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a b s t r a c t

For an arbitrary velocity field v defined on a finite, fixed spatial domain, we find the closest rigid-body
velocity field vRB to v in the L2 norm. The resulting deformation velocity component, vd = v − vRB,
turns out to be frame-indifferent and physically observable. Specifically, if QRB(t) is the rotation tensor
describing the motion of the closest rigid body frame, then v is seen as QT

RBvd by an observer in that
frame. As a consequence, the momentum, energy, vorticity, enstrophy, and helicity of the flow all
become frame-indifferent when computed from the deformation velocity component vd.

© 2022 The Author(s). Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The analysis of fluid flows often starts with the inspection
f the instantaneous spatial features of the velocity field, such
s the streamlines, streamsurfaces, as well as the distribution of
orticity, rate of strain, enstrophy and various other scalars used
n classic vortex criteria [1–3]. Virtually all these spatial features,
owever, depend on the observer, and hence do not reflect purely
ntrinsic properties of the fluid. The independence of material
esponse on the observer, which is usually referred to as frame-
ndifference or objectivity, is a fundamental axiom of continuum
echanics [4].
Based on physical considerations, one may nevertheless argue

or a distinguished frame of reference in which to evaluate cus-
omary flow diagnostics. If such a frame exists for the fluid, it is
ften called the co-moving or proper frame [5].
Finding proper frames is straightforward when there is a ho-

ogeneous (periodic or infinite) direction of flow propagation.
his is the case for traveling waves or relative periodic orbits in
hear flows [6] for which a well-defined base velocity field exists.
n some cases, even time-dependent phase speeds c can be found
or fluids in a channel, minimizing the difference between the
elocity field at x and at x − ct , as in [7,8].
For general fluid flows, finding a single co-moving frame in

hich the fluid velocity field v(x, t) becomes simple (or even
teady) is unrealistic, as pointed out by Lugt [9]. One may never-
heless seek a rigid-body frame that is overall as close as possible
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https://doi.org/10.1016/j.euromechflu.2022.12.007
0997-7546/© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open
4.0/).
to being a co-moving frame for the whole fluid. Subtracting such
a rigid-body velocity field vRB(x, t) from v(x, t) would then yield a
deformation velocity field that describes the overall deviation of
the fluid from rigid body motion as closely as possible. In order for
such a decomposition to be meaningful, we propose the following
requirements:

(i) vRB should be a rigid body velocity field that is closest to v
in a physically relevant norm.

(ii) v − vRB should be frame-indifferent (objective) in order to
capture intrinsic features of the fluid (see [10]),

(iii) v − vRB should be physically observable: an appropriately
chosen, single observer of the fluid flow should be able
to measure this deformation velocity field over the whole
domain. Specifically, v − vRB should be related to the orig-
inal velocity field v under a proper change of observers,
i.e. a time dependent Euclidean transformation of the spatial
domain.

Available decompositions for velocity fields fail to satisfy these
three requirements. An example is the classic Reynolds decom-
position (see, e.g., [11]), in which velocity field of a turbulent
fluid is written as a sum of its time average and a fluctuating
part. As shown in [12], the fluctuating part of the velocity is
objective but not physically observable, that is, the total velocity
and the fluctuating part are not related to each other via a time
dependent Euclidean transformation. The existence of a well-
defined time-average is not guaranteed either. Another example,
the Helmholtz–Hodge [13] decomposition, splits v(x, t) into an
incompressible and an irrotational component in a given frame.
As a generalization, the Weber–Clebsch representation [14,15]
access article under the CC BY license (http://creativecommons.org/licenses/by/
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has a linear combination of non-potential components. This, how-
ever, returns the same flow when the flow is incompressible
without extracting any of its deformational features.

The separation of rotations and internal motions is also an im-
ortant step in the analysis of the n-body problem, as discussed,
or example, in [16]. There, an appropriate choice of the reference
rame makes it possible to write the Lagrangian as a sum of
otational and deformational components. Further local decom-
ositions seek to isolate rotational velocity components based on
he velocity gradient. Examples include the deformation-rotation
ecomposition of Batchelor [17] and the procedures of Kolář
18], Liu et al. [19], Wang et al. [20] and Holmedal [21]. In the
agrangian frame, only infinitesimal decompositions of the flow
ave been obtained. The closest of these in spirit to the present
tudy is the polar decomposition, which yields a polar rotation
ensor that is pointwise the closest rigid-body rotation to the
eformation gradient [22].
In a recent stream of papers in the scientific visualization com-

unity, Bujack et al. [23], Günther et al. [24], Kim and Günther
25], Rojo and Günther [26] and Günther and Theisel [27] seek
n objectively defined minimally unsteady component v∗(x, t) of
(x, t). Haller [28] shows that the proposed implementations of

these principles leads to v∗(x, t) ≡ v(x, t) and hence fail to pro-
ide the desired decomposition. Using a simple counterexample,
aller [28] also shows that even under a correct implementation,
∗(x, t) would not be objective, irrespective of the measure of
nsteadiness chosen. Theisel et al. [29] continue to claim objectiv-
ty of v∗(x, t), but their argument uses the pull-back, as opposed
o the inverse, of the nonlinear transformation v ↦→ v∗ when
omputing v∗ ↦→ v. This is incorrect, given that velocity fields
re non-objective precisely because they do not transform under
he push-forward and pull-back of frame changes.

In a parallel development, Hadwiger et al. [30], Rautek et al.
31], and Zhang et al. [32] seek a nonlinear (i.e., non-rigid-body)
bserver velocity field u(x, t) that is simultaneously close to v, has
mall rate of strain and yields a small Lie-derivative for v−u along
. While these individual objectives all come with their own user-
ependent weight functions, the relative velocity v−u can indeed
e shown to be objective, as long as the optimization principle
as a globally unique solution (as assumed but not verified by
he authors). The frame change represented by u, however, is
onlinear and hence v − u cannot be observed by any single
hysical observer. Thus, requirement (iii) is not satisfied.
An alternative idea is to perform pointwise local velocity field

ecompositions in the flow by passing to local frames co-rotating
ith the eigenvectors of the rate-of-strain tensor [33–35]. While
hese pointwise frame changes are individually objective, they
re not observable by a single physical observable and cannot be
titched up to form a smoothly varying global coordinate change
28]. In contrast, the vortex criteria developed in [36–39] can
e viewed as evaluations of classic vortex criteria in a frame
enerated by the spin-deviation tensor, as shown by Haller [28].
his frame, however, is not obtained as a closest rigid body frame
rom any systematic optimization and hence fails to satisfy the
equirement (i) above.

In this paper, we derive a closed form solution for a rigid-
ody velocity component vRB(x, t) satisfying the requirements
i)-(iii) on a bounded spatial domain U ⊂ R3. We achieve this by
xplicitly solving the underlying optimization problem defining
RB(x, t). We then show that vd = v − vRB is observer-indifferent
nd directly observable in a specific Euclidean observer frame.
he rigid body velocity vRB is closest to v in the classic L2 norm.
All classic non-objective vortex criteria become objective when

valuated in the frame co-moving with vRB(x, t). However, it is
till not guaranteed that the objectivized vortex-criteria correctly

dentify all eddies. Specifically, while after objectivization all Ω

212
bservers will agree on the conclusions of the vortex criteria, the
lassic criteria we have reviewed still lack a rigorous connection
o material behavior in the fluid.

In addition, passage to the deformation velocity preserves the
ate-of-strain tensor of the full velocity field, causing vd and v
to have the same objective Eulerian coherent structures (OECSs),
as defined by Serra and Haller [40]. Similarly, the instantaneous
vorticity deviation (IVD) defined by Haller et al. [3], another
objective indicator of Eulerian coherence, is also preserved from
v for vd by our decomposition.

Perhaps most importantly, all common non-objective Eulerian
scalar quantities, such as the kinetic energy, enstrophy, and he-
licity, become observer-independent when they are evaluated on
the deformation velocity vd(x, t). This gives a natural way to de-
fine the deformation kinetic energy, deformation enstrophy and
deformation helicity of the flow as intrinsic physical quantities
that do not depend on the observer.

The optimization with respect to the physically motivated
L2 norm yields a rigid-body velocity field, vRB, that is uniquely
etermined over a given spatial domain U . For most problems, the
elocity field is a priori given over a certain domain of interest,
hich defines U as well. Therefore the deformation velocity vd =

− vRB can be uniquely associated to the velocity field v.
However, when one has some freedom in choosing the spatial

omain U , we show that this choice can influence the defor-
ation velocity vd. Specifically, if one chooses a large enough
omain for a complicated flow, it is unlikely that passing to a
ingle distinguished reference frame could eliminate all rotating
otions simultaneously. Through an example, we show that in
ceanographic applications this is indeed the case. Due to the
ultitude of mesoscale eddies, there is no optimal way to isolate
single rigid-body observer and we obtain vRB ≈ 0. If, however,
maller domains with well defined rotational features are of
nterest in a given problem, then the method successfully extracts
non-zero rigid-body velocity. Choosing the spatial domain U
ptimally remains a challenge for general flows.

. Main results

We seek the rigid body velocity field vRB(x, t) closest to an ar-
itrary mass-preserving velocity field v(x, t) defined on a bounded
and potentially time-dependent) spatial domain U ⊂ R3. To
easure closeness between two velocity fields, we use the L2
orm

f∥2
L2 :=

1
M

∫
U

|f(x, t)|2 dm, (1)

where M is the total mass contained in the domain U . We use
a mass-based, as opposed to the customary volume-based, norm
to cover compressible but mass-preserving flows. For incom-
pressible flows, our mass-based minimization is equivalent to a
volume-based minimization.

As any rigid body velocity field, the vRB we seek must have the
eneral form

RB(x, t) = ẋA(t) +Ω (t) (x − xA(t)) = ẋA(t) + ω(t) × (x − xA(t)) ,

(2)

here xA(t) ∈ U is the current position of a material point on
he rigid body whose instantaneous velocity is ẋA(t); x ∈ U
s another, arbitrary material point on the rigid body, whose
nstantaneous velocity is vRB(x, t). The vector ω(t) ∈ R3 denotes
he angular velocity of the rigid body and the skew-symmetric
ensor Ω (t) = −Ω T (t) ∈ R3×3 is defined as

(t)e = ω(t) × e, ∀e ∈ R3. (3)
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More generally, a vector ω(t) defined by the relation (3) is
called the dual vector of a skew-symmetric matrix Ω (t) (see,
e.g., [13]). We will use ω(t) and Ω (t) interchangeably: all results
formulated in terms of the tensor Ω (t) can be recast in terms of
ω(t) using the formula (3) and vice versa.

We will show that the tuple (Ω (t), xA(t)), for which the dis-
tance

L(Ω, xA, t) = ∥v (x, t) − vRB (x, t)∥2
L2 (4)

is minimal, can be computed explicitly in terms of only the
velocity field v(x, t) and its domain of definition U . To motivate
the choice of the L2 norm in (4), we note that (4) is proportional
to the kinetic energy of v − vRB. This means that we seek the
rigid-body velocity vRB that minimizes the kinetic energy of the
velocity field seen from that rigid body. More general (albeit less
physical) norms could also be considered, but they do not change
the results significantly, as we show in Appendix G.

The final result from the minimization of L(Ω, xA, t) will de-
pend on the moment of inertia tensor

Θ :=M
(
|x − x̄|2

)
I − (x − x̄) ⊗ (x − x̄), (5)

where overbar denotes mass-based averaging over U (as in (1)),
I ∈ R3×3 denotes the identity tensor. This is exactly the classic
moment of inertia tensor of a rigid body, computed formally with
respect to the center of mass x̄ of the fluid mass filling U .

We show in Section 3 that, the closed form solution for the
inimizer of (4) is

A(t) = x̄(t), (6)

ω(t) = MΘ−1(x − x̄) × (v − v).

s we will point out in Section 3, the tuple in Eq. (6) optimizes
he L2 distance of vRB(x, t) from v (x, t) on average over any finite
ime interval [t0, t1], not just at a discrete time t ∈ [t0, t1].

By Eq. (6), the reference point xA(t) can be chosen as the center
of mass of the fluid, and the optimal rigid-body angular velocity,
ω(t), is a linear function of the velocity field v(x, t). Note that
the vector L = M(x − x̄) × (v − v) is the angular momentum
f the fluid with respect to its center of mass [41]. Therefore,
he angular velocity ω(t) of the closest rigid body motion obeys
he equation Θω = L, as expected from classical rigid-body
echanics. We emphasize, however, that we have arrived at

his result by interpreting the exact solution of the underlying
ariational principle rather than by analogy.
We now define the deformation component of the velocity (or

eformation velocity), vd, as the difference of v from vRB:

d(x, t) := v(x, t)−vRB(x, t) = v(x, t)− v̄(t)−ω(t)×(x−x̄(t)) . (7)

By construction, vRB satisfies the requirement (i) we have laid
down for a meaningful decomposition of v in Section 1. In Sec-
tion 3 we will show that additional requirements (ii) and (iii)
also hold. Specifically, while the angular velocity ω(t) is not
objective, vd(x, t) is nevertheless an objective vector field and can
be observed physically in a frame co-rotating with vRB(x, t).

Discrete versions of Eq. (6) defining the angular velocity vec-
tor also appear in the n-body problem (see, e.g., Tachibana and
Iwai [42] and Marsden [43]), where separating rotational and
deformational degrees of freedom is essential. In that setting,
passing to a (possibly time-dependent) body frame decomposes
the kinetic energy into two terms: one comes from rotations,
and the other comes from changes in the shape of the n-body
ystem (i.e., deformations). Eckart [44] gives a standard method
f choosing the body frame. Moreover, this separation of the
inetic energy (and hence the n-body Lagrangian) is shown by

Littlejohn and Reinsch [16] to be gauge invariant. Since the gauge

convention refers to choosing the body frame, gauge invariance is
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the same as objectivity in the language of continuum mechanics.
Our results, however, are indifferent to the underlying Lagrangian
of the system. The decomposition defined by Eq. (7) can be
applied to arbitrary velocity fields, even to those obtained from
measurements.

Velocity fields with similar names have appeared in other
contexts before, such as Bergeron [45]’s deformation field for
frontogenesis (see also [4,46]). However, in that case, deformation
field refers to a specific velocity field that induces deformation.
Our Eq. (7) instead defines a deformation velocity associated to
any given velocity field v.

The results outlined above enable us to objectivize a num-
ber of originally non-objective scalar-, vector- and tensor-fields
derived from v(x, t) by computing these fields in the frame co-
oving with vRB. In practice, this simply means computing the

ields from vd(x, t) as opposed to v(x, t). Examples of scalar fields
hat become objective in this fashion include the kinetic energy,
nstrophy, and helicity. Similarly, when computed in the frame
o-moving with vRB, the vorticity, linear momentum and angu-
ar momentum become objective vector fields and the velocity
radient and the spin tensor become objective tensor fields. For
nstance, the deformation kinetic energy

d(t) =
1
2

|vd(x, t)|2 (8)

is a frame-invariant measure of the kinetic energy related to
flow deformation. One may, for instance, plot this scalar field to
reveal observer-independent Eulerian features of the flow that
arise from fluid deformation rather than rigid-body translation
and rotation.

3. Derivation of the main results

We now present the derivation of our main results discussed
in Section 2.

3.1. Solution to the optimization problem

After substitution of the general expression of the rigid body
velocity field (2) into the distance functional L(Ω, xA, t) defined
n Eq. (4), we obtain

1(Ω, t) = ∥v (x, t) − vRB (x, t)∥2
L2

=
1
M

∫
U

{
|v(x, t) − ẋA(t) − Ω (t) (x − xA(t))|2

}
ρ(x, t)dV

(9)

where ρ(x, t) is the density of the (potentially compressible) fluid.
As we will see, the solution of the minimization problem

L1(Ω, t) will yield a unique closest rigid body motion, but any
point of that body can be chosen as the reference point xA(t).
Indeed, if a given pairing (xA(t),Ω (t)) generates the closest rigid-
ody motion to v(x, t), then all pairs (xB(t),Ω (t)) will qualify as
ell, as long as

˙B(t) = ẋA(t) + Ω (t) (xB(t) − xA(t))

olds, i.e., (xB(t),Ω (t)) describe the same rigid body motion. The
ost straightforward choice for xA(t) is the center of mass of the

luid, i.e,

A(t) = x̄(t) =
1
M

∫
U
x dm =

1
M

∫
U
xρ(x, t) dV .

s the total mass of the fluid is assumed to be constant, we then
ave

˙A(t) =
D

x̄(t) =
D 1

∫
x dm =

1
∫

D
x dm
Dt Dt M U M U Dt
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1
M

∫
U
v (x, t) dm =

1
M

∫
U
v (x, t) ρ(x, t) dV

= v̄(t),

where v̄(t) denotes the mass-based (or density-weighted) average
of the velocity field over U . For incompressible flows, this v̄ also
grees with the spatial average of v over the domain U .
Therefore, the closest rigid-body motion to v(x, t), without

oss of generality, can be sought in the more specific form

RB(x, t) = v̄(t) + Ω (t) (x − x̄(t)) , (10)

here Ω (t) is the global minimizer of the functional L1(Ω, t)
efined in Eq. (9). Such a unique global minimizer must solve the
ssociated Euler–Lagrange equation
∂

∂Ω
L1(Ω, t) = 0. (11)

his last equation is also the Euler–Lagrange equation associated
ith the problem of extremizing the functional
1

t1−t0

∫ t1
t0

L1(Ω (t), t)dt . Therefore, Eq. (11) provides a solutionΩ (t)
hat optimizes the L2 distance of vRB(x, t) from v (x, t) on average
ver any finite time interval [t0, t1], not just at a discrete time
∈ [t0, t1].
To calculate the minimizing Ω (t) explicitly, we express

1(Ω, t) in coordinates. We will only focus on the additive terms
of L1(Ω, t) that depend on Ω , collecting them in a functional
L̃1(Ω, t) with ∂

∂Ω

[
L1 − L̃1

]
≡ 0. This L̃1 can be written as

L̃1(Ω, t) =
1
M

∫
U

{
−2(vi − ˙̄xi)Ωij

(
xj − x̄j

)
+Ωij

(
xj − x̄j

)
Ωik (xk − x̄k)

}
ρdV , (12)

with summation implied over repeated indices. As we show in
Appendix A, substitution of Eq. (12) into (11) leads to a lengthy
expression which can nevertheless be simplified in invariant form
to

(x − x̄) × (v − v) =
(
|x − x̄|2

)
ω − (x − x̄) ⊗ (x − x̄)ω (13)

where the angular velocity ω(t) is an extremizer of L̃1. We can
write the right-hand side of Eq. (13) as 1

MΘω using the moment
f inertia tensor defined in (5). As the classic moment of inertia
ensor, Θ , is positive definite by construction, it is also invertible
for all times t . Then, multiplication of both sides of (13) by MΘ−1

ives the closest rigid-body angular velocity

= MΘ−1(x − x̄) × (v − v̄), (14)

a linear function of the velocity field v.
In order to check whether the angular velocity vector defined

by (14) is a minimizer of the functional L̃1, it is sufficient to note
that its Hessian is

∂2

∂ωn∂ωp
L̃1(ω, t) =

2
M

[Θ]np,

ith the details of this calculation given in Appendix B. By the
ositive definiteness of Θ we conclude that L̃1(ω, t) indeed has a
nique, strict global minimum at the rigid-body angular velocity
defined in (14).

.2. Properties of the deformation velocity

.2.1. Basic properties of vd
We note that the deformation velocity is guaranteed to have

o further rigid-body velocity component under our decompo-
ition principle. Indeed, applying formulas (14) and (7) again to
= vd would yield the secondary rigid-body angular velocity
(2)

= 0,

s we show in detail in Appendix F.
 v

214
3.2.2. Objectivity of vd
We recall that a vector field a(x, t) is said to be objective if

nder any Euclidean transformation

= Q(t)y+b(t), QQT
= I, Q(t) ∈ SO(3), y, b(t) ∈ R3, (15)

t transforms as

ˆ(y, t) = QT (t)a(x, t), (16)

In the transformed frame defined by (15) the transformed
igid-body angular velocity, ω, satisfies

ˆω̂ = M(y − ȳ) × (v̂ − v̂), (17)

with

Θ̂ = M
(
|y − ȳ|2

)
I − (y − ȳ) ⊗ (y − ȳ). (18)

The moment of inertia tensor Θ is an objective tensor [16],
.e., transforms asˆ = QTΘQ. (19)

ifferentiation of Eq. (15) with respect to time gives the classic
elocity transformation rule,

= QT (v − Q̇y − ḃ
)
, (20)

hich enables us to conclude in Appendix C that the closest
igid-body angular velocity transforms as

ˆ = QT (ω − q̇) , (21)

here q̇(t) is the dual of the skew-symmetric matrix Q̇ Q T (t).
In the y-frame, the deformation velocity defined by Eq. (7) is

simply

v̂d = v̂ − v̂ − ω̂ × (y − y). (22)

Substituting the transformation rules (20) and (21) for v, ω and v
nto Eq. (22), we then obtain in Appendix D that

ˆd = QTvd. (23)

herefore, by formula (16), the deformation velocity vd is objec-
ive.

.2.3. Physical observability of vd
We now consider the specific frame change

= QRB(t)y + bRB(t), (24)

ith QRB(t) and bRB(t) defined as solutions of the linear system of
ifferential equations

˙ RB = Ω (t)QRB,

ḃRB = Ω (t)bRB(t) + v̄(t) − Ω (t)x̄, (25)

atisfying the initial conditions QRB(t0) = I and bRB(t0) = 0. In
25), we used the tensorial form of the rigid body velocity, i.e., Ω
s the dual of ω, as defined by formula (3). Note that Ω (t) is
kew-symmetric and hence the fundamental solution of the first
quation in (25) is automatically proper orthogonal. The second
quation in (25) is also linear and hence has a unique solution
RB(t) for the initial conditions specified.
As we show in Appendix E, under the observer change (24),

he full velocity field becomes

ˆ = QT
RBvd. (26)

t the same time, the general transformation formula (23) eval-
ated on the specific frame change (24) gives v̂d = QT

RBvd, and
ence Eq. (26) implies

ˆ = v̂ = QT v . (27)
d RB d
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Therefore, the full velocity field coincides with its deformation
elocity component in the frame of the specific observer defined
y the linear ODEs in (25). This is because the specific frame
hange (25) eliminates both the mean velocity and the mean
orticity in the y frame, which makes the velocity field identical
o its deformation part. This special frame, therefore, is the frame
o-moving with the closest rigid-body velocity field vRB.
All this also implies that the trajectories of the ODE

˙ = QT
RB(t)vd(QRB(t)y + bRB(t), t) (28)

re mapped into the trajectories of the original velocity field
(x, t) under the change of variables (24). Therefore, the trajec-
ories of (28) are smoothly conjugate of those of v(x, t), sharing
he same dynamic features as trajectories of conjugate dynami-
al systems always do (stability, asymptotic behavior, invariant
anifolds etc.). As any frame change, the transformation (24)
lso transforms originally fixed flow boundaries (as invariant
anifolds of the flow) into moving invariant surfaces. Note, how-
ver, that there is, in general, no smooth conjugacy between the
rajectories of v and those of vd.

.3. Objectivization of physical fields using the deformation velocity

The most broadly used Eulerian quantities (e.g., the kinetic
nergy, momentum and vorticity) associated with a moving fluid
epend on the observer and hence do not capture purely intrinsic
roperties of the flow. The objectivity of the deformation ve-
ocity vd, however, makes it possible to eliminate this observer
ependence by simply computing these classic Eulerian quan-
ities from vd as opposed to v. In view of formula (27), the
eplacement of v with vd is equivalent to evaluating the origi-
al non-objective quantities in a special, objectively determined
rame that is uniquely identifiable by any physical observer.

Specifically, the pointwise deformation kinetic energy, Ed(x, t),
eformation enstrophy, Ed(x, t), and deformation helicity, Hd(x, t),
an be defined by evaluating their classic counterparts, E =

1
2 |v|2,

E = |∇ × v|2 and H = |v · ∇ × v|2, in the frame co-moving with
vRB(x, t), as defined in Eq. (24). The scalar fields

Ed(x, t) =
1
2

⏐⏐v̂(y, t)⏐⏐2 =
1
2

|vd(x, t)|2 ,

Ed(x, t) =

⏐⏐⏐∇̂ × v̂(y, t)
⏐⏐⏐2 = |∇ × vd(x, t)|2 ,

d(x, t) =

⏐⏐⏐v̂(y, t) · ∇̂ × v̂(y, t)
⏐⏐⏐2 = |vd(x, t) · ∇ × vd(x, t)|2 ,

(29)

are objective, returning pointwise energy, enstrophy and helicity
values that are independent of the observer. This also means that
the various topological features (such as the level sets) of these
fields are indifferent to changes in the observer and hence are
intrinsic to the fluid, unlike those of E(x, t), E(x, t), and H(x, t).
The spatial integrals of the Eulerian scalar fields in (29) over
the flow domain U are also frame-invariant, given the pointwise
objectivity of their integrands.

As an exception, the turbulent kinetic energy,

k(x, t) =
1
T

∫ t+T

t

⏐⏐⏐⏐v(x, τ ) −
1
T

∫ τ+T

τ

v(x, s) ds
⏐⏐⏐⏐2 dτ ,

whose definition relies on the assumption of a well-defined tem-
poral mean at each point of the flow [11], does not become
objective even when evaluated on vd. Indeed, in a transformed
rame, we would have

ˆd =
1
∫ t+T ⏐⏐⏐⏐v̂d(y, τ ) −

1
∫ τ+T

v̂d(y, s)ds
⏐⏐⏐⏐2 dτ
T t T τ
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=
1
T

∫ t+T

t

⏐⏐⏐⏐QT (τ )vd(y, τ ) −
1
T

∫ τ+T

τ

QT (s)vd(y, s)ds
⏐⏐⏐⏐2 dτ

=
1
T

∫ t+T

t

⏐⏐⏐⏐vd(y, τ ) −
1
T
Q(τ )

∫ τ+T

τ

QT (s)vd(y, s)ds
⏐⏐⏐⏐2 dτ

̸= kd.

In contrast, the deformation momentum pd and the deformation
orticity wd, defined as

pd(x, t) = ρ(x, t)vd(x, t),
d(x, t) = ∇ × vd(x, t),

ecome objective vector fields. This follows from the objectiv-
ty of vd established in formula (23). Likewise, the deforma-
ion velocity gradient, ∇vd, the deformation rate-of-strain ten-
or Sd =

1
2

(
∇vd + [∇vd]T

)
and the deformation spin tensor,

d =
1
2

(
∇vd − [∇vd]T

)
are all objective tensors. In addition, we

have

Sd(x, t) ≡ S(x, t), (30)

where S =
1
2

(
∇v + [∇v]T

)
is the classic rate-of-strain tensor.

A consequence of Eq. (30) is that the deformation velocity
also contains all objective Eulerian coherent structures (OECS;
see [40]) of the original velocity field. These coherent struc-
tures are defined as the instantaneous limits of Lagrangian co-
herent structures (LCSs; see [47]) and hence govern the advec-
tion of material fluid elements for short times. Passage to the
deformation velocity also preserves another Eulerian indicator
of coherence, the instantaneous vorticity deviation IVD(x, t) =
1
2

⏐⏐w(x, t) − w(x, t)
⏐⏐, defined by Haller et al. [3]. Indeed,

IVDd =
1
2

⏐⏐wd − wd
⏐⏐ =

1
2

⏐⏐w − 2ω − wd + 2ω
⏐⏐ = IVD.

More generally, even though they often lack a rigorous con-
ection to the flow, all the classic vortex criteria reviewed in
18,48,49], and [28] become indifferent to the observer when
valuated on vd, or, equivalently, on the full velocity field in a
rame co-moving with vRB.

As a Lagrangian example, we recall the trajectory length func-
ion proposed by Mancho et al. [50], defined as

t1
t0 (x0) =

∫ t1

t0

|v(x(s; x0), s)|ds. (31)

valuating (32) on vd makes M t1
t0 objective. Indeed, as v̂d = QTvd,

he transformed trajectory length is

ˆ t1
t0 (y0) =

∫ t1

t0

|v̂d(y(s; y0), s)|ds = M t1
t0 (x0). (32)

. Examples

We now briefly illustrate the extraction of deformation veloc-
ties in two-dimensional and three-dimensional examples.

.1. Deformation velocities in 2D

First, we perform the proposed velocity decomposition on two
f the explicit two-dimensional unsteady Navier–Stokes solutions
erived in [51]. Our first example is the velocity field

(x, t) =

(
ẋ
ẏ

)
=

(
sin 4t cos 4t + 2

cos 4t − 2 − sin 4t

)(
x
y

)
+ 0.005

(
x(x2 − 3y2)

−x(3x2 − y2)

)
. (33)
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Fig. 1. Left column: Observer-dependent streamlines of the velocity field (33) over the domains U1 (a) and U30 (c). Right column: Objective streamlines of the
corresponding deformation velocity field vd(x, t) over the domains U1 (b) and U30 (d).
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For an arbitrary length parameter a > 0, we consider square-
shaped flow domains of the form Ua =

{
(x, y) ∈ R2

: (x, y) ∈

[−a, a]2
}
, on which to find the deformation velocity component

vd(x, t) of (33). As our optimization problem (9) was posed for
three-dimensional velocity fields, we formally extend (33) with
an identically zero velocity component in the z-direction. As a re-
sult, the angular velocity vector ω, defined by (14), will only have
a single nonzero component, ω = (ω)z . In this simple example,
an analytic computation of ω is possible, yielding ω = −2.

In Fig. 1a, we show the streamlines of system (33) for the time
instant t = 0 (other time instants yield similar streamlines) over
the domain U1. In Fig. 1b, we show the instantaneous stream-
lines of the deformation velocity field vd obtained from formulas
(6)–(7) over U1. In Fig. 1c–d, we again show the original and
deformation streamlines for the larger domain U30.

The streamline structure of the original velocity field (33)
suggests a vortical region around the origin, which is also the
prediction of all classic, frame-dependent vortex criteria when
applied to this example. In contrast, Pedergnana et al. [51] show
that the origin is a saddle-type LCS residing in a hyperbolic region
that exhibits chaotic mixing. This behavior makes (33) a false
positive of the traditional vortex criteria. In spite of this, instan-
taneous streamlines of the deformation velocity correctly reveal
the saddle type of the origin, as seen in Fig. 1b. We recall that the
instantaneous streamlines have generally no direct connection
with the Lagrangian dynamics in an unsteady flow and this fact

remains true for the deformation velocity vd as well. Yet, in r

216
this example, the objective streamlines of vd correctly reflect the
Lagrangian stability properties of the origin.

Our second example, taken from the same class of explicit
Navier–Stokes solutions as (33), is the velocity field

v(x, t) =

(
ẋ
ẏ

)
=

(
sin 4t cos 4t +

1
2

cos 4t −
1
2 − sin 4t

)(
x
y

)
− 0.015

(
x2 − y2
−2xy

)
. (34)

In [51], (34) is shown to be a false negative for all avail-
ble frame-dependent vortex criteria. Indeed, the instantaneous
treamlines indicate a saddle-type structure near the origin, yet
he Lagrangian particle motion is quasiperiodic (elliptic). In Fig. 2,
e show the streamlines of the velocity field (34), along with the
treamlines of its deformation component, which has ω = −

1
2 .

his time, the streamlines of the deformation component have
he same structure as those of the original velocity field. In
ig. 2c, we show the velocity field, as observed from the frame
o-rotating with the closest rigid body velocity. This is calculated
y solving for QRB(t) according to (25). In this case, the solution
an be written out explicitly,

RB(t) =

(
cosωt − sinωt
sinωt cosωt

)
,

s noted for two-dimensional flows in [28]. The velocity field ob-
erved in the frame co-rotating with vRB(x, t) is (28). The trajecto-
ies of QT (t)v (x, t) are indeed topologically equivalent to those
RB d
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c

Fig. 2. The velocity field (34) and its deformation velocity component. (a) Streamlines of (34) at time t = 10. Panel (b) shows the streamlines of the deformation
omponent vd , while panel (c) shows the streamlines of the observed velocity, QT

RB(t)vd . In panel (d), a trajectory of the velocity field v is shown in black. The
corresponding trajectory of the deformation component, vd , (of the observed velocity, QT

RB(t)vd) is shown in blue (red). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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of v. This is illustrated in Fig. 2d, where a trajectory of v is shown
together with the corresponding trajectory of QT

RB(t)vd(x, t).
Our third example is a kinematic velocity model describing an

unsteady gyre in a rotating circular tank, with free slip boundary
conditions along the tank wall [52]. This unsteady flow develops
Lagrangian flow separation and reattachment, exhibited by a
sharp material spike emanating from the boundary and hitting
the boundary again at a diametrically opposite point. This sep-
aration and reattachment, however, have no indication in the
Eulerian frame as all streamlines remain circular for all times (see
Fig. 3a). Although Lekien and Haller [52] show that the Lagrangian
separation does not occur at instantaneous stagnation points on
the boundary, such points often serve as rough indicators of flow
separation [53]. Their absence, therefore, suggests a lack of flow
separation even though that is not the case here.

The two-dimensional model velocity field in [52] has the
stream function

Ψ (x, t) = (|x|2 − 1)(x sinωst + y cosωst) −
1
2
ωs|x|2. (35)

Our physical domain is the rotating circular container,
i.e., U =

{
(x, y) ∈ R2

: x2 + y2 ≤ 1
}
, on which we recover

the rigid body angular velocity ω = ωs, as anticipated. In Fig. 3b,
we show the instantaneous streamlines of the deformation
velocity v at the same time instant that we used for plotting
d
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the streamlines of v in Fig. 3a. We note the appearance of
two, diametrically opposite stagnation points for vd along the
oundary, correctly suggesting the simultaneous presence of
eparation and reattachment in the flow.
As a fourth example, we illustrate the calculation of the defor-

ation velocity field on a two-dimensional unsteady velocity data
et from AVISO satellite altimetry measurements [54]. We work
ith a single velocity snapshot from April 12, 2014. The domain of
he dataset is the Gulf Stream region. The velocity field is obtained
rom the sea surface height (SSH), which is the stream function
f the surface velocity field under the geostrophic assumption.
By choosing the domain to be too large, we might include

egions in which multiple eddies coexist. To highlight this de-
endence of vd on the domain of interest, we perform the

= vRB + vd decomposition of the surface velocity field
ver two different domains. First, we select the full domain
= [290o, 310o

] × [33o, 41o
] in longitude–latitude coordinates.

n this case, we obtain the small, negative value ω = −0.0037.
In contrast, if we choose U around an Eulerian mesoscale eddy
highlighted in Fig. 4b, then ω = 0.6995 is a considerably larger
positive number, indicative of the closest rigid body rotation
well describing the eddy. This was to be expected since the full
observed region appears to contain several rotating features and
hence lacks a single dominant rigid-body rotation component.
Indeed, a comparison of Fig. 4a and Fig. 4b confirms that the
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Fig. 3. Streamlines of the kinematic model (35) (a) and those of its deformation velocity component (b). The boundary of the domain U is shown in blue, while red
oints denote the stagnation points in the flow. For both panels, t = π/10. The rigid body angular velocity is ω = ωs = 4. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. The AVISO velocity field and its objective deformation component on April 12, 2014. (a) The original streamlines overlaid on the sea surface height (SSH)
field measured in meters. The inset shows a smaller subdomain encircling a mesoscale eddy. (b): objective streamlines of the deformation velocity vd . The inset in
b) shows the streamlines of the deformation component calculated from the small region around the eddy.
o
h
h

ubtraction of the rigid body velocity field does not alter the
tructure of the streamlines considerably on this large domain. As
result, the objectivized scalar fields such as the kinetic energy
ould also be practically indistinguishable from those evaluated
n the original velocity field.
For practical purposes, this means that when working with

elocity fields coming from models or observations that cover a
arge domain of the globe, one has to first isolate smaller regions
218
f interest. Otherwise, for large domains, the principle outlined
ere returns that there is no single co-moving observer and we
ave vRB ≈ 0.
In contrast, the velocity field in the region around the eddy

of Fig. 4a is expected to have a dominant rigid-body component.
This is consistent with the observations of Tél et al. [55], who
showed experimentally that the core of a vortex approximately
rotates as a rigid body. Nevertheless, we find that the deformation
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Fig. 5. Energy, enstrophy and helicity isosurfaces for the ABC flow. In panel (a), isosurfaces of the energy E =
1
2 |v(x, t)|2 are shown for the velocity field (36),

with parameters A =
√
3, B =

√
2, C = 1. These coincide with isosurfaces of both 1

2E =
1
2 |∇ × v|2 and 1

2H =
1
2 |v · ∇ × v|2 . Panel (b) shows isosurfaces of

he deformation kinetic energy Ed =
1
2 |vd(x, t)|2 . In panels (c) and (d), isosurfaces of the deformation enstrophy, 1

2Ed =
1
2 |∇ × vd|2 and the deformation helicity,

1
2Hd =

1
2 |vd · ∇ × vd|2 are shown, respectively. The deformation velocity field vd(x, t) is given as vd(x, t) = v(x, t) − ω × x, where v and ω are defined in (36) and

(37).
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component is still nonzero. The inset of Fig. 4b shows the stream-
lines of the deformation component computed with respect to
this eddy.

4.2. Objectivized Eulerian fields in 3D

We now discuss the following objectivized Eulerian scalar
fields: the deformation kinetic energy Ed(x), the deformation en-
strophy Ed(x), and the deformation helicity Hd(x) defined in (29).
We calculate them for the classic ABC velocity field [56], given by

v(x, t) =

(ẋ1
ẋ2
ẋ3

)
=

(A sin x3 + C cos x2
B sin x1 + A cos x3
C sin x2 + B cos x1

)
. (36)

We take the domain U = [−π, π]
3 for the calculation of the

deformation component. After applying formula (14), we obtain

x̄ = 0, v̄ = 0, ω =
3

2π2

(C
A
B

)
, (37)

ielding the deformation velocity

d =

(A sin x3 + C cos x2
B sin x1 + A cos x3
C sin x2 + B cos x1

)
−

3
2π2

(Bx2 − Ax3
Cx3 − Bx1
Ax1 − Cx2

)
.

In Fig. 5, we show level sets of the energy, half the enstrophy,
nd half the helicity of the ABC flow with the classic choice of
arameters A =

√
3, B =

√
2, C = 1, which results in chaotic

agrangian dynamics [56]. For comparisons, we also show the
bjectivized versions of the same quantities, calculated from the
eformation velocity (7), with ω given by (37). Since for the ABC
 a
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flow, v ≡ ∇ × v, the classic enstrophy and the helicity are equal
o twice the energy. This, however, is no longer the case for the
eformation velocity, for which we have

× vd = ∇ × v − ∇ × (ω × x) = v − 2ω.

As a consequence, the deformation kinetic energy is not propor-
tional to either the deformation enstrophy or the deformation
helicity. In addition, the latter three quantities are objective
scalar fields while their counterparts, E, E , and H depend on the
observer.

To illustrate the objectivity of the deformation kinetic energy
Ed, we transform the velocity field (36) to a frame rotating around
the z-axis with a constant angular velocity ωr = 5, defined by
x = Q(t)y, where

Q(t) =

(cosωr t − sinωr t 0
sinωr t cosωr t 0

0 0 1

)
. (38)

The velocity of the ABC flow observed in the y-frame is then

˙ = v̂(y, t) = QT (t)
(
v(Q(t)y) − Q̇(t)y

)
. (39)

After substituting (36) and the expression for Q(t) into the
ransformation formula (39), we obtain an explicitly time de-
endent velocity field v̂(y, t). As discussed in Section 3.2.2, we
hen apply the formulas (6) and (7) to calculate the deformation
elocity v̂d(y, t) in the y-frame. In Fig. 6, we show the kinetic
nergies E and Ê calculated in the x- and y- frames, respectively,
long with their deformation counterparts, Ed and Êd.
When observed from the frame defined by (38), the kinetic

nergy Ê =
1
2 |v̂(y, t)|

2 has explicit time dependence. As Fig. 6b
nd Fig. 6c show, the isosurfaces of the kinetic energy outline
vortical structure parallel to the z-axis, the rotational axis of
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Fig. 6. The kinetic energy E and deformation kinetic energy Ed of the ABC flow observed in different frames. In panel (a), isosurfaces of the energy E =
1
2 |v(x, t)|2

are shown for the velocity field (36), with parameters A =
√
3, B =

√
2, C = 1. In panels (b) and (c) the isosurfaces of the transformed kinetic energy, Ê =

1
2 |v̂(y, t)|2 ,

are shown for t = 0 and t = π/10. The transformation between the x and y frames is x = Q(t)y, with Q(t) given by (38). Coordinates in the y− frame are labeled
as (y1 , y2 , y3). In panel (d) the isosurfaces of the deformation kinetic energy Ed(x) are shown, while panels (e)–(f) show the isosurfaces of Êd(y, t), the deformation
kinetic energy computed in the y-frame for t = 0 and t = π/10.
˜

the y-frame. In contrast, the deformation kinetic energy preserves
the topology of its isosurfaces, regardless of which frame it is
observed in. Comparing the isosurfaces of the deformation kinetic
energy in the x and y frames, shown in Fig. 6d–f, the only
difference is that for t ̸= 0, due to the frame change, the whole
computational domain is rotated around the z-axis according to
y = QT (t)x. Otherwise, the topologies of Ed and Êd are identical
in each case.

5. Conclusion

We have derived a decomposition of an arbitrary velocity field
v on a domain U into its closest rigid body component, vRB, and
a deformation component, vd = v − vRB. The distance between v
and vRB is minimal in the L2 norm.

We have explicitly solved the optimization problem (11) for
the angular velocity vector ω of the rigid body motion, which
can equivalently be expressed with a skew-symmetric tensor Ω .
This unique rigid-body component renders the deformation com-
ponent objective and physically observable. Observability means
that there is a distinguished Euclidean observer who measures
the velocity field to be equal to its deformation component.

We have illustrated the calculation of the deformation veloc-
ity on examples. In particular, for planar flows, we have used
unsteady, polynomial solutions of the Navier–Stokes equation, a
kinematic model exhibiting material separation, and a satellite
velocimetry data set of the ocean surface velocity as examples.
We have computed the instantaneous deformation streamlines
and compared the trajectories of the deformation component to
those of the original velocity field.

With the help of the deformation velocity, we can also ob-
jectivize most Eulerian quantities typically used in flow analysis
just by computing them on vd. This is equivalent to computing
these Eulerian quantities on the full velocity field v but in a
rame co-moving with vRB. We have illustrated the objectivity
f the deformation kinetic energy, deformation enstrophy and
eformation helicity for the classic ABC flow by recomputing
hese quantities in a rotating frame. While the level set structure
f the kinetic energy changes substantially when observed from
he rotating frame, the deformation kinetic energy is indeed
ndifferent to this observer change.
220
In almost all the examples considered here, the computation
of the deformation velocity field was simple and explicit. In some
cases, the deformation velocity provided more insight into the
flow, in some cases it did not. This is because truly unsteady,
spatially complex flows do not have a unique distinguished frame
[9]. We argue, however, that the variational problem we have
posed and solved here explicitly provides the closest possible
rigid-body frame in a well-defined physical sense.
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Appendix A. The derivative of L1(Ω, t)

To find the extremum of the functional L̃1(Ω, t) in Eq. (12), we
first express it in terms of the angular velocity ω. The relationship

Ω (t)e = ω(t) × e, ∀e ∈ R3,

translates to coordinate components as

Ω ijej = εijkωjek, (40)

where εijk is the Levi-Civita symbol. Substituting (40) into (12),
we obtain

L1(ω, t) =
1
∫ {

−2(vi − ˙̄xi)εijkωj (xk − x̄k) (41)
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+ εijkωj (xk − x̄k) εilmωl (xm − x̄m)

}
ρ(x, t)dV .

We now seek the minimizer ω(t) as the solution to the system
f three equations

∂

∂ωn
L̃1(ω, t) = 0, n = 1, 2, 3. (42)

We then differentiate the integrand in (41) to obtain

∂

∂ωn

{
−2(vi − ˙̄xi)εijkωj (xk − x̄k)

+ εijkωj (xk − x̄k) εilmωl (xm − x̄m)

}
(43)

− 2εnki(vi − ˙̄xi)(xk − x̄k) + 2ωn(xm − x̄m)2

− 2ωk(xk − x̄k)(xn − x̄n).

Written in coordinate-invariant form, Eq. (43) becomes

2(x − x̄) × (v − ˙̄x) + 2
(
|x − x̄|2

)
ω − 2(x − x̄) ⊗ (x − x̄)ω.

ubstituting this derivative of the integrand into (42) and dividing
y 2, we obtain Eq. (13), as claimed.

ppendix B. The second derivative of L̃1(Ω, t)

To compute the Hessian of the function L̃1(Ω, t), we start from
41). Taking the derivative of the integrand with respect to ωn, we
ave already obtained the expression (43). Further differentiation
ith respect to ωp then yields

∂

∂ωp

[
2εink(vi − ˙̄xi)(xk − x̄k) + 2ωn(xm − x̄m)2

− 2ωk(xk − x̄k)(xn − x̄n)
]

2δnp(xm − x̄m)2 − 2(xp − x̄p)(xn − x̄n).

Expressed in a coordinate-invariant form, we therefore obtain
the Hessian

∂2

∂ωn∂ωp
L̃1(ω, t) = 2δnp(xm−x̄m)2−2(xp−x̄p)(xn−x̄n) =

2
M

[Θ]np,

s claimed.

ppendix C. Transformation rule for the closest rigid-body
ngular velocity vector

Under a Euclidean frame change (15), the velocity v(x, t) and
he average velocity v̄(t) transform as

= QT (v − Q̇y − ḃ
)
,

¯ = QT (v̄ − Q̇ȳ − ḃ
)
.

(44)

ince QT Q̇ is skew-symmetric, it has a dual vector associated to
t, q̇, defined as

˙QTe = q̇ × e ∀e ∈ R3. (45)

ubstituting the transformation rules (19), (44) into (13), we
btain

ˆ ω̂ = M(y − ȳ) × (v̂ − ˆ̄v)

= MQT (x − x) × QT
(
v − v − Q̇QT (x − x)

)
. (46)

e now recall that for any rotation matrix Q and for arbitrary
ectors a and b, we have Qa × Qb = Q(a × b). Furthermore, for
221
any three vectors a, b, c ∈ R3, we have a×(b×c) = b(a·c)−c(a·b).
With these identities, we can rewrite Eq. (46) as

Θ̂ω̂ = MQT (x − x) ×
(
v − v − Q̇QT (x − x)

)
= MQT (x − x

)
×
(
v − v

)
− q̇

⏐⏐x − x
⏐⏐2 +

(
x − x

) [
q̇·
(
x − x

)]
= MQT (x − x̄) × (v − v) − QTΘ q̇

= MQT
[
1
M

Θω −
1
M

Θ q̇
]

.

QTΘQω̂ = QTΘω − QTΘ q̇

Substituting the transformation formula (19) for the tensor Θ̂
into the left-hand side of this last equation then yields the
transformation formula

ω̂ = QT (ω − q̇)

for the angular velocity ω.

Appendix D. Transformation rule of the deformation velocity

Under a Euclidean frame change (15), the deformation velocity
field vd(x, t) defined in (7) can be computed in the y-frame as

v̂d = v̂ − ˆ̄v − ω̂ × (y − y)
= QT [v − v − Q̇QT (x − x)

]
− QT (ω − q̇) × QT (x − x)

= QT [v − v − ω × (x − x)
]

= QTvd, (47)

which proves the objectivity of vd(x, t).

Appendix E. The full velocity field in a frame co-moving with
vRB

Under the observer change defined in (24)–(25), the trans-
formed velocity field becomes

v̂ = QT
RB

(
v − Q̇RBy − ḃRB

)
= QT

RB

(
v − Q̇RBQT

RB (x − bRB) − ḃRB
)

= QT
RB (v − ω × x + ω × x̄ − v̄) = QT

RBvd = v̂d,

here we have used formula (47).

ppendix F. Deformation velocity of the deformation velocity

First, as a special case, we formally calculate ω for a rigid-body
elocity field

(x, t) = p × (x − x̄) + v̄. (48)

oting that

x − x̄) × (v − x̄) = (x − x̄) × p × (x − x̄)
= |x − x̄|2 p + (x − x̄) ⊗ (x − x̄)p,

we find from (14) that

ω = MΘ−1
[
|x − x̄|2 p + (x − x̄) ⊗ (x − x̄)p

]
(49)

= MΘ−1 1
M
Θp = p,

i.e., ω coincides with the angular velocity of the rigid body.
Therefore, noting that (14) shows ω to be a homogeneous

linear function of the velocity field v, we obtain

ω(2)
= ω − ω = 0.

In other words, the deformation velocity has a vanishing closest
rigid body component under our optimization principle, given
that we also have v(x̄, t) = v̄ in Eq. (48).
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Appendix G. Generalizing the objective function

As a straightforward generalization to the mass-based L2 norm
1), we consider here the following family of Sobolev norms to
easure the closeness of two velocity fields:

∥f∥2
Hk =

1
M

∫
U

|f(x, t)|2 dm + α
1
M

∫
U

|Dxf(x, t)|2 dm (50)

+
1
M

k∑
i=2

βi

∫
U

⏐⏐Di
xf(x, t)

⏐⏐2 dm. (51)

his Hk norm is defined for integrable functions over U whose
derivatives up to order k are also integrable. The constants α, βi ≥

0 ensure the same physical dimension for all terms in ∥f∥2
Hk and

lso serve to assign different weights to the different spatial scales
n f(x, t). Specifically, α = β1 = · · · = βk = 0 eliminates the
onsideration of smaller scales in the norm of f(x, t), whereas
, βi → ∞ gives full weight to the smaller scales.
Therefore, the objective function to be minimized becomes

Hk (Ω, xA, t) = ∥v(x, t) − vRB(x, t)∥2
Hk . (52)

ue to the spatial linearity of vRB, for any k ≥ 1, extrema of
Hk (Ω (t), t) are defined by the equation

∂

∂Ω
LHk (Ω, t) ≡

∂

∂Ω
LH1 (Ω, t) = 0. (53)

Therefore, the weights given to the higher-order derivatives in
(51) can be set as β1 = · · · = βk = 0 without loss of generality.
Therefore, the only remaining parameter to determine is the
weight of the derivative term, α.

With a simple extension of the derivation outlined in Sec-
tion 3, the closest rigid-body angular velocity with respect to the
H1 norm is

ωα = MΘα
−1(x − x̄) × (v − v̄) + α∇ × v, (54)

here the moment of inertia tensor Θ0 is modified to Θα =

0 + 2αI.
In Fig. 7, we compare the optimal rigid-body angular velocity

or various values of α. We take the AVISO dataset analyzed in
ig. 4 and compute ω again. For both of the domains considered,
e see that ωα does not change significantly with α. Therefore,
he basic conclusions we drew from the α = 0 result of Fig. 4
xtends to any α. Optimizing over the whole domain gives small
egative values of the angular velocity, while optimizing over the
eighborhood of the mesoscale eddy gives a larger positive angu-
ar velocity. In light of this, the resulting deformation velocities
re also similar to each other for non-zero values of α. In the
ain body of this paper, we have decided to set α = 0 in the
ain results to remain in line with our physical motivation.
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