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Abstract 

In  this pape r  we develop  an analy t ica l  m e t h o d  to detect  orbi ts  d o u b l y  a symp-  
to t ic  to slow mani fo lds  in pe r tu rba t i ons  of  integrable ,  two-degree-of - f reedom 
resonan t  H a m i l t o n i a n  systems. O u r  energy-phase method appl ies  to bo th  
H a m i l t o n i a n  and  diss ipat ive  pe r tu rba t i ons  and  reveals  families of mul t i -pulse  
solu t ions  which are  not  amenab le  to Me ln ikov - type  methods .  As an example ,  we 
s tudy  a t w o - m o d e  a p p r o x i m a t i o n  of the nonl inear ,  n o n p l a n a r  osci l la t ions  of  
a pa rame t r i ca l l y  forced inextens ional  beam.  In this p r o b l e m  we find unusua l ly  
compl i ca t ed  mechan i sms  for chaot ic  mo t ions  and  verify their  existence 
numerica l ly .  
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1. In troduct ion  

1.1. Motivation 

Hamiltonian systems with slow variables arise in many problems of physics and 
engineering. In most cases the slow evolution of a particular variable in these systems 
is a consequence of one of the two phenomena: near-integrability or near-resonance. 

In the case of near-integrability the Hamiltonian system is close to another one 
which admits nontrivial invariants besides the underlying Hamiltonian itself. Using 
these invariants as new coordinates, one finds their time variation slow in the 
near-integrable system. In the case of near-resonance, some of the variables in the 
system are necessarily angular variables. We usually speak about a resonance in 
such a system when the corresponding angular frequencies admit a nontrivial 
integer combination which vanishes on some domain of the phase space. As is well 
known (see, e.g., ARNOLD, KOZLOV, 8r NEISHTADT [-4]), in such cases one can apply 
a symplectic change of variables which transforms the resonant combination of the 
phase variables into a new phase variable. As a result, this new phase is slowly 
varying in a neighborhood of the resonant domain. 

Thus one can expect to find several slow variables in near-integrable systems 
when the equations are localized near a resonant domain of the phase space. 
Frequently, these domains contain invariant manifolds of solutions, which 
therefore all have slow evolution in some but not all coordinate directions. We refer 
to such structures as partially slow manifolds. The presence of two different time 
scales makes the study of these localized problems quite subtle, and in most cases 
singular perturbation techniques are needed to analyze the partially slow manifolds. 

The most interesting and important partially slow manifolds are hyperbolic. 
These structures are distinguished since they admit global stable and unstable 
manifolds which "transmit" the singular nature of the manifolds to other parts of 
the phase space. Well-known examples of hyperbolic partially slow manifolds are 
the manifolds containing lower-dimensional hyperbolic tori (or whiskered tori) 
created in the destruction of resonant KAM tori in nearly integrable Hamiltonian 
systems (see e.g., ARNOLD [3] and TRESHCHEV [441). A general global perturbation 
theory for such structures does not currently exist; the lack of such a theory is the 
main obstacle in studying the details of diffusion and transport near resonances in 
multi-degree-of-freedom Hamiltonian systems. 

The goal of this paper is to make one step towards the understanding of 
hyperbolic partially slow invariant structures in Hamiltonian systems and their 
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dissipative perturbations. We address the simplest possible case, in which the 
Hamiltonian admits one slowly varying action variable (as a consequence of 
near-integrability), and, in certain domains of the phase space, one slowly varying 
angle variable (as a consequence of near resonance). Because of the presence of 
a single angle, such problems, in fact, admit a slow manifold instead of a partially 
slow one. As mentioned above, we are particularly interested in hyperbolic slow 
manifolds, which require at least two more coordinate directions transversal to the 
slow manifold in the integrable Hamiltonian limit. Hence, the simplest possible 
case is that of a near-integrable, two-degree-of-freedom Hamiltonian system with 
a slow, hyperbolic 2-manifold of solutions. 

1.2. The main example: oscillations o f  a parametrically forced  beam 

Although the analysis of this paper is a first step in the development of a general 
theory for hyperbolic partially slow manifolds, it highlights many of the issues 
arising in higher dimensions. Most remarkably, even the two-degree-of-freedom 
case treated here has many immediate applications to resonance problems arising 
in engineering and physics. In particular, our main example is related to the 
nonplanar, nonlinear dynamics of a vertical, elastic beam fixed to a horizontal base 
which oscillates sinusoidally. This problem was first studied by NAYFEH &PAI [38J, 
who argued that for typical motions of the beam, most modes die out under the 
effect of internal damping. The surviving modes are exactly those with natural 
frequencies in strong resonance with the frequency of the parametric forcing. 
Under this assumption the method of multiple scales combined with Galerkin's 
method yields a set of two complex amplitude equations, which approximate slow 
frequency and phase modulations on the normal modes of the linearized problem. 
A fixed point of this system therefore represents a nonlinear normal mode, a peri- 
odic solution represents a quasiperiodic oscillation, etc. Recently FENG & LEAL 
[-11] showed that these equations can be simplified due to the presence of a sym- 
metry. In the case of a beam with a uniform square cross section, for small 
excitations, and for excitation frequencies approximately twice the first natural 
frequency of the lateral vibrations of the beam, the mode equations can be 
transformed to the form 

21 = 2(2I -- b)x2 - 2x2x2 - 4x  3 - g[F(2x2 cos 2q~ - -  X 1 sin 2~b) + dx l ] ,  

22 = 2 x l ( b  + x~) - - ~ [ F x z s i n 2 ( ~  + dx2], 

i = e[2F((I - x22) sin 2~b - xlx2 cos 2~b) - 2dI], 

= b + s -  2 6 1 +  2x 2 + eFcos2q~. 

(1.1) 

To obtain this system, we used a change of variables from FENG & SETHNA [14J, 
where similar mode equations for parametrically excited thin plates were studied. 
In (1.1) the parameters b and s are related to detunings from the exact internal 1:1 
resonance arising from the nearly square cross section, and from the exact external 
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1:2 resonance between the two principal lateral models and the excitation (see 
FENG & LEAL [111 for details). The structural constant 6 = 4.8118 can be computed 
from the numerical values listed in NAYFEH &PAI [381 (for the case ofn  = 1, m = 1 
in their notation). The internal viscous damping coefficient d > 0 and the forcing 
amplitude F appear in the perturbation terms multiplied by a small parameter 
e > 0  (for comparison with FENG 8r LEAL [151, we have eF =2~Xv~7~zn, 
ed = 2/2CO2n). All parameters are nondimensionalized. For  e = 0 and xl = x2 = 0 
the action-angle-type variables, I and ~b, describe amplitude and phase-modulated 
quasiperiodic oscillations of the tip of the unforced, undamped beam in the plane of 
one of the two first normal modes. Roughly speaking, the xl and x2 variables 
measure position and momentum deviations, respectively, from these purely one- 
mode motions. Note that for e = 0 system (1.1) is integrable. 

Our motivation to consider the case of this internal-external 1:1:2 resonance is 
that the numerical study of NAYFEH &PAI [38] showed an apparently continuous 
Fourier spectrum for this resonance, while the spectrum remained characteristi- 
cally discrete for other resonances they considered. We use the theory developed in 
the forthcoming sections to rigorously prove the existence of chaotic dynamics in 
this two-mode model, which we believe to be a good approximation of the actual 
motion of the beam. We focus on the fate of the family of nonlinear normal modes 
x l  = x2 = O, I = (b + s)/23, q~ = const, which form a circle of equilibria for system 
(1.1). As a result of near-resonance (q~ ~ 0 near the circle) and near-integrability 
(e ~ 1), our model system possesses a "thin" slow manifold created in the break-up 
of the circle of equilibria. This manifold contains motions with slow phase and 
amplitude modulations and will be shown to have a prominent role in creating 
chaotic dynamics near some surviving nonlinear normal modes. 

1.3. General formulation 

In addition to the above example, the theory developed in this paper applies to 
a number of other problems, such as the study of parametrically excited plates and 
shells, surface waves, and shallow arches (see HOLMES [271, FENG & SETHNA 
[ 12-14], FENG & WIGGINS [ 15], YANG & SETHNA [47], and TIEN • NAMACHCHIVAYA 
[42]), a model of the driven nonlinear SchrGdinger equation (BisHoP, FOREST, 
McLAUGHLIN, & OVERMAN [5]), the analysis of magnetic spin waves (CAscON 
& KOILLER [7]), and a wide class of three-degree-of-freedom Hamiltonian reso- 
nances (HALLER & WIGGINS [23]). All these problems can be transformed to the 
same "normal form" which can be written succinctly as 

2 = JDxHo(x,  I )  + e [JDxHl (x ,  I, O; s) + gx(X, I, r e)l, 

i = e[ - DeHI(x ,  I, O; e) + gi(x, I, qS; e)], 

~9 = DiHo(x,  I)  + e [ D , H l ( x ,  I, dp; e) + ge~(x, I, r e)], 

with (x, I, 4) e ~ c IR 2 x IR x S 1 and 

J =  - 1  " 

(1.2) 
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The unperturbed system (1.2),=o derives from the Hamiltonian Ho, and the 
perturbaton also has a Hamiltonian part deriving from ell1, which is 2n-periodic 
in the variable ~b. The corresponding perturbation terms usually describe forcing, 
while other dissipative terms are listed in gx, 9i and g+, which are all 2n-periodic in 
qS. The Hamiltonians Ho and H1 are C ~+1 functions, and 9x, 9i and 9~ are C ~ 
functions with r > 3. The Hamiltonian part of the vector field is defined on the 
symplectic manifold (~, co) with the symplectic form 

co = dxl /x dxz + dO/x dI. (1.3) 

As we shall see shortly, the variable I plays the role of the slowly varying 
action-type variable, q5 is the slowly varying angle near resonance, and (x 1, x2) are 
the transversal coordinates responsible for the hyperbolicity of a slow manifold 
parametrized by I and q6. 

In our forced beam example, as well as in all the other applications mentioned 
above, the existence of a hyperbolic slow manifold for small e > 0 follows from the 
following two features of system (1.2): 

1 x (i.e., the x-compo- (H1) There exists 11 < 12 such that for any I ~ [11,12], ( .2)~=o 
nent of(1.2) with e = O) has a hyperbolic fixed point 2o(I) connected to itself by 
a homoclinic trajectory xh(t, I). 

(H2) Exactly one of the following two conditions hold: 
(H2a) There exists Ir ~ (I1,/2) such that 

D, Ho(Xo(I,), I~) = O, 

m(Ir) = D2[Ho('Yo(I), I)] [I=Ir # 0. 

(H2b) For every I ~ [11, Iz] 

DIHo(Y~o(I), I) = O. 

We now discuss how these two features lead to the existence of a normally 
hyperbolic slow manifold (see. e.g., HmscH, PucH, & SHUB [25] for a definition of 
normal hyperbolicity). First, note that (H1) implies the existence of a normally 
hyperbolic invariant 2-manifold do  for system (1.2)~=0 in the form 

ago = {(x, I, O) ~ ~ [ x  = ~Y~ I ~ [11, I2], ~b ~ S1}, (1.4) 

which can be considered to be the image of the annulus A = [11,12] x S 1 under the 
embedding 

go: A-+ ~,  
(1.5) 

(I, 4) ~ (~~ I, 4). 

It is easy to see that ago has a three-dimensional stable manifold WS(ago) and 
a three-dimensional unstable manifold WU(do), which coincide in the homoclinic 
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I k' 
Xl 

-- ..... " .. . . . . . . . . .  L "J l 

// 

Wo c WU(v,'~o) n WS(..4o) 

Fig. 1. The manifolds do and Wo with the 4) coordinate suppressed. 

manifold Wo (see Fig. 1). The solutions of (1.2)==o on Wo can be written in 
the form 

Y~ I' (~~ = (xh(t' I)' I' (a~ + i D'H~ l)' l )dz)  (1.6) 

By classic results (see, e.g., FENICHEL [16]) for small e > 0, system (1.2) has 
a two-dimensional invariant manifold d= which is (e, C')-close to do.  (Throughout 
this paper two manifolds are said to be (e, C')-close if there exists a C" diffeomor- 
phism between them whose norm is (9(e) in the C' topology.) As a result, d= is still 
a C' embedding of the annulus A through a map 

g=: A ~ ~ ,  (1.7) 
(I, q~) ~ (Y=(I, ~b), I, qS) = (g~ + exl(I, ~, e), I, 0). 

Let i=: ~ ~ ~ be the inclusion map of d= with e > 0. Then it can be shown (see 
HALLER & WIGGINS [19]) that for small e > 0, (d=, i'co) is a symplectic 2-manifold 
with 

i*o9 = (1 + (9(e))d~b A dI, (1.8) 

on which the Hamiltonian part of the vector field in (1.2) derives from the restricted 
Hamiltonian 

= Hid,  = i*H. (1.9) 

For small nonzero e we also have two persisting locally invariant 3-manifolds, 
W~or and WPor (e, C')-close to W~or and W~or respectively. 

Systems of the form (1.2) with assumption (H1) have been studied by HOLMES 
& MARSDEN 1-26] and WIGGINS [45]. Using a version of Melnikov's method they 
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Fig. 2. The geometric meaning of the phase shift Aq5 in the case of hypothesis (H2a) and 
(H2b), respectively. 

showed for purely Hamiltonian perturbations the generic existence of Smale horse- 
shoes near d~ on every level set 

E~(h) = {(x, I, q~)~ lH(x ,  1, qS;e) = h} (1.1o) 

of H intersecting sr This, by a result of MOSER [-37], implies chaotic dynamics and 
non-integrability for system (1.2). In the case of general dissipative perturbations, 
isolated horseshoes may exist provided there is a balance between forcing and 
damping terms in the perturbation. However, the methods of HOLMES & MARSDEN 
[26] and W~CC~NS [45] do not apply when hypothesis (H2) holds. This hypothesis 
ensures the existence of a resonance on the manifold do  and it implies that either 
a submanifold ofsr or do  itself is a resonant manifold for the angular variable qS. In 
particular, (H2) assumes that the frequency D~H vanishes either on isolated circles 
in do  or on all of do.  An immediate consequence of this resonance is that the phase 
shift, i.e., the net change of q~ along orbits on Wo given by 

- - o 0  

AqS(I) = ~ D~Ho(xh(t, I), I)dt (1.11) 
- - o 0  

is finite either for I = Ir (assumption (H2a)) or for every I ~ [1t, I2] (assumption 
(H2b)), as shown in Figs. 2a, b. For small e > 0, hypothesis (H2) implies that either 
a subset or all of ~% is a slow manifold for system (1.2). 

As we indicated earlier, hypothesis (H2a) is satisfied for our beam example as 
well as in BISHOP, FOREST, McLAUGHLIN, & OVERMAN ['5], FENG & SETHNA [12--14], 
FENG & WIGGINS El5], TIEN & NAMACHCHIVAYA [-42], YANG & SEX~NA [47], and 
hypothesis (H2b) holds in HOLMES E27] and HALLER & WlOOINS [,21, 23]. It turns 
out that it is more advantageous to adapt (H2b) as a working hypothesis, since by 
applying a blow-up transformation (see Kovaei~ & W~GGINS E33]) of the form 

(I, ~b) ~-~ (It + x~r/, q~), (1.12) 
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one can transform resonant circles into "thin" two-dimensional resonant manifolds 
which put the problem in the framework of assumption (H2b). Motivated by this 
fact, we work here assuming that hypothesis (H2b) holds, but we also apply the 
results to the case of (H2a). 

1.4. The main results 

Under hypothesis (H2b) we study the global aspects of the creation of the 
hyperbolic slow manifold sJ~. We establish a global perturbation technique, the 
energy-phase method, which generalizes the energy-phase criterion of HALLER 
& WIGGINS [19] for simple one-pulse orbits homoclinic to slow manifolds. Detect- 
ing multi-pulse orbits requires machinery more involved than the Melnikov-type 
argument in HALLER & WIGGINS [19]. Surprisingly, the result is a technique which 
is usually much simpler to use than the Melnikov method and yet detects more 
sophisticated families of solutions. In particular, it can be used to prove the 
existence of N-pulse homoclinic orbits to ~ :  these are orbits negatively asymptotic 
to some invariant set in ~r which enter and leave a small neighborhood of d~ 
N times, then finally return and approach an invariant set of d~ asymptotically. 

For purely Hamiltonian perturbations, the usual Melnikov function is replaced 
by the nth order energy-difference function (denoted by A"~(I ,  ~b)) which is directly 
computable from the perturbation and is defined on the annulus A. The transverse 
zero set Z "  of A"~r q~) is used to associate pulse numbers with orbits on the slow 
manifold d~. To find the pulse numbers of slow orbits, it suffices to compute them 
for the orbits of a reduced Hamiltonian ~ which approximates the actual Hamil- 
tonian dynamics on d~. It turns out that if the pulse number of an approximate 
orbit 7o is N, then there exists a nearby slow orbit 7[ and an N-pulse orbit 
y~ homoclinic to the slow manifold d~, such that y~ is negatively asymptotic 
exactly to 7[- One also obtains the positive limit set of y~ by using a set Zu+ which 
can be obtained from Z N through a rotation by NA~b (see (1.11)). We also study the 
effects of the presence of an additional homoclinic manifold in the unperturbed 
problem. In this case our method can be used to construct jumpin 9 N-pulse 
homoclinic orbits which stay near one of the homoclinic manifolds during some of 
their pulses, then switch to the other one for a while, etc. To describe this 
complicated motion we can determine a jump sequence of two symbols based on the 
analysis of the reduced Hamiltonian ~ .  

For dissipative perturbations we have to perform similar steps to apply the 
method, but the energy-difference function now contains an additional term which 
accounts for the loss of energy that occurs between the first and last pulses of 
multi-pulse orbits. Also, the asymptotics of multi-pulse connections detected this 
way are different from those for the Hamiltonian case. 

In both the Hamiltonian and the dissipative cases, the multi-pulse orbits we 
construct spend an amount of time of (9(log(I/e)) during their intermediate passages 
near the slow manifold. This is to be compared with the passage time (9(1/,,f~) in the 
work of KAPER & KOVAQIQ [30], who used the exchange lemma of JONES, KAPER, 
& KOPELL [29] and its generalization by TIN [43] to construct multi-pulse orbits 
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under hypothesis (H2a) in a neighborhood of single-pulse orbits amenable to 
a Melnikov-type method. The longer the passage time, the more one has to be 
concerned with large error in numerical experiments. Our experience is that 
following orbits numerically in a "boundary layer" near a hyperbolic slow manifold 

on times scales of order (9 (1/x/~) is extremely difficult (see Section 5.2.6). We believe 
that numerical and physical observability are strongly related, which suggests that 
the multi-pulse behavior observed near slow manifolds in near-integrable systems 
is primarily due to the presence of orbits detected by the energy-phase method. 
This is supported by the numerical experiments performed on our beam model (see 
Sections 5.1.5 and 5.2.6), as well as by those appearing in HALLER & WIGGINS [22]. 

In Section 5 of this paper we describe the application of the above results to the 
system (1.1). For zero damping we show the existence of transverse multi-pulse 
homoclinic and heteroclinic orbits connecting slow periodic solutions. This implies 
the existence of multi-pulse motions in the two-mode beam model which connect 
small quasiperiodic oscillations near nonlinear normal modes surviving the effect 
of forcing. These orbits turn out to form a complicated spatial structure which 
approaches a self-similar structure as the perturbation vanishes. This homoclinic 
"tree" can be constructed explicitly by our method and without numerical simula- 
tion. In the presence of damping, different types of structurally stable N-pulse 
orbits homoclinic to sg~ are created. We can compute the gradual break-up of the 
homoclinic tree as the dissipation increases relative to the forcing. We also 
construct multi-pulse Silnikov orbits and cycles which connect the normal modes, 
and exist on an intricate set of the parameter space (see SILNI~OV [40] or WIGGINS 
[45] for the description of Silnikov orbits, and KovA~i~; & WIGGINS [33] for the 
construction of single-pulse Silnikov orbits near resonance bands). This establishes 
the existence of multi-pulse Smale horseshoes for a fairly large open set of para- 
meter values in the damped-forced beam model. 

2. Dynamics within and near the invariant manifolds 

From this point on we assume that hypothesis (H2b) is satisfied. We first 
establish our results for the purely Hamiltonian system 

2 = JDxHo(x ,  I)  -t- gJDxHl(x ,  I, 4); ~), 

i = -- gDe, H , ( x ,  I, ~b; g), (2.1) 

~0 = DiHo(x ,  I)  + eD, HI (x ,  I, 4; g), 

then extend them to the case of hypothesis (H2a) in Section 3.3, and to the original 
dissipative system (1.2) in Section 4. 

First, we list some features of the invariant manifolds ~vr WS(sr and WU(d~) 
introduced in the previous section. We do not deal with their existence, only refer 
the reader to the well-known persistence and smoothness results of FENICHEL [16] 
as spelled out for system (2.1) in HALLER & WIGGINS [19]. We do, however, discuss 
the dynamics on ~4~ and the internal structure of WS(d~) and WU(~4~). We also 
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study the nature of the flow F~(.) of (2.1) in a neighborhood of ~r which is crucial 
in tracking the repeated passages of multi-pulse orbits near the slow manifold. 

2.1. Dynamics in ~r W~(~r and Wu(~)  

As we noted in the previous section, for small ~, de is a symplectic manifold on 
which the restricted Hamiltonion Jr,  = H Ist~ generates a vector field satisfying 

( ~ ) = i*c~162176 = eJD(r176 O(g2)' (2.2) 

with i*o) ~" T~r --* Td~, ((i*co#)-l[p](u), v) = i*co[p](u, v) for all p ~ d , ,  
u, v e Tpd~. (Here ( , )  denotes the usual pairing between the elements of a vector 
space and its dual.) The reduced Hamiltonian Y# in (2.2) can be written as 

Jr c~ ) = H t (2~ I), I, qS; 0), (2.3) 

as shown in HALLER & WIGGINS [19]. It is related to the restricted Hamiltonian 
through 

J#~ = h0 + e ~  + O(e), (2.4) 

with ho = Ho ldo  = const. By a slight abuse of notation we consider ~ ( I ,  qS) to be 
defined on the annulus A = [I~, I2] • S 1. Equation (2.4) shows that a structurally 
stable orbit ? c A of;V# gives rise to an orbit 7, c d~ o f ~  such that g ,  ~(7,) and 7o 
are (e, C')-close in A. One of our goals is to find out about the orbits of ~ ,  based on 
our knowledge of J/#. 

Definition 2.1. We say that an orbit 7 c A of some Hamiltonian defined on A is an 
internal orbit if it is structurally stable with respect to small Hamiltonian perturba- 
tions and if it is bounded away from ~A. Similarly, an orbit ?e ~ de of the restricted 
Hamiltonian ~r162 is called an internal orbit if g [  1(7~) is an internal orbit of the 
Hamiltonian g~ ~ o n *  (A, g*o).  

By definition, internal orbits are either periodic orbits, homoclinic orbits, or 
structurally stable heteroclinic orbits (this last case imposes restrictions on H1). In 
what follows we are interested in orbits of (1.2) in N which are asympotic to internal 
orbits in sJ~. The sets of orbits positively and negatively asymptotic to an internal 
orbit 7~ c sJ~ are denoted by WS(7~) and WU(7~). In the case when 7~ is periodic, this 
yields the usual definition of stable and unstable manifolds for periodic orbits. If 7e 
is an orbit homoclinic to a fixed point p~, we obtain W*(7~)= WS(p,) and 
W"(7,) = WU(p,), where W~(p,) and WU(p~) are the two-dimensional "full" stable 
and unstable manifolds of p~ lying in the phase space N. We use a similar definition 
for the case of structurally stable heteroclinic orbits. 

Our next proposition is a reformulation of the results of FENICHEL [17] on the 
foliation of stable and unstable manifolds (see also HALLER & WIGGINS [19]). 
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FENICHEL was able to relate orbits in W~(~'~) to their m-limit set in ~r by showing 
the existence and persistence of a smooth family of curves, called fibers, which 
foliate W~o~(a/~). The fibers of the family are usually not individually invariant 
under the flow, but the family itself is invariant, i.e., fibers are mapped into fibers by 
the underlying flow. Each fiber intersects ~r in a unique point, which we call the 
base point of  the fiber, and fibers of the unperturbed problem deform smoothly into 
fibers of the perturbed problem. Most importantly, a solution starting on a fiber of 
W~oo(ag,) is asymptotic to the trajectory in ag, which runs through the base point of 
the fiber, as long as that trajectory stays in ~r Similar statements hold for 
Wl'or but, for brevity, we do not list them. To formulate the results precisely, we 
fix some 6 with e ~ 6 ~ 1 and define a closed tubular set Ua around sO0 by 

c~ = {(x,X, r  e ~1 Ix - ~~ _-< a, (I, r  e A}. (2.5) 

We then have the following result which is a direct application of the general results 
of FEMCHEL [17] to system (1.2) (see also WlOOINS [46] regarding the statement (ii). 

Proposition 2.1. There exist eo and 6o with 0 < eo ~ go ~ 1 such that for every 
E [0, go] there exists a two-parameter family ~ = Up~gof~(P) of C r smooth curves 

f~(p) for which 
(i) ~ = (W~o~(d~)wd~)c~ Uao and f ~ ( p ) c ~  = p. 

(ii) ~ is in class C ~ in p and in e. 
(iii) ~ is a positively invariant family, i.e., F t ( f~(p))  c f~(FT(p)) for any t >-_ 0 

and p ~ d~ with FT(p) ~ ~r 
(iv) There exist C~, 2~ > 0 such that if y ~ f~(p), then 

IF~(y) - F~(p)] < C~e a,t 

for any t >->_ 0 with F~(p) ~ ~ .  
(v) For any p ee p', f~(p)c~ f~(p')  = O. 

(vi) For any p 4= p' and y ~f~(p), y' ef~(p') ,  

lira [FT(y) - FT(p)I = 0. 
t-~o~ I F ~ ( y ' )  - FT(p)I  

2.2. Dynamics near the slow manifold age 

The next lemma provides a normal form of system (2.1) in a neighborhood of 
the perturbed manifold, following the basic idea of local normalization sketched in 
FEMCHEL [173. Similar normal forms also appeared in the general singular per- 
turbation context of JONES & KOPELL [283. 

Lemma 2.2. There exist eo and go with 0 < eo ~ go ~ 1 such that for e <= eo there is 
a C r-2 change of  coordinates T q  U~o -~ IR 2 x A, (x, I, (~) ~ (z, I, (~) with e ~ T ~ in 
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C r-2. In the (z, I, ~) coordinates theflow of (1.2) satisfies the equations 

= A(z, I, ~; e)z, 

[ = eki(z, I, q~; e), (2.6) 

~) = zr  B(z, I, ~; e)z + ek4~(z, I, 4); s), 

with 

2 + (q l ,  z )  + ekl 0 "~ 
A = 0 - ~- Jr- (q2, z ) d- 8k 2 ) '  

(2.7) 

where 2 : I R ~ I R  + is in C r-l ,  kl ,k2 ,  ki, ke,: ]R2•215 -+IN a r e  in C r-2, 
B: lR2xAx[ ,O,  e o ] ~ R  2• is symmetric and is in C ~-2, and ql,q2: IR2xA 
x [-0, eo] ~ 1112 are C ~-3 functions of their arguments. 

Proof. The proof follows that of FENICHEL [,17] for the analytic case, but we keep 
track of the loss of smoothness at each change of coordinates that he applies. 
Another difference is that we do not perform FENICaEL'S last step in the construc- 
tion since it would impose more stringent smoothness hypotheses on system (2.1) 
without a substantial improvement on the normal form. Also, for our specific 
system (2.1) we are able to perform the normalization globally, i.e., in a neighbor- 
hood of the whole manifold de. For details see HALLER [--20]. [] 

The significance of this lemma is that it smoothly "linearizes" the local dynam- 
ics around s~. In particular, ~ is described by the equation z = 0, and its local 
stable and unstable manifolds satisfy zl = 0 and z2 = 0, respectively. This simple 
geometry enables us to study trajectories that will have a great significance later in 
our analysis. These trajectories pass near the slow manifold ~4~ in a very special 

way: they stay between two (9(xfe)-tubes around ~e during their passage, and the 
time they spend in this tubular neighborhood is of order (9(1). As a result, they are 
not subject to the intense stretching present in a "boundary layer" near dE, but 
their (I, q~) coordinates still have a time evolution similar to that of the slow orbits 
on ~4e. In the following, (xp, I r, Op) refers to the coordinates of a point p ~ ~ and 
T;(p)  denotes the (dummy) p coordinates of the image of p under the transforma- 
tion T ~ constructed in Lemma 2.2. We also use the notation 

Ol U~ = {p~ OUolI vE(11,I2)}.  

Lemma 2.3. Let we(t) = (x(t), I(t), O(t)) with t E IR be a trajectory of(1.2). Assume 

that for ~ < go,fixed 0 > O, and 6(e) = O,~e, we(t) enters Uo~) (as defined in (2.5)) at 
a point Pe ~ 01 U~(E) and leaves it at qe E ~1 U~(~). Let the distance of the point pJrom 
the local stable manifold W~oc(d~) obey the estimate 

d(pe, W~oc(~4e)) > K x ~  (2.8) 
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Fig. 3. Geometry for Lemma 2.3. 

for some O < K < O. Then there exists an go with O < go <go 
O < e = g o ,  

]lq~- Ipo] ~ Kie,  ]~bqo - ~bpo[ <= Kce, 

where I~ and Kr are positive constants (see Fig. 3 for geometry). 

such that for 

(2.9) 

Proof.  We first let 

eo = min  e0, e0, • ) ,  

where ~o, bo > 0 are as in the s ta tement  of L e m m a  2.2. Then  for ~ < 8o we know 
tha t  w~(t) enters Uo(~) within which, according to L e m m a  2.2, system (1.2) is C ' - 2  
conjugate  to system (2.6). The  subspace z2 = const., zl = 0 in the phase  space of 
(2.6) is a g raph  over  the (I, r  variables; hence there exists st E W~oo(d~) such that  

Ip, = Is~, Cp~ = Cs~, T~(p~) = T~2(s~), IT~I(P~)I > [T~l(s~)[ = 0, . (2.10) 

where T ~ is the t rans format ion  const ructed in L e m m a  2.2 (T  ~ is the identity m a p  
for the (I, qS) coordinates).  Fur thermore ,  since T ~ is a C ~- 2 diffeomorphism,  we can 
select L > 0 such that  

I ID(T~) - I  II __< L (2.11) 

in some open set U(eo) c IR 2 x A. Then  (2.8), (2.10), (2.11), and the mean  value 
inequali ty imply tha t  

K fi.  if K~ee < IP~--s~[ <= LIT~(p~)--  T~(s~)l = Llr~l(p~)l ,  then lT~(p~)l > ~  

(2.12) 
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We now let r, = g,(Iq~, (pqo)~e~/~ (see (1.7)) and, under the assumptions of the 
lemma, obtain 

1 1 
I T~(qA[ --= I T~(q~) - T'(rAI < ~ Iq~ - r~l = ~ c~(e). (2.13) 

Let t~ denote the time the trajectory w~(t) spends between the points p~ and q,. For 
simplicity, we assume that T~z,(p~)> 0, which implies that T ~ ( q , ) >  0 by the 
invariance of the z~ = 0 hyperplane under the dynamics of system (2.6). Then, using 
our normal form (2.6) and equation (2.7), for any t < t~ we can write 

t 

0 

t 

> T~(p~) + ~ (cl - c2l T~(w,(z))l - c3e)T~(w~(z) )dz  
0 

> T~(p~) + cl -- c2 ~ -  -- ~c3 T~(w~(z))d% (2.14) 
0 

where, within [7(go), c~ > 0 is a lower bound for 2, and c2, c3 > 0 are upper bounds 
for Iq~[ and Ikt l, respectively. Fixing some 0 < v < 1 and setting 

(^ V c1(1 - v ) L ]  2 Vc2'9~2~ 
go = min_ o, L 1 ' ILc31  )'  (2.15) 

we obtain that, for ~ < go, c~v > 0 is a lower bound for the first factor in the 
integrand of (2.14). Then, using a reverse Gronwall inequality and substituting 
t = t~, we arrive at the expression 

~ clvt e T~(q~) > Tz~(p,)e , 

from which we obtain the estimate 

t~ < ___1 log Tz,(q~) < 
= e ly  T~,(p~) = 

where we have also used (2.12) and (2.13). 

1 '9 
e l y  log ~ ,  (2.16) 

We now estimate the change of the I coordinate while the trajectory w~(t) passes 
from p~ to q~. Using (2.6) I and (2.16) we have 

tE C 4 0 
[Iq~ - -  Ipe ] ~ e S [kllT~(w~(r)) d'c < eC4te < e log (2.17) 

0 ~ ~ CIV g '  

where c,  > 0 is an upper bound for Iki[ in U(go). This proves the first inequality in 
(2.9). As for the second inequality of (2.9), equation (2.6) ~ gives rise to the estimate 

0 

( ' 9 2 ) 1 / / 0 2 ) 1 0  U  +c6 og2, (2.18) 
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where c5, c6 > 0 are upper bounds for I] B II and Ikol in U(go), respectively. Again, 
this shows that for 0 < e < go we can choose K~ > 0 to satisfy the second inequality 
in (2.9). [] 

We now construct two-dimensional Poincar6 sections within the three-dimen- 
sional level surfaces of H. These sections will be used to follow trajectories as long 
as they keep a minimal distance from the slow manifold ~r or more precisely, obey 
the distance condition (2.8) of Lemma 2.3. We want to capture them by smooth 
Poincar6 sections which are graphs over the annulus A. This turns out to be 
possible if the trajectories of interest are within a certain maximal distance from the 
slow manifold. This maximal distance condition is most conveniently expressed in 
terms of a maximal energy deviation from the energy ho of S~o (see (2.4) and the 
statement of Lemma 2.4 below). 

~s Wlo~(d~) denote the connected components of From now on Wlo~(d~) and ~~ 
W~o~(~r and Wi~oo(d~), respectively, which are (e, C')-close to appropriate subsets 
of Wo. By the normal hyperbolicity of sJ~, both W~oo(SJ~) and WlU~(~r have 
precisely one more connected component, but hypothesis (H1) tells nothing about 
the geometry of the corresponding global invariant manifolds. In Section 3 we 
include these other components in our analysis under supplementary assumptions. 

Let us first define a family of Poincar6 sections for system (1.2) in the vicinity of 
sJ~. We fix some (yet undetermined) 0 > 0 and on every energy surface E~(h) (see 
(1.10)) introduce the set 

Z~(h) = 01Uat~)nE~(h), 

where 6(e) is defined as in Lemma 2.3. Note that for e = 0, Z~(ho) becomes singular. 
We now give conditions under which the Poincar6 sections defined above are 
smooth symplectic manifolds. 

Lemma 2.4. Let a constant K > 0 be fixed. Then there exist positive constants go and 
Oo such that for 0 < e < go, 0 > 0o, and [h - ho[ < ~ ,  

(i) E,(h) and Eo(ho) are (x/~e, C1)-close within the three-dimensional tube 

U(~9, ~) = U~o - U~(o/2, where 6o is that of Lemma 2.2. 

(ii) Two of the connected components of S~(h), S~(h) and S~(h), are (x~e, C1) - 
close to//~ = 01 U~(~)n W~oo(do) and//~ = 01 U~(~)c~ VV~'o~(~o), respectively 
(see Fig. 4). Moreover, (Z~(h), c5) and (ZU(h), ~)  with c5 = dO/x dI are sym- 
plectic 2-manifolds and embeddings of the annulus A through two C ~ maps 

u. A ---> P, respectively. e~: A ~ ~ and e~. 

Proof. First note that Eo(ho)n U~o ~ Woc~Uao + 0 and that the intersection is 
transversal; hence for e > 0 small enough, E~(h)nUao ~ O. We decrease go of 
Lemma 2.3 to achieve this and select Po ~ Eo(ho)c~ U(~9, e) and p~ ~ E~(h)c~ 12(0, e), 
both from a fixed submanifold 1 = Io, ~b = q5 o. Such a choice is possible since 

IDxHol (as well as IDxHI) is at least of order (9(x/~) (i.e., strictly nonzero for e > 0) 
in [7(0, e) (hypothesis (HI)); hence any energy surface can locally be written in the 
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X~_~X 1 r 
/ / u  

Fig. 4. Statement (ii) of Lemma 2.4. 

form xi = f ( x j ,  I, 4); e). From hypothesis (H1) we also have 

D x H ( 2 ~  Io,  4)0; 0) = 0, 

from which we obtain 

D x H ( x .  I, 4); e) = m l ( x ,  I, 4); e)(x - 2~  + m2(x,  I,  4); e)(I  -- Io) 

+ m3(x,  I,  4); e)(4) - 4)0) + em4(x,  1, 4); e), (2.19) 

where the matrix M1 and the functions m2, ma, and m4 are of class C r-  1 in their 
arguments (see HALLER [20] for more details). Now note that  on the line 
lpo,p~ c r e) connecting p~ and Po, (2.19) simplifies to 

D x H ( x ,  Io,  4)0; e) = Ml(x ;  Io, 4)0; e)(x -- 2~ + ern4(x, Io,  4)0; e). (2.20) 

Since, for small e > 0 and appropriate p~, leo , p,, does not intersect U6(~)/2, (2.20) gives 
rise to the estimate 

~gxfe Ox/e (2.21) IOHllz ..... >-_ tOxHllt  ..... > c.z ~ - -  - c8~ > c7 ~ 4 - - ,  

where c7 > 0 is a lower bound within UOo for the positive eigenvalue of 

1 
M I ( x ,  Io, 4)o; e) = J D 2 H ( x ~  + s(x  -- ~~ Io, 4)o; e)ds, 

0 
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and cs > 0 is an upper bound for [m4[ in U6o. By assumption, we also have 

~ce > ]Holvo - Hlp~l > Holpo - Holp~ - Holw -H[p,  = 

o,5 
> C7 T [Po - -  Pe[ - -  C98 > C7 T [P0 - -  Pe[, 

Ho Ipo -- Ho ]w - e Hi  Iw 

(2.22) 

where we have used the mean value theorem together with (2.21), and further 
diminished go, if necessary (c9 > 0 is an upper bound for IHll in U~0). Thus, based 
on (2.22), we have 

Similarly, we obtain that 

8K 
[Po - P~[ < c7 0 ~f~.__ (2.23) 

IDHolpo - DHIv~[ < IDHo[vo - DHo[wl + eIDHIIvJ 

16~CClo .,/~, (2.24) 
< C10]Po - -  Pe] -~- C l l e  < C7 ~ 

where Clo, cl i  > 0 are upper bounds within UOo for [1D2H [[ and [DH11, respective- 
ly. But (2.23) and (2.24) together prove the first statement of the lemma. 

Let us now make the specific choice Poe 3U~(~)/2. Then 

0 
[Po - P,] < ~ ` 5  (2.25) 

would ensure that E~(h) intersects 61 U0(~). Inequality (2.23) implies that (2.25) is 
satisfied if we choose 

45 9 > Oo = . (2.26) 

Furthermore, the intersection of E~(h) and 01 U~(~) is transversal for e > 0 small 
enough, since Eo(ho) and 01 U~{~) intersect transversally and E,(h) and Eo(ho) are 

( ,~,C1)-close.  Hence Z~(h)=E~(h)c~O1U~(~) has two connected components 

which are manifolds and are (x/~, C i)_close to H~ and H~, respectively. In that case 
they are graphs over the annulus A as asserted in statement (ii) of the lemma. Since 
on 61 U~(,) locally either xl is a function of x2 or vice versa, the symplectic form co of 

restricts to the closed two-form (5 on 01 U~(~). Let us introduce the inclusions 
i~: ZS(h) ~ N and i~: s ~ N. (Both the embeddings and the inclusions of Z~(h) 
and Z~(h) do depend on the energy h.) Since both e~ and e~ are diffeomorphisms, 
-u .  s l, co = o3 and i~*co = c5 are nondegenerate; hence (X~(h), a3) and (Z~(h), (5) are 
symplectic manifolds (with boundary). This concludes the proof of the lemma. [] 

We now introduce Poincar6 maps between the sections Z~(h) and S~(h) to track 
trajectories obeying both the minimal distance condition (2.8) and the maximal 
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distance condition of Lemma 2.4 on some time interval. On appropriate open sets 
R~(h) c S~(h) and R2(h) c Y,U(h) we define the local map L ) and the global map G h, 
respectively, by 

h. s h. L, .  R~(h) --, S2(h), G~. RU(h) ~ S~(h), 

P ~ Ft~tv)(P), p v--, F~(p)(p), 

with 

t~(p) = inf{t > 0IF~(p) ~ S2(h)}, t~(p) = inf{t > 0]F~(p) e X,~(h)}. 

Since the domains of definitions of these maps are graphs over the annulus A, they 
induce two conjugate maps, ~fh and L.q ~h, on A which are defined through the 
commutative diagrams 

L~ h G~ 
R~(h) , SU(h) RU(h) , S~(h) 

e: T ~ e: e: T T e: 

(e~) (R~(h)) , A s 1 s 2 A u - 1 u (e~) (R~(h)) -% ~ 

(2.27) 

Instead of following trajectories though the local and global maps directly, it is 
more convenient to study these conjugate maps acting on the annulus. The 
following step is crucial in our construction: we give universal (i.e., system-indepen- 
dent) C 1 approximations for f#) and 5r ) in terms of the unperturbed geometry. 

Lemma 2.5. Let  a constant ~: > 0 be f i xed  and let Oo > 0 be selected as in the 
statement of  Lemma 2.4. Then there exists O* > Oo such that for  0 < e < go, 0 > 0", 
and [h - hol < ~c~, 

(i) The two-dimensional maps L h, G ), • ) ,  and (~) are symplectic. 
(ii) Under condition (2.26) the global map G ) can be defined on R~(h) = S2(h), 

and its conjugate map ffh are (x~e, C1)-close to the rotation map 

N : A ~ A ,  

(I, ~b) ~-* (I, ~b + A~b(I)), 

where the phase shift A~b(I) is defined in (1.11). 
(iii) For any compact set S~(h) c R~(h) c S~(h) satisfying 

d(S~(h), W~oc(d~)) > Kx//~, (2.28) 

with some 0 < K < ~9, the map ~ h  is (X/~e, C1)-close on (e2)- l(S~(h)) to the 
identity map of  A. 

Proof. Throughout the proof we use the notation of the earlier lemmas without 
explicit reference. It is enough to prove (i) for the maps G h and fqh, since the same 
argument works for L h and ~h .  That G ) is symplectic is a standard result (see, e.g., 
ARNOLD & AVEZ [23 and HALLER [20] for details). But then fgh is symplectic, since 
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we have 

(e~), G~,e~,cg(e~), G~,d9 = (e~),lcD = oh. 

We now proceed with the proof of (ii) of the lemma. As we noted in Lemma 2.4, the 
energy surface E~(h) intersects ~1 Uo(~) transversally in two components. By the 
nature of the perturbed flow F~ near Wo and the continuity of E~(h), every 
trajectory starting from the first component Y,y(h) is guided to the second compon- 
ent ZS(h). This proves the first statement on the global map in (ii). We now turn to 
the proof of the statement on the map (oh. 

Let us introduce the map 

p ~ r~ 

with 

z~(p) = inf{t > 0[F~ ~//~}. 

Note that for e sufficiently small and 0 > 3* > Oo, G~ is a Poincar6 map with 
a "finite time of flight". (For instance, for e = 0.01 and ,9 = 5, G~ follows trajectories 
as they leave a tube of radius 6 = 0.5 = 50e around do  and then return to the same 
tube.) By the smooth dependence of Poincar6 maps on parameters (here ~ and the 

energy h) it follows that G h and G~ are (v/e, C1)-close for e sufficiently small. Let us 
introduce the map (r A ~ A which is C r conjugate to G~ and is defined analog- 

ously to (r (see (2.27)). As a consequence, (6~ is (x//e, C1)-close to (r NOW observe 
that Go = go ~ ~ ~ go 1 (see (1.5)) maps or-limit points of unperturbed homoclinic 
trajectories to their co-limit points; hence Go is a smooth "geometric" extension of 

the map G~ at x/~ = 0. It follows from (ii) of Proposition 2.1 that (~o - ~ is 

a smooth extension of ff~ at ~ = 0. Therefore, (6~ and ~ are (~f~, C 1)-close. Since 

~ and ~h are (x/e, C 1)-close, this completes the proof of (ii). 
Statement (iii) does not allow a similar geometric argument, because one cannot 

define in this way a (,~/~, C 1)_close conjugate map LP~ which would extend smoothly 

to x/~ = 0. Instead, we make use of the normal form of Lemma 2.2 and the 
estimates of Lemma 2.3. First note that the initial conditions of trajectories starting 
from S~(h) satisfy the distance condition (2.8); hence the (e, C~ of ~ h  to 
the identity follows immediately from Lemma 2.3. Therefore, using the notation of 
that lemma, we only have to show that for some cons tan t / (  > 0, 

~(Iq~, qSq~) Id2 /(~/~, (2.29) 
a(sw, Cv~) < 

where Id2 e ] R  2 x 2 is the identity matrix. Let C* > 0 be a uniform Lipshitz constant 
in T~(Uo(~)) for the right-hand side of system (2.6), with T ~ constructed in Lemma 
2.2. For the deviation of two trajectories w~(t) and w'~(t) of (2.6) (satisfying the 
conditions of Lemma 2.3) we have the usual Gronwall estimate 

lib(r) - I;(t)l < Iw~(t) - w;(t)l < lWo - W'ole c*~, (2.30) 
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where w~(O)= wo =t = w'~(O)= W'o, I,(t) and I'~(t) denote the I coordinate of the 
corresponding solutions. Dividing both sides of (2.30) by [Wo - w~l and taking the 
limit as w; ~ Wo, we obtain that 

IDwole(t)l < 2e c*'. (2.31) 

Since estimates similar to (2.31) hold for the time evolution of the other three 
coordinates of we(t) and w'~(t), we can also write 

tDwozle(t)l, IDwozz~(t)l, ID~o~b~(t)l N 2e c*t. (2.32) 

Then (2.31) and (2.32) give rise to the inequality 

II O~oW~(O II < 4eC*~, (2.33) 

where, as before, I1"11 denotes the Euclidean matrix norm. 
Consider now the 1 coordinate of the solution w~(t) of (2.6)given by 

t 
L(t) = Ip, + e ~ kilw, mdz, (2.34) 

o 

the differentiation of which with respect to Ip, yields 

dI,(t) 
- 1 + e i (OkIlwo~), Oi~w~(z))dz. (2.35) 

dlp~ o 

Since Wo = T~(pe), (2.32) and (2.35) lead to the estimate 

die(t) - 1 < e i 4cls ec*~dz = 4c15  eC. t (2.36) 
dip, 0 C *  ' 

where c15 > 0 is an upper bound for [DkiI on t~(go). Substituting t = te and using 
(2.16) gives 

dlq~ 1 dI~(e~) 1 4c15 ( ~ )  c*/c~ 
d l p -  = ~ < e ~ - g -  <K~e,  (2.37) 

with appropriate K1 > 0. Starting from (2.34) we obtain in the same way that 

dlq, < Kle. (2.38) 
d~p~ = 

Also, applying the same argument to 

t 
~)~(t) = ~)vo + ~ [zr B( z, I, ~9; e)z + eke(z, I, ~b; e)] I~,(~)dz, 

0 

we arrive at the expressions 

d4~q~d(ap~ - 1, d(aq,dlp~ = < K2x/e + K3e, (2.39) 
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with K2, K 3 > 0 .  But (Z37), (2.38), and (2.39) imply (2.29) with /~ 

= x /2K 2 + K22 + K~, which concludes the proof of the lemma. [] 

3. The energy-phase method: Hamiltonian perturbations 

3.1. Main construction 

With the estimates and construction of the previous section at hand, we now 
formulate our main results for the case of purely Hamiltonian perturbations 
(system (2.1)) under the hypothesis (H2b). First, for any integer n > 1 we define the 
nth order energy-difference function A " ~ :  A -* IR as 

A"Jf(I ,  qS) = J(~(I, ~b + nAqS(I)) - its(I, qS) 

=HI( f~176  4);O). (3.1) 

We recall that Yf is the reduced Hamiltonian defined in (2.3) and that Aq5 is the 
phase shift defined in (1.11). Note that A"Jf  contains energy-type information from 
the perturbed problem and phase-type information from the unperturbed problem. 
The zero set of A"g/f is 

V"_ = {(I, ~b)e AIA"Yf(I, qS) = 0}. (3.2) 

We are particularly interested in the transverse zeros of A"~gr ~, which are 
contained in the set 

Z"_ = {(I, ~b) ~ V"_ ]DA%~/f(I, ~b) ~: (0, 0)}, (3.3) 

where D denotes the gradient operator with respect to the (I, ~b) variables. We also 
need the n A~b(I) translate of these sets in the 4) coordinate direction, so we define 

V~ = ~"(V"_), Z'~ --~"(Z"_),  (3.4) 

where the map N is defined in Lemma 2.5. For  later convenience we also define 

v ~ = 0. (3.5) 

In the following we introduce a tool to describe the intersections of the zero sets 
above with the internal orbits introduced in Definition 2.1. 

Definition 3.1. For  an internal orbit 7 c A of W let N denote the minimal 
nonnegative integer for which 7 has no intersection with Vk_, k = 0 . . . . .  N - 1, 
but has a nonempty transversal intersection with Zw_. If such an N exists, then we 
call it the pulse number of ~ and denote it by N(7). In short, 

N ( y ) = m i n { n > l I V k - ~ y = O , k = O  . . . . .  n -  1, Z " ~ 7 } ,  (3.6) 

where the symbol cg refers to nonempty transversal intersection. 

Remark 3.1. If, say, 7 is tangent to Z ~_ and if V k c~ 7 = 0, k = 0 . . . . .  n - 1, then 
N(y) is clearly not defined. As we shall see in our beam example in Section 5, this 
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class of internal orbits is distinguished because its members separate orbits with 
different pulse numbers. Another frequent situation when N(?) may not be defined 
occurs when the phase shift A~b is constant and "resonates" with 2~, i.e., there exist 
relatively prime positive integers N and k such that NA~b(I) - 2k~z. This case will 
be discussed separately in the study of resonance bands in Section 3.3, where the 
appropriate phase shift is always independent of I. 

The main result of this section is the following: Suppose that N(?o ) = N for an 
internal orbit ?o of the reduced Hamiltonian. Then ?o approximates a slow orbit 
7[ on ~ such that 7[  is the backward limit set of an N-pulse transverse orbit 
homoclinic to s~r The homoclinic orbit leaves a neighborhood of d~ near the point 
go(b-) and finally returns to ~r near the point go(b+ ), where go is defined in (1.5) 
and 

b_ = ~oc~ZN_, b+ = ~N(b_). (3.7) 

Furthermore, the positive limit set, ?~+, of the homoclinic orbit can be approxi- 
mated by an internal orbit 7 g of JF which passes through b § During its pulses the 
homoclinic orbit is "shadowed" by a set yN of unperturbed orbits homoclinic to 
do. yN is defined as 

N 
y N =  (..) y~, (3.8) 

i=1 

where y; c Wo is an unperturbed orbit of (1.2)~=o asymptotic to the points 
go o ~ i - t ( b _ )  and go oNi(b_) in negative and positive time, respectively, with 
~o _ Id. The following theorem states all this in precise terms. 

Theorem 3.1. Assume that hypotheses (H1) and (H2b) hold. Suppose that for an 
internal orbit 7o c A of the reduced Hamiltonian ~g{~, 

(A1) N - S(?o  ) is defined. 
(A2) Let b and b+ be defined as in (3.7). Assume that the orbit ?~ a A of the 

reduced Hamiltonian ~ which contains b+ is an internal orbit with 
ZU+ a5 ~ (see Fig. 5). 

(A3) I f  N > 1 and DxHo points outward on Wo, then 

AkJUf(b_)>0, k = l , . . . , N - - 1 .  

I f  N > 1 and DxHo points inward on Wo, then 

Ak~(b  ) < 0 ,  k = l  . . . . .  N - 1 .  

Then there exists eo > 0 such that for 0 < ~ < ~o the following hold: 
(i) d~ has an N-pulse homoclinic orbit y f  which is positively asymptotic to an 

internal orbit ?~+ ~ de and negatively asymptotic to an internal orbit 
72 ~ s~r Moreover, g~-l(7+ ) and ?g, as well as g- l (?+)  and ?g, are 
(e, C~ I f  ?g is periodic, then C o can be replaced by C r in this last 
statement. 

(ii) y~ lies in the intersection of WU(7[ ) and WS(7~ + ), which is transversal within 
the energy surface E,(h), where h = g [ y [  = Hl?g. 



N-Pulse Homoclinic Orbits 47 

/2 

] 1  
0 

I 
z+ 

A 

~ m  . . . .  

I 

2r 

Fig. 5. Assumption (A2) of Theorem 3.1. 

I 

Fig. 6. An example of the statement (iii) of Theorem 3.1 for N = 3. 

(iii) Outside a neighborhood of d~, y~ is (x/~, C1)-close to the set yN defined in 
(3.8) (see Fig. 6for an example). 

Proof.  Fo r  convenience,  t h roughou t  the p roof  we use the symbol  s'ze for (~ ,  C~) - 
closeness of sets and maps.  

Let  us start  by letting ho = 2/f[yo.  No te  that  by the compac tness  of A 
and the smoothness  of the reduced Hami l t on i an  2/f (see (2.3)) there exists • > 0 
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such that  

K 
[1 ho Pl < ~. (3.9) 

For  this ~: we select some 0 > 3 (~ - 0* to ensure the applicability of Lemmas  2.4 
and 2.5 (see the statements of these lemmas). 

Our  second observation,  following from Definition 3.1, is that  if ? o �9 Z N- , then 

~ k ( ? o ) ~ ? ~ - = 0 ,  k = l , . . . , N - 1 ,  ~ N ( ? o ) d S ? +  , ~ f f l T g = h o .  (3.10) 

(The first par t  of this s tatement is vacuous for N = 1.) Since 7o is an internal orbit, 
for small e, ~r contains an internal orbit  7 [  of ~ such that  

g~- 1(72) r'2 70, (3.11) 

where the embedding g~ of d~ is defined in (1.7). Let  

h = H172 = -Yf~l?~- = ho + eho + 0(e2), (3.12) 

with ho defined in (2.4). Since ?+ is also an internal orbit,  D2/fl?;- ~ 0. (If 7 + is 
a homoclinic or heteroclinic orbit  in A, this s tatement is not  true on its closure.) If 
7+ is a periodic orbit  (i.e., a member  of a family of periodic orbits of ~~ by the 
implicit function theorem there exists a periodic internal orbit  7 + such that  
g / ~ ( h  +) "Z ~+ and 

HI?+  = jvf~]?+ = h. (3.13) 

If7 + is not  periodic, then it is a homoclinic or heteroclinic orbit  (see Definition 2.1). 
In that  case it perturbs to a nearby homoclinic  or heteroclinic orbit, but  one that  
does not  necessarily have energy h. However,  since there are internal periodic 
orbits arbitrari ly close to 7 + , we can guarantee that  there exists an internal orbit  
7 + such that  

g2~(7+) 1,~ 7+ (3.14) 

inside afixed neighborhood ofZN+, and (3.13) still holds. Then, for e small enough, 
(3.10), (3.11), and (3.14) imply that  

~k(g~-l(?~-))c~g~-l(?+) = 0 ,  k = 1 . . . . .  N -  1, .~n(g~-~(72-))~g[l(7+ ). 
(3.15) 

Fur thermore ,  we see from (3.9), (3.12), and (3.13) that  for small e > 0, 

Ilh - hol] = IlglT~ + - hol[ = IIg[T? - holl = ellhg + (9(011 < e~c. (3.16) 

Hence the trajectories in W u(?[  ) obey the maximal distance condit ion required for 
the application of Lemmas 2.4 and 2.5. 

By Proposi t ion  2.1, 7[  has a C ~ local unstable manifold W~o~(7~-) c W~oo(~r 
which consists of a subfamily of unstable fibers f2 (i.e., a smooth  subset of the 
family ~ )  with their basepoints contained in 72.  In the usual way W?or ) can be 
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Fig. 7. The main construction in the proof of Theorem 3.1. 

extended to an injectively immersed global manifold WU(y[ )~  E~(h). Now by 
(3.16) and (ii) of Lemma 2.4, for small e > 0, the Poincar6 section X2(h) is a two- 
dimensional graph over A. Since it is also a local transversal to the flow in the 
energy surface E~(h), it is intersected transversally (within E~(h)) by W~'oo(7[) in 
a curve cg(1) c E2(h) (see Fig. 7). By Proposition 2.1, 

P[ = (eu) - 1 (Cg(ul)) 1'~-/~ 92 i(y[ 1). (3.17) 

By (ii) of Lemma 2.5, the global map G) is defined on ~(1). Let us define 
~g(1)= c h{~(1)~ (see Fig. 7) and note that from (2.27) and (3.17) we have 
(e~)- 1(~1~) = ~r 

Similarly, W~o~(7 + ) intersects the Poincar6 section Z~(h) in a curve ~ c 2~(h). 
As shown in Fig. 7, we define p+ = (e~)-1(~) and conclude from Proposition 2.1 
that 

p ]  "~-fig/1(7/). (3.18) 

Then (3.10), (3.17), and (3.18) imply that 

N k ( p [ ) c ~ p + = 0 ,  k = l  . . . . .  N - l ,  NN(p2)~p +. (3.19) 

(As we noted after (3.10), for N = 1 only the second part of this statement is 
meaningful.) For future reference we now introduce the tracking map Y),u: A ~ A 
by 

Jd;" h h h Y ~,N = N o  (5r Nh) . . . . .  (2-~r o N~), (3.20) 
J -y  

N - 1  
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which (if well-defined) will be used to track the graph-projections of subsequent 
intersections of W~(7[) with the Poincar6 section S~(h). 

We first consider the case of one-pulse orbits, i.e., we assume that N = 1. Then 
for small e > 0, (3.19), (3.20), and (ii), (iii) of Lemma 2.5 imply 

y h,~ (p[ )  ~ p+, (3.21) 

which, by the commutative diagrams of (2.27) proves that cg~l) ~ ~ within 2;~(h). 
(e~ is a diffeomorphism). But this in turn implies that WU(T[)~ WS(7 +) within 
E~(h), as asserted in (ii) of the lemma. Also, (iii) follows from the size of Uo(~) and the 
fact that 9o o N o 9o 1 maps c~-limit points of unperturbed homoclinic trajectories to 
their co-limit points. 

Let us now suppose that N = 2. From what we have discussed up till now it 
follows that in this case, for small e, cg~l~ c ~ s  = 0. (Hence the trajectories of (1.2) 
enter U~(~) without intersecting W~oc(Sr Using (2.11) we know that for small e, 
T~(Uo(,)) is contained in a tubular neighborhood of the manifold z = 0 in the phase 
space of (2.6), which is a subset of U(go). This means that the trajectories described 
above that miss ~ enter a neighborhood of d~ in which their behavior is described 
by the normal form (2.6). Consequently, in compliance with the normal hyper- 
bolicity of ~4~, they make a near-saddle passage and leave a neighborhood of sr 

The hypersurface W~oo(d~) locally divides the phase space into two disjoint 
components. Since we have only assumed the existence of one homoclinic struc- 
ture, we are only able to use our tracking construction for solutions which again 
travel in a neighborhood of the homoclinic structure Wo after their near-saddle 
type passage. In other words, we have to make sure that solutions in WU(7[) leave 
a neighborhood ofd~ near the component VV~'oo(~) of Wl'o~(~) (see the discussion 
after Lemma 2.3). 

Suppose that the first of the two cases in assumption (A3) holds. Then for small 
e, D~H points in a direction away from the interior of Wo. Consequently, if 
a solution arriving in a neighborhood of sr has a lower energy than nearby orbits 
in W~o~(Sr then it passes d~ and exists near l~o~(d~), as required. But condition 
(A3) with k = 1 ensures exactly this since it requires the leading-order term in the 
energy of 7[ to be smaller than the leading-order terms in the energies of slow 
orbits whose local unstable manifolds foliate W~o~(~r near the entry of WU(d~). 
Here we used the fact that the intersections of the local stable manifolds of slow 

orbits with //~ project down to curves in A which are (x/~, C1)-close to the 
projections of slow orbits themselves under 95 a. This follows from the fibering of 
the local stable manifold (Proposition 2.1) and the properties of the Pointcar6 in 
Lemma 2.4. A similar argument gives the correct exit direction when the second 
case in assumption (A3) holds, i.e., when D~Ho points in a direction away from the 
interior of Wo. Furthermore, for k = 1 , . . . ,  N - 1, assumption (A3) guarantees an 
exit in the correct direction for the kth passage. 

Knowing the basic character of passage near d~ of the trajectories starting from 
cg~) we expect to be able to track them via the local map L ). By Lemma 2.5, we 
have a good approximation for the conjugate map 5~ ,  provided the minimal 
distance condition (2.28) is satisfied for an appropriate 0 < K < 0. The next step in 
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our construction is to verify this, i.e., to ensure that the incoming trajectories do not 
enter Uo(~) too close to WTo~(Sr 

Since c1(7o) is compact and, by assumption (A1), is separated from Z~_, 
assumption (A3) implies the existence of a positive number K ~ > 0 such that 

11 ho - J~192(7o)1[ > 2K (~). (3.22) 

Based on the nature of the foliation of l/P 7oo(ag,)c~ 81 Ua(,) by local stable manifolds 

of slow orbits (Proposition 2.1) and on the (x/~, C1)-closeness of the objects 
involved, we conclude from (3.12) and (3.22) that if pc e cg~l) and p~ e W~or are 
two points with the same (I, ~b) coordinates, then 

[[Hlp~ - HlpwH --/Ih - [ho + eJYEgw}(pw)  + (9(ex/~)] 1[ 

= Hho + eho + (-9(ex/e) - [ho + ed/t~ + (9(ex/e)] [I 

= e 11 ho - ~[pO + (9(x/e) II > g (1)~, (3.23) 

where p ~  is a point x/e-close to gw}(pw)  with g w ~ : A ~ N  being the 

embedding of l/P~or162 For an appropriate c16 > 0 let c169x/e be an 
upper bound for II D H  II in Ua(o (see (2.20) and compare (2.21)). Then the mean 
value theorem and (3.23) imply that 

eK (1) < IlHlp~- Hlp,~ II < c160x/e l lpc-  pwll, 

which yields 

K (*) /-  
IIpc - pwll > c--60 ,,/ e. (3.24) 

If we set S~(h) - cl(Cd~l)), then the minimal distance condition (2.28) of Lemma 2.5 
is satisfied provided we choose 

0 < c t ~ < 0  ~ 9 > 0 ~  ~9~ 

In this case, by (iii) of Lemma 2.5, for e > 0 sufficiently small, the trajectories 
starting from cg~l) intersect S2(h)  in a curve cg~ h (1) = L~(Cgs ). Moreover, by (ii) of 
Lemma 2.5 they later reintersect Z~(h) in a curve cg~2) with 

(~9(2) ah((~(2)) = h o t h o aht~(1)~ (3.25) 

Also, by Lemma 2.5, the commutative diagrams of (2.27), (3.20), and (3.25) show 
that 

Ix/~ - -2"  --" ~-),2(P2) Z ~ (p~). (3.26) 

Then, as in the case of N = 1, (3.19), (3.18) and (3.26) imply that 

~-eh 2(/Oe - ) (I3 p~+.  
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From this, by the same argument as in the case N = 1, we conclude statements 
(i)-(iii) of the theorem for N = 2 and for some eo bound on e. 

One can now repeat the above construction for any N > 2. Assumption (A3) 
ensures a repeated "nice" passage of the orbits in WU(72) near ~4~. At the j th 
passage (j < N) we find an appropriate constant K ~) > K (j- 1) > 0 (see (3.23)) to 
describe the energy difference between orbits in WU(7[) and nearby orbits in 
WS(d~). This provides us with an estimate of the form (3.24) for the local distance 
of the two manifolds. To follow the passage via the local map L~, we select the size 
of U6(~) by setting 

O= O(J)=max(O ~j 1), K~J)~ 
Xl c15 /" 

We define ~ J +  1) = L) (~ j ) )  and apply the global map G) to ~g(u ~+ 1). We define the 
curve 

which is the (j + 1)st intersection (in forward time) of W~(72 ) with Z~(h). Note that 
by Lemma 2.5 

j h  ,, j+ 1 (P2) = (e~) - l(~g~j+ ~)) ~,-/~ N j+ ~(P2 ). (3.27) 

I f j  + 1 = N, then (3.19), (3.18), and (3.27) imply that 

Y),  N(p~-) a5 p+, 

which proves the theorem the same way as in the case N = 2. If j + 1 < N we 
repeat the above construction recursively until we reach N. At every step we 
possibly need to decrease the current bound e(o J) > 0 on e to be able to proceed 
further. Since N is finite, we can finally select eo - e(o m > 0 so that the statements of 
the theorem hold. [] 

An immediate consequence of Theorem 3.1 is 

Theorem 3.2. Assume that hypotheses (H1) and (H2b) are satisfied and assumptions 
(A1)-(A3) of Theorem 3.1 hold. Assume further that ?+ = 7o of Theorem 3.1 is 
a periodic orbit in A. Then 

(i) The statements of Theorem 3.1 hold with 7~ = 7 + = 7[ , i.e., the N-pulse orbit 
y~ is homoclinic to a slow periodic orbit 7~. 

(ii) System (1.2) has Smale horseshoes near ?~ on energy surfaces sufficiently close 
to E~(h). 

Proof. Statement (i) follows from the fact that internal orbits are locally energeti- 
cally unique, so 72 = 72 must hold. Statement (iii) follows from the Smale-Birkhoff 
homoclinic theorem (see SMALE [41]) and the structural stability of horse- 
shoes. [] 

The statement of Theorem 3.2 is sketched in Fig. 8 for the case N = 3. 
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Fig. 8. The statement of Theorem 3.2 for N = 3. 

Remark 3.2. In the case N = 1, Theorem 3.1 gives a result similar to that of HALLER 
& W~G~INS [19]. In that reference, however, we obtained better smoothness results 
for the distance of yl  and the set y r .  The reason is that to detect simple (i.e., 
one-pulse) orbits homoclinic to the manifold de  one does not have to deal with the 
complications related to the passage near d~ and can select a fixed tubular 
neighborhood U6o around de to work with. 

Remark 3.3. It follows from the proof  of Theorem 3.1 that the first intersections of 
N-pulse orbits with the sections Z2(h) form a smooth curve. Each point on this 
curve lies on an unstable fiber, so by Proposit ion 2.1 the basepoints of these fibers 
from a C '  curve BuU,~ c sJ~, which depends smoothly on e and other parameters in 
the system. We refer to BuU, s c ~r as the N-take-off curve, because the N-pulse 
orbits leave the immediate vicinity of ~ near this curve. We also define the take-off 
point Pe of an N-pulse orbit yff to be 

N p~ = Bu, er~?e , 

where ? [  is the orbit on the slow manifold to which yff asymptotes in backward 
time (see Fig. 9). Note  that g[ 1 N (Bu, ,) can be smoothly approximated with an error 

of (9 ( ,~)  by a subset z N _ of the transverse zero set Z ~ .  This subset is defined as 

z N _ = {peZN-I3y :N(?)  = N , y ~ Z ~ , p ~ y c ~ Z U _ } .  (3.28) 

Similarly, upon their final return the N-pulse orbits homoclinic to ~4, intersect 
a one-parameter  family of stable fibers whose basepoints form the N-landing curve 
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Fig. 9. The take-off and landing points and curves. 

B N c de. We define the landing point of the N-pulse orbit y~ as s , ~  

q~ = B N c~7 +, 

where 7 + is the orbit on the slow manifold to which y U asymptotes in forward time 

B" (see Fig. 9). Again, the set g71(N,~) is (x/e, C1)-close to 

zU+ = NN(zN_). (3.29) 

It follows from Theorem 3.1 that the I coordinates of the take-off and landing 

points of a given N-pulse orbit y~ differ by (9 (w/~). The landing and take-off points 
and curves prove especially useful in Section 4 when we discuss how the families of 
Hamiltonian multi-pulse orbits change under dissipative perturbations. 

3.2. Jumping N-pulse orbits 

Theorem 3.1 contains the basic construction of N-pulse homoclinic orbits to 
the manifold d ,  in the case of purely Hamiltonian perturbations in system (1.2). In 
this subsection we give an important extension of the results to the case when the 
unperturbed system admits two homoclinic manifolds, i.e., 

(HI') There exist 11 < 12 such that for any I e [11, I2], (1.2)~'=o has a hyperbolic 
fixed point Yo(I) connected to itself by two homoclinic trajectories, x h+ (t, I)  
and x h- (t, I). 
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Fig. 10. The geometry of hypothesis (HI'). 

This hypothesis implies the existence of two homoclinic manifolds W ~- and 
Wo (see Fig. 10). which contain solutions yg (t, I, ~bo) and Yo (t, 1, ~bo) of (1.2)~=o 
(compare (1.6) and substitute x h+ ( t, I) and x h- ( t, 1), respectively). Hypothesis (HI') 
is satisfied in our main example described in Section 1.2 as well as in many other 
applications. Here we restrict the discussion to the case when both homoclinic 
manifolds admit the same phase shift, i.e., 

+ a o  + c o  

(n3) A~b(I)= ~ D, Ho(xh+( t , I ) , I )d t  = ~ D, H o ( x h - ( t , I ) , I ) d t .  
- o o  co 

This assumption is not essential but greatly simplifies the formulation of the results. 
Moreover, in most applications the existence of two manifolds homoclinic to de is 
the result of a discrete symmetry in the problem, which also ensures that hypothesis 
(H3) holds. For the case of unequal phase shifts the reader is referred to HALLER 
& WIGGINS [233. 

In Theorem 3.3 we give conditions for the existence ofjumpin9 N-pulse homo- 
clinic orbits to the manifold de. These orbits make N departures and returns, as do 
the N-pulse homoclinic orbits of Theorem 3.1, but they may change the unper- 
turbed homoclinic manifold they temporarily follow. This behavior is described by 
a sequence of two symbols: 

D e f i n i t i o n  3 . 2 .  L e t j  �9 N . = { J i } i = l , J i  ~ { -~- 1 ,  - -  1} be a finite sequence. We say that an 
N-pulse orbit y~ homoclinic to the slow manifold d~ of system (2.1) is a jumping 
orbit with jump sequence j -~ j(y~) if there exists a point b_ a A and a constant 
eo > 0 such that for 0 < e < eo, outside a fixed, small neighborhood of d~, y~ is 

(x/~, C1)-close to the set 

N 

Yf = Q) y~, (3.30) 
i = 1  
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~ - q )  ~ + q )  

Fig. 11. The definition of the normal p(p+) in two cases. 

where 

�9 fW~- i f j~=  + 1 ,  

Y~ ~ ~ Wo  if J i  = - -  1 ,  
(3.31) 

is an unperturbed orbit of (1.2)~=0 asymptotic to the points go(N i l(b_)) and 
9o(N~(b_)) in negative and positive time, respectively (N ~ -= Id). 

Consider now the homoclinic loops 

5~+(I) {xh+(t; +~ = I)},=-o~, 5~- (I) {xh- (t; +oo = I)},= _ ~. (3.32) 

The loop 5f + (I) divides the (xl,  x2)-plane into two disjoint open sets, the exterior 
Ext(5~ + (I)) and the interior I n t ( ~  + (I)) of 5~ + (I). Let us pick a point p + e Y + (I) 
and let p(p+) denote the unit normal to ~ + ( I )  at the point p+ pointing in the 
direction of the other homoclinic loop ~ - ( I ) .  In other words, p(p+) points to 
Ext(5~ if ~ - ( I )  cEx t (Se+( I ) ) ,  and p(p+) points to Int(L,e+(I)) if 
5e-  (I) c Int(Se+(I)), as shown in Fig. 11. We define the sign constant 

a = s ign(DxHolr  p(p+)). (3.33) 

Note that a is independent of I and of the choice of p + because of the normal 
hyperbolicity of the unperturbed manifold ~r The sign constant a also remains 
the same if we interchange the roles of Y § (I) and 5r - (I). 

Remark 3.4. Notice that a gives information about the local unperturbed flow near 
do .  Namely, o- identifies the later exit direction of trajectories entering a neighbor- 
hood U~o ofsr close to W S+ -= W~oc(S~/0)~ W + . I f a  = + 1, then trajectories with 
energies higher than Ho[ W~oc(Sr exit in the direction of W u- - W~o~(do)c~ W o 
and trajectories with energies lower than Ho[ W~oo(~r exit in the direction of 
W u+- Wl~oo(do)c~Wg. Similarly, if ~r = -  1, then trajectories with energies 
higher than Ho[W~oc(do) exit in the direction of W u+ and trajectories with 
energies lower than Ho[W ~oo(do) exit in the direction of W u . This propety of o- is 
clearly preserved for small perturbations, as we see by comparing the energy of 
a trajectory to H[ W~oc(d~) near the point where the trajectory enters U~o. Also, 
a has the same meaning for the passage of trajectories that enter U~ o near 
w ~- = W~o~(do)C~ W o .  
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Using the sign constant ~ we now associate sign sequences to internal orbits of 
the reduced Hamiltonian ~ .  

Definition 3.3. Let 7 be an internal orbit of the reduced Hamiltonian ~ and 
suppose that N(7) = N. Then the positive sign sequence Z + (Y) = {Z~ (7)}~ v= 1 of 7 is 
defined as 

Z1-(7) = + 1, Z~+1(7)= ~rsign(Ak~]7)Z2(7), k = 1 . . . . .  N - 1. (3.34) 

The negative sign sequence of 7 is defined as Z (7) = - Z + (7). 

Note that the assumption N(7) = N is important for the sign sequences to be 
well defined because it implies that the continuous function A k ~  has a constant 
sign on 7 for k = 1 , . . . ,  N -  1. 

The following theorem establishes the existence of jumping N-pulse homoclinic 
orbits to the slow manifold de based on the sign sequences of internal orbits. 

Theorem 3.3. Assume that hypotheses (HI'), (H2b), and (H3) hold. Suppose that for 
an internal orbit 7o c A of the reduced Hamiltonian 2/f, the assumptions (A1) and 
(A2) of Theorem 3.1 are satisfied. Then for e sufficiently small there exists a jumping 
N-pulse orbit y~+ with jump sequence j(y~ +) = Z + (7o) and a jumpin9 N-pulse orbit 
yU- with jump sequence j(y~-) = Z- (7o)- Both y~+ and y~ have the properties 
described in statements (i) and (ii) of Theorem 3.1. 

Proof. The first part of the proof is the application of the proof of Theorem 3.1 to 
each of the perturbations of W ~ and W o. In this way we obtain the existence of an 
N-pulse orbit y~ +, which makes its first pulse in the direction of W o ~ , and another 
orbit y~- ,  which makes its first pulse in the direction of W o .  This time, however, 
we do not need to keep the N-pulse orbits in a neighborhood of the same 
unperturbed homoclinic structure: After their passages near the slow manifold de 
they are allowed to exit in the direction of either W~ or W o .  We only have to 
show that the sign sequences defined in Definition 3.3 indeed keep track of the exit 
directions correctly, i.e., they are equal to the jump sequences of yff+ and yff-,  
respectively. We only show by induction that " N+ J(Y~ ) = Z+(7o), because 
j(yU-) = Z-(7O) follows in the same way. 

Since yU+ makes its first pulse in the direction of W~-, we have JI(Ye" u+) 
= Z ~ ( 7 o ) =  + 1. Let us now assume that jk(y~ +) = Z~(7o). This means that 
yU + makes its kth pulse near W g if ~+ (7o) > 0, or near W o if X] (7o) < 0. As we 
discussed in the proof of Theorem 3.1, the exit direction of y~+ at the beginning of 
its (k + 1)st passage depends on the relation of its leading-order energy to the 
leading-order energy of the orbits in W~oo(d~) near the entry of y~+. Recall that, 
near the kth entry point of y~+ into a Uo0 neighborhood of the slow manifold de, 
W~oc(d~) is foliated by local unstable manifolds of slow orbits, whose leading-order 
energies fall in the range e~ lNk(7o) ,  whereas the leading-order energy of y~+ is 
e ~ l T o .  If sign (Ak~]7o)  = sign ( ~ ] ~ k ( 7 0 )  -- Jt~[yO) > 0, then from (3.34) we 
have Z[+ 1(7o) = aZ + (7o) = aJk(Y~ +). On the other hand, since the leading-order 
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~e 

Fig. 12. An example of the statement of Theorem 3.3 for N = 3 and jump sequence 

= - x ;  z ;  = 

energy of y~+ is lower than the energy of nearby orbits in W~oc(SJ,), Remark 3.4 
implies that jk + 1 (yU + ) = ajk(y~ + ); hence we obtain Jk + I(Y~ + ) = X++ 1 (70). Sim- 
ilarly, if sign (Akjt~ < 0, then from (3.34) we have Z~+1(7o) = - crZ](7o) 

- ~rjk(y~+). Remark 3.4 implies that " N+I �9 N+ - - ~Jk(Y~ ), which again Jk+l(Y~ ) = -- 
givesjk+l(Y~ +) = Z~+l(~o). [] 

An example of the possible cases covered by Theorem 3.3 is sketched in Fig. 12 
for N = 3  and for the jump sequence j l ( y~  + ) =  +1,  J2(Y~ N+)= _ 1 ,  
j3(y~ +) = + 1. (The intersection of the jumping homoclinic orbits with the slow 
manifold is of course an artifact Of the projection from N.) 

3.3. The case o f  resonance bands 

In this subsection we examine the existence of N-pulse homoclinic orbits in the 
case covered by hypothesis (H2a). Namely, we assume the presence of an isolated 
circle of equilibria within the unperturbed normally hyperbolic manifold d o  and 
focus on the consequences of the break-up of this circle under perturbation. The 
key idea in studying this is to blow up the circle into a "thin" manifold of equilibria 
or a resonance band (see KovAeI~ & WIGGINS [-33]). This resonance band appears 
as a two-dimensional manifold of equilibria for a system which we call the standard 

form (see (3.36)). Consequently, the analysis of N-pulse orbits homoclinic to 
resonance bands reduces to the application of the more general results of the 
previous sections. For  N = 1 the energy-phase method yields the same single-pulse 
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homoclinic orbits as the Melnikov method in HALLER • WIGGINS [19] or KOVACIC 
[34]. 

First, we restrict the variable I to an e-dependent neighborhood of the resonant 
value I = Ir by letting 

I=I~+~, ~ [ -  ~o,~o], 

with t/o > 0 to be determined later. In the resonance band 

N,/; = {(x, I, 4))e ~ l I  e [ I ,  - x/el/o, L + w/~t]o] } (3.35) 

we can Taylor-expand the right-hand side of (1.2) to obtain the standard form 

2 = JDx[Ho(x ,  I ,)  + x~eDxHo(x, I,)tl + e( �89 I,)tl 2 

+ Hi (x ,  I ,  qS; 0))] + (9(e3/2), (3.36) 

0 = -- ~ D ~ H I ( X ,  I,, ~; O) + (9(8), 

= DIHo(x ,  I ,)  + ~ D ~ H o ( x ,  I,)tl + (9(8). 

We now analyze this standard form on the phase space 

c 11( 2 x [ - ~o, ~o] x S 1, (3.37) 

to obtain information about the original system (2.1) near I = I,. Any object in the 
standard form for 8 4= 0 has its counterpart in system (2.1), which can be found 
through the inverse of the C ~ map 

~: ~ - - , ~ ,  
(3.38) 

(x,,, r ~ ,  @. 

To avoid confusion between the two systems, we use a hat (^) when referring to 
objects computed or defined for the standard form. 

First note that for e > 0 the system (3.36) is Hamiltonian on the space ( ) ,  &) 
with 

1 
(5 = dx a A dx z + - -  dqb A dr 1 

and with the corresponding Hamiltonian 

_O(x, ~, ~; v/~) = H(x, L + ~,I, ~; ~) = no(x, L) + ~f~2q~(x, ,, ~; ~f~). (3.39) 
Note that in (3.39) the function 

/~I(X, ~, (~; ~) DaHo(x,  I , )q + ~ 1 2 = [~DzHo(x ,  i~)//2 + Hi (x ,  I ,  qS; 0)] + (P(e) 

is only in C ~- a, and accordingly, the right-hand side of (3.36) is only in C ~- 2. For  
e > 0 we can define the energy surface with energy h for the standard form (3.36) as 

/ ~ ( h )  = {(x, t/, ~b) e ~lfl(x, n, q~; ,~) = hi. 
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Equations (3.36) can be considered as an (9(x/~) perturbation of the system 

2 = JDxHo(x, It), 

0 = 0, (3.40) 

d) = DzHo(x, It), 

which is not Hamiltonian, but is integrable with the two independent integrals 
Ho(x, It) and 7. Therefore, for a given h it makes sense to define a (quasi-) energy 
surface for system (3.40) in the form 

/~o(h) -- {(x, 7, q~) e ~lHo(x,  It) -- ffI (x, q, (o; O) -- h }. 

This hypersurface relates in the same way to Eft(h) as Eo(h) to E~(h) in the previous 

sections. One also finds that/~o(/~o) = s~  u lYo (see (3.41) below), by analogy with 
the previous sections. 

Based on hypothesis (HI), for system (3.40) (or (3.36),=0) we again have 
a normally hyperbolic invariant two-manifold of equilibria given by 

sgo={(x ,  7 , 0 ) @ ~ l x = ~ Y ~  (3.41) 

which is a graph over the annulus 

= [ -  70, 70] xS  1. 

Furthermore, under hypothesis (HI') ~r has two three-dimensional homoclinic 
manifolds lYg and l~o  which contain trajectories of the form 

( ) ))o-+ (t, 7, ~bo) = xh+-(t, Ir) ,7,0o+~DxHo(xh+-(z,I~),I~)dz.  (3.42) 
0 

Again, for e > 0, (3.36) has a normally hyperbolic manifold s~ (x/e, Cr-2)-close to 
s~ ,  given by the embedding 

O=: 
(3.43) 

(7, r ~(2=(7, r 7, 4)) = (x~ + e21(x~et], ~o; ~ ) ,  7, ~b). 

Also, (s~, ~'*c5) is a C ~-2 symplectic manifold with 

(' ) = + o(=) d e  aT. 

As in the case of hypothesis (H2b), we can define the restricted Hamiltonian 

J~  = / 4 1 ~  = ~'*/4, (3.44) 

which generates the restricted Hamiltonian flow on s~ satisfying 
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Here the reduced Hamiltonian ~ :  A ~  IR takes the form 

d4~(t/, 4)) = �89 + HI(Y~ I~, 4); 0), (3.45) 

with m(I,) defined as in hypothesis (H2a). ~ is related to the restricted Hamil- 
tonian 2/~ through 

with 

~ = ho + e ~  + (~(~3/~), 

ho = Ho(2~ I~). 

(3.46) 

I - It, 4)), 
we can use the relation between .9~ and ~ to find an orbit 7, c d~ in the resonance 

band of the original system (1.2) such that b~ o g [  1(7~) and 9o are (x/~, C r- 2)-close 
in/1. 

Introducing the tubular set 

G = {(x,,, 4))~ ~l lx  - ~ ~  _-< ~,(~, 4)) ~ d}, 

one can redo the estimates of Section 2 for system (3.36) by substituting 1/for I, and 
r - 2 for r in all the statements and proofs. Therefore, our main construction of 
a local map L) to track trajectories inside Co(~) and a global map d~ to follow them 
outside 0~(~) holds without modification. 

As in Section 3.1, we define the nth order energy-difference function 
A"~r162 A ~ IR as 

A'J47(4)) = ~@(~, 4) + nA4)) - Y?(~, 4)) 

= H~(2~ L, 4) + hA4); O) - H~(f~ L, 4); 0). (3.48) 

Note that A%@ does not depend on tl; hence the corresponding zero sets 

?o_ = 0, ?"- { (~ ,4 ) )ed lA '~(4) )  0}, ^" = = -- V+ ~'(12"_), n > 1, 
(3.49) 

2L {0/, 4)) e VLIDoA'~(4) )  4: 0}, ^" = = z +  ~"(2~) ,  n_>_l, 

generically consist of lines 4) = const, in the annulus ~ We note that the rotation 
map 

~ : d ~ 2 ,  
(3.50) 

(~, 4))~(~, 4) + a4)) 

(3.47) 

Note that the reduced Hamiltonian of (3.45) is always the sum of kinetic and 
potential energy-type terms. Any internal orbit 9o ~ A of o@ (defined in analogy 
with Definition 2.1) gives rise to an internal orbit ~ c s~7~ such that 9o and 011(9~) 
are (x/e, Cr-2)-close in ~ Also, defining the map 

b~:A~X, 
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has no explicit q-dependence either. As in (3.6), for any internal orbit ~ ~ i f  of ~ we 
define the pulse number 

N ( ~ ) = m i n { n > _ l l ~ k _ n ~ = O , k = O  . . . . .  n -- 1, 2"_ ~ ~}. (3.51) 

Referring to the discussion in Remark 3.1, we also introduce the resonant pulse 
number 

N R ( ~ ) = m i n { n >  l l ~ ' k _ n ~ = O , k = O , . . . , n - - l , ~ ' " = - - . 4 } .  (3.52) 

Using NR we shall be able to show the existence of N-pulse orbits for cases when 
the quotient of the phase shift and 2re is k/N with some integer k. This generically 
occurs on a dense set of the space of the system parameters and causes the pulse 
number N(~) to be undefined for an open set of internal orbits. 

We directly formulate our results for jumping N-pulse orbits in the system (1.2). 
(This of course includes the case of no jumping at all, i.e., when all pulses are made 
around the same unperturbed homoclinic structure.) The jump sequencej(ff)  of an 
N-pulse orbit y~ is defined the same way as in Definition 3.2 (note that in the 
context of resonance bands the point b_ in Definition 3.2 always lies on the 
resonant circle of fixed points). Let us suppose that for an internal orbit ~ of the 
reduced Hamiltonian ~/2 either N(~) -- N or NR(~) = N. In either case, we define 

�9 . + A N 

the positive and negatwe stgn sequences, { X; (7)}k = ~ , of ~ by analogy with Definition 
3.3: 

g~-(?) +1, ZL~(~) asign( A k ~  ^ + = = I?)Zk(7), k = l , . . . , N - 1 ,  
Zk-(~) + ^ (3.53) 

=--Zk(7) ,  k = l  . . . . .  N - l ,  

with a defined as in (3.33). Finally, we require the two phase shifts on Wo and 
~ +  

Wo to be equal at the action value I = L, i.e., 

+co +co 

(H3') Aq$= ~ DsHo(xh+(t ,L),L)dt  - ~ D,Ho(Xh-(t ,L),I ,)dt .  
- co  - co  

This requirement is weaker than (H3) in that it is restricted to the resonant value of 
I. The assumptions of the following theorem are given in terms of the quantities 
defined for the standard form (3.36), but the results are stated directly in terms of 
the dynamics of (2.1). 

Theorem 3.4. Assume that hypotheses (HI'), (H2a), and (H3') hold. Suppose that for 
an internal orbit 4o c A of the reduced Hamiltonian J f  

(A1) N - N(~o ) is defined, 
(A2) Let b_ ~ 2, N _ ~7o and 1)+ = ~N(~)_). Assume that the orbit ~ ~ A of the 

reduced Hamiltonian ~ which contains b+ is an internal orbit with 

Then there exists ~o > 0 such that for 0 < e < eo, 
(i) d ,  has two N-pulse homoclinic orbits, y~+ and y~- ,  which are positively 

asymptotic to an internal orbit 7 + c ~r and negatively asymptotic to an 
internal orbit 7[ c 4 .  Moreover, b, o g51 (TJ ) and 4o are ( V/ee, C ' -  2)-close, 

and b, og; l (7  +) and ~+ are (x//~, C~ I f  ~; + is periodic, this latter 
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,% 

-7?o( 

Fig. 13. The geometry of Theorem 5.1 for N = 3. 

statement can be strengthened by replacing C O with C r-2. Furthermore, if 
^ - -  A +  

70 = 70 , then 72 = 7 ) .  
(ii) y~+ and y2- lie in the intersection of WU(7~ -) and WS(7?), which is 

transversal within the energy surface E~(h) with h = HI 7~ + = HI 72. 
(iii) The jump sequences of y2 + and Y2- are j(y~+) = Z+(~o ) and j ( y ~ - )  = 

)~- (9o ), respectively. 
Suppose now that assumption (At) is replaced with 

(AI') g =- NR(~o ) is defined. 
Then statements (i) (iii) still hold with the exception of the transversality of the 
N-pulse orbits. 

Proof. We first apply Theorem 3.1 to the standard form (3.36) then we relate back 
the results on system (3.36) to system (2.1) using the map N~. Note that objects of 

the standard form which are (,,f~, C1)-close in ~ are mapped under N [  1 into 

objects of system (1.2) which are (x/~, C~)-close in 5~. From this the statements of 
Theorem 3.4 follow. [] 

We illustrate the statements of Theorem 3.4 in Fig. 13. 

Remark 3.5. Notice in the statement of Theorem 3.4 that we can locate the orbit 

7[ only with (9(x/e) precision. However, the I coordinates of the corresponding 
points of 72 and the approximating curve 9~ o b[ 1 (~o) are only (9(e) apart, as one 
can see from the definition of b~ (see (3.47)). As a result, we can guarantee that 72 
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indeed falls in the (9(,~/[)-thick resonance band. A similar statement holds for the 
approximation of ?~+ by g= o b[ ~ ( ~ ) .  Finally, for the same reason, the deviation of 
an N-pulse orbit y~ from the corresponding shadowing set Y~ is actually only (9(e) 

in the I coordinate direction; hence y~ also lies entirely in the resonance band Nil. 

Remark 3.6. By analogy with Remark 3.3, the N-pulse orbits guaranteed by 
Theorem 3.4 intersect a one-parameter family of unstable fibers whose basepoints 
form the N-take-offcurve B ~ c de. The N-take-off curve now has the property u,~ 

1 N that b~og[ (B,,~) is (~/e, C1)-close to the set 

2_ u = {~ 6 2_' 13 ~: N(~) = N, ~ ~ 2~ ,  ~ e 7n  2 ~ - }. (3.54) 

- 1  N 1)_ Likewise, the N-landing curve B N=,= has the property that be ~ g= (B~,J is ( ~ ,  C 
close to the set 

2+ u = ~N(2_u). (3.55) 

Recall that the take-off and landing curves depend smoothly on the system 
parameters. We can again define the take-off point p~ and the landing point q= of 
y~+- as 

p~ = BUu,=C~72 -, q~ = B~=c~?~ +. (3.56) 

4. The energy-phase method: dissipative perturbations 

In this section we show how the energy-phase method extends to the case which 
includes the non-Hamiltonian perturbation terms in system (1.2). We work in the 
context of resonance bands (hypothesis (H2a)), since most dissipative applications, 
as well as our beam example, fall in this category. The same types of results can be 
formulated for the case of a two-dimensional resonant manifold (hypothesis (H2b)). 
Also, we assume that hypotheses (HI') of Section 3.2, (H2a) of Section 1.3, and 
(H3') of Section 3.3 hold, but the results we derive also hold under hypothesis (H1) 
with obvious modifications. 

As in Section 3.3, we apply the transformation (3.38) and a Taylor expansion to 
(1.2) to obtain the dissipative standard form 

2 = JDx[Ho(x, It) + ~eDtHo(x,  Ir)~l 

+ e(�89 Ir)~l 2 + Hi(x,  It, q~; 0))] + cOx(X, I,, r 0) + eH+D(e3/z), 

(4.1) 
fl = x / ~ [ -  D cH I ( x, I~, 4 ; O) + g,(x, I~, q~; 0)3 + (gH + D(e), 

= DIHo(x, Ir) + ~ D 2 H o ( X ,  Ir)q + egr I~, 4; O) + OH(e) + (9D(%/~). 

Note that we separate the Hamiltonian terms in the "tail" of the standard form 
(with subscript "H") from the dissipative terms (with subscript "D"). The reason 
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for not listing certain Hamiltonian terms explicitly is that they derive from the (9(e) 
tail of the Hamiltonian/~ through the symplectic form e3 (see Section 3.3). We note 

that (4.1) is again an ( 9 ( ~ )  perturbation of the integrable system (3.40). 

4.1. Tracking multi-pulse solutions 

The main idea of our construction in the dissipative case is the following. We 
again follow perturbed solutions which lie in the unstable manifolds of invariant 
sets contained in the slow manifold sr These solutions again leave the neighbor- 
hood Ua(~) of the slow manifold and then return to the same neighborhood, 
possibly many times. Since our basic normal form (2.6) near the slow manifold 
s~ does not assume that the perturbation is purely Hamiltonian, we can still use 
(2.6) to obtain estimates for the change of the t/ and ~b coordinates, while the 
solutions passing near s~ stay inside the tube U~(~. More specifically, if the 
minimal distance condition (2.8) of Lemma 2.3 holds for a solution w~(t) at the entry 
point p~ ~ 0~(~), and the "entry" energy/~ =/~p~ obeys the maximal distance condi- 

tion [/~-/~0]<~ce with ho=H(2~ (see Lemma 2.5), then the map 

(qp,, ~bq~)~ (t/p~, Iq~) is again locally (~v/e, C~)-close to the identity map of A. 
(Recall that q~ denotes the point where w~(t) exits from U~(~).) Similarly, the map 
relating (qq~, qSq~) to the (t/, qS) coordinates of the next intersection point of w~(t) with 

0a(~) is (x/e, C~)-close to the rotation map ~ defined in (3.50). This time, however, 
tracking the 01, qS) coordinates of the solution w~(t) is not enough to establish its 
intersection with W~oo(~). The reason is that the Hamil tonian/4 is not constant 
on %(t) any more. As a result, we do not know a priori what energy/~ to choose in 
order to ensure that the Poincar6 section ~(/~) ~ E~(/~)c~ U~) is intersected by w~(t) 
upon its nth return. Another problem is that we do not know a priori the location 
of the base points of the stable fibers which intersect this particular Poincar6 
section, the reason being again that the energy/4 is not conserved on stable fibers 
of the dissipative system. 

4.2. Energy estimates 

Based on the above argument, our strategy is as follows. We consider a solution 
w~(t) which intersects an unstable fiberf~U(bo) c W~c(s~) at a point qo e 0Uo(~)and 
hence backward asymptotes to the slow manifold s~. We derive estimates for the 
change of energy A/~ along w~(t) as it leaves and reenters the tube 0~(~) n times, such 
that between two pulses it passes near the slow manifold ~ outside a minimal 
distance from s~. We let p, e U~(~) be the intersection point of w~(t) with the tube 

A 

U~(~) upon its nth return. We also let b, be the basepoint of the stable fiber 
W s A f~S(b,) c 1oc(~) which intersects the tube Ua(~) in a point s, with the same (t/, ~b) 

coordinates as those of p,. We then compare the two energies/4(p,) and _0(s,). If, 
for some appropriate choice of the basepoint bo, /~(p,)  =/~(s , )  =/~ holds, then 
both p, and sn lie on the same two-dimensional Poincar~ section ^~ ^ Z~ (h). Since both 
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^ A 

of these points have the same (t/, (b) coordinates and, by Lemma 2.4, S~(h) is 
a graph over the annulus A, we conclude that the solution w,(t) intersects the stable 
fiberf~(b,) and hence forward asymptotes to the slow manifold. If, however, we find 
that /4(p , )  4=/4(s,), then we show that Ilq(p,) - / t ( s , ) ]  = (9(0.Then, using Lem- 
mas 2.3 and 2.5, we track the solution we(t) as it passes near s~= to return for the 
(n + 1)st time, when we repeat the above energy measurement again. 

We start by estimating the energy/~(p=) with the point p, defined as above for 
the solution w=(t). 

Lemma 4.1. Let w=(t) = (x(t), tl(t), O(t)) be a solution of (4.1) which intersects an 
unstable fiber fU(bo) at a point qo ~ O,(J~(=). Assume that w=(t) returns and enters U~(,) 
n times at the points Pa , . .  �9 P. ~ OUa(o such that for k = 1 . . . .  , n - 1, 

d(pk, W~o~(S~)) > Kx/~ (4.2) 

for some 0 < K < O. Then, for any small 6o > O, there exists eo > 0 such that for all 
0 <~; <8o,  

[ 1 ffI(p,) = Ho(,2~ I~) + ~ YfO1bo, Obo) + ~ (DHo, g)l / ( t )dt  
i = l  - c o  

+ (9(6oe, e11/1~ (4.3) 

Here the unperturbed solution y~(t) of(1.2)==o is a heteroclinic orbit between the two 
points (Y~ 0, (bbo + (i -- 1)A(~b)) and ()~o(i,), 0, qSb o + iA(~b)). Furthermore, 
H(p,)  is a C 1 function in the variables (tlbo, 4bo)" 

Proof. We start by splitting the quantity /4(p,) into parts which we estimate 
separately. We can write 

/~(p,) =/4(bo)  + E/t(qo) - / 4 ( b o ) ]  + ~ E/~(pi) - / 4 ( q i -  ~)] 
i=1 

n - 1  
+ ~ [-/4(q~)-/~(p~)], (4.4) 

i = l  
A 

where the first sum is the total change of energy incurred outside Ua(=~ and the 
second sum is the total change of energy during local passages within U0(=). 

Considering the first term on the right-hand side of (4.4), we can use the 
expressions (3.44) and (3.46) to obtain 

H(bo) = Ho(x~ It) + e2,~(tlbo, Obo) + (9(~3/2) �9 (4.5) 

To estimate the magnitude of the second term on the right-hand side of (4.4) we 
define the point qh to be the intersection of Ua(~) with the Hamiltonianfiberf=~(bh) 
(i.e., a fiber for 9 = 0) with (t/b,, qSb,) = (t/b o, q~bo)- Using the fact that H(qh) = H(bh) 
and applying the mean value inequality, we have 

]/4(qo) --/ l(bo)] _-< [/~(qo) -/~(qh)[ + ]/4(bh) --/4(bo)J < ]DHtp*lqo -- qhl + e~e 

(4.6) 
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with the point p* lying on the connecting qo and qh. (To obtain the estimate on the 
second term on the right-hand side we used the fact that /~ is continuous and that 

is deformed by an amount of (9(0 under the effect of the dissipative perturba- 
tion, so bh and bo are (9(e) close.) Looking at the form of /4  defined in (3.39) and 

using the fact that [DxHo(x, It, qS)[ = C(xfe ) within U~(~), we obtain from (4.6) that 

[/l(qo) - / t ( b o ) [  < [Dx[tlp*lxqo - Xq~[ + [DnH[p, ltlq o - -  I lqh[ 

q- [Doffllp*l~)qo -- ~q~l + c1~ 

< c 2 ~ e  + c3e~e + c , ~ e e  + c,e < cse 3/2, (4.7) 

for appropriate constants ci. (Here we used the fact that q0 and qh are (9(e)-close in 
the (x, I, qS) coordinates since the unstable fibers are C r functions of e.) 

We now estimate the third term on the right-hand side of (4.4). We select some 
small constant 6o > 0 and choose e > 0 small enough, so that the tube 0ao contains 
0~(~). Let qO e 80~o denote the next intersection of we(t) with the boundary of 
U~o after it leaves U~(~) at the point qi. Similarly, let pO e 0U~ o denote the intersec- 
tion of we(t) with the boundary of U0o before it reaches 0~(,) at the point Pi. Let us 
define the intersection times T~2 ,, Ti~ T~ + , and T~ ~ through the equations 

w~(Ti--1)=qi_,,  w~(Ti~176 w~(Ti~ ~ w~(ri+)=pi (4.8) 

for i = 0 , . . . ,  n. We then have 

T i~ . T i 0 + 

i = 1 i = 1 T~Z 1 i = I Ti~ 

Ti  + 

+ ~ ~ ~I(w~(t))dt. (4.9) 
i = 1 T i  ~ + 

To estimate these integrals, we first simplify the integrands by noting that 

/~(w~(t)) -- [ (D~H, sgx) + DnffI(x/'~gx + (~(e3/2)) ~- Dofflegc]lw,(t ) 

= e(DHo(x, Ir), g(x, I~, ~b; O) >l~,(t) + (9(e3/2), (4.10) 

where we used the expression for /~  from (3.39). We also need the estimate 

4 1 60 +l 6 l o g  6o 
5Z ~ c 7 ~  < [Ti+ -- T'~ < C7N//~ ' (4.11) 

which follows, for e, 6o sufficiently small, by standard Gronwall estimates from the 
"almost linear" local normal form (2.6). 

Since DHo(2~ I~) = 0, the same argument that led to (2.19) shows that 

DHo(x, L) = ffI(x)(x -- x~ (4.12) 

where M is a 2 x 4 matrix of C ~- ~ functions of x, and its norm obeys the estimate 
l[ M It < K ~  in a fixed neighborhood of ~ containing 00o. We use a linear change 
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of variables to pass from (Xl, X2) to the coordinates (y~, Y2) such that y~ = 0 and 
Yz = 0 are the stable and unstable subspaces, respectively, for the linearized flow 
along s~ .  From the local normal form (2.6) we obtain that, in a fixed small 
neighborhood of s{, the time evolution of the norms of these new coordinates 
obeys the estimates 

lyl( t ) /< ly lole  6~'('-*~ lyi(t)l < ly20le -4z(' ,o)/,, (4.13) 

where Y~o and Y2o are the values of y~ and Yz at t = to. 
Now from (4.10)-(4.13) we see that the last sum of integrals in (4.9) can be 

estimated as 

< i "'+ 
Tt o+ i = 1 T~ ~ 

[ ( DHo( x ,  Ir), g(x, Ir, O, O) )]w~(t)dt -t- (9 (e3/21og ~ e  ) 

6 l o g  6~ F 
C7 ~ 8 

< enKy4Kg ~ (calylole 6a/5 + c9lY20le-4a/5)dt  + Cloe s/4, 
0 

(4.14) 

where Kg is a uniform bound on [g[ in a neighborhood of ~o.  Since the solution of 
w~(t) is assumed to intersect Uo(~) at the times Ti + , we can use (4.11) and (4.13) to 
obtain the "backward" estimates 

1 41 '50 
[YI0[ = [Yl(Ti~ < cll  g-~e / , [Y2o[ -[y2(Ti~ < q igo ,  (4.15) 

where the second inequality follows from the definition of the intersection time 
Ti ~ Then (4.14) and (4.15) imply that, for small but fixed go > 0 and e > 0 
sufficiently small, the last sum on the right-hand side of (4.9) can be estimated as 

T: . . . .  /36, go ) 
i= 1 Ti ~ 

e p( 24 + 4 ~  -- ~ log + C~oe 5m 

< e(C1381/10 ~- C l 4 g  0 "+- C10e5/4) .  (4.16) 

By reversing time, we can estimate the first sum on the right-hand side of (4.9) in 
a completely analogous way, so it remains to study the second sum. 

Recall from the discussion of Section 4.1 that condition (4.2) ensures that the 
solution w,(t) stays close to a set of unperturbed solutions of the form )i(t) outside 
Uao. Then, using (4.10), we can rewrite the second term in (4.9) as 

T~O + T~O + 

i = 1 Ti~ i = 1 T,~ (4.17) 



N-Pulse Homoclinic Orbits 69 

Note that the integrand in (4.17) does not depend on the coordinate t/, so we can 
replace the solution j)i(t) of the unperturbed dissipative standard form (4.1), = o with 
the solution y~(t) of the original unperturbed system (1.2)~=o with the properties 
described in the statement of this lemma. Also note that, by the exponential decay 
of DHo on the solutions y~(t) for t --, _+ 0% one can replace the definite integral of 
(DHo(x, L), 9(x, I~, 4); 0))[y,(0 with an improper integral from - oc to + oe plus 
an error term of order (9(6o). Hence we obtain 

TiO + + co 

i = 1  T?-~ i = 1  - c o  

(DHo (x, I~), 9(x, I~, 4);0))[/(t)dt 

+ (9(e(5o) + (9(e3/2). (4.18) 

Then, from (4.16) along with an analogous estimate for the first sum in (4.9), and 
from (4.18), we obtain that 

n § 

[ I (P i )  - - / ~ ( q / - 1 )  = e E S 
i = 1  i = 1  - c o  

(DHo(x, L), g(x, L,  4); O) )ly,(t)dt + (9(~6o, e 1 1 / 1 0 ) ,  

(4.19) 

which gives an estimate for the third term on the right-hand side of (4.4). 
To complete the proof of the lemma, we now estimate the last term on the 

right-hand side of (4.4). Using the local normal form (2,6), we obtain that the time 
t~ = T~ - T~ + that the solution spends in the tube 0~(~) during its ith passage near 
the slow manifold is again uniformly bounded by a constant as e ~ 0 (see (2.16) and 
condition (4.2)). Then, using (4.10) and (4.12), we can write 

n 1 n - 1  Ti-  

_O(q,) - tq(p~) < Z ~ [f-I(w}t))ldt < (n - a)eK;lKot~ + c14e 3/z < c,se 3/2. 
i = i  i = I  T~ + 

(4.20) 

But (4.4), (4.5), (4.7), (4.19), and (4.20) together prove the first statement of the 
lemma. The differentiability of/~(p,)  with respect to t/b o and 4)bo follows from the 
differentiability of the local and global tracking maps (see Section 4.1). [] 

As we outlined at the beginning of Section 4.2, we now give an estimate for the 
energy of the intersection of the stable fiber j~(b,) with the set 8/)~(E). 

Lemma 4.2. Let w}  t) be a solution of(4.1) with the same properties as in Lemma 4.1. 
Let bn ~ s~ be the base point of the stable fiber f~(b,), such that for the point 
s, =f~(b,)~?O~(~), (t/s~ 4)s.) = (t/p., 4)p,). Then, for (5o > 0 small enough, and for all 

~ 8 0 ,  

;l(s,) = Ho(2~ L) + e:,~Olbo, 4)bo + nA4)) + (9(~3/2), (4.21) 

where I~I (s,) is a C 1 function of the variables (t/bo, 4)bo)" 
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Proof. An estimate analogous to (4.7) immediately gives 

/t(s,) = /4(b , )  + (9(•3/2). (4.22) 

Then, from our discussion in Section 4.1 and from (3.44) and (3.46), we obtain that 

/)(b.) = d~(t/b., qSb.) : Yt~(t/bo + (9(x/~), ~bb o + nAq~ + (9(x/~)) 

= Ho(~~ I,) + eogP(tlb o, ~bo + nA~b) + (9(83/2), 

as claimed. The differentiability of/~(s,) follows the same way as in the previous 
lemma. []  

From Lemmas 4.1 and 4.2 we obtain the following result: 

Proposition 4.3. Let w~(t) be a solution of(4.1) with the same properties as in Lemma 
4.1, and let Olbo, dPbo) be a transverse zero of the function 

+oo 

A"JC~(t/, q~) -- i ~ (DHo,g}l / ( t )dt  (4.23) 
i = l  --oo 

with yi(t) defined as in Lemma 4.1, and A '2~  defined as in (3.48). Then, for any 
5o > O, there exists eo > 0 such that for all 0 < e < Co, system (4.1) has an n-pulse 

. A n orbzt y~ homoclinic to the manifold s~. The orbit 3~' intersects an unstable fiber of the 
form f"(bo + (9(60)) and a stable fiber of theformf~S(b, + (9(60)). 

Proof. As we discussed earlier, the existence of an orbit ))~ with the properties 
above follows from the condition (4.2) if the equation /~(p , )= /~(s , )  admits 
a solution for all sufficiently small e > 0. From Lemmas 4.1 and 4.2 we directly 
obtain that this condition is equivalent to the solvability of the equation 

+oo 

A"JP(t/, qS) - ~, ~ (DHo,g}ly,(odt + gohl( t /bo , (bb0 , g) + e l / l ~  , q~b0; 8) = 0, 
i=1 -co 

(4.24) 

where A"3q~(q~) is defined in (3.48), and hi and h2 are C 1 functions of (t/bo, qbbo) and 
C o functions ore. By assumption, (t/b0, q~bo) satisfies this equation for go = e = 0, so 
the implicit function theorem guarantees a nearby solution for 6o > 0 and e = 0. If 
go is small enough and fixed, then this nearby solution is also transverse. Therefore, 
a second application of the implicit function theorem guarantees a solution for 
(4.24) for e > 0 small enough. [] 

4.3. The existence of  N-pulse orbits 

We have seen that under certain assumptions, one can establish the existence of 
multi-pulse orbits homoclinic to ~ in the dissipative system (4.1). This directly 
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implies the presence of similar orbits homoclinic to d ,  in the original system (1.2). 
Proposition 4.3 provides us with a dissipative version of the energy-difference 
function we used earlier. So far, however, our existence result depends on detailed 
knowledge of a perturbed solution w~(t). In particular, we require information of 
the form (4.2) about the local passages of w~(t) near the slow manifold s~. We now 
remove this condition and give expressions for the pulse numbers of existing 
homoclinic orbits depending on their limit sets. We also identify the asymptotics 
and the jump sequences of these homoclinic orbits. (Note that so far we have left 
this question open by assuming that the unperturbed solutions y~(t), which 
"shadow" the n-pulse orbit, are given.) 

To study the asymptotic behavior of orbits homoclinic to the slow manifold s~, 
we first note that on s~ the dynamics is now described by the dissipative restricted 
system 

0 = , , /~E-D+~(r / ,  r  4- gd2~ It, qS; 0)] 

+ ~Dzgx(2~ I ,  r O)r/+ Co(~ 3/2) + (gu(e), 
(4.25) 

q~ = , ~ D , ~ ( t / ,  q~) 4- egr176 I~, r 0) 4- (Po(e 3/2) 4- CH(e). 

The (gn(e) terms in (4.25) only smoothly deform the nonsingular level curves of 

the reduced Hamiltonian ~ by an amount of (9(x/~), but do not change the 
asymptotic behavior of the corresponding solutions. Therefore, to understand the 
effect of dissipation on nonsingular Hamiltonian orbits it suffices to study the 
dissipative reduced system 

O = -- DcJgf(r/, r 4- gi('2~ It, r O) 4- ~Dig , (2~  It, r O)tl, 

= D,12/~(rl, (9) 4- ,~gr176 Ir, ~); 0). 
(4.26) 

Note that we rescaled time by ~ to obtain these equations. In order to obtain 
information about the limit sets of(4.26), we want it to be non-Hamiltonian. This is 
satisfied if 

(H4) Drgi(2~ I~, O; O) + Dcgr176 I~, (a; O) ~ O, 

in which case the relation between the orbits of the dissipative restricted and 
reduced systems is similar to that of Section 3.3: If ~o c ~ is a structurally stable 
orbit of the dissipative reduced system, then for small e the dissipative restricted 

system has an orbit ~ ~ s~ such that 7o and 02-1(~) are (x/~, Cr-2)-close on 
appropriate compact subsets of A. 

It is important to note that the reduced system (4.26) is locally Hamiltonian for 
= 0. This means that, if we change the angular variable r to a variable v E IR and 

if we define the set 

A~o = [ - r /o ,  rio] x C, (4.27) 
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where C ~ R is a suitable compact interval, then (4.26)~=o on AD derives from the 
reduced Hamiltonian 

~D(t/, v) = 242(t/, v) - i g,(X~ , I~, u; O)du. (4.28) 
0 

Here ~ is the same as in (3.45). 

Definition 4.1. We call a non-equilibrium orbit ~; ~ d of the reduced system 
(4.26)~=o an internal orbit if it is structurally stable with respect to locally Hamil- 
tonian perturbations. 

For what follows we assume that 

(H5) For any two unperturbed solutions y~-(t, I,, 4)o) and Yo-(t, L, 4)o) of (1.2)~=o 
with yg- (t, L, 4)~- ) ~ Wg- and Yo (t, L, 4)o ) e Wo for all t ~ 1R and with 

lira Y~ (t, I,, 4)+) = lim Yo (t, I~, 4)o), 
t - -+ - -  O0 t - -+  - -  00  

the following is satisfied: 

-t-cJO §  

(DHo, g)[yUt, l,,4)~)dt = 
- c o  - c o  

(DHo, g)lyg(t, I, ,  (~o) dt. 

Just as in hypothesis (H3), this hypothesis simplifies the formulation of the 
upcoming results and holds for all applications we know of (see Section 1.3). (H5) 
implies that the improper integrals in (4.38) do not depend on which of the two 
unperturbed homoclinic manifolds the particular solution yi(t) belongs to. This 
enables us to remove the implicit assumption in Lemma 4.1 and Proposition 4.3, 
that we know the "shape" (i.e., .the jump sequence) of the solution w~(t). Then, 
letting yi(t) be any of the two unperturbed heteroclinic solutions of system (1.2)~ = o 
connecting the points (~~ It, 4) + (i - 1)A4)) and (~~ It, 4) + iA4)), we de- 
fine the dissipative nth order energy-difference function 

n - - o 0  

A'~D(4)) = A ' ~ ( 4 ) )  - ~ ~ (DHo, g)l/(odt. (4.29) 
i = J .  - - ~ o  

We again define the zero sets 

TT- ~ = 0, V-" = {(~, 4) E AI A " ~ , ( 0 )  = 0}, 9~ = -~"(?-"), 
(4.30) 

2"_ = {(~, 4))~ V_"ID~A"~?,(r 0}, Z ~  = ~ ( 2 ~ ) ,  n >__ 1. 

For any internal orbit ~ of the locally Hamiltonian system (4.26)~= 0 we again 
introduce the pulse number 

N(~?) = min{n > 11 19-k C~ ? = 0, k = 0 . . . . . .  n - 1, 2"_ A~?}. (4.31) 

Definition 4.2. Suppose that for an internal orbit ~7 of the reduced system (4.26)~:o, 
N(~) - N is defined. Then the positive and negative sign sequences {Z +- (~ 1 of 
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are defined as 

+ ^ 

X[(7) = +1,  Zk+i(7)= asign(Ak~lT);gk+(7), k = 1 , . . .  , N -  1, 

Z~-(~))=-;~+(?)), k = l , . . . , N - 1 ,  

with a defined in (3.33). 
Before we formulate our main result for the dissipative case we note that in 

a general dissipative system of the form (1.2) there may be no orbits other than fixed 
points, which are isolated from &{. This observation is related to the fact that for 
non-Hamiltonian perturbations, ~'o usually perturbs into an overflowing or in- 
flowing invariant manifold d ,  whose stable and unstable manifolds are only locally 
invariant. As a result, when we speak about N-pulse orbits in this section, we mean 
orbits which leave and reenter a neighborhood of d~ N-times, and which, before 
the first and after the last pulse, follow orbits in d~ in backward and forward time, 

respectively, as long as these latter orbits stay in the resonance band ~/- (see (3.35)). 
. . . .  N / ~  

This property can most conveniently be described m terms of the stable and 
unstable foliations discussed in Proposition 2.1. 

Definition 4.3. We say that an N-pulse orbit yff of the dissipative system (1.2) 
positively approaches an orbit 7 + c ~ ,  if yff intersects a stable fiber 
f S(q) c W~oc(SJ~) with basepoint q e 7 [ . Similarly, we say that yff negatively ap- 
proaches a slow orbit 7[ ~ d~ if yff intersects an unstable fiber f~"(p) c Wl~c(~4~) 
with base point p ~ 7[- 

An example of an N-pulse orbit positively approaching a slow orbit is shown in 
Fig. 14. 

Theorem 4.4. Assume that hypotheses (HI'), (H2a), (H3'), (H4) and (H5) are satis- 
fied. Suppose that for an internal orbit 7o c fi~ of the reduced system (4.26)~ = o, 

"\\fS(qe) 

Fig. 14. An N-pulse orbit yff positively aproaching 7 +. 
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(A1) N - N(~o ) is defined. 
A - -  A - -  (A2) Let 1)_ e2_uC~7o and b+ = ~N(~)_). Assume that the orbit 70 c A  of 

system (4.26)~=o which contains b+ is an internal orbit with Z~  cg ~ .  
+ 

Then for each of the two jump sequences {Z/-}, there exists eo > 0 such that for 
0 < e < eo, the dissipative system (1.2) has an N-pulse homoclinic orbit y~ with jump 
sequence {X~} which positively approaches a slow orbit 7~ + c d ~  and negatively 
approaches a slow orbit ~2- ~ ~1~. Moreover, the orbits b~og2-1(~ +) and r are 

(x/~e, C~)-close near b_, and b~ o g/1(7~+ ) and ~ are (x//~, C~)-close near b+. 

Proof. In view of our discussion in Section 4.1, Proposition 4.3, and the arguments 
we used to prove the analogous theorems for purely Hamiltonian perturbations, 
we only have to show that under the assumptions of this theorem any solution w~(t) 
lying in the unstable manifold WU(~) of an orbit ?)~ of the dissipative restricted 
system (4.25) satisfies the minimal distance condition (4.2) for k = 1 , . . . ,  n = N, as 
well as the energy-type maximal distance condition in the statement of Lemma 2.5. 
These two conditions ensure that our construction in Section 4.1 for tracking 
dissipative orbits is indeed valid. Then the asymptotic behavior of the multi-pulse 
orbit follows from the fact that the N-take-offand N-landing curves of system (4.1) 

perturb smoothly in the parameter v/~ from the respective curves obtained for 
purely Hamiltonian perturbations. Indeed, the set of all N-pulse orbits positively 
and negatively approach orbits on d~ that intersect BuN and B~, which project 
down to the annulus A close to 2 n_ and 2+ n, respectively (see (3.54), (3.55)). But the 
projections of slow orbits on the annulus A under the map b~ o g[  1 are locally 
C 1-close to the orbits of the system (4.26)~= o. 

To verify the minimal and maximal distance conditions, we first note that for 
any k < N(~)o ), we have Ako~C~D I ~o + 0, by the definition of the pulse number. Since 
the closure of ~o is compact and A k ~D is continuous, this implies the existence of 
hi, h 2 > 0 such that 

hl<lAk~Dlfol<h2, k = l  . . . .  , N - 1 .  (4.32) 

Assume now that the condition (4.2) holds for some n - 1 < N - 1 with n > 1. 
Then, by (4.3) and (4.21), we obtain that for e > 0 sufficiently small 

I/4(p.) - /4(s , ) l  > �89 (4.33) 

Then (4.12) and the mean value inequality applied to (4.33) imply 

hl ,,/~. (4,34) 

If s, is the point in Wl~oo(S~) which is the closest to p,, then (4.34) shows that (4.2) 
also holds for n. This, by induction, implies that the minimal-distance condition 
(4.2) holds for all k = 1 , . . . ,  N - 1 for any solution w~(t) in Wu(~). I f s ,  is not the 
closest point to p, in W~oo(S~), then the actual closest point r, e W~oo(S~) must 

satisfy [t/r. - t/s~ + [~br~ - ~bs.[ < K*w/~; otherwise it would be farther away from 
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p, than s,. Combining this fact with the same type of fiber-argument leading to 
(4.6), we obtain that I/4(s,) - /4 ( r , ) l  < c~6~ 3/2. This, together with (4.33), implies 
that 

] - -  f f I ( rn) [  h i  In(p,)  - / t ( r , ) l  = / t(p,)  - /~(s , ) l  - I/t(s,) > ~ e - cl6e a/2 > ~ e 

(4.35) 

for e > 0 sufficiently small. The same mean value inequality that we applied to the 
left-hand side of (4.33) now gives 

hi 
[Pn -- r,I > ~ X/~, (4.36) 

and the same induction argument gives that the required minimal distance condi- 
tion (4.2) holds for all k = 1 . . . .  , N - 1. The maximal distance condition required 
in Lemma 2.5 follows from (4.3), which shows that 

[/~(P,) -/~o1 < 2eh2 (4.37) 

with/~o -- Ho(x~ I~). This concludes the proof of the theorem. [] 

Remark 4.1. In applications it is sometimes easier to use an equivalent formula for 
the second term in the expression for A"~D(qS) in (4.29). Using Green's theorem we 
can write this term as 

n +oo 

~ <D~H,g)l/(t)dt= 
i = 1  - c o  

+ao 

~, ~ ((--J2, O, 0), g(x, It, ~); O))]y~(t)dt 
i = l  - m  

i = 1  yi 

I ~r I V~'o~(x, Ir, O;O)dxldx2 
i= 1 A~ 

+ ~ gi(x(~), I,, 4; 0)dq~], 
OA~ 

where Ai denotes the region in the (xl, x2) plane which is enclosed by the 
x-component of the solution y~(t), and the constant a (defined in (3.33)) enters the 
formula to ensure the correct orientation on 0Ai for the application of Green's 
theorem. The integral of gx'gx on Ai is independent of i, so we can, say, choose 
Ai -- Ar = Int(5~ + (L)) (see (3.32)). In that case (4.29) takes the form 

A"~D(qS) = A"~'Cg~(r -- na S Vx.gx(x, I~, c); O)dxldx2 
Ar 

- ~ S g,(x(ff)),Ir,r (4.38) 
i = l  OA, 
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Some applications we mentioned earlier arise in modal truncations of systems with 
mode-independent damping (see, e.g., our beam example to be studied in Section 5). 
In such systems the function gi usually has no expllicit x- and qS-dependetice, so it is 
constant on unperturbed orbits. In such cases (4.38) further simplifies to 

A"~D(~b) = An~(~b) - ntr I V~-g~(x, I~, q~; O)dx~ dx2 - ngr(I~; 0)AqS. (4.39) 
A, 

The advantage of this formulation is that one does not have to solve the unper- 
turbed integrable problem explicitly to obtain the solutions y~(t). 

4.4. Codimension-one N-pulse orbits 

In the previous sections we proved the existence of N-pulse orbits based on 
pulse numbers for non-equilibrium orbits which approximated the e-limit sets of 
the N-pulse orbits. There are, however, important types of homoclinic orbits which 
emanate from and possibly return to equilibria. Such orbits are, e.g., orbits 
homoclinic to a saddle-center in the purely Hamiltonian case and Silnikov-type 
orbits homoclinic to a saddle-focus in the dissipative case. In their vicinities both of 
these structures may create chaotic invariant sets, which survive small changes in 
the system parameters even though the underlying homoclinic connection generi- 
cally breaks (because these homoclinic orbits are not transverse). We now extend 
the energy-phase method to such cases: We give conditions for the existence of 
N-pulse orbits negatively asymptotic to a fixed point on the slow manifold. We 
again restrict the discussion to resonance bands subject to Hamiltonian and 
dissipative perturbations so that we can apply the results directly to our beam 
example in the next section. Similar results hold for all other cases considered earlier. 

Theorem 4.5. Let hypotheses (HI'), (H2a), (H3'), (H4), and (H5) be satisfied for 
system (1.2) which is now assumed to depend on a vector # ~ IR p of system parameters. 
Assume further that 

(A1) M c W is an open set of lR p such that for any # ~ M the system (4226)~=o 
has a nondegenerate equilibrium Co(#) = (t/to(#), ~o(#))  ~ A (i.e., 

2 ^ JD~,,v~24~D [ ~o(#) has no zero eigenvalues). 
(A2) For some integer N >__ 1, Co(#o) e 2-N with 2 s  defined in (4.30). 
(A3) D, An~D(~b~o(#); #)1#o =~ 0 ~ ]R p with AN :~D defined in (4.29). 
Then, for any small (~o > O, there exists eo > 0 and for 0 < e < eo there exists 

a codimension-one surface C ;  ~ M x IR near (go, O) such that for any (#, e) E C~v the 
following hold: 

(i) d ,  has an N-pulse homoclinic orbit y~+ which is negatively asymptotic to an 

equilibrium c~(#) ~ d~ such that b~ o g[  1 (c~(#)) and Co(#o) are (9(x~e)-cIose in 
A. Furthermore, y N+ positively approaches a slow orbit 7~ + such that 

N I A  b~og[l(7~ +) and ~ (Co(go)) are O((~o)-close. 
(ii) For the jump sequence y~+, j(y~+ ) = Z + (Co(#o)), where Z + (Co(#o)) is ob- 

tained by substituting Co(#o)for ~ and using the integer N from (A2) in 
Definition 4.2. 
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There also exists a codimension-one surface C~ ~ M x IR near (#o, O) yielding 
homocIinic orbits y~ -  with properties similar to those of yff+, but with the jump 
sequence j ( y ~ -  ) = )~- (Co(#o))- 

Proof. Let ~(#) be the equilibrium of the dissipative restricted system which 
perturbs from ~o(#o). In view of our earlier results, we only have to show that there 
exists a codimension-one surface C~ (see above) in the space of the parameters 

-I(BN ~ for parameter values taken from C/~ where (#, ~) such that ~(#) e be ~ g~ , u,~, 
B ~ is the N-take-off curve of the system (1.2) described in Theorem 4.4. Since U , g  

b~ o g2 I ( B ~ )  is (x/~, C 1)-close to a subset ~_N of 2 N (see Remark 3.6), in a neighbor- 
. . -  l e B  N hood of the point ~(#), b~o y, t u,~) satisfies 

#) + r  #, . f / )  = 0, 

with some C ' - 2  function J/Y. Hence, the requirement that ~(#) e b~ o g j  a (B~)  can 
be expressed as 

#) + = 0. 

Note that by assumption (A2), this equation is satisfied by (#, ~) = (#o, 0) for all 
#o ~ M. But then, using assumption (A3) we conclude from the implicit function 
theorem the local existence of the hypersurface C + within the set M x IR of the 
parameter space. The existence of C~ follows in the same way. []  

5. An example: N-pulse orbits and horseshoes in the beam model 

In this section we apply our results to the two-mode model of the forced 
inextensional beam introduced in Section 1.2. In Section 5.1 below we consider the 
system (1.1) with pure forcing (d = 0), and in Section 5.2 we also include the effect of 
damping (d > 0). 

5.1. The forced beam without dissipation (d = O) 

5.1.1. Set-up. Note that for d = 0 the equations in (1.1) are of the form (2.1) with 
the Hamiltonians 

2 2 2 I(2x 2 b ~I), H o ( x , I ) =  - ( b  + xz)(Xi + x2) + + + s -  

Hi(x,  I, 4)) r [ ( I  2 = - x2)cos2~b + x l x z s in2~] .  
(5.1) 

x It is simple to verify that ( .1)~=o has a hyperbolic fixed point at YoU) = (0, 0) with 
a symmetric pair ofhomoclinic orbits for any I > b/2. The phase portrait of (1.1)~= o 
for such an I value is shown in Fig. 15. (For more details on the unperturbed 
geometry see FEN~ & SETHNA [14], where a very similar system arising in the study 
of parametrically forced thin plates was considered.) In Fig. 15 we also indicate the 
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x2 

x, 

Fig. 15. The phase portrait of (1.1),C-o. 

direction of the vector p(p+) (defined in relation with (3.33)) and the gradient DxHo 
on the homoclinic loop S + (I). Using (3.33) we immediately obtain 

o- = - 1. (5.2) 

As we discussed in Section 1.3, these features of (1.1)~=o imply that  in the phase 
space 

= {(X, 1, ~b) G ]R2 x 1R + •  2 q--x 2 <= 2I} 

there exists a normally hyperbolic invariant  two-manifold 

d o  = {(x, I, ~b) e ~ l x  = 2~ = (0, 0), I e [Ix, I2]  }, 

with 

b+s  
0 < ~ < 1 1  < ~ - < 1 2  (5.3) 

chosen so that  d o  includes the circle of fixed points 

{ b+s  
cC= (x , l ,c) )e~lx=(O,O), I=Ir-  2~ J" 

Hence hypothesis  (H2a) is satisfied for the unper turbed system (1.1)~= o. As a result 
of the symmetry (1.1) under  x ~ - x, the invariant  manifold d o  --- d~ survives the 
per turbat ion  unchanged,  even for d > 0. This gives 

go(I, q~) - g~q, q~) = (0, O, I, O) 
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for the embeddings defined in (1.5) and (1.7). We also recall that the presence of the 
pair of homoclinic orbits in Fig. 15 gives rise to two three-dimensional homoclinic 
manifolds, Wg and Wo. For any solution homoclinic to the circle %, the phase 
shift in hypothesis (H3') can be computed to equal 

Fb(26 - 1) - Sl [0, ~z], (5.4) a ~  = c o s - 1  L b-+ 7 

where we again use the calculations of FENO & SETItNA [14]. We conclude that the 
unperturbed beam equations satisfy hypothesis (H3'). It is interesting to note that 
the phase shift can be calculated without explicit expressions for the homoclinic 
solutions. 

5.1.2. Energy-difference functions and their zeros. As we saw in Section 3.3, a first- 

order approximation for the orbits on the slow manifold s~ = ~,(d~,~/~)  of the 

standard form is given by the level curves of the reduced Hamiltonian 2/g defined in 
(3.45). For our example we easily obtain that 

b + s  ~(~, q~) = - a~ 2 + r ~ U  cos 2q~. (5.5) 

is defined on (A, 03) for some fixed 

~FF b + s 
tlo > 2 26 

The phase portrait of ~ is shown in Fig. 16. We denote by Sg and So b the two open 
domains in this figure that are enclosed by heteroclinic cycles. By the presence of 

t7o 

b+s 
2~ 

-rio _~ 3,rr 5n" 
2 2 2 

Fig. 16. The phase portrait of the reduced Hamiltonian ~ .  
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the symmetry ~b ~ ~b + ~ in (1.1), both the reduced Hamiltonian and the restricted 
Hamiltonian ~(r (see (3.44)) have phase portraits symmetric with respect to q~ = ~c. 
This fact will enable us to restrict our consideration to the domain Sg in our 
upcoming calculations. This figure also explains our choice of no to include all 
internal orbits (see Definition 2.1) associated with the presence of the resonance at 
t / =  0. Note that the symmetry q5 ~-. q5 + rc of the Hamiltonian perturbation terms 
in the system (1.1) implies that the separatrices are structurally stable, so they are 
also internal orbits. 

Using (3.48) and (5.5) we obtain the nth order energy-difference function 

b + s  
A"~?(q~) = r ~ T -  [cos2(~b + nA~) - cos 2~]. (5.6) 

As a result of the symmetry mentioned above, it is enough to look for zeros of the 
~z 3~ energy-difference functions in the domain [> T] ,  because a translation by rc gives 

the zeros in r 3~ 5~q From (5.6) we obtain that for any n satisfying L 2 ~  2J" 

nA~b 4= 21~, 1 6 ~, (5.7) 

the zeros of A " ~  in [~, 3~ T ]  are 

q~"_,1 3~z2 nAq~2 modrc, ~b"_,2 = ~ - -  + mod~c. (5.8) 

Both zeros are transverse under the condition (5.7). We now introduce the two 
additional angles 

~b],l = [~b"- 1 + nAqb] mod21c, ~b~,2 = [q5"-,2 + nA~b] mod2~, (5.9) 

rc 3~ n which may or may not fall in [> T]-  If they do, then q~+,i and qS"-i are symmetric 
with respect to re. (This has the important consequence that 7o = 7~- for a periodic 
orbit 7o satisfying the assumptions of Theorem 3.4, leading to homoclinic N-pulse 
orbits.) Using the definitions of the zero sets in (3.49) we obtain 

V_" = 2"_ = {(n, 4) E SI ]~  ~ {~b"_, 1, ~"_,2}}, 
(5.10) 

Pg : 2~ = {(~, 4)E ~I ~ ~ { ~ , ~ ,  ~ ,~}} .  

5.1.3. Pulse numbers. Note that under (5.7) all internal orbits outside S~wSg 
(periodic orbits and separatrices) intersect 2 !  transversally. Hence, for any peri- 
odic or heteroclinic orbit ~3 outside S~ u S~ we have N(~) = 1 (see the definition in 
(3.51)). We now classify the periodic orbits in S~ based on their pulse numbers. An 
identical classification follows for the periodic orbits inside S~. Let us start by 
defining the energy sequence 

ho = - F b  + s 
26 ' 

h, = max(~(0 ,  qS", 1), 24r 0, q~"-,2)) (5.11) 
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2_" 25- ,  2 5  

^a 

I I 
(a)  (b) 

Fig. 17. The construction of the layer sequence. 
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and the sequence of sets 

Ag = 0, A~ = {(q, ~b) ~ S ~ l ~ ( q ,  q~) </~,}, n > 1. (5.12) 

For  n > 1,/[,~ has a simple meaning: It is the open set of internal orbits in S~ which 
intersect at least one component of Z"_ transversally (see Fig. 17a). Note that the 
element h, of the energy sequence in (5.11) gives the reduced energy of the periodic 
orbit ,~,, which is the inner boundary of/1,~. Next we define the p u l s e  s e q u e n c e  

N ~ = I ,  N k = m i n ( n ~ Z + l n > N k  ~,h,,>/~N~}, k > 2 .  (5.13) 

A 

Since the energy of the periodic orbits in Sg increases monotonically as the orbits 
shrink to the center, we necessarily have 

do  d o AN~ ~ lV2 ~ . . . ~ N~ ~ . . . .  

This sequence of sets is infinite if the condition (5.7) is satisfied for all n ~ 7Z. 
Otherwise, if m is the minimal index such that N,,Aq~ = 21re for some integer l, then 

d o the pulse sequence and the set sequence ( N~} are finite and have exactly m ele- 
ments, with AN~ - S~. In any case, we can define the finite or infinite l a y e r  s e q u e n c e  

j•a ~a ~a  
N~ = Int(ANk\AN~ ~), (5.14) 

where Int( .  ) refers to the interior of a set. The construction of the layer sequence is 
shown in Fig. 17b. Note that /2 a Nk is an open set and that its inner boundary is the 
unique periodic orbit ~)N~ in S~ with 

= (5.15) 

In addition, we observe that if the pulse sequence is infinite, then no periodic orbit 
L ~ 2"_ Nk intersects = for n < Nk, but all intersect 2 Nk transversally. If the 

pulse sequence is finite, i.e., if it terminates at an index m _>_ 1, then this observation 
holds for any k < m. Since in this case the nonresonance condition (5.7) is violated 
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for n = N,,, we obtain IPN= - A. To summarize, using the definitions in (3.51) and 
(3.52) we obtain the following: 

o If condition (5.7) holds for all n > 1 (i.e., if the pulse sequence is infinite), then 
A a 

for any periodic orbit 37 c LN~ we have N(37) = Nk. Furthermore, the approx- 
imate take-off and landing curves of Nk-pulse orbits (defined in (3.54) and 
(3.55)) can be written as 

2 Nk_ -- 2N~c~/,~V~, Z+̂N~ = 2Ukc~(/,~Vy/7,~), (5.16) 

where L b u~ is the analogous layer sequence defined for S~. 
o If i > 1 is the smallest integer which violates (5.7) (i.e., if the pulse sequence 

terminates at N,, = i), then for any periodic orbit 37 c/,~v~, k < m, we have 
N(37) = Nk, and ~+N~ is defined as above. Furthermore, for any periodic orbit 

Aa 
37 c LNm we have NR(7) = Nm = ft. 

Notice that this way we have formally computed the pulse number or resonant 
pulse number for any periodic orbit in S~ for which one of these numbers is defined. 
The orbits for which neither the pulse number nor the resonant pulse number is 
defined are exactly the periodic orbits 7Nk appearing in (5.15), and the center itself. 

The recursion defining the pulse sequence can be computed by hand up to 
a reasonable index, but of course it is best to implement this simple algorithm on 
a computer. The elements of {Nk) obtained this way are shown in Fig. 18 as 
a function of the phase shift Aq5 for Nk < 100. The horizontal line segments at each 
level N indicate that an infinity of N-pulse orbits exist for all values of the phase 
shift in the interval below that line. The diagram shows a fairly stable pulse 
distribution for low pulses and increasing sensitivity to small changes in the 
parameters for higher pulses. The structure and bifurcation of the layer sequence 

100 

90 

80 

70 

60 

40 

30 ~ - " ' : '"~-?"": : . ? . . : . " . i  i.'.':..--... :-.. .-..."..:" .- ; : ! 
\ '. ' :  ' ."-~ :'.::: : .": . . . ' !  "'..."'".: ' :- .~ i . " .  : " / "  

O0 1 L I 1.0 2.0 3.0 
Ar 

Fig. 18. The pulse sequence as a function of the phase shift. 
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Fig. 19. The layer radius sequence as a function of the phase shift. 

~ a  
{LNk} is shown in Fig. 19, where we plot the corresponding inner angular radii 

rNk = min(]~z -- ~b_N~ 1 [, I~ -- ~b-N~,2]) (5.17) 

of the layers in the layer sequence. The diagram for the layer radii also has 
a secondary meaning: For fixed AqS, {rN~} gives the angular distance of the take-off 

curves B N~u,. from the nearest center on the manifold de with an error of (9(x/e) (see 
Remark 3.6). This observation will be important in interpreting similar diagrams in 
Section 5.2.3. 

The diagram in Fig. 19 has a self-similar structure as {Nk} is allowed to go to 
infinity. Based on Theorem 3.4, each non-branching point in this homoclinic tree 
indicates the existence of a layer of slow periodic orbits on de which have 
transverse N-pulse homoclinic orbits with the same N (the corresponding pulse 
numbers are shown in Fig. 18). At the branching points, one of the layers bifurcates 
to two new layers with different pulse numbers. The set of values of A~b for which 
such a bifurcation occurs appears to admit a fractal structure in the interval [0, ~z]. 
These homoclinic bifurcations do not necessarily double or triple the value of N: 
Fig. 18 shows a variety of ways in which N can change. The homoclinic tree 
intersects the A~b axis at the values of Aq5 where condition (5.7) is violated for some 
n and I. These points indicate a degenerate layer of slow periodic orbits for which 
only the resonant pulse number is defined. The inner boundary of these layers 
degenerates into the center in g~, and for small NR they usually occupy a substan- 
tial portion of 

5.1.4. Jump sequences. Consider an internal orbit 9o c ~ and suppose that 
N(~o) - N > 1 is defined. Then from (3.51) we obtain that for k = 1 , . . . ,  N - 1, 
~k(~o) does not intersect any orbit with reduced energy ~ l~)o .  In particular, it 
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intersects neither 5o nor the identical 5o* in S0 b. Since ~ preserves area and since 
all internal orbits encircled by 5o and 5o* have energies higher than J(r [ 5o, we 
conclude that for k = 1 . . . . .  N -  1, ~k(50) only intersects internal orbits with 
energies lower than ~ [ 5 o ,  i.e., 

s ign(kk~lSo)  = sign(d4a J~k(50) -- Jt~]5o) = - 1 ,  k = 1 . . . . .  N - 1. 

Using this, (5.2), and the definition of the positive and negative sign sequences in 
(3.53) we obtain 

z+(~o) = {+ 1}L1, z-(7o) = {-1}L1.  (5.1s) 

According to (iii) of Theorem 3.4, this means that the multi-pulse orbits constructed 
above always stay near the same unperturbed homoclinic structure; i.e., their jump 
sequences are sign-preserving. The same argument shows that for N = NR the jump 
sequences are again sign-preserving. 

5.1.5. Homoclinic orbits, heteroclinic orbits, and horseshoes. For any element Nk of 
the pulse sequence which satisfies the nonresonance condition (5.7), we can guaran- 
tee the existence of transverse Nk-pulse orbits doubly asymptotic to the manifold 
~ .  These orbits are homoclinic to a slow periodic solution if the approximate 
landing curve 2+ Nk computed in (5.16) intersects ^a So. In this case the transformation 
q~ ~ q5 + re yields an identical slow periodic solution with an identical transverse 
N-pulse homoclinic orbit. If, instead, ~+Nk intersects So b, then we deduce the existence 
of two transverse Nk-pUlse heteroclinic orbits connecting slow periodic orbits (one 
for each jump sequence). Again, the discrete symmetry of the full system implies the 
existence of another pair of similar heteroclinic connections between the two slow 
periodic orbits, so that the two pairs form two transverse heteroclinic cycles. 
Hence, by Theorem 3.4 we always obtain horseshoes with their associated chaotic 
dynamics on the energy surfaces containing the Nk-pulse orbits, independently of 
the location of AUk Since, as mentioned in Section 5.1.3, the pulse number of the Z+. 
separatrices forming 0Sg~ is 1, Theorem 3.4 also implies the existence of either 
transverse 1-pulse orbits homoclinic to the two saddle-saddle fixed points, or 
transverse 1-pulse heteroclinic cycles between these two equilibria. Such structures 
do not seem to admit horseshoes in the case of resonance bands (see the example in 
HALLER 84 WIGGINS [19]). We now summarize our main results for the forced beam 
model in the following theorem. 

Theorem 5.1. For some fixed value of the parameters (b, s, F) consider the pulse 
sequence defined in (5.13) and plotted as a function of A~ in Fig. 18. Then for any 
element Nk of this sequence satisfying (5.7) there exists eo(kt, Nk) > 0 such that for 
0 < ~ < ~o(Nk), 

(i) System (1.1)d=o has an infinite number of transverse Nk-pulse orbits homo- 
clinic to the manifold ~r These orbits are homoclinic to slow periodic 
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solutions in the resonance band .~/- if ~N+~ c~ S~ = O, or form heteroclinic 
x / e  

. . . .  A A 

cycles between slow peno&c orbits if zN+~c~S~ = 0 (see (5.16)). Accordingly, 
there exist Smale horseshoes on the energy levels containing these orbits. 
Each such slow periodic orbit in these level sets has in fact two transverse 
Nk-pulse homoclinic orbits or heteroclinic cycles with the jump sequence 
+ 1, + 1 . . . .  and two with the jump sequence - 1 ,  - 1 , . . . .  

(ii) The slow periodic orbits with transverse Nk-puIse orbits form two smooth 
- - 1  ~ a  1 ^ b  layers on dr  which are (x~e, C1)-close to 9rob~ (LN~) and 9rob2 (LN~), 

respectively. 
(iii) For N~ = 1 there also exist either eight transverse 1-pulse transverse homo- 

clinic orbits to, or four transverse heteroclinic cycles between, the two saddle- 
saddle-type equilibria on the manifold ~ .  

I f  Nk does not satisfy condition (5.7), then these statements still hold with the 
exception of transversality and the existence of Smale horseshoes. 

Proof. The statements follow from our earlier observations. For  the number of 
Nk-pulse orbits for individual slow orbits, it is enough to note that if a periodic 
orbit in S~ intersects 2". transversally, then the intersection contains at least two 
distinct points. Furthermore, the separatrices of the reduced Hamiltonian intersect 
both components of 2"_ transversally, which proves statement (iii). []  

We remark that the statement (iii) of this theorem establishes the existence of 
single-pulse connections doubly asymptotic to two unstable nonlinear normal 
modes in the beam model. More importantly, from the statement (i) we obtain the 
existence of transverse orbits with arbitrarily high pulses which connect unstable 
quasiperiodic oscillations near two other nonlinear normal modes. 

To illustrate the statements of Theorem 5.1 numerically, we select the param- 
eter values b = 1.0, s = 7.0, F = 1.0. In this case the resonant circle % is located at 
Ir = 0.8319 and the phase shift in (5.4) is A~b = 1.3664. As one can verify from the 
pulse diagram in Fig. 18, for this value of the phase shift the first four elements of 
the pulse sequence are Nt = 1, N2 = 2, N3 = 7, and N~ = 16. The corresponding 
inner angular radii for the first four elements of the layer sequence in (5.14) are 
computed to be rl = 0.6832, r2 -- 0.2044, r7 = 0.0701, and r6 = 0.0642 (see also 
(5.17)). From the magnitude of r2 and 2A~b, it follows that the zero set 2 2 intersects 
S0 b. Hence, based on (i), (ii) of Theorem 5.1, there exist two smooth layers of slow 

a b a periodic orbits on d~, Lz,~ and L2,~, such that each periodic orbit in L2,~ is 
connected through two transverse 2-pulse heteroclinic cycles to a periodic orbit in 
L2br. We select two periodic orbits 7o and 96- of J4, ~, as shown in the upper 
right-hand corner of Fig. 20. The figure also shows the location of the zero sets 
2 2 _ and 2 2 in A. We then locate two slow periodic orbits on de, 72 and 7[ ,  which 

are (x/~, C 1)_close to g~ o b[ 1 (9o) and Or ~ b[  1 (96-), respectively, and so they must 
fall in L2,~ and b L2.r, respectively. We iterate the components of the unstable 
manifold of ~- and the local stable manifold of 7~ + , which lie near the unperturbed 
homoclinic manifold W~-. The results are projected on the (x2, ~/, q~)-coordinate 
space. As Fig. 20 shows, the two invariant manifolds do intersect in a fashion 
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Fig. 20. The intersection of invariant manifolds (e = 10 -4, step size = 5 x 10 2, integration 
time = 10.5). 

predicted by Theorem 5.1, giving rise to two transverse double-pulse heteroclinic 
orbits. By the symmetry under ~b ~ 4) + 7c, this fact implies the existence of another 
similar heteroclinic orbit completing the two heteroclinic cycles. The other discrete 
symmetry x~--, - x  of the system implies the existence of two more symmetric 
cycles. This figure also shows the shadowing set Y~ withj  = { + 1, + 1} for one of 
the heteroclinic orbits (see Definition 3.2). We finally note that the transverse 
intersection of the two invariant manifolds indicated by the projection is real, since 
D~H 4= 0 on a fixed Ua tube around s]~. Hence the energy surface is locally a graph 
over the (x2, 1/, ~b) variables. 

5.2. The forced-damped beam (d > O) 

In this section we study the multi-pulse behavior in system (1.2) including the 
effect of damping. Using the general form (1.2) we find that the dissipative terms for 
the beam equation (1.1) are 

g x l = - d x t ,  gx2=-dx2,  g i = - 2 d I ,  94=_0. (5.19) 

Before proceeding with the application of the results of Section 4, we want to verify the 
two major hypothesis of that section. From (5.19) we obtain by direct calculation that 

Dig,(2~ It, 4); O) + D(~gr176 I~, c); O) = d(b + s) 
2 ~  <~ 

where we used (5.3) and the fact that d > 0. Therefore, hypothesis (H4) in Section 
4.3 is satisfied. To verify hypothesis (H5) of the same section, we use (5.1) and (5.19) 
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to obtain 

2 2 2 2 
(DHo, 9>[1 =L = 2d[(b + 2xz)(xa + X 2 )  - -  Ir(2x2 + b + s + 26I~)]. (5.20) 

For  any two solutions y~(t , I , ,  qS+0) and y o ( t , I ,  ~b-0) with the properties de- 
scribed in (H5), one can select ~bo = qSg = q~o. Then, by the discrete symmetry of 
system (1.1)~=o under x ~ - x ,  we can choose the initial time t = t o such that 

xg (t, I ,  40) = - X o  (t, 1 ,  40). 

Since from (5.20) we see that (DHo, g)]t = i~ is quadratic in x, this last relation 
implies that condition (H5) holds for our example. 

5.2.1. The reduced dynamics. As we have seen in Section 4.2, the first step in the 
analysis of dissipative perturbations is to understand the phase portrait of the 
system (4.26)~ = o. Direct substitution into (4.26) shows that for the forced damped 
beam the dissipative reduced system is of the form 

b + s  
0 = - 7  (F sin 2~b + d) - x/~Zdt/, 

q~ = -26*/. (5.21) 

Setting g = 0 we obtain the locally Hamiltonian part of this system, which on the 
set AD (defined in (4.27)) derives from the Hamiltonian 

b + s  b + s  
34av(v; #) = _&/2 + F - ~ -  cos2v + d - ~ - -  v. (5.22) 

Here # = (b, s, F, d) is the vector of system parameters. For  d/F < 1, this Hamil- 
tonian generates the phase portrait of a pendulum subject to a constant torque in 

g3~ 5r~ 7 
r -~ a~a and ~b e eT ,  T J  (see Fig. 21). There are two centers at the domains ~b e ~2, 2 

~.(~) = (0, 4g(~)) and ~b(() = (0, 47(~)) with 

d 
1 l s in~ ' ~ = ~ .  ~b~(~) = ~ + ~ sin -~ ~, qS~(() = 2re + ~ (5.23) 

There are also two saddles L ( ~ ) =  (0, ~b~(()) and Sb(~)= (0, qS~(~)), with single 
homoclinic loops at 

qS~(~) - 3~ _ ~_ sin- ~ (, ~bsb(~) = -~ -- �89 sin ~. (5.24) 

By analogy with the previous sections, we define the two sets S~ and So b to be the 
open regions bounded by the two homoclinic loops (see Fig. 21). Again, the 
symmetry of the flow on A makes it possible to restrict the calculations to the 
subset I - t / o ,  t/o] x [2, ~ ]  of the annulus. 

5.2.2. Energy-difference functions and their zeros. We see from (5.19) that the 
function gt does not depend on the variable qS, so we can use the form (4.39) of 
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Fig. 21. The phase portrait of thereduced system (5.21)~=o. 

A" JC~D. The first term in that expression is just A " ~ ,  which we computed already in 
(5.6). Using (5.2) and (5.19), we can write the second term in (4.39) as 

nc~ ~ Vx.g~(x, It, d?; O)dxl dx2 = 2nd ~ dx~ dx2. 
Ar Ar 

(5.25) 

To evaluate this expression we need to compute the area of the region A, enclosed 
1 x by the unperturbed homoclinic orbit x h+ (t, It) of ( .1)~=0. This area is preserved 

under symplectic changes of variables, so, following FEN~ & SETHNA [14], we 
introduce the new variables (P, Q) by letting 

=,/ sinQ, -- cos e ,  

and evaluate the corresponding area using these new coordinates. As is shown by 
1 FENC & SETHNA [14], in the (Q, P) variables the homoclinic orbits of ( .1)~=o 

become heteroclinic orbits of the form 

b b 
P = I~ - Ir 

1 + cos2Q 2cos 2Q 

connecting the two equilibria (Q, P) = (-AqS/2, 0) and (Q, P) = (A~b/2, 0). There- 
fore, we can compute (5.25) to obtain 

a~b/2 

n~r Vx. 9x(x, Ir, (a; O) dxl dx2 = 2nd Ir 2 cos 2 Q dQ 

Ar (Aq~)/2 

= 2ndlrAO - 2ndb tan AT.~b 
2 
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When substituted into (4.39), this expression together with ngi(I~;O)A(o = 
-2ndL A4~ gives the dissipative nth order energy-difference function 

b + s  
A"2~D(q6;/~) = ~ FEcos2(~b + nA~b) - cos2q~] + 2ndbtan . (5.26) 

Using the identity for the difference of the cosines of two angles and assuming that 

(b + s) cos ~ -  141 < ~ , (5.27) 

with the dissipation factor ~ defined in (5.23), we find the transverse zeros of 
A"~(q~; p) in the interval r -~ ~=~. k 2 '  2 J '  

1 - - ~ - - -  

3re [ 2  nA~b 
r = 5 - -  + ~ -  

We again introduce the two angles 

~b~,l = [~b"- 1 + nA~b] mod2~, 

1 , :,b 1 
+5 sin- 2I~cos ~ j  m~ 

1 sin- 1 (nb ] 
2 2Lc os~ j  m~ 

(5.28) 

~b~,2 = [~b"_ 2 + nAr mod2~z, (5.29) 

and use them to obtain the zero sets from (4.30) in the form 

9" 2"_ {(~,r lq~{r = - =  = r  n > l ,  
A n  ~ n n - -  =z+ {(~,r162 n _ > l .  

(5.30) 

5.2.3. Pulse numbers. First we note that from (5.27) we obtain the following upper 
bound on the pulse numbers: 

b + s  
n < I([b---~' (5.31) 

which shows that even for arbitrarily small dissipation, the infinite homoclinic tree 
found in Section 5.1.3 breaks into a finite tree. 

Following Section 5.1.3, we easily see that the pulse number of any internal 
orbit outside ha ^b SowS o is 1. For the orbits inside S~wS0 b we can carry out the same 
construction as in Section 5.1.3 to classify the periodic orbits based on their pulse 
numbers. Namely, we can again define the energy sequence 

/~o = d4?D(0, r #), h, = max(Yt~D(0, 4"-,1; #), X4C~D(0, ~b"-,z; #)). (5.32) 

Then the definitions of {~a}, the pulse sequence {Nk}, and the layer sequences 
j ~ a  A b  { Nk} and the same as {LNk} are in the undamped case (see Figs. 22a, b). However, 

all these sequences are now finite by (5.31). As earlier, we obtain that for any 
~ a  ~ b  periodic orbit ~3 c LN~WLNk, the pulse number is N(~) = Nk. 
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(a) (b) 

Fig. 22. The construction of the layer sequence for (5.21)~=0. 

The result of the recursive construction of pulse numbers and layers can be 
plotted in the same way as in Section 5.1.3. For some values of the dissipation 
factor ~ we show the corresponding pulse diagrams and layer radius diagrams in 

b = 1). Here the layer radii are defined as Figs. 23a, b (we fixed 

= - r ,ll ,  [r I). rN~ min([ r N~ N~ - r  (5.33) 

As we might expect, these diagrams show a gradual break-up of the homoclinic tree 
in the intermediate system as the dissipation is increased relative to the forcing. It is 
interesting to note that  the number of low-pulse orbits temporarily increases (see 
the case ~ = 10-4), then again decreases with increasing ~. Finally, at ~ = 1 all 
multi-pulse orbits disappear. Since NR is not defined, the resonant "tips" of the 
homoclinic tree must necessarily disappear for nonzero ~. One can indeed notice 
this for larger values of ~ in the diagrams, together with the formation of cusps near 
the resonant tips. We finally recall that all these diagrams refer to multi-pulse 
behavior in the locally Hamiltonian intermediate system, but they also have 
a direct meaning for the full dissipative system (1.1). We discuss this in Section 5.2.5. 

5.2.4. Jump sequences. The argument we gave in Section 5.1.4 is not valid here and 
there exist N-pulse orbits with jump sequences that do not preserve sign. Here we 
do not deal with the classification of all the possible jump sequences. 

5.2.5. Homoclinic and heteroclinic orbits. Since the pulse numbers of internal 
orbits outside S~wSo b are 1, all multi-pulse orbits in the intermediate system (1.1) 
are necessarily asymptotic to slow periodic orbits in backward time. However, their 
forward asymptotics can be quite different. As we discussed in Section 4.2.3, the 
asymptotics of multi-pulse connections in the full dissipative system (1.1) can be 
inferred from the dissipative reduced system (4.26). It is easy to verify that the 
locations of the equilibria for this system are independent of e. However, while the 
saddles remain saddles, the centers turn into sinks for e > 0 (see Fig. 24). Accord- 
ingly, some types of multi-pulse orbits for the dissipative system (1.1) are shown in 
Fig. 25. All these connections exist on open sets in the parameter space. For 
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brev i ty ,  we do  n o t  give  a full  c lass i f ica t ion  o f  the  poss ib i l i t ies  as t he  p a r a m e t e r s  a r e  

var ied ;  see HALLER & W m a I N S  [22]  for  this  c lass i f ica t ion  in a s imi la r  p r o b l e m .  

H o w e v e r ,  w i t h o u t  the i r  de ta i l ed  a sympto t i c s ,  we  h a v e  o b t a i n e d  the  ex is tence  of  

m u l t i - p u l s e  o rb i t s  w i th  pu l se  n u m b e r s  b e l o n g i n g  to  the  pu l se  s e q u e n c e  c o n s t r u c t e d  

a b o v e  (see T h e o r e m  4.4). T h e  pu l se  d i a g r a m s  s h o w n  in Figs.  23a, b s h o w  the  

d i s t r i b u t i o n  of  pu lses  as a f u n c t i o n  of  the  p h a s e  shift. T h e  l ayer  r ad ius  d i a g r a m s  

n o w  d o  n o t  refer  to  layers  o f  p e r i o d i c  orbi ts ,  b u t  the i r  s e c o n d a r y  m e a n i n g  r e m a i n s  

val id for the full dissipat ive system (1.1): They  s h o w  the a p p r o x i m a t e  dis tances of  the  

take-of f  curves  of  mul t i -pulse  orbits  f rom the sinks on  ~ (see the discussion after (5.17) 

a n d  the  f o r m u l a  (5.33)). W e  s u m m a r i z e  these  facts in t he  f o l l o w i n g  t h e o r e m .  
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Fig. 23a, b. The pulse sequence and the layer radius sequence as a function of the phase shift 
in the dissipative case (b/Ir = 1). 

T h e o r e m  5.2. For some fixed value of the parameter # = (b, s, F,  d), consider the 
pulse sequence defined in Section 5.2.3 and plotted as a function of AO in Figs. 23a, b 
for some values of ~ = d/F. Then, for any element Nk of this sequence and for any 
small ~o > 0, there exists eo(#,Nk,6o) > 0 such that for 0 < e < to(#,  Nk, ~o): 

(i) The system (1.1) has an infinite number of structurally stable Nk-pulse orbits 
homoclinic to d~. 

(ii) The distance of the Nk-take-off curve B N~ from the nearest sink on d~ is U,g 

C(~o)-close to rN,, where rNk is defined in (5.33), and plotted in Figs. 23a, b. 

Proof .  The  t h e o r e m  is a direct  a p p l i c a t i o n  of T h e o r e m  4.4. [ ]  
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Fig. 24. The phase portrait of the dissipative reduced system (5.21). 

tiff fifififi 

0 0 

Fig. 25. Structurally stable multi-pulse connections in the dissipative system (1.1). 

5.2.6. N-pulse Silnikov orbits and Silnikov cycles. In this last part of our study of 
the forced-beam model, we prove the existence of chaotic dynamics for nonzero 
damping. This dynamics is the result of the presence of multi-pulse Silnikov orbits 
or Silnikov cycles in the phase space, and exists on an open neighborhood of 
a complicated codimension-one set of the parameter space (see below). We show 
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the existence of Silnikov orbits and cycles by applying Theorem 4.5 to the sinks of 
the reduced system (5.21). 

To simplify the calculations we pass to the parameter fi = (b, s, ~) e IR 3 and 
assume that 0 < ~ < 1 (which means that F > 0). Codimension-one sets in the 
g-space correspond to codimension-one sets in the full parameter space of 
# = (b, s, F, d). We note that for e = 0 the sinks of (5.21) change into the centers of 
(5.21 ), = o; hence they satisfy as sumption (A 1) of Theorem 4.5. To satisfy assumption 
(A2) of the same theorem, we must find values (~, AqS, N) for which the center 

ca(~) = (0, 7z + �89 sin- 1 if) 

falls in the zero set Z_ u defined in (5.30). This means finding solutions of 

AN D(q  o(O; #) = O, 

or, equivalently, of 

cos2(Tr+�89 l~+NA(~176 t a n ~ = 0 .  

After some elementary algebra, this equation yields the relation 

~(2bNtan~--sin2NA4)), (5.34) , j i - -  - c o s 2 N A r  = \ - Z Z  

which gives 

1 -- cos 2N A~b 
(5.35) 

x/(1 - cos2N A~b)U < ~ t a n ~  - sin2N A~b) / 

For any positive integer N this last expression defines a surface in the fi-space. 
However, it is only meaningful for positive ff values, i.e., for 

k~r k e 2g +. (5.36) 

To show the structure of the set defined by (5.35), we fix the parameter ratio b/L = 1, and plot ~ as a function of Aq~ for N = 1 , . . . ,  50. Two intersecting curves 
on this plot show a bifurcation of Silnikov orbits, and any intersection of the curves 
with the A~b-axis shows a value of A~b for which the condition (5.36) is violated. In 
order to verify assumption (A3) of Theorem 4.5, we shall show that 

D~ cos2 ~+NA~b - c o s ( s i n - l ~ ) + ~ - ~ - - t a n  +0 ,  (5.37) 

whenever (5.35) and (5.36) hold. Carrying out the differentiations in this expression, 
we obtain that (5.37) fails to be satisfied when 

sin 2NA~b /~- tan = ~(1 -- cos 2NA~b). (5.38) 
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But it is easy to see that, under condition (5.36), the equations (5.34) and (5.38) 
cannot hold simultaneously. Therefore, assumption (A3) of Theorem 4.5 is satisfied 
whenever 0 < ~ < 1. Hence, for any integer N and on a codimension-one set near 
that described by (5.35) and (5.36), we obtain the existence of N-pulse orbits that are 
backward asymptotic to a saddle-sink equilibrium. We now have to give condi- 
tions for the slow orbit ?+ in (i) of Theorem 4.5 to fall in the domain of attraction of 
a sink on a/~. For this purpose we introduce the angle 

~b,N(fi) = qS~(~) -- rc + [~b~(() + N A~b -(qb~'(() - 7c)] mod ~z, (5.39) 

which gives the approximate location of the projection of the landing points q~ in 
3 ~  the interval [7, 5-]- We require that 

 D(o, It) >  D(o, Cs (O; It), 

or, equivalently, that 

N - cos 2 r  (It) - cos ~b~(~) > 2~(q5~(() - q~,~(fi)), (5.40) 

to ensure that the projected landing points fall in the homoclinic loop contained in 
37c  the subset [ -  t/o, t/o ] x [~, 5-] of the annulus. Clearly, by the relation of (5.21)~= o to 

(5.21), this implies that the projection of q~ falls in the domain of attraction of one of 
the sinks for e > 0 sufficiently small. The calculations in this section lead to the 
following theorem. 

Theorem 5.3. For any integer N > 1 there exists a positive number eo(N) > 0 and 
a finite union CN of codimension-one surfaces in the (b, s, F, d, e) parameter space near 
the set satisfying 0 < ( < 1, (5.35), and (5.40), such that for any (b, s, F, d, e) ~ CN and 
0 < ~ < co(N) the following hold: 

(i) I f  the integer 

( ~  NA~b+s in  l ( )  
Q = INT + 

(ii) 

is even, then each of the two saddle-focus-type equilibria contained in the 
manifold d~ admits two Silnikov-type homoclinic orbits. I f  Q is odd, then there 
exist two cycles of rSilnikov-type heteroclinic orbits connecting the two saddle- 
foci to each other. In both cases the N-pulse orbits form pairs which are 
symmetric with respect to the subspace x = 0. 
There exists an open set of parameter values containing CN for which (1.1) 
admits Smale horseshoes in its dynamics. In the (k~b, () parameter space, for 
b = It, the parameter values leading to horseshoes fall in an open neighbor- 
hood of the set plotted in Fig. 26. 

Proof. Based on our earlier observations, we only note that the integer 

Q =  INT(~b~(~) + N A~ - (qS~(() - ~ ) ) ~ t  
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~n 

~0 0.5 1.0 

N -  < 50 

/ i  simple and multi-pulse Silnikov orbits 
amenable to Melnikov-type methods 

1.5 2.0 2.5 3.0 
A0 

Fig. 26. The approximate parameter set for which single- and multi-pulse ~ilnikov orbits or 
cycles exist (2b/Ir = 0.5). 

is even if the projection of q~ on the annulus A falls in S~, and is odd if this 
projection falls in S0 b. The existence of Silnikov cycles follow from the symmetry of 
the system under q~ ~-~ ~b + To. The existence of a symmetric counterpart for each of 
the Silnikov orbits follows from the symmetry under x w-~ - x .  The existence of 
horseshoes follows from the fact that the divergence of the right-hand side of the 
dissipative system (1.1) equals - 4 d  < 0. Hence the real eigenvalues of the saddle- 
loci cannot be equal and the corresponding theorem of SILNIKOV [40] applies (see 
also WIGGINS [45]). [] 

In terms of the beam model, these results again indicate the existence of 
multi-pulse connections between two nonlinear normal modes of the forced beam. 
These motions have three different time scales: the fast pulses, the slower intermediate 
passages near the slow manifold and the final very slow approach to a saddle-focus. 

In Fig. 26 we plot the parts of the curves in (5.35) which satisfy (5.40) for some 
N < 50. As N increases, this "web" of curves becomes denser and denser near the 
two coordinate axes. The diagram indicates the two approximate curves of one- 
pulse Silnikov orbits, which can also be obtained by applying the results of 
KovA~i~ & WIGGINS [33]. The approximate parameter set for secondary multi- 
pulse Silnikov orbits obtained from the results of KAPER 8,: KOVA~I~ [30] is also 
this single curve, since one needs the presence of single-pulse Silnikov orbits for 
their methods to apply. Therefore, the energy-phase method finds horseshoes and 
predicts chaotic dynamics on a much larger set of parameter values than for other 
existing global perturbation methods. 
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X2 

7/cos0~ sin0 

ge(b-el(Z3-,1)) 

ge(b-El(z3_ 2i)~ge(bel(Z3,1)) 

Fig. 27. Silnikov-like 3-pulse cycle for the damped-forced beam model (step size = 2 x 10- s, 
integration time = 40). 

Even if we knew the exact location of the codimension-one surface CN, it would 
be a delicate matter to verify the existence of the codimension-one multi-pulse 
Silnikov orbits and cycles numerically. After the Nth pulse it takes a time of order 

C(1/x/e ) for the Silnikov-type orbits to reach the corresponding saddle-focus. 
During this long period of time the unstable eigenvalues of magnitude (9(1) in the 
hyperbolic splitting along d~ inevitably amplify any finite numerical error, and 
drive the solution away from the slow manifold to follow subsequent pulses. In fact, 
these numerically induced "bursts" occur in much shorter time scales, usually of the 
order (9(1). This is exactly the difficulty one successively encounters in the iteration 
of multi-pulse orbits constructed by other methods (see KAPER 8~; KOVA~I~ [30]). 
For the orbits obtained by the energy-phase method, the numerical problem of 
long passage only occurs after the last pulse. 

For a numerical illustration of Theorem 5.3, we select the parameter values 
b = 1, s = 6, F = 1, for which the value of the phase shift at I = Ir = 0.7274 is 
A~b = 1.1866. We select the pulse number N = 3, because the errors near the three 
near-saddle passages almost seem to cancel out for odd pulse numbers. Then (5.35) 
gives ~ -- d = 6.8288 x 10 -2, and the statement (i) of Theorem 5.3 gives Q = 2; 
hence the corresponding nearby Silnikov-type orbits form double-pulse hetero- 
clinic cycles. We finally select e = 10-3 for the strength of the perturbation. To 
avoid the final artificial numerical burst, we adopt the rule: If the iterated orbit 
approaches the slow manifold within a distance less than 10e, then we "freeze" the 

motion in the unstable x-direction and speed up the dynamics by a factor of 1/x/~ 
in the directions tangent to the slow manifold. The unstable manifolds of the 
saddle-foci c~ and c~ computed in this way are shown in Fig. 27, where we again 
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project the results in the coordinate space (Xz, r/, q~). We also indicate the location 
of the two saddle-foci as well as the lift of the two components of the zero sets Z+̂ 3 to 
the slow manifold through the map 9~ ~ b~. The minimal distances of the orbits from 
the slow manifold at the near-saddle passages are 51.06e, 40.78e, and 8.72e < 10~. 
The sharp decrease in the passage distance after the third pulse is a good numerical 
indication of an actual nearby Silnikov cycle, since numerical errors usually lead to 
increasing passage distances for typical trajectories. One can expect to follow the 
heteroclinic-like orbits for longer times by employing integration methods more 
involved than the ordinary four-point Runge-Kutta scheme, which we used mainly 
for illustration. Also, a more sophisticated shooting algorithm (e.g., the one in 
MCLAUGHLIN, OVERMAN, WIGGINS, & XIONG [35]) could be used to identify the 
exact location of the codimension-one surface CN guaranteed by Theorem 5.3. 

6. Conclusions 

In this paper we have presented an analytical method which can be used to find 
families of multi-pulse orbits doubly asymptotic to slow manifolds in a class of 
two-degree-of-freedom Hamiltonian systems. While the various steps in the justifi- 
cation of the method involve long and subtle arguments, the result is a simple 
criterion, the energy-phase method, which is easy to use in practice. Indeed, solving 
for the zeros of the nth order energy-difference function for the purely Hamiltonian 
case usually involves elementary trigonometry, as opposed to the evaluation of 
improper integrals required by Melnikov-type methods. Even more importantly, 
for the case of Hamiltonian resonance bands, one can locate the zeros and identify 
their dependence on the parameters qualitatively by sketching the graph of the 
"potential part" of the reduced Hamiltonian ~ or ~o ,  and by looking for 
isoenergetic level curves that are a distance NA~b apart. 

Most of the literature on multi-pulse orbits deals with the existence of orbits 
homoclinic to fixed points (see, e.g., GLENDINNING [-18], KOKUBU [32], CHOW, 
DENG, & FIEDLER [9], MIELKE, HOLMES, & O'REILLY [36], KISAKA, KOKUBU, 
& OI,:a [31], CHAMPNEYS • TOLAND ['8] and the references therein). Similar 
methods have been used to establish the existence of multi-pulse orbits for certain 
semilinear parabolic partial differential equations, whose travelling wave solutions 
can be studied with ordinary differential equations (see, e.g., EVANS, FENrCHEL, 
& FEROE [,10], HASTINGS [-24], ALEXANDER & JONES [1], and the references therein). 
Multi-pulse orbits homoclinic to periodic solutions in the vicinity of a reversible 
saddle-center were recently obtained by CAMASSA [6] in the study of an atmo- 
spheric model system. ROM-KEDAR [39] studied the creation of secondary orbits 
homoclinic to periodic solutions in a class of periodically forced planar Hamil- 
tonian systems. KAPER & KOVA~Ie [-30] constructed multi-pulse orbits homoclinic 
to resonance bands near single-pulse orbits by using the Melnikov method and 
singular perturbation theory (see Sections 1.4 and 5.2.6 for a comparison with our 
results). In contrast to all these methods, the energy-phase method can be used to 
detect orbits homoclinic to a two-dimensional slow manifold, with the case of 
resonance bands being a specific application. Furthermore, our method does not 
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require solving variational equations or verifying involved transversality condi- 
tions. As a result, one can obtain simple recursive formulas describing the structure 
of multi-pulse solutions and their bifurcations. Finally, as our damped-forced beam 
example shows (see Fig. 26), the energy-phase method detects complicated or 
chaotic dynamics on much larger parameter regions than other perturbation 
methods for simple or multi-pulse homoclinic orbits. 

Applying our method to the forced-beam model (1.1) without damping, we 
obtained the homoclinic tree shown in Fig. 19. It is important to observe that this 
object is universal in the same sense as the pendulum-type equations are universal as 
first-order approximations for near-resonance dynamics (see, e.g., ARNOLD, KOZLOV, 
& NEISIqTAm" [4]). Hence, in other applications one typically obtains a finite union of 
smooth deformations of the structure we found for the forced inextensional beam. 
For  example, in a two-mode model of the forced nonlinear SchriSdinger equation 
one finds the same homoclinic tree shown in Fig. 19 over the interval A~b e [0, 27z] 
(see HALLER & WIGGINS [22]). We also note that by identifying the possible range 
of the phase shift in a given problem, one can construct the homoclinic tree without 
actually computing how Aq5 depends on the system parameters. 

Other applications of the energy-phase method involve those we listed in 
Section 1.3. An application to the study of partially slow manifolds (see Section 1.1) 
in three-degree-of-freedom Hamiltonian systems will appear in HALLER & WIGGINS 
[23]. There we also give extensions of the result of the present paper for unequal 
phase shifts and for heteroclinic unperturbed manifolds. Generalizations to higher- 
dimensional slow and partially slow manifolds along the lines of the present paper 
are also possible and will appear elsewhere. 
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