SteadyStateTool [24])

Input: Full system (2.1) definition, coefficients a;’ of the form (6.2), the tolerance p defined in (5.14), the maximum or desired
number of modes N in the ROM, and a Boolean type (true if the nonlinear mode selection should be repeated until the
desired cardinality N of modes is reached, false otherwise )

Output: An optimal mode set for I projection-based ROM (2.7)

Modal superposition

. Compute the periodic response, xj;, of the full linearized system (4.1)
z <« UTMuxjip
Do < lzilly, Vi
while #(I) < ceil(2N/3) do > Limiting the number of modes obtained based on linear analysis
> #(I) denotes the cardinality of the set I
if >, i > 09, ni then
break
end if
J<{L,...,m\I
g < argmaxXiej 1;
[<1U{g}
. end while

VRN T B

—_

Nonlinear mode selection
12: while #(I) < N do > Repeating nonlinear selection unless specified otherwise by type

13: Compute the Ry as in (3.10) from the coefficients a;z
14: Compute the W via (3.9)

15: Compute the directional scalar curvatures curvy(I) via (5.13)

160 J<f1,....m\I

17: g<0

18: crit <= (1 —p) 3y lcurvi(D)|

19: Py > P is the recommended set of modes
20: while ¢ < crit do > Selecting modes until we reach the scalar curvature criterion p
21: § < &+ maxigy |curvi(I)|

22: J <]\ {arg maxyej |curvi(I)[}

23: P < P U {arg maxej |curvi(I)[}

24: end while

25: if N — (#(]) + #(P)) <0 then > Ensure user-specified limit on maximum number of modes
26: I« IUP: (N —#(I))

27: else

28: [<IuP

29: end if

30: if type =false then > Break the loop if type is false
31: break

32: end if

33: end while
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