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Objective momentum barriers in wall turbulence
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We use the recent frame-indifferent theory of diffusive momentum transport to identify
internal barriers in wall-bounded turbulence. Formed by the invariant manifolds of the
Laplacian of the velocity field, the barriers block the viscous part of the instantaneous
momentum flux in the flow. We employ the level sets of single-trajectory Lagrangian
diagnostic tools, the trajectory rotation average and trajectory stretching exponent,
to approximate both vortical and internal wall-parallel momentum transport barrier
(MTB) interfaces. These interfaces provide frame-indifferent alternatives to classic
velocity-gradient-based vortices and high-shear boundaries between uniform momentum
zones (UMZs). Indeed, we find that these elliptic manifold approximations and MTBs
outperform standard vortices and UMZ interfaces in blocking diffusive momentum
transport, which suggests our momentum barriers are physical features that may be
the cause of coherence signatures in statistical and non-objective diagnostics. We also
introduce normalized trajectory metrics that provide unprecedented visualizations of
objective coherent structures by avoiding strong turbulence biases.
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1. Introduction

Early studies of turbulent boundary layer structures were fundamentally inspired by
experimentally discovered structures, such as the streaks in boundary layers photographed
by Kline et al. (1967) and the typical eddies forming large-scale motions described by
Falco (1977), shown in figure 1. The pioneering bubble, fog and smoke experiments of
the 1960s to 1980s (see, e.g. Fiedler & Head 1966; Kline et al. 1967; Offen & Kline 1974;
Falco 1977; Bandyopadhyay 1980; Head & Bandyopadhyay 1981) quantified intermittent
material features and boundary layer structures on which coherent structure identification
methods continue to rely for validation.

Boundary layer tracer experiments suggest an organization of fluid by individual
vortices at low Reynolds number (Re), and by packets or collections of vortices as
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Figure 1. Material wall-bounded turbulent structures visualized with smoke. Reproduced from Falco (1977)
with the permission of AIP Publishing.

turbulence increases. The 33◦–45◦ angle at which individual vortices extend from the
lower boundary has been recreated in multiple experiments for a variety of Reynolds
numbers (Falco 1974; Bandyopadhyay 1980; Head & Bandyopadhyay 1981). The diameter
of vortex heads has been found to be a fraction of the boundary layer height δ and
scales inversely with Re from 0.01δ–0.2δ (Falco 1974, 1977). Typical vortices also appear
to self-organize into bulges, or large scale motions, with streamwise extent ranging
from 1.5–2.5δ (Falco 1977), which collectively rise at an inclination angle of 18◦–20◦
(Bandyopadhyay 1980; Head & Bandyopadhyay 1981). In subsequent hot-wire and particle
image velocimetry studies, these ranges of values have been recreated and expanded, but
the original measures of material structures remain as the ground-truth for comparison
(Adrian 2007).

Advances in experimental techniques and simulation provided highly resolved velocity
fields that stimulated the development of quantitative criteria for the identification of
structures seen in tracer experiments (Adrian 2007). Some of these criteria extract
isosurfaces of velocity components to define uniform momentum zones (UMZs), while
others employ diagnostic scalar fields, such as the Q-, λ2-, Δ- and λci-parameters, to define
vortices (Hunt, Wray & Moin 1988; Jeong & Hussain 1995; Zhou et al. 1999; Adrian,
Meinhart & Tomkins 2000b; Gao, Ortiz-Due ns & Longmire 2011). Yet other approaches
identify a relevant temporal or spatial scale and employ a conditional averaging prior to
feature extraction (see Dennis & Nickels 2011; Gul, Elsinga & Westerweel 2020).

UMZs were first documented in the early experimental study of Meinhart & Adrian
(1995), leading to the seminal work of Adrian et al. (2000b) who suggested that
wall-bounded turbulence may be described as a collection of layered zonal structures
distinguished by their common streamwise velocities. These structures appear between
rapid changes in streamwise velocity across strong shear regions where spanwise vorticity
may be concentrated. The relevance of these jumps has been supported by analogous
jumps in streamwise velocity at turbulent/non-turbulent interfaces and by nearby hairpin
vortices and other vortical features. The core statistical methods used to make these
inferences about UMZs and their boundaries were developed by Adrian et al. (2000b) with
additional modifications proposed by De Silva, Hutchins & Marusic (2015), Eisma et al.
(2015), Laskari et al. (2018), Fan et al. (2019) and others. With the help of these tools,
UMZs have been investigated in a number of wall-bounded flows, including turbulent
boundary layers, channel flows and pipe flows at various Reynolds numbers (Adrian et al.
2000b; Kwon et al. 2014; De Silva et al. 2015, 2017; Gul et al. 2020). UMZs have also been
widely used as tools to validate other models (Saxton-Fox & McKeon 2017; Bautista et al.
2019) and generate descriptions of wall-turbulence organization (Adrian 2007; Hwang &
Sung 2018).
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Turbulent momentum barriers

Despite these advances, several practical issues are known with the currently used
probability-based UMZ identification scheme, including its sensitivity to the size of
the domain, to the number of velocity vectors used in identifying significant velocities
(and thus extension to three-dimensional data) and to the number of bins used to reveal
streamwise velocity peaks. Two more fundamental issues, however, also arise. First, the
broadly hypothesized role of UMZs as fundamental turbulence-organizing zonal-like
structures that influence the wall-transverse transport of streamwise linear momentum
is often cited but has not yet been directly verified (e.g. Westerweel et al. 2009; Eisma
et al. 2015; De Silva et al. 2017; Fan et al. 2019). While it is common for researchers to
discuss these zonal-structures, and their probable physical importance, there is currently
limited understanding of the momentum transport they induce (Montemuro et al. 2020).
Nibbling, engulfment and entrainment are often studied as influential processes for
mass and momentum flux, but fluxes through UMZ interfaces are typically estimated
indirectly through conditional sampling and average Reynolds stress profiles. Second,
the topology of streamwise velocity level sets (UMZ interfaces) is not objective, i.e.
depends on the frame of reference of the observer. This is at odds with the tracer patterns
arising in foundational tracer experiments (e.g. Kline et al. 1967; Falco 1977; Head &
Bandyopadhyay 1981) that originally inspired the study of UMZs, given that those patterns
are material and hence are inherently frame-indifferent. Additionally, level-set approaches
that rely on Reynolds decompositions, including those in quadrant and octant analysis,
introduce a non-physical distortion of the reference frame when different averages are
subtracted from each grid cell (Adrian, Christensen & Liu 2000a; Kwon, Hutchins &
Monty 2016; Saxton-Fox & McKeon 2017).

One might dismiss the concern about observer dependence by saying that a correct
understanding of UMZs in the frame of the experiment is sufficient. The problem with
this argument is that a description of features tied to material observations cannot be
correct if it only holds in the current frame of observation, whether or not one ever intends
to change that frame. More broadly speaking, truly unsteady flows may have convenient
frames but have no distinguished frames, as already noted by Lugt (1979). This is the
reason why objectivity (or indifference to Euclidean coordinate changes) as a litmus test
for flow feature identification was already proposed in the 1970s (Drouot 1976; Drouot &
Lucius 1976; Astarita 1979; Lugt 1979), prompting a number of recent approaches to adopt
observer-indifference as a minimal requirement in coherent structure detection (see Haller
2005, 2015; Peacock, Froyland & Haller 2015; Kirwan 2016; Günther & Theisel 2018, for
reviews).

Descriptions of experimentally observed vortical features within and surrounding UMZs
(e.g. Head & Bandyopadhyay 1981) also face objectivity as a minimal self-consistency
requirement. Yet the Q-, λ2-, Δ- and λci-isosurfaces used for this purpose are not
objective and hence their predictions for observed material tracer patterns, or momentum
transport blocking, cannot be accurate (see Haller 2005, 2021). While correlations may
exist between measured scalar concentrations and the features of these non-objective
diagnostics (e.g. Westerweel et al. 2009; Eisma, Westerweel & van de Water 2021), there
can be no causal relationship. Several formal modifications of these vortex diagnostics
have been proposed to make them objective, but only the approach of Liu, Gao &
Liu (2019a); Liu et al. (2019b) would be generally applicable, as found by Haller
(2021). Yet, for lack of a direct connection to material mixing and transport, even
correct objectivizations of the currently used Q-, λ2-, Δ- and λci-procedures for vortex
identification would depend on their users. Indeed, the users of these procedures are
expected to pick values for visualized isosurfaces based on their own expectations for
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the results (see, e.g. Dubief & Delcayre 2000). This commonly used approach results in a
subjective view of the flow, as recently highlighted by Dong & Tian (2020).

In a parallel development, objective mathematical descriptions of long-term and
short-term material deformation have lead to the notions of Lagrangian coherent structures
(or LCS) and objective Eulerian coherent structures (or OECS) (see, e.g. Haller 2015;
Serra et al. 2017; Beron-Vera et al. 2018; Serra et al. 2020). Some of these approaches
have been used to identify vortices away from turbulent/non-turbulent interfaces (TNTIs)
in gravity current experiments (Neamtu-Halic et al. 2019), as well as to look at boundary
layer structures in PIV studies (Green, Rowley & Haller 2007; Pan, Wang & Zhang 2009;
Wilson, Tutkun & Cal 2013; He et al. 2016; Eisma et al. 2021). LCSs and OECSs are,
however, constructed as boundaries of coherent structures in passive tracer advection
rather than minimizers of momentum transport, as would be required for a physical UMZ
interface analogue.

Recently, Haller et al. (2020) developed a theory of objective material barriers for the
transport of active vector fields, such as vorticity and momentum. These active barriers
are sought as material surfaces that block an objectively defined transport of momentum
or vorticity more than any other neighbouring material surface. Solving this optimization
problem leads to an associated steady, three-dimensional (3-D), incompressible dynamical
system (the barrier equation) whose structurally stable stream surfaces (invariant
manifolds) are precisely the active transport barriers. Haller et al. (2020) showed how
active versions of LCS diagnostics, such as the active finite-time Lyapunov exponents
(aFTLE) and the active polar rotation angle (aPRA), provide previously unseen levels
of detail for momentum-transport barriers in direct numerical simulations of a turbulent
channel flow. Instantaneous limits of active material barriers can also be extract via the
same machinery. The latter Eulerian barriers are objectively defined surfaces that block
the instantaneous flux of the active vector field in question.

Here, we use this recent theory of instantaneous active barriers to define and visualize
both momentum trapping vortices and momentum blocking internal interfaces (MTBs)
objectively based on their broadly envisioned role as minimizers of momentum transport.
To adapt the active barrier field methods to large datasets, and numerically identify
large invariant manifolds of the active barrier equations, we use recently developed
single-trajectory-based objective coherent structure diagnostics, the trajectory rotation
average (TRA) and trajectory stretching exponent (TSE), from Haller, Aksamit & Bartos
(2021). Combining these theories, we develop a simple, systematic procedure that
visualizes both MTBs and momentum-trapping vortices in general 3-D, wall-bounded
turbulence. We also show that the active-barrier-based approach developed here locates
vortices and MTB interfaces with significantly lower viscous momentum flux than nearby
surfaces obtained from the broadly used velocity-gradient-based vortex diagnostics and
non-objective UMZ definition.

2. Methods

2.1. Objective instantaneous barriers to momentum transport
For a 3-D fluid velocity field v(x, t) with density ρ(x, t), the equation of motion can be
written as

ρ
Dv

Dt
= −∇p + ∇ · T vis + q, (2.1)

where D/Dt is the material derivative, p(x, t) is the equilibrium pressure, T vis(x, t) is
the viscous stress tensor and q(x, t) contains the external body forces. Fluid trajectories
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generated by the velocity field v are solutions, x(t; t0, x0), of the ordinary differential
equation ẋ = v(x, t) with initial position x0 at the initial time t0. These fluid trajectories
enable the definition of the flow map F t

t0 : x0 �→ x(t; t0, x0). A material surface M(t) is
then a two-dimensional (2-D) manifold,

M(t) = F t
t0[M(t0)], (2.2)

evolving under the flow map from its initial position M(t0).
To identify exceptional momentum-transport minimizing surfaces, we must first agree

on a definition of frame-indifferent momentum flux. As pointed out by Haller et al. (2020),
the broadly used linear momentum flux

Fluxρv(M(t)) =
∫
M(t)

ρv(v · n) dA (2.3)

is unsuitable for systematic, observer-independent momentum-flux measurements through
a material surface M(t) for several reasons. First, this flux expression originally arises
from the application of the Reynold transport theorem to quantify linear momentum
carried by fluid trajectories through a non-material control surface. No such trajectory
crossings are, however, possible through a material surface. Second, a flux of a quantity
through a surface should have the units of that quantity divided by time and multiplied by
the surface area, which is not the case for Fluxρv . Third, Fluxρv is not objective because
under Euclidean coordinate changes of the form

x = Q(t)y + b(t), QQT = I, (2.4)

the integrand in (2.3) does not transform as an objective velocity field, i.e. we have v(v ·
n) /= Qṽ(ṽ · ñ) for the transformed velocity field

ṽ = QT (
v − Q̇y − ḃ

)
. (2.5)

This observer dependence is equally true for fluxes obtained from conditionally averaged
entrainment velocities used in TNTI studies (e.g. Westerweel et al. 2009; Da Silva et al.
2014; Eisma et al. 2015), as well as projections of momentum flux in the streamwise
direction.

To address these shortcomings of Fluxρv , Haller et al. (2020) introduce a
frame-indifferent flux for an arbitrary, dynamically active vector field f (x, t) that satisfies
a partial differential equation of the form

Df /Dt = hvis + hnon-vis, ∂T vishvis /= 0, ∂T vishnon-vis = 0. (2.6a–c)

Here the term hvis(x, t, v, f , T vis), arising from diffusive forces (i.e. viscous
Cauchy-stresses), is assumed to be an objective vector field, i.e. hvis = Qh̃vis. The
other term, hnon-vis(x, t, v, f ), is assumed to have no explicit dependence on viscous
forces. Instead, it contains terms originating from the pressure, external forces and
possible inertial effects. For instance, if f is the linear momentum of an incompressible
Navier–Stokes flow with kinematic viscosity ν, then the Navier–Stokes equations directly
imply

hvis = ρν�v, (2.7)

which is an objective vector field, because �v = Q�ṽ.
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The diffusive flux of f (x, t) through M(t) can then be defined as the surface integral
of the diffusive part of the surface-normal material derivative of f (x, t) over M(t):

Φ (M(t)) =
[∫

M(t)

Df
Dt

· n dA
]

vis
=

∫
M(t)

hvis · n dA. (2.8)

In contrast to (2.3), the diffusive momentum flux Φ(M(t)) has the correct physical units
of momentum flux and is objective. Indeed, under all observer changes of the form (2.4),
we obtain hvis · n dA = (Qh̃vis) · (Qñ) dÃ = h̃vis · ñ dÃ.

We also define a measure, ΦN , that is focused solely on quantifying the amount of
tangency a surface M(t) shares with a diffusive momentum flux barrier:

ΦN (M(t)) =
∫
M(t)

hvis

‖hvis‖ · n dA. (2.9)

In flows with a wide range of hvis magnitudes, ΦN provides a normalized measure with no
preferential bias towards low-magnitude regions of the flow.

By (2.8), a material surface M(t) is a perfect instantaneous barrier to diffusive
momentum flux if hvis · n (and thus ‖hvis‖−1(hvis · n)) vanishes at each point of M(t). In
other words, the surface M(t) must be tangent to the vector field hvis at each of its points,
i.e. M(t) must be an invariant manifold of the differential equation x′ = hvis. Here, prime
denotes differentiation with respect to the barrier time, s, which parametrizes trajectories
of this differential equation.

Specifically, when f is the linear momentum, then we obtain from (2.7) that M(t) is an
invariant manifold of the instantaneous momentum barrier equation

x′(s) = �v(x(s), t). (2.10)

Here, to speed up trajectory integration, we have dropped the small scalar factor ρν in the
definition of hvis in (2.7). This has no impact on the invariant manifolds (stream surfaces)
of hvis.

The barrier time s is a non-dimensional geometric parameter along trajectories of the
barrier equations. As such, it has no direct fluid dynamical meaning, much the same way
as the geometric parameter τ has no direct physical meaning in the differential equation
dx/dτ = v(x, t) defining the instantaneous streamlines of a velocity field. However, if
we normalize the barrier vector field to a unit vector at each point, then s will measure
precisely the arclength of a computed barrier trajectory. In that case, setting a maximal
value s∗ for s in our calculations will directly control the barrier length scales revealed by
the Lagrangian diagnostics computed on the barrier equations up to the barrier time s∗.

Even at the Reynolds numbers considered here, the diffusive momentum transport is
small relative to the total momentum transport, which is dominated by pressure-induced
transport. The ratio between diffusive and pressure-induced momentum transport
decreases further with increasing Reynolds numbers. We propose, however, that coherent
structure boundaries in the flow are distinguished precisely by their ability to inhibit the
diffusive component of the momentum transport. Indeed, the transport induced by the
pressure gradient also moves coherent structures along with the bulk flow and hence
fails to distinguish their boundaries. This view on coherent structure boundaries has been
justified analytically for all directionally steady Beltrami solutions of the Navier–Stokes
equation, for arbitrary high Reynolds numbers (see Haller et al. 2020). The same principle
has been verified numerically for diffusive passive scalar transport by Haller, Karrasch
& Kogelbauer (2018). They find the observed coherent structures in two-dimensional
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geophysical flows coincide with barriers to the diffusive transport of passive scalars (such
as the scalar vorticity) for arbitrarily small diffusion.

As a further illustration in Appendix A, we compare perfect barriers to the diffusive
momentum transport and perfect barriers to the total momentum transport for an
exact Navier–Stokes solution, the time-dependent ABC flow. Due to the dominance of
the strongly compressible pressure gradient vector field, the barrier surfaces to total
momentum transport accumulate on each other and spiral into fixed points. These
characteristically dissipative surfaces are notably dissimilar to the coherent structures
seen in tracer experiments and hence would be inconsistent with the view put forward
by Westerweel et al. (2009) on the relation between barriers of tracer transport and those
of momentum transport.

By construction, any 2-D structurally stable invariant manifold M(t) of the barrier
equation (2.10) represents an exact and dynamically robust instantaneous barrier to the
diffusive transport of linear momentum. If v is incompressible, then the barrier equation
(2.10) is an incompressible, steady dynamical system, given that the time t only plays the
role of a parameter (which temporal frame to investigate) and the right-hand side of (2.10)
has no explicit dependence on the barrier time s. Therefore, as is well known from chaotic
advection studies of 3-D, steady, incompressible flows, structurally stable 2-D invariant
manifolds of (2.10) are stable manifolds, unstable manifolds and invariant tori. We note
that Haller et al. (2020) also extends the barrier equation (2.10) to cover material transport
barriers over a finite time interval, but here we will focus on instantaneous momentum
barriers. Both the instantaneous and the material barrier equations are objective.

Invariant manifolds (or distinguished stream surfaces) of the barrier equation
(2.10) can only be determined numerically and hence will be approximate. We
provide two different methods to numerically approximate these barriers with different
orders of computational burden. To evaluate the accuracy of our computations and
compare the momentum-blocking ability of the computed barriers to nearby features
obtained from common vortex and UMZ identification procedures, we will use the
surface-area-normalized geometric momentum flux across a surface M(t),

Ψ (M(t)) =
∫
M(t) |�v · n| dA∫

M(t) dA
. (2.11)

This objective quantity does not allow for a cancellation of fluxes in opposite directions
and hence vanishes only on perfectly computed momentum barriers. As a result, Ψ (M(t))
provides an objective, non-negative scalar metric for the permeability of the surface M(t)
with respect to momentum transport irrespective of the size of M(t).

Similarly, the normalized unit barrier field measure,

ΨN(M(t)) =
∫
M(t)

∣∣∣∣ �v

‖�v‖ · n
∣∣∣∣ dA

∫
M(t) dA

, (2.12)

quantifies the degree of tangency between an imperfect barrier and trajectories of the linear
momentum barrier field (2.10). This measure provides a clear comparison for surfaces in
distinct regions of a flow with different momentum barrier field vector magnitudes by
focusing solely on geometry with no bias for small �v values. However, ΨN does not have
the units of flux and is thus referred to as our barrier field tangency measure.
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2.2. Identification of momentum barrier surfaces
A number of relevant techniques have been developed in the LCS literature to identify
distinguished material surfaces of 3-D steady flows from arrays of trajectories (see Haller
2015, for a review). These methods generally require a numerical differentiation of the
flow map or of the velocity field along particle positions. The 3-D steady dynamical
system (2.10) already involves two spatial derivatives of the velocity field and further
spatial differentiation can only be carried out accurately over sufficiently dense numerical
grids (see Haller et al. (2020) for examples involving Cauchy–Green strain tensor based
diagnostics).

To avoid the numerical issues associated with further spatial differentiation of solutions
of (2.10) and to reduce the number of integrated trajectories, here we use very recently
developed single-trajectory diagnostics for elliptic (i.e. vortex-type) and hyperbolic LCS,
the trajectory rotation average (TRA) and the trajectory stretching exponent (TSE), derived
by Haller et al. (2021). On any discretized trajectory {x(si)}N

i=0 of the barrier equation
(2.10) with initial condition x(s0) = x(0) = x, the TRA measures the temporal average of
the angular velocity of the trajectory whereas the TSE measures the average hyperbolicity
strength along the trajectory. Evaluated in the context of the barrier equation (2.10), these
two fields can be computed as

TRAsN
0 (x) = 1

sN

N−1∑
i=0

cos−1 〈ẋ(si), ẋ(si+1)〉
|ẋ(si)| |ẋ(si+1)| (2.13)

and

TSEsN
0 (x) = 1

sN

N−1∑
i=0

∣∣∣∣log
|ẋ(si+1)|
|ẋ(si)|

∣∣∣∣ . (2.14)

To simplify our notation, we have omitted the overbar from the TRAsN
0 and TSEsN

0
terms, which was used by Haller et al. (2021) to distinguish (2.13) and (2.14) from their
versions that allowed for cancellations along trajectories. TRA and TSE computed in
(non-objective) physical velocity fields are not objective. In our present context, however,
TRAsN

0 (x) and TSEsN
0 (x) are objective fields, because they are computed along trajectories

of the objective barrier vector field �v.
Calculating trajectories in the unit barrier field

x′(s) = �v(x(s), t)
|�v(x(s), t)| (2.15)

preserves momentum barrier geometry but standardizes the length of all paths for the same
advection time, sN . TRA and TSE fields calculated from trajectories in the normalized
barrier field, NTRA and NTSE, respectively, visualize features in both highly turbulent
regions (large �v) and less turbulent flow regions, with equal fidelity. As will be shown in
the following sections, NTRA and NTSE provide unprecedented comparisons of objective
coherent structures over the full range of scales and strengths present in a turbulent flow,
and concurrently reveal additional weak structures in less turbulent regions that are not
evident from other Eulerian methods.

Haller et al. (2021) show that fronts and outer boundaries of nested cylindrical level
surfaces of the TRA and TSE fields highlight the same hyperbolic and elliptic invariant
manifolds as the finite-time Lyapunov exponent (FTLE, Haller 2015), polar rotation angle
(PRA, Farazmand & Haller 2016) and the Lagrangian-averaged vorticity deviation (LAVD,
Haller et al. 2016), but without relying on the spatial differentiation required by the latter
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three diagnostics. The TRA and TSE fields are, therefore, computable from sparse data
and their local value is independent of the number and proximity of other trajectories used
in the analysis. In upcoming visualizations, influential invariant manifolds of the barrier
equation will appear as 2-D surfaces along which TRA or TSE exhibit large changes.
The barrier time sN in (2.13) and (2.14) can be selected arbitrarily, as it is independent of
the physical time of the flow data. An increase in sN enhances details in TRA and TSE
visualizations, enabling a gradual, scale-dependent exploration of invariant manifolds in
the phase space of the autonomous system (2.10).

For arbitrarily large barrier times, however, the quality of visualization begins to
degrade. This is caused by barrier field trajectories leaving neighbourhoods of the
finite-sized codimension-one invariant manifolds influencing their initial paths. As TRA
and TSE are monotonically non-decreasing functions of s, hyperbolic and elliptic
manifolds encountered away from trajectory initial positions will have outsized influence
and the diagnostics no longer reflect the features at x0. We thus suggest determining sN
for a given region U as the decorrelation time of instantaneous TRA (or TSE) values.
Specifically, for each x0 ∈ U, we calculate the first zero of the autocorellation

R(τ, x0) =
N−1∑
i=0

( f (si, x0) − f̄ )( f (si − τ, x0) − f̄ ), τ ≥ 0,

f (si, x) = TRAsi+1
si (x0),

⎫⎪⎪⎬
⎪⎪⎭

(2.16)

where f̄ is the temporal average of f . The median value of this decorrelation time over
all x0 ∈ U provides a suitable integration time to visualize most invariant manifolds of the
barrier field in U with limited interference. We use the same method for determining sN for
the normalized NTRA and NTSE fields in (2.15) as well. We have found that decorrelation
times for TRA and TSE to be approximately equal in our numerical studies.

2.3. Direct numerical simulation data
To facilitate reproducibility and foster further comparisons with future developments, we
have selected from the publicly available Johns Hopkins University Turbulence Database
(JHTDB) a direct numerical simulation of a Reτ = 1000 channel flow (Perlman et al.
2007; Li et al. 2008; Graham et al. 2016). On this data set, we compare UMZ interfaces
and velocity-gradient-based vortices with perfect instantaneous barriers to the diffusive
transport of linear momentum. While UMZ studies are typically performed on turbulent
boundary layers, Kwon et al. (2014) and Fan et al. (2019) have argued for the generalization
of such features to channel flows as well.

The JHTDB channel flow data are available on a 2048 × 512 × 1536 grid for a domain
of size 8πh × 2h × 3πh, where h is the half-channel height. The DNS timestep �t =
0.0013 in non-dimensional simulation units, with the stored simulation time step, δt =
5�t, or approximately one channel flow-through time. The analysis herein is conducted
over 100 frames spanning the entire simulation database with a duration of 4000 channel
flow-through times from t = 0 to t = 26. All figures and analysis will be displayed in
non-dimensional half-channel height units (h = 1). This dataset has been used in a number
of studies, most notably by Bautista et al. (2019) to evaluate a model of velocity-based
uniform momentum zones, and by Jie, Andersson & Zhao (2021) to investigate inertial
particle collection in the quiescent core.

To account for the instability caused by numerical integration through large �v
fluctuations near the channel walls, we have implemented a quadratic buffer in the lower
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viscous sublayer, within five viscous lengths or 0.005h from the wall. That is, for 0.995h ≤
|y| ≤ 1, we define �v(x, y) = v(x, ±0.995h)((y ∓ 1)/(0.995h ∓ 1))2 for the appropriate
wall. Eyink, Gupta & Zaki (2020) examined this region and calculated these heights to
be well within the viscous sublayer for our JHU channel. We find that this minimal buffer
zone does not modify the visualization of structure in the momentum barrier field, but it
significantly expedites calculations and aids in fixed time step advection of trajectories at
the long time scales necessary for determining optimal decorrelation times in (2.16).

2.4. Computational consideration
Common to Lagrangian-trajectory diagnostics, the computational burden of calculating
TRA and TSE in the vector fields (2.10) and (2.15) primarily comes from the accurate
integration of trajectories which requires interpolating large vector fields to determine
trajectory velocities. The present analysis was conducted in MATLAB on either a
professional workstation for specific examples, or a high performance computing cluster
to calculate large numbers of TRA and TSE fields in large domains. Using a fourth-order
Runge–Kutte integration scheme with 10 000 time steps on a 2.3 GHz, 18 Core, 128 GB
iMac Pro, TRA and TSE values from 10 000 initial positions, x0, can be computed
in an interpolated vector field of 100 × 100 × 100 grid points, with spatial dimensions
1.2h × 0.6h × 0.6h, in a wall-clock time of 5 s. This can clearly be improved upon in
more computationally efficient programming languages.

As one increases the spatial dimensions of initial conditions x0, the flow domain used
in the interpolation needs to be increased to avoid boundary effects, as in Eisma et al.
(2021). This, in turn, decreases the speed of the computations. We thus calculate the
TRA and TSE fields in (2.10) using a patchwork of initial positions in flow domains with
large margins so as to avoid trajectories leaving the domain. In the subsequent analysis,
we found exemplary visualization is possible with spatial resolutions of the order of 1
to 10 viscous lengths (10−3h to 10−2h), with the finer resolutions beneficial for smooth
flux-minimizing isosurface extraction. Parallelized MATLAB scripts to calculate TRA
and TSE are available on github (https://github.com/haller-group/TRA_TSE).

3. Results

3.1. Objective momentum transport barrier visualization
Figure 2 compares a common turbulence visualization diagnostics, the vorticity
magnitude, with the NTRA field computed for the normalized momentum barrier equation
(2.15) on a streamwise-wall-normal plane of initial conditions in the channel at the
non-dimensional DNS time t = 0.065 = 5δt. The predominant channel flow is in the
positive x-direction with channel walls at y = ±1. Both diagnostic fields in figure 2 were
generated from precisely the same velocity field, and were calculated and visualized at
the same spatial resolution (δx = δy = 10−3). The vorticity picture is indicative of the
scale and resolution of structures that are captured by velocity and velocity-gradient-based
level-set methods. The barrier trajectories x(s) used in these simulations were advected
under the 3-D normalized barrier equation until sN = 0.5, the order of decorrelation time
for the entire channel.

The shear generated by the upper and lower channel walls is evident from the high
rates of trajectory rotation and vorticity. Surprisingly, in the NTRA field, there is strong
evidence of many more vortical momentum barriers in the centre of the channel, which is
typically viewed as a quiescent region. This shows that while there are still many complex
vortex interactions occurring in the region, their relatively weaker signature makes them
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Figure 2. A streamwise-wall-normal plane of the Reτ = 1000 JHTDB Channel Flow coloured by vorticity

magnitude (a) and NTRA
0.5
0 (b). Both visualizations of turbulent features are calculated at the same spatial

resolution from the same velocity data at one time step. The enhanced visualization possible with NTRA
provides a striking comparison with classic techniques and illuminates faint and weak structure in the centre of
the channel while maintaining objectivity.

impossible to identify in the weak gradients and uniformly low vorticity values. Thus, the
NTRA field provides an enhanced visualization of structures at a much wider range of
spatial scales and structure strengths for the same underlying velocity data. For identifying
boundaries and the structure extraction discussed in the next sections, we find the large
changes evident in TRA and TSE fields to be most beneficial. At the same time, NTRA
and NTSE continue to provide homogeneous fidelity visualizations of barriers in large
domains that contain a wide range of vector magnitudes.

Zooming in on the turbulent wall-region, we find the degree of detail of TRA fields
for the original barrier equations (2.10) is also unattainable by classic velocity-gradient
based vortex diagnostics. This first-order benefit can be seen in figure 3, in which TRA
is compared with Q, λ2 and λci (swirling strength) (Hunt et al. 1988; Jeong & Hussain
1995; Zhou et al. 1999) for a streamwise-wall-normal (x, y) plane adjacent to the lower
channel wall. Again, all four plots were generated with the same spatial resolution from
the same single velocity snapshot of the DNS data. In contrast to the other plots, the TRA is
objective and reveals substantially more of the complexity of the flow for the decorrelation
advection time sN = 10−4.

The TRA plot in figure 3 reveals a complex connection network and a layering of unique
rotational features not present in the velocity-gradient-based diagnostics. All colourmaps
have been chosen to reveal the full range of metric values, though gradient-based
approaches suffer from the same issues as in figure 2. The level of detail in the TRA
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Figure 3. Comparison of the objective TRA field with non-objective, velocity-gradient-based vortex
identification diagnostics in the highly turbulent region at the channel wall. Panels (a–d) are computed with the
same spatial resolution from the same single velocity snapshot of the DNS data.

field provides increased accuracy in vortex detection. For example, at approximately
(x/h, y/h) = (0.8, −0.9), there is a clear maximum in all three velocity-gradient-based
metrics, which suggests the potential presence of a coherent vortex (yellow box). Upon
closer inspection of the TRA in the same region, however, we find a lack of nested
cylindrical TRA level surfaces. Instead, filamenting invariant surfaces of the barrier
equation are present that are not structurally stable and hence do not define vortical barriers
to momentum transport. The TRA field discerns these important structural features and has
a significant advantage in preventing false-positive vortex identifications. Furthermore,
these details are useful for accurately tracking individual features from one time to the
next, as will be discussed in § 3.4. An internal layering close to the wall is also present in
the TRA field, as is the organization of vortices around a clearer transition between the
more turbulent wall region and the less turbulent channel core. We discuss this interface
in more detail in § 3.3.

3.2. Momentum-trapping vortices
In 2-D cross-sections of the flow, vortex boundaries can be located as the outermost
members of nested families of closed level curves of the TRA. Launching trajectories
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of the 3-D barrier equation (2.10) from these boundary curves generates instantaneous,
vortical momentum barrier surfaces in the full 3-D flow. In direct contrast to
velocity-gradient-based vortex identification practices, this process is devoid of any
user-defined parameters beyond a choice of spatial resolution of barrier-field trajectory
initial positions, which only serves to control the level of detail in the TRA field. In contrast
to velocity and velocity-gradient-based diagnostics, increasing the spatial resolution of
TRA and TSE fields beyond that of the underlying velocity field can continue to increase
the structural information revealed because of the dummy time barrier field integration.

Figure 4 shows one example of our momentum-trapping vortex identification method,
with barrier trajectories starting from the z = 2.55h plane. Figure 4(a) also reveals a strong
similarity between the detailed structures in the TRA field and the material boundary layer
structures visualized in smoke experiments (figure 1), to be discussed in more detail in
§ 3.4. Through a simple search algorithm on TRA contours, we have identified a region
with a nested set of closed TRA level curves. By extracting all TRA contours that span
the range of values present, we can isolate the closed and convex contours. The outermost
convex boundary curve for each vortex obtained in this fashion is highlighted in figure 4(b).
Using these vortex boundaries as initial positions, we can advect a dense set of trajectories
in the barrier field in forward and backward barrier time to obtain the exact momentum
transport barriers seen in figure 4(c). If choosing smaller members of the set of closed
level curves of the TRA as a curve of initial conditions, we obtain an internal foliation
of the vortex by smaller cylindrical momentum barriers. These block radial diffusive
momentum transport within the vortex. The details of this process are described in
Algorithm 1.

A simpler but only approximate way to visualize objective momentum barriers is to plot
level surfaces of the TRA field. This is inspired by the observation that structurally stable
elliptic invariant manifolds (such as invariant tori) of the barrier equation (2.10) will be
spanned by trajectories with the same averaged angular velocities in the limit of sN → ∞.
For finite values of sN , this relationship is only approximate and hence TRA isosurfaces
are only proxies to exact invariant manifolds formed by the trajectories of (2.10). For such
finite values, nearby particle trajectories that do not lie on the same invariant manifold
may also accumulate the same TRA value. As a consequence, contour-plotting algorithms
may connect approximations of different momentum barriers into one approximate level
surface. Such artefacts arising from this simplified visualization can be discounted by
launching actual barrier trajectories of (2.10) from the intersections of TRA level sets
from a reference cross-section and discounting parts of the level surface whose distance
from such barrier trajectories exceeds a tolerance value.

An example of this isosurface separation process is detailed in figure 5. Starting with
the vortex identified by the blue 2-D convex contour in figure 4, multiple concentric 3-D
TRA shells can be seen in figure 5. The outer and inner blue shells correspond with
TRA10−3

0 = 11 level sets, and the two red shells correspond to a higher rotation rate,
the TRA10−3

0 = 16 level set. Probability distribution functions of the distance between
each isosurface and the barrier field streamlines generated from their intersection with
the z = 2.55h plane are shown inset in figure 5. As is typical for all vortices we have
investigated, there is a clear p.d.f. peak close to zero that can be automatically isolated
for both isosurfaces with a variety of algorithms, including inflection points or kernel
density estimation. These values correspond with points on the TRA level surface that
closely approximate the momentum-blocking invariant manifolds in figure 4. Once points
with streamsurface-distances outside this peak are removed from the visualization, the
separation between each vortex shell is clearly visible. The selected distances of separation
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Figure 4. Momentum-trapping vortices in the turbulent channel flow. The vortex boundaries are determined
as streamsurfaces of �v that intersect the plane of investigation (z = 2.55) along outermost closed and convex
TRA contours.

used in this visualization are shown in the inset p.d.f.s as dashed vertical lines. The details
of this process are also summarized in Algorithm 1.

To quantify how well outermost cylindrical TRA level surfaces, denoted ITRA,
approximate true momentum barriers, we calculate the normalized objective geometric
flux Ψ (ITRA) defined in (2.11), which vanishes only on perfect barriers to momentum
transport. For comparison, we also extract representative isosurfaces of λci, λ2 and
Q, denoted by Iλci , Iλ2 and IQ, in the same 3-D fluid volume and calculate Ψ

on these surfaces as well. While there are various empirical values proposed for
representative Iλci , Iλ2 and IQ isosurfaces (see, e.g. Jeong & Hussain 1995; Zhou et al.
1999; Ganapathisubramani, Longmire & Marusic 2006; Gao et al. 2011; Dong & Tian
2020), we initially generate surfaces that correspond with their originally argued value,
dividing strain-dominated and rotation-dominated regions. This value is zero for all
velocity-gradient-based metrics (see Hunt et al. 1988; Jeong & Hussain 1995; Zhou et al.
1999).

The isosurfaces generated for each scalar metric are displayed in figure 6. As common
practice, the swirling strength λci has been normalized by its maximum value in the volume
of interest. Each isosurface is shown as it intersects the z = 2.55h plane coloured by
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Algorithm 1 Extracting momentum vortex cores

1 For a co-dimension 0 domain of interest U ⊂ R
3, select a grid of initial

conditions x0 ∈ U.
2 Choose an initial barrier time estimate ε and calculate the discretized

trajectories {x(si)}N
i=0 in the barrier field (2.10) where ε = sN .

3 For each trajectory x(si)
N
i=0, calculate f (si, x) following (2.16) and (2.13).

4 Determine the optimal barrier time ε0 as the first-zero crossing of the
autocorrelation of f as defined in (2.16). If no zero-crossing exists, repeat Steps
2–4 with progressively larger ε until a zero-crossing exists.

5 Repeat Steps 1–2 for ε0 = sN and calculate TRAsN
0 following (2.13).

6 Select a plane of interest of initial conditions that intersects U and extract
iso-contours in that plane for the range of TRA values generated in Step
5. Record only the outermost closed convex contours {γj} as vortex core
candidates.

7a To extract the invariant manifold of (2.10) that intersects a given curve γj ,
identify trajectories {xγj(si)}N

i=0 such that xγj(0) ∈ γj. If an insufficient number
of trajectories exist, identify points in γj through interpolation to obtain a set
xγj(0) and repeat Step 2 with sN = ε0.

7b Given a sufficiently dense set of trajectories, the co-dimension 1 vortex core be
identified by linear interpolation between nearest points in the set of trajectory
data {xγj(si)}N

i=0 ∈ R
3.

8a To obtain a level-surface approximation of a momentum vortex core that
intersects a given closed contour γj, extract that TRA isosurface ITRA that
intersects γj.

8b Repeat Step 7a and calculate the distance between points in ITRA and nearest
points in {xγj(si)}N

i=0.
8c Calculate the p.d.f. of these distances. Here, ITRA will be sufficiently close

to {xγj(si)}N
i=0 for many points, resulting in a distinct peak in the probability

density function (p.d.f.) near zero. Refine ITRA to only include points in this
near-zero peak.

9 Steps 5–8 can be repeated for −ε0 to further expand the extracted vortex core.

TRA10−3

0 . For the three velocity-gradient-based diagnostics, the corresponding diagnostic
field on z = 2.55h is shown inset next to the volumes. The surface-area-normalized
momentum flux across each isosurface is also noted to the right of each respective volume.

In the z = 2.55h insets, λci, λ2 and Q values all show some indication of the presence
of the upper vortex from the TRA field, though evidence of the lower vortex is not present
in λ2. This suggest the presence of our physical momentum barriers may have influenced
these scalar fields, but the metrics are ineffective at predicting where the transport barriers
lie. Even as simplified approximations of true linear-momentum barriers, TRA isosurfaces
are still quite effective momentum transport barriers. Indeed, Ψ (ITRA) is only 24 % of
Ψ (Iλci), 22 % of Ψ (Iλ2) and 26 % of Ψ (IQ). Recall that Ψ = 0 for the invariant manifolds
in figure 4 that ITRA is approximating here.

We have found that with increased numerical accuracy in our barrier field integrations,
TRA calculations improved and resulted in a further decrease in Ψ (ITRA). This indicates
one can more closely approximate the true momentum transport barriers with more
computational expense when a particular region of interest is identified. We have not
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Figure 5. TRA isosurfaces as approximations to the momentum transport barriers shown in figure 4. Blue
and red surfaces correspond with two distinct TRA10−3

0 values. Shown in black are a subset of streamlines

initiated on the TRA10−3

0 = 16 contour on the z = 2.55 plane. Inset are probability distribution functions of the
minimum distance of unfiltered surface points to streamlines initialized on TRA contours at z = 2.55.

found analogous numerical improvements in flux reduction upon refining the spatial
differentiation or resolution of the velocity-gradient-based methods. Overall, we find that
the classic vortex diagnostics we have tested do not provide a clear indication of a pair
of 3-D vortices when one directly implements the criteria arising from their theoretical
derivations. Rather, one must hand pick values to obtain a vortical feature in two or three
dimensions as noted by Dong & Tian (2020) and Dubief & Delcayre (2000). This is
problematic in turbulent flows where there is no ground-truth of structure topology against
which one can validate their hypothesized threshold values.

To accommodate the wide range of empirical or heuristic thresholds used in the
literature, we have also performed the same flux calculations for λci, λ2 and Q-isosurfaces
for a range of values that includes and exceeds available suggestions found in the literature.
The resulting fluxes are displayed in figure 7. Note that ITRA in blue continues to
outperform all other diagnostics over the whole range of empirical threshold values for
the latter diagnostics.

In figure 8, we verify the surface tangency of arbitrary-valued TRA level-surfaces
with invariant manifolds. If isosurfaces of a given scalar field were exact streamsurfaces
of the barrier equation, then their normals (i.e. the gradient of that scalar field) would
be perpendicular to �v. Each subplot of figure 8 shows the probability distribution of
inner products of normalized scalar field gradient vectors with the normalized barrier
field, �v/|�v|, over the entire 3-D volume containing our vortices ([2.26, 2.36] ×
[0.34, 0.37] × [2.5, 2.6]). These are precisely distributions of the signed integrands of the
numerator in (2.12). Vertical dashed lines mark a ±5◦ deviation from perfect agreement
between momentum barriers and barriers generated by each diagnostic level set. Notably,
there is a clear peak around 0 for ∇TRA10−3

0 , while a nearly uniform (random) distribution
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Figure 7. Comparison of momentum flux through ITRA and through structure boundaries defined by a wide
range of isosurface values for the λci, λ2 and Q metrics.
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Figure 8. Probability distributions of the normalized inner product of momentum barrier field vectors and
isosurface normals for TRA and the three standard velocity-gradient-based diagnostics for a 3-D rectangular
volume of fluid containing the vortices in figure 6. The clear singular peak around 0 in the TRA p.d.f. indicates
a strong agreement between TRA surfaces and the underlying momentum transport blocking interfaces for
both elliptic and hyperbolic surfaces. Similar behaviour does not exist for the other three diagnostics. A ±5◦
difference between surface tangents and barrier vectors is delimited by dashed lines.

can be seen for angles between barrier field vectors and velocity-gradient-based isosurface
normals.

As the linear-momentum barrier vector field �v is objective, extracting the classic λci,
λ2 and Q level surfaces from the �v field would also be an objective procedure, unlike
extracting these level surfaces from the velocity field v, as originally intended for these
diagnostics. To see if such an objectivization would benefit these criteria, we have carried
out the same statistical structure-tangency analysis with the λci, λ2 and Q metrics now
applied to the barrier field �v. While the resulting p.d.f.s in figure 9 now show a moderate
rise near zero for each classic vortex diagnostic, TRA level-sets still outperform the other
diagnostics in their ability to block the viscous transport of momentum. This suggests that
TRA level sets are overall close approximations to the perfect momentum barriers formed
by invariant manifolds of the barrier equation (2.10).

3.3. Momentum transport barrier interfaces
We have, so far, used level surfaces of the TRA field for the approximate visualization
of vortices with a perfect instantaneous momentum-trapping property. We can also use
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Figure 9. Same as figure 8, but with the λci, λ2 and Q metrics computed for the barrier equation (2.10).

the TSE field to interrogate the momentum barrier equation more globally to locate
momentum-blocking interfaces between more and less turbulent areas of the flow. This
can be achieved by constructing streamsurfaces of the barrier equation that partition the
flow into wall-parallel domains with boundaries that span the channel in the wall-parallel
directions. We use TSE fields to aid in this interface identification as their level surfaces
separate regions of distinct degrees of stretching in a manner analogous to hyperbolic
invariant manifolds. We use the single smoothest interface as this provides the barrier
with the least folding. As shown in figure 10, there are multiple spanning TSE interfaces
in a given domain. These interfaces contour around vortices that compose large scale
motions. After analysing 100 temporal frames of TSE fields, we find that using the average
straightest contours allows us to connect the outermost contour around these vortices. This
selection can be modified for other flow-specific criteria, and a statistical analysis of all
candidate TSE interfaces is conducted in § 3.4.

We now describe a simple, automated algorithm for identifying such objective MTB
as a physics-based alternative to the currently used TNTI or UMZ interface identification
processes (Adrian et al. 2000b; Da Silva et al. 2014; De Silva et al. 2015). This algorithm is
also sketched in Algorithm 2. As with our vortex identification, when using the trajectory
decorrelation time for TSE calculations, we only use one free parameter in our MTB
algorithm: the choice of spatial resolution, which is approximately one viscous length
in all directions. This ultimately controls the level of detail in the MTB interfaces and
their momentum-blocking ability. In contrast to common TNTI or UMZ level-surface
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Figure 10. TSE contours with the smoothest contour selected as an MTB. A linear ramp identified by a
linear-fitting search is also drawn. Note that the MTB is more effective at contouring around the outside of
vortices whereas the other two TSE contours filament and penetrate the interiors of vortices.

approaches, we can progressively improve our momentum-barrier identifications by
calculating TSE at progressively finer resolutions beyond the underlying velocity grid.
This improves surface triangulations and enhances tangency with invariant manifolds in
the barrier field (2.10).

Algorithm 2 Extracting MTB

1 For a co-dimension 0 domain of interest U ⊂ R
3, select a grid of initial

conditions x0 ∈ U.
2 Determine the optimal barrier time ε0 using TSE calculations (instead of TRA)

in Steps 2–4 in the vortex core extraction algorithm.
3 For each streamwise-wall-normal hyperplane Vz that intersects U, extract

iso-contours in Vz for the range of TSE values present in Vz. Record only the
contours {γj} that span the full streamwise width of the domain.

4 Refine {γj} to corresponding TSE values with contours that span the domain
for every Vz.

5 Select the TSE value such that the corresponding γj span each Vz with minimal
length.

6 Extract the connected TSE isosurface corresponding to this TSE value that
intersects the γj of interest.

We begin this algorithm by calculating the TSE for the active barrier equation (2.10)
on a 3-D domain of interest. Here we use the decorrelation time as determined for the
wall-proximal (outer) quarter of the channel (|y| ≥ 0.75) in an effort to visualize the most
turbulent and complex momentum blocking structures (sN = 10−4) emanating from the
wall. Through a sensitivity analysis, we found MTB identification to be consistent over
six orders of magnitude of sN , but the visual clarity of near-wall structures begins to
deteriorate away from our chosen sN . Note that these six orders of magnitude relate to
the integration time of a trajectory in the barrier field equations, and not to a physical
spatial or temporal dimension. For example, a longer integration time may allow initially
adjacent particles to separate to a larger degree, or for a trajectory in a vortex core to
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Figure 11. (a–c) Process of selecting the TSE contour that spans a domain of interest most efficiently among
many adjacent 2-D slices. (d) Corresponding TSE-derived momentum transport barrier (MTB) coloured by
y-values.

circulate more, thus allowing for more distinct TSE and TRA contours, but not necessarily
a different size of spatial features. As well, the sN = 0 limit exists, providing an estimate
of the structures detailed here. The decorrelation time for visualization close to the wall is
shorter than the value sN = 10−3 calculated for our focus on vortices near the centre of the
channel as the magnitude of the �v is much greater near the wall and a shorter integration
time is sufficient to obtain the same degree of detail.

To reduce the computational burden of finding the smoothest domain-spanning
interface, we first perform a series of 2-D approximations. We select a set of n ≥ 1
streamwise-wall-normal planes and identify the shortest TSE contour in each plane
that divides the plane into a lower (wall-adjacent) and upper (central) region. For
example, see the candidate spanning contours at TSE = 3.11 for multiple z planes in
figure 11(a–c). Each such shortest, in-plane contour has a corresponding TSE value
whose corresponding 2-D TSE level surface is a candidate for an MTB interface. Of
these candidate surfaces, we finally select the 2-D TSE level surface whose intersection
curves with the n streamwise-wall-normal planes have the lowest maximum length. This
procedure, therefore, yields the MTB interface as the TSE level surface that divides the
flow roughly into parallel near-wall and mean-flow regions while maintaining as low a
curvature as possible. The corresponding lower half-channel MTB determined from this
algorithm can be see in figure 11(d). The boundaries of the three upper planes of contour
investigation are drawn in black. More involved algorithms targeting the same objective
can certainly be devised but will likely come with increased computational cost.

The MTB interface in figure 11 is a complex structure that reveals connections of
multiple vortices as they collect and migrate from the channel wall to the less turbulent
centre of the channel. The MTB has been shaded by the distance from the lower
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channel wall to help illuminate heterogeneity in the wall-normal extent of this MTB.
Qualitatively familiar material features from smoke and dye experiments can be seen in
this objective barrier. The organization of characteristic interface eddies documented by
Falco (1977) and Head & Bandyopadhyay (1981) are evident along the MTB as well as the
large-scale streamwise streaky structures of Kline et al. (1967), with a spanwise spacing of
approximately 0.75h. There is also a striking similarity to scalar concentrations visualized
in jet-driven TNTI (e.g. Westerweel et al. 2009).

The MTB interface obtained in this fashion approximates the flattest invariant manifold
of the barrier equation that divides the flow into two disjoint quasi-wall-parallel layers with
minimal diffusive momentum transport between them. The low-curvature requirement in
the construction of this interface forces it to avoid highly turbulent regions and effectively
connect outer regions of the momentum-trapping vortices that we have already discussed.

To illustrate this behaviour, in figure 12, we focus on a small subdomain of figure 11
and compare our interface with two commonly used UMZ and TNTI identification
diagnostics, vorticity and normalized streamwise velocity. While high-shear regions have
been associated with UMZ interfaces (Hunt & Durbin 1999; Adrian et al. 2000b) and have
been used to help separate UMZs (Eisma et al. 2015), high-shear zones do not typically
span the entire domain or provide a complete zonal separation of the flow. We thus conduct
our comparison of domain-separating MTBs with other level-sets that span the domain.
We also include in this comparison the NTSE field.

Figure 12(a) shows the TSE values calculated for initial conditions on the z = 2.75h
plane with the interface drawn in blue. The interface effectively contours around the
outside of a strongly stretching spiral feature and separates the flow into a less turbulent and
more turbulent region. The NTSE field in figure 12(b) reveals many of the same structures
tangent to the MTB with additional weaker features aligned above the interface. Slight
differences between contours in TSE and NTSE fields on the edge of the domain can be
attributed to fixed time step integration effects.

Figure 12(d) shows the streamwise velocity, a scalar field whose contours are broadly
used for extraction of uniform momentum zones in wall turbulence (e.g. Adrian et al.
2000b; Kwon et al. 2014; De Silva et al. 2015). Following the procedure of Kwon et al.
(2014), we have normalized the velocities by the channel centreline velocity. We note that
the predominant gradient in the velocity field follows approximately through the centre of
the vortical feature, and the velocity contours are parallel with the MTB in only a small
region of the domain. We will further explore the differences between UMZ interfaces
MTB interfaces below.

Lastly, figure 12(c) shows the vorticity norm in the same domain, a diagnostic commonly
used in TNTI identification (see Holzner et al. 2006; Da Silva et al. 2014). This plot
provides a similar but simpler picture of the flow dynamics in comparison with TSE,
but the details do not indicate exactly where an interface should be drawn. There is no
localized shear-driven vorticity peak along the turbulent interface, as is sometimes possible
at the TNTI (Da Silva et al. 2014). Additionally, the change in vorticity is quite gradual,
not giving a clear jump in the vorticity p.d.f. as is often used to separate rotational and
irrotational flow fields. For these reasons, vorticity is not commonly used for internal
interface diagnostics, but is included here as it does provide a closer comparison with
momentum barrier field behaviour than the streamwise velocity (UMZ) visualization. As
well, much of UMZ theory relies on an analogy with jumps across turbulent/non-turbulent
interfaces.

The ability of the TSE field to identify divergent behaviour of barrier streamlines and
appropriately locate the MTB is illustrated in figure 13. Here, we expand our focus from
figure 12 to a narrow subsection of the channel. Figure 13(a,c) shows the local geometry of
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Figure 12. CW from: (a) the TSE field; (b) the NTSE field for the unit barrier field; (c) the vorticity norm ‖ω‖;
and (d) the streamwise velocity u normalized by the centreline velocity ucl. The MTB interface is superimposed
in all plots as a blue curve. All image data are computed and displayed at the same spatial resolution.

the MTB (blue) and UMZ (red) interfaces near the z = 2.75 plane. Figure 13(b,d) shows a
zoomed in view of the interfaces in the domain of figure 12 and the nearby trajectories of
the barrier equation (2.10).

Trajectories are shaded by their TSE values. For the MTB interface, there is an obvious
separation of minimally stretching black trajectories in a less turbulent region above the
blue interface and the multiple spiralling grey and white vortices below the interface. The
MTB is also tangent to the barrier field streamlines, indicating the correct orientation
with respect to the momentum barrier streamsurfaces. This is further confirmed in
the inner-product probability distribution inset for the MTB in figure 13(a,c). Similar
to the findings for TRA level-surfaces around vortices in figure 8, the geometry of
TSE level-surface interfaces is largely tangent to perfectly computed zero-flux linear
momentum barriers.

The figure 13(c) shows the universal u/ucl = 0.95 ‘quiescent core’ UMZ interface
calculated over the 1.2h streamwise extent, as suggested by Kwon et al. (2014). The MTB
and UMZ interfaces differ greatly, but the UMZ interface does hint at being influenced by
the TSE contours on the right side of the domain. This can be seen in the inner-product
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Figure 13. (a) TSE field and MTB interface. (c) TSE field and UMZ interface. (b,d) Corresponding interfaces
and linear momentum barrier field trajectories coloured by TSE. Inset in each plot are the corresponding
p.d.f.s of surface normal innerproducts with the barrier field indicating improved momentum transport limiting
abilities of the MTB.

p.d.f. on the left with one such highlighted example shown in Figure 13(d). The tangency
p.d.f. for the UMZ shows a slight peak around zero corresponding to near parallel points
on the right side of the domain. Barrier field streamlines around a vortex feature, however,
are seen to be perpendicular to the UMZ interface, thus maximizing transport. This is in
direct contrast with our automated MTB interface algorithm that has clearly succeeded
in approximating a repelling (and hence structurally stable) invariant manifold of the
incompressible barrier equation. Of note, the UMZ interface transects the vortex core, as
also seen by velocity contours in figure 12. The UMZ interface is clearly not an organizing
structure that blocks momentum transport, but these TSE fields and MTB may begin to
give insight into the physical origins of the commonly seen statistical signatures that have
supported the ubiquitous use of velocity isosurfaces.

While TSE level surfaces that span the domain at the height of the UMZ do exist, the
nearby TSE structures contour and fold around many hyperbolic and elliptic barriers (such
as those seen in figure 2) and do not provide a clear interface between distinct wall-parallel
flow zones. We suspect that, in the neighbourhood of the quiescent core interface, a
simple quasi-planar structure that blocks wall-transverse momentum flux may not actually
exist as the elliptic and hyperbolic barrier field manifolds are less densely concentrated.
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Figure 14. (a) Surface-area normalized instantaneous viscous momentum flux Ψ through streamwise velocity
isosurfaces (UMZ interfaces). (b) Ψ in unit barrier field for streamwise velocity isosurfaces. (c) P.d.f. of u/ucl.
(d) u/ucl contours (with their values indicated) superimposed in red over the TSE field in the z = 2.75 plane.

The transverse intersections of velocity level surfaces with invariant manifolds of (2.10)
in the p.d.f. of figure 13 suggest any possible correlations between velocity level surfaces
and true momentum barriers are insignificant for predictive ability.

To assess this relationship more broadly, we compare the momentum transport through
a range of UMZ interfaces and the MTB in figure 14. Figure 14(d) shows the same TSE
field for the z = 2.75h plane as in figure 12 with overlaid streamwise velocity contours.
As there are numerous approaches to extracting the best high-shear streamwise velocity
isosurface for UMZ identification (see, e.g. De Silva et al. 2015; Fan et al. 2019), we
directly compare our MTB with a range of simply connected velocity level surfaces from
the near-wall region well into the channel core. Figure 14(a) shows the geometric diffusive
flux across this range of interfaces in red, and our MTB flux in blue. The grey shading
indicates the u/ucl isosurfaces closest to the MTB in the domain. As with the non-objective
diagnostics in § 3.2, these velocity isosurfaces exhibit around four times the flux as our
nearby objective MTB.

As we increase the velocity of the UMZ interface, we also move away from the wall and
into a region with smaller �v vectors. While we have seen that the quiescent core UMZ
interface is largely transverse to momentum transport barriers, its diffusive momentum
flux is smaller than for our MTB. We believe this is due to its location in a region with less
turbulence and less flux, and not an ability to limit momentum transport. We thus calculate
the normalized geometric flux (tangency measure) ΨN from (2.12). In figure 14(b), we
present ΨN for the same UMZ candidates. This shows the clear advantage of identifying
internal momentum blocking interfaces with the MTB approach over any streamwise
velocity isosurface. Triangles in the two flux plots mark several velocity isosurfaces of
interest: the highest flux (0.63), the UMZ closest to the MTB (0.76), the trough between
the two p.d.f. peaks (0.88) and the quiescent core UMZ of Kwon et al. (2014) (0.95).
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The intersection of these four u/ucl isosurfaces with the z = 2.75h plane are drawn in
figure 14(d).

UMZ theory suggests that momentum is organized into zonal-like structures inside
of which there is relatively uniform momentum. These zones are separated by thin
viscous shear layers that are often thought to concentrate spanwise vorticity (Meinhart
& Adrian 1995). Transport of momentum is concentrated to the viscous-inertial layers
which separate the zones with the interfaces between them identifiable from streamwise
velocity histograms. Whether in boundary layers or channel flows, UMZ interfaces have
been defined as minima between peaks in the p.d.f. for u and correlated with high-shear.
Figure 14(c) shows a p.d.f. for the bottom half of the channel flow over the 3-D domain of
focus. These p.d.f.s are known to be highly sensitive to the size and location of the domain
of investigation but there is no consensus available on their use in 2-D or 3-D analysis (Fan
et al. 2019). The level set values contoured in figure 14(d) are marked on the p.d.f. with
dashed lines.

It can be seen in figure 14 that streamwise velocity contour interfaces with relatively low
diffusive momentum flux do not correspond with momentum transport limiting structures.
Indeed, all u/ucl interfaces travel transverse to multiple vortex cores (including that
highlighted in figure 13) and meander in and out of high stretching regions. In the Ψ

and ΨN plots, we can see the surface derived from the minima between the two largest
p.d.f. peaks, u/ucl = 0.88, does not provide an even locally minimal momentum flux
as has been suggested. The steady increase in ΨN and decrease in Ψ for increasing u
shows the dominant influence of barrier field magnitude on Ψ and a lack of momentum
barrier tangency. In fact, the spanning velocity level surface with minimum momentum
flux occurs at u/ucl = 0.99, which is well inside the less turbulent region of the flow.
Of note, the quiescent core, u/ucl = 0.95, interface does indeed appear adjacent to the
dominant channel core p.d.f. peak, as suggested by Kwon et al. (2014). However, the
Ψ and ΨN and plots show no indication of significant momentum transport organizing
structures and no indication that velocity isosurfaces exist inside or on the border of a
momentum-organizing zonal-structure. That is, there is no evidence of shear layers of
localized vorticity that concentrate or minimize momentum transport between UMZs.

Each panel in figure 15 shows the normalized inner product of respective isosurface
normals with the momentum barrier field vector �v. As before, values around zero in the
p.d.f.s indicate an alignment of isosurfaces with true streamsurfaces of the momentum
barrier equation. Figure 15(a) shows a familiar peak around 0 for the MTB interface,
confirming that the low momentum flux calculated across this interface is aided by its close
alignment with a set of invariant manifolds of the barrier equation. There are impressively
few isonormal vectors lying outside this peak even with the algorithm balancing strict
coincidence invariance under the barrier equation with computational simplicity and
moderate curvature.

In comparison, the p.d.f. associated with the closest candidate UMZ interface to the
MTB, u/ucl = 0.76, exhibits a subtle but much less pronounced peak around zero. Note
that this surfaces experiences more than three times the momentum flux across it than
the MTB interface. The other two velocity isosurfaces, including the quiescent cored
interface, exhibit similar minor peaks around zero, with much more uniform and random
alignment of surface normals when compared with the momentum barrier field vectors.
This confirms our previous suspicion that flux is primarily minimized across this surface
because of its location in a less turbulent region of the flow, and not because it behaves as
a physically significant barrier. This is somewhat unsurprising as a simple wall-parallel
plane in the neighbourhood of the u/ucl = 0.95 level surface has a lower geometric
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Figure 15. Probability distributions of the normalized inner product of the momentum barrier field vector,
�v, and the isosurface normals for MTB and UMZ interfaces. There remains a clear singular peak around 0 in
the TSE p.d.f., indicating strong agreement between TSE surfaces and the underlying momentum transport
blocking interfaces both for vortices and for the connecting regions between them. In contrast, there is
significantly more momentum transport across UMZ interfaces.

objective momentum flux than the quiescent core boundary. However, for each contour
u/ucl = 0.76, 0.88 and 0.95, there are small sections of near tangency with the underlying
momentum barriers. While velocity contours and momentum barriers are clearly not
equivalent, this again suggests that the method of momentum barrier identification is likely
a beneficial avenue for investigating statistical signatures.

We have found the diffusive momentum transport blocking abilities of MTBs in
the momentum barrier fields to be consistent in time frames spanning the entire DNS
simulations. Focusing on 1.2h × 0.5h × 0.2h domains, we calculated the TSE fields for
25 frames, generating more than 100 GB of TSE data. The p.d.f. of normalized flux
angles consistently follows similar behaviour to that seen figure 14, with an effective
approximation to underlying invariant manifolds of the barrier equations.

3.4. Tracking features and temporal statistics
The JHTDB Re = 1000 channel flow spans 4000 flow-through times (δt). We evaluated the
frequency and recurrence of momentum-blocking vortex cores and MTBs in 100 frames
with temporal spacing of 40δt spanning the entire available simulation time. Each frame
is adjacent to the lower channel boundary, spanning h × 8h in the streamwise-wall-normal
plane. This required analysing 800 GB of velocity data, and resulted in 30 GB of TRA
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Figure 16. Subsequent TRA fields in the x–z plane spanning 120 channel flow-through times. Multiple features
that can be tracked throughout the frames have been identified, with a zoom section and intermediate frames
shown in the middle plots. Vortex boundaries identified as the outermost closed TRA contours are also drawn,
many of which can be tracked between frames.

and TSE fields, which are available at https://doi.org/10.3929/ethz-b-000541784, as is an
animation of the time evolution of TSE frames in the supplementary material at https://
doi.org/10.1017/jfm.2022.316.

A visual inspection of subsequent TRA and TSE fields reveals that many easily
identifiable Eulerian features remain coherent during fluid advection and can be tracked
from one frame to the next. One such example of this feature tracking is shown for the z =
3h plane in figure 16. Figure 16(a,f ) plots show TRA fields at t0 = 40δt and t0 = 160δt,
with figure 16(b–e) tracking features in zoomed areas for intermediate time steps. Some
features of interest are labelled A–E; individual vortex cores following Algorithm 1 are
highlighted in turquoise.

The vortex immediately to the right of the label A in figure 16(b–e) can be followed from
40δt to 160δt, though the vortex eventually moves out of frame so that a circular contour
is no longer extracted at 160δt. The region labelled B is a cluster of tangled vortices near
the top of a wall-connected bulge that is moving away from the wall. Because of the
detail possible with TRA, individual components of B can be distinguished and followed
between adjacent frames. From 40δt to 160δt, vortices A and B remain identifiable while
being advected nearly a full channel half-width down the channel.

In the wide-views in figure 16(a,f ), three additional features are identified and tracked.
There are two vortex clusters, C and D, sitting approximately 0.7h from the wall in a much
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Figure 17. Interface angles and radii of vortex cores (heads) in 3-D frames spanning 4000 flow-through times.

faster moving part of the channel. Vortex E is also tracked as the uppermost vortex on a
bulge that has migrated approximately 0.75h down the channel. Note that the advection
velocity of these five features is fairly consistent though their wall-normal locations vary
by 0.6h. The visual matching of these features was verified by advecting fluid particles in
the DNS velocity field over this time window. While there was some minimal deformation
of vortices over the period (not displayed), the advected structures and latter Eulerian
detections indeed matched. This is promising for not only Eulerian studies of boundary
layer structure evolution in great detail, but also the possible use of material momentum
barriers from the Lagrangian theory of Haller et al. (2020). A video animation of the TRA
fields in this plane spanning the entire DNS database can be found in the supplementary
movie.

By statistically analysing the entire temporal extent of the channel flow simulation, we
found similar behaviour and characteristics for vortices and MTBs. We analysed all TSE
contours that spanned the 8h domain and found at least one such contour existed in each
frame. The total number identified depends on the choice of the number of contour values
to extract. At this Reynolds number, these contours were typically closely adjacent, as
in figure 10, though more distinct layering is likely at higher Re, as noted by De Silva
et al. (2017). We include all TSE contours in our statistical analysis as candidate MTBs in
light of potential advances in selection criteria and find this does not skew our statistics or
introduce outliers. The median positive angle of each MTB was calculated and is displayed
with respect to the median height of that momentum interface in figure 17(a). TSE contours
follow the boundary of individual vortices and provide a measure of the incline angle of
individual hairpins or typical eddies as a function of height. We find growth away from
the wall in a similar fashion to existing attached eddy (hairpin vortex packet) models with
angles ranging from 30◦ up to 45◦ further from the wall (Marusic 2001).

Next, we measured the unit length per streamwise distance (Ls/Lx) of MTBs, similar to
Chauhan et al. (2014) and De Silva et al. (2017). In figure 17(b), there is a clear increasing
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trend for barriers further from the wall. This agrees with the assessment in previous studies
that, at greater distances from the wall, larger scale bulges and valleys contribute to greater
Ls/Lx (Townsend 1976; Perry & Chong 1982; Adrian et al. 2000b; De Silva et al. 2017).
The Ls/Lx for our MTB exceeds the range of De Silva et al. (2017) (< 3), but our mean,
〈Ls/Lx〉 = 5.4, is much closer to that found by Chauhan et al. (2014) for the TNTI. This is
likely attributed both to physical differences as well as the greater detail and meandering
stream-surfaces found in �v when compared to the underlying velocity grid (e.g. figure 2).

By identifying the outermost closed and convex TRA contours, we found momentum
vortices which have a mean diameter of 0.019h. The p.d.f. of this diameter distribution
is shown in figure 17(d) with the mean marked as a dashed line. These vortex cores are
smaller in diameter than the observed tracer eddies of Falco (1974, 1977), and slightly
smaller than the 0.03−0.05δ vortex heads identified by Adrian et al. (2000b). There
are several possible reasons for this, the most probable being that the core vortical
structure is smaller than its visible influence on the material (and velocity) field. We are
restricting to closed and convex contours and thus eliminate the filamentation seen in
smoke experiments.

Another commonly referenced statistic in the boundary layer literature is the inclination
angle, α, that the envelope of packets of vortices make with the wall, also known as
the structure angle or ramp angle. This has been frequently measured by two-point
correlations, with limited guidance for quantifying spatially resolved structures beyond the
Radon transform used by Hommema & Adrian (2003). We opt to measure the inclination
angle of 0.6h-streamwise-length linear segments that fit our contours of interest with
r.m.s. < 0.02, the average diameter of our vortices. This length was chosen as it is less
than the lower bound of the streamwise length of bulges reported in the literature and
approximately one half the streamwise extent necessary for converged channel flow UMZ
statistics (Kwon et al. 2014). This provides sufficient streamwise range to find a good
linear fit to a ramp without fitting to the small individual sub-components or the large-scale
motions. An example of a successful linear fitting is shown in figure 10.

The average α value is found to be 8◦ with the average ramp centre approximately
0.18h away from the wall. There were approximately 75 % as many ramps identified as
total number of MTBs. While these angles and heights are similar to the observations
of Head & Bandyopadhyay (1981) and seminal UMZ work (see, e.g. Adrian et al.
2000b), there is significant scatter around these values as can be seen in figure 17(c).
This suggest the linear fit method should be refined further in future momentum barrier
investigations.

4. Conclusions

Using the objective notion of diffusive momentum flux through a material surface, we
have developed an algorithm for locating frame-invariant instantaneous barriers to linear
momentum transport in near-wall turbulence. This algorithm builds on the recent theory of
active transport barriers (Haller et al. 2020), which identifies momentum transport barriers
as structurally stable invariant manifolds (stream surfaces) of the incompressible steady
barrier equation (2.10). Our algorithms extract these invariant manifolds directly and
approximate them by level surfaces of recently developed coherent structure diagnostics,
the trajectory rotation average (TRA) and trajectory stretching exponent (TSE) proposed
by Haller et al. (2021). Other objective LCS diagnostics can also be used to identify
invariant manifolds of (2.10), but TRA and TSE were used here due to their computational
simplicity as single-trajectory-based diagnostic fields and their ability to designate
clean boundaries. We also introduce the normalized NTRA and NTSE, which provide
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unprecedented detail for coherent structures, with equal fidelity in highly turbulent and
less turbulent zones.

Our procedure targets both momentum-trapping vortices in the boundary layer
and internal momentum-flux minimizing interfaces that locally define the flow into
near-wall and far-from-wall layers. Specifically, vortex boundaries are identified as
the outermost cylindrical level surfaces of the TRA field. This procedure is free
from the empirical threshold values employed by classic, velocity-gradient-based vortex
criteria which provide observer-dependent results. In addition, we find that while classic
vortex identification diagnostics can suggest vortices in the neighbourhood of these
momentum-blocking vortices, this similarity is without predictive value and fails to
generate surfaces that sufficiently block momentum transport. We believe that the
underlying momentum-blocking structures are influencing the gradient-based diagnostics,
but the classic diagnostics cannot be used as a proxy measure as they maintain no
predictive physical (transport-limiting) value.

The same barrier field trajectory data can also be used to compute TSE fields and
identify wall-parallel quasi-planar momentum transport barrier (MTB) interfaces that
locally minimize the diffusive transport of momentum. With TRA and TSE fields, the
diffusive linear momentum barrier vector field (2.10) therefore links vortex diagnostics
with internal fluid interfaces, as seen in tracer field observations, and are objective
analogues of the broadly used but frame-dependent UMZ interfaces and TNTIs. We
have found that MTB interfaces significantly outperform the classic UMZ interface
approaches, in terms of their ability to block viscous momentum transport, regardless
of the specific velocity chosen. The use of TSE calculations for the barrier equations
eliminates sensitivities in UMZ analysis with respect to changes in the number of bins used
in velocity histograms and variations in the size of the domain of analysis. In comparison,
the only free parameter in our vortex and MTB algorithm is the spatial resolution of TSE
fields, although this is simply a question of computational resources. Whereas increases
in spatial resolution reduce momentum transport through vortex and MTB extractions,
increases in the number of velocity histogram bins eventually lead to the disappearance of
any UMZ peak or interface.

This first-principles approach of starting with an objective momentum flux provides
universal diagnostics based on physics for future structure extraction techniques, the Ψ

and ΨN fields. Furthermore, the objective nature of this work provides frame-indifferent
structures that are experimentally verifiable (e.g. Eisma et al. 2021), unlike the predictions
from non-objective criteria. The vortices and MTB identified are resilient under fluid
advection, providing a new way in which to track the evolution of individual or clusters
of structures. In this way, we hope to provide a common test to verify models and settle
longstanding debates in fluids, such as the prevalence or importance of hairpin structures
in the boundary layer (see, e.g. Marusic & Monty 2019), and the role of inner versus outer
layer motions.

Techniques for three-component PIV measurements are rapidly advancing (Raffel
et al. 2018), and the momentum-transport barrier techniques examined here provide a
new way to identify such barriers in an observer-independent fashion in the same flow
volume as these data increase in ubiquity. For experimental flows in which volumes of
3-D measurements are not available, there is also potential for developing symmetry
arguments, such as those provided by Haller et al. (2020). These can, for instance, simplify
the barrier vector field to fewer components for flows with strong anisotropy. Qualitative
comparisons between structures in numerical simulations and tracer experiments may
also provide insights by determining the roles of analogous features when experimental
velocity measurements are unavailable.
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Future research should investigate the role that parabolic invariant manifolds of the
momentum barrier equation (2.10) play in near-wall turbulence as well. Haller et al. (2020)
also derive a barrier equation for the transport of vorticity, which takes the form x′ = �ω.
The streamsurfaces of the latter barrier equation generally differ from those of (2.10) and
hence would highlight different internal interfaces in near-wall turbulence in a theory that
seeks vorticity transport minimizing interfaces. Another extension of the present theory
could use the Lagrangian active barriers introduced in Haller et al. (2020), which are
material surfaces minimizing momentum or vorticity transport over a whole time interval
rather than just instantaneously. Such material barriers should mimic the structures seen
in the classic smoke experiments of Falco (1977) even more closely.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.316.
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Appendix A. Total objective momentum flux

For the unsteady ABC flow

v(x, t) = e−νtv0 (x) , v0 (x) =
⎛
⎝ A sin x3 + C cos x2

B sin x1 + A cos x3
C sin x2 + B cos x1

⎞
⎠ , (A1a,b)

Theorem 7.5 of Haller et al. (2020) guarantees that the instantaneous barriers to diffusive
momentum transport coincide with the structurally stable 2-D invariant manifolds of the
flow generated by the steady velocity field v0, as well as the material and instantaneous
barriers to vorticity transport. Specifically, the Eulerian barrier equation for momentum
transport is

x′ = νρ�v = −νρk2α(t)v0(x). (A2)

Note that
vt = −νv0 (x) , ν�v = −νv0 (x) , (A3a,b)

where the second identity follows from the Beltrami property with k = 1 in this case.
Therefore, using the Navier–Stokes equations, we obtain

− 1
ρ

∇p = (∇v) v =
⎛
⎝ 0 −C sin x2 A cos x3

B cos x1 0 −A sin x3
−B sin x1 C cos x2 0

⎞
⎠

⎛
⎝ A sin x3 + C cos x2

B sin x1 + A cos x3
C sin x2 + B cos x1

⎞
⎠

=
⎛
⎝ −BC sin x1 sin x2 + AB cos x1 cos x3

BC cos x1 cos x2 − AC sin x2 sin x3
−AB sin x1 sin x3 + AC cos x2 cos x3

⎞
⎠ (A4)
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Figure 18. Comparison of structurally stable transport barriers as identified by FTLE. (a) Barriers to diffusive
momentum flux. (b) Barriers to total momentum flux after including the pressure gradient. (c) Comparison of
diffusive and total momentum barriers on the y = 2π plane.

The pressure gradient, therefore, has a different magnitude and orientation relative to
�v = v0 . This discrepancy can indeed be seen in figure 18 where the FTLE field is
calculated for �v and (A4).

We note that for the turbulent channel flow of focus here, the streamwise velocity
gradient is predominantly orthogonal to the pressure gradient. Thus, the shear interfaces
used to delineate uniform momentum zones actually maximize the total momentum
transport through them.

Following these discussions and the connections drawn between momentum zones and
experimentally observable barriers (Westerweel et al. 2009), we find that our definition of
active transport that focuses on surfaces that block the viscous transport (as opposed to the
total transport) of momentum and vorticity is the correct one for the purposes of structure
identification that is experimentally reproducible.
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