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Abstract We show how spectral submanifold the-
ory can be used to construct reduced-order models for
harmonically excited mechanical systems with inter-
nal resonances. Efficient calculations of periodic and
quasi-periodic responses with the reduced-order mod-
els are discussed in this paper and its companion, Part II,
respectively. The dimension of a reduced-order model
is determined by the number of modes involved in
the internal resonance, independently of the dimension
of the full system. The periodic responses of the full
system are obtained as equilibria of the reduced-order
model on spectral submanifolds. The forced response
curve of periodic orbits then becomes a manifold of
equilibria, which can be easily extracted using param-
eter continuation. To demonstrate the effectiveness and
efficiency of the reduction, we compute the forced
response curves of several high-dimensional nonlin-
ear mechanical systems, including the finite-element
models of a von Kármán beam and a plate.
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1 Introduction

The forced response curve (FRC) of a mechanical sys-
tem under harmonic excitation gives the amplitude
of the periodic response of the system as a function
of the excitation frequency. The FRC of a nonlinear
system is significantly different from that of the lin-
ear part of the system, providing key insights into the
nature of nonlinearities of the system. In particular,
when a mechanical system has an internal resonance,
the nonlinear behavior is often intriguingly complex
[41]. Specifically, internal resonances tend to lead to
energy transfer between modes [13,38,43,67], satura-
tion [5,42,43,73], localization [38,68] and frequency
stabilization [3].

The periodic orbit of a nonlinear mechanical system
can be computed with various numerical methods. As
the simplest method, direct numerical integration can
be performed to find an asymptotically stable periodic
orbit in the steady-state response if the initial condition
of the forward simulation is in the basin of attraction of
such a periodic orbit. Unstable periodic orbits arising in
mechanics problemsof practical relevance are of saddle
types and hence cannot be found in either forward or
backward direct numerical simulations. In the shooting
method [36,48], the initial state is updated iteratively
such that periodicity condition is satisfied. Therefore,
the shooting method can locate unstable periodic orbits
as well.

To avoid numerical integration of the full system,
the periodic orbit can be found with the colloca-
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tion method [4,16] and the harmonic balance method
[18,37,72]. In the collocation method, the periodic
orbit is approximated as a piecewise smooth function
of time, expressed on each subinterval as a Lagrange
polynomial, parametrized by the unknowns at the base
points. The equation of motion is satisfied at a set of
collocation nodes. In the harmonic balancemethod, the
periodic orbit is approximated by a truncated Fourier
series with unknown coefficients. These coefficients
are solved from a set of nonlinear algebraic equations
obtained by balancing the harmonics in the equation of
motion.

The FRCs of low-dimensional mechanical systems
can be effectively obtained from the above methods.
However, mechanical systems generated from finite
elements (FE) models generally contain thousands of
degrees of freedom. Indeed, internal resonances have
been observed in structural elements such as beams
[42,58], cables [35], plates [6,12] and shells [63,64].
For such high-dimensional systems, the computational
costs of the numerical methods we have surveyed are
prohibitive, and hence, these methods are impracti-
cal. Specifically, direct numerical integration can take
excessively long under weak damping, the memory
need is significant for the collocation method, and the
harmonic balance method is impacted by the difficulty
of finding zeros for very large dimensional, nonlinear
systems of algebraic equations.

To reduce the computational cost, one often reduces
high-dimensional systems to lower-dimensional mod-
els whose FRC can be extracted efficiently. For lin-
ear systems, decomposition into normal modes pro-
vides a powerful tool to derive reduced-order models.
For nonlinear systems, various definitions of nonlinear
normal modes (NNMs) have been developed. Specifi-
cally, Rosenberg [55] defines a NNM as a synchronous
periodic orbit of a conservative system. Shaw & Pierre
[59] define a NNM as an invariant manifold tangent at
the origin to a linear modal subspace for a dissipative
system. It follows that the NNM is the nonlinear con-
tinuations of the linear modal subspace and hence can
be used for model order reduction. Shaw and his co-
workers have usedGalerkin-based approaches to calcu-
late such NNMs for dissipative systems [50], with the
consideration of internal resonances [33] and harmonic
excitation [34] and derived reduced-ordermodels using
the obtained NNMs.

It has been observed that the Shaw–Pierre-type
invariant surfaces are not unique even in the linearized

system [44]. While there are generally infinitely many
Shaw–Pierre-type invariant manifolds for each modal
subspace, there exists a unique smoothest one under
appropriate non-resonance conditions, as pointed out
byHaller and Ponsioen [23]. They define the smoothest
invariant manifold to a spectral subspace (i.e., a direct
sum of modal subspaces) as the spectral submanifold
(SSM) associated with the spectral subspace. Parame-
terizationmethods with tensor-notation [52] andmulti-
index notation [51] have been developed to efficiently
compute such SSMs. The reduced-order model for a
particular mode of interest can be derived with the
corresponding two-dimensional SSM. Such a reduced-
ordermodel enables explicit extraction of the backbone
curve [7,61] and the FRC [7,51,53] around the partic-
ular mode. In addition, isolated FRCs, namely isolas,
can be analytically predicted with such a reduced-order
model [53].

Two main limitations of SSM computation in the
above works are (i) reliance on the equations of motion
written in the eigenbasis of the linearized systems,
which is out of reach for FE problems involving
very large number of degrees of freedom, and (ii)
the dimension of SSM is restricted to two. Address-
ing these limitations, Jain & Haller [28] have recently
developed a computational methodology that enables
local approximations to SSMs of arbitrary dimen-
sions up to arbitrary orders of accuracy using only the
knowledge of eigenvectors associated with the master
modal subspace. A numerical implementation of these
results is available in the open-source MATLAB pack-
age, SSMTool-2.0 [31], which is capable of treating
very high-dimensional finite element applications [28].
Model reduction to SSMs for systemswith internal res-
onances, however, have not yet been addressed, which
motivates our current study.

An alternative procedure for model reduction of
nonlinear systems is the method of normal form. This
method applies successive near-identity transforma-
tions to the equations ofmotion to remove non-resonant
terms, yielding simplified equations of motion which
contain only the essential (resonant) terms. Touzé and
Amabili [65] have used themethod of normal form first
to derive reduced-ordermodels for harmonically forced
structures. These reduced-order models are obtained
by restricting the truncated normal form to its invariant
subspaces aligned with the modal subspaces of the lin-
earized system. Hence, this procedure requires the full
system to be expressed in its modal basis. Similarly,
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Neild and Wagg [45] applied the method of normal
form for second-order systems directly. The simpli-
fied dynamics from the normal form procedure enables
analytical prediction of backbone curves [11] as well
as FRCs [65] for systems with internal resonance.
Recently, Vizzaccaro et al. [71] and Opreni et al. [47]
computed the reduced-order models of [65] directly
from physical coordinates up to cubic order of trunca-
tion. These procedures use the same SSM parametriza-
tion approach put forward in [23,51,52,69], but is lim-
ited to geometric nonlinearities up to cubic order and
to linear Rayleigh damping (cf. Jain and Haller [28]).

The objective of this paper is to derive reduced-order
models for harmonically excited mechanical systems
with internal resonances using SSMs and to extract the
FRCs of such systems up to arbitrary orders of approx-
imation. The rest of this paper is organized as follows:
Section 2 details the setup of mechanical systems. In
Sect. 3, SSM-based reduction is discussed for systems
with internal resonance. Specifically, we consider a
system with m of its natural frequencies satisfying a
certain internal resonance relation. Then, the reduced-
order model on a resonant SSM is 2m-dimensional,
independently of the dimension of the original sys-
tem. Section 4 describes the computational procedure
for resonant SSMs. In Sect. 5, the reduced dynamics
on the SSM is analyzed in detail. As we will see, the
equilibrium points of the slow-phase reduced dynam-
ics mark periodic orbits of the full system. The stability
of the periodic orbits is the same as that of the equilib-
rium points. It follows that the extraction of the FRC
of the full system is reduced to the computation of the
manifold of equilibria in the reduced-order vector field,
which can be easily and efficiently performed. We dis-
cuss a MATLAB toolbox developed to perform such
calculations. Section 6 demonstrates the power of this
toolbox with a list of examples, including von Kármán
beam and plate structures with discretizations up to
240,000 degrees of freedom. In Part II of this paper, we
will focus on the bifurcation of periodic orbits, includ-
ing quasi-periodic tori bifurcating from periodic orbits.

2 System setup

We consider a periodically forced nonlinear mechani-
cal system

Mẍ+Cẋ+Kx+ f (x, ẋ) = ε f ext(Ωt), 0 < ε � 1

(1)

where x ∈ R
n is the generalized displacement vector;

M ∈ R
n×n is the positive-definitemassmatrix;C, K ∈

R
n×n are the damping and stiffness matrices; f (x, ẋ)

is a Cr smooth nonlinear function such that f (x, ẋ) ∼
O(|x|2, |x||ẋ|, |ẋ|2); and ε f ext(Ωt) denotes external
harmonic excitation.

The above second-order system can be transformed
into a first-order system as follows

Bż = Az + F(z) + εFext(Ωt) (2)

where

z =
(
x
ẋ

)
, A =

(−K 0
0 M

)
, B =

(
C M
M 0

)
,

F(z) =
(− f (x, ẋ)

0

)
, Fext(Ωt) =

(
f ext(Ωt)

0

)
.(3)

One benefit of the first-order formulation (3) is that the
coefficient matrices A and B are symmetric when the
matrices M,C, K are symmetric, which is often the
case for mechanics problems. Nonetheless, we formu-
late our computation procedure for the general first-
order system (2).

Solving the linear part of (2) leads to the generalized
eigenvalue problem

Av j = λ j Bv j , u∗
j A = λ ju∗

j B, (4)

where λ j is a generalized eigenvalue and v j and u j are
the corresponding right and left eigenvectors, respec-
tively. This eigenvalue problem has 2n eigenvalues,
which can be sorted in the decreasing order based on
their real parts

Re(λ2n) ≤ Re(λ2n−1) ≤ · · · ≤ Re(λ1) < 0. (5)

In this work, we have assumed that the real parts of all
eigenvalues are strictly less than zero, and hence, the
equilibrium point of the linearized system Bż = Az is
asymptotically stable.

Remark 1 We have listed all eigenvalues here for com-
pleteness. However, aswewill see, it is not necessary to
calculate all eigenvalues in SSM analysis because the
computation procedure of SSMproposed in [28] is used
in this study. In this procedure, invariant manifolds and
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their reduced dynamics are computed in physical coor-
dinates using only the master modes associated with
the invariant manifold.

Remark 2 We sort the eigenvalues (5) based on their
real parts following [23]. This ordering is useful in iden-
tifying the slowest decaying modes. The SSMs con-
structed around the slowestmodes are themost relevant
for model reduction of unforced systems as they attract
nearby full system trajectories [23]. However, as we
will see in Sect. 5, the selection of a master subspace
for SSM reduction of periodically forced nonlinear sys-
tems will mainly be based on external and internal res-
onances. Thus, the slowness of SSM is not an essential
ingredient in the model reduction for forced nonlinear
systems. Arnoldi-Chebyshev methods [56,57] can be
used to compute a small subset of eigenmodes with
the smallest real parts. For the commonly employed
Rayleigh damping model in structural dynamics, i.e.,

C = αM + βK , (6)

the eigenvalues of the linear system are given by:

λ2i−1,2i = −α + βω2
i

2
± iωi

√
1 −

(
α

2ωi
+ βωi

2

)2

,

(7)

where ωi denotes the i th natural frequency of the
undamped linear system. We note that with 0 ≤ α �
ωi and 0 < β � 1, i.e., under light damping, the
ordering (5) provides the commonly used ordering of
increasing natural frequencies.

3 Non-autonomous SSM for systems with internal
resonance

We consider the following 2m-dimensional master
spectral subspace

E = span{vE1 , v̄E1 , . . . , vEm, v̄Em}. (8)

We assume that E is underdamped, i.e., its spectrum is
of the following:

Spect(E) = {λE1 , λ̄E1 , . . . , λEm, λ̄Em} (9)

with Im(λEj ) �= 0 for j = 1, . . . ,m. We expect the
spectral subspace E to be composed of internally reso-
nant modes of the system. As such, the eigenvalues in
Spect(E) may be any arbitrary subset of the 2n eigen-
values in the ordering (5). In addition, we denote the
set of 2n eigenvalues as Spect(Λ).

We further assume that the algebraic multiplicity of
each eigenvalue in Spect(E) is equal to the geomet-
ric multiplicity of the eigenvalue. The eigenvectors are
then chosen such that

(
uEi

)∗
BvEj = δi j ,

(
ūEi

)∗
BvEj = 0, 1 ≤ i, j ≤ m.

(10)

Under the assumption of small damping, we have
small real parts for the eigenvalues of lower-frequency
modes. In the case of internal resonance, this results
in (near) resonances among the imaginary parts of the
eigenvalues corresponding to the internally resonant
modes. To this end, we allow for the following type of
(near) inner resonances

λEi ≈ l · λE + j · λ̄
E
, λ̄Ei ≈ j · λE + l · λ̄

E
(11)

for some i ∈ {1, . . . ,m}, where l, j ∈ N
m
0 , |l + j | :=∑m

k=1(lk + jk) ≥ 2, and

λE = (λE1 , . . . , λEm). (12)

Following Haller and Ponsioen [23], we define
a periodic spectral submanifold (SSM) with period
2π/Ω , W(E,Ωt), corresponding to the master spec-
tral subspaceE as a 2m-dimensional invariantmanifold
to the nonlinear system (2) such that W(E,Ωt)

(i) perturbs smoothly from E at the trivial equilib-
rium point z = 0 under the addition of nonlinear
terms and external excitation in (2), and

(ii) is strictly smoother than any other periodic invari-
ant manifolds with period 2π/Ω that satisfies (i).

The existence and uniqueness of such SSMs have
been investigated in [23]. We summarize the main
results in the following theorem.

Theorem 1 Assume the non-resonance condition

a · Re(λE ) + b · Re(λ̄E ) �= Re(λk),

∀ λk ∈ Spect(Λ) \ Spect(E),
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Nonlinear analysis of forced mechanical systems with internal 1009

∀ a, b ∈ N
m
0 , 2 ≤ |a + b| ≤ 
(E), (13)

where |a+ b| = ∑m
k=1(ak +bk) and 
(E) is the abso-

lute spectral quotient of E , defined as


(E) = Int

(
minλ∈Spect(Λ) Reλ

maxλ∈Spect(E) Reλ

)
. (14)

Assume further that r > 
(E). Then, for any ε > 0
small enough, the following hold for system (2):

(i) There exists a2m-dimensional, time-periodic, class
Cr SSM W(E,Ωt) that depends smoothly on ε,

(ii) The SSM W(E,Ωt) is unique among all C
(E)+1

invariant manifolds satisfying (i)
(iii) W(E,Ωt) can be viewed as an embedding of an

open set in the reduced coordinates ( p, φ) into the
phase space of system (2) via the map

W ε( p, φ) : C2m × S1 → R
2n . (15)

(iv) There exists a polynomial series Rε( p, φ) : C2m ×
S1 → C

2m satisfying the invariance equation

B
(
D pW ε( p, φ)Rε( p, φ) + DφW ε( p, φ)Ω

)
= AW ε( p, φ) + F(W ε( p, φ)) + εFext(φ),

(16)

such that the reduced dynamics on the SSM can be
expressed as

ṗ = Rε( p, φ), φ̇ = Ω. (17)

Proof This theorem is simply a restatement of Theo-
rem 4 by Haller and Ponsioen [23], which is based on
more abstract results by Cabré et al. [8–10] and Haro
and de la Llave [26,27]. �
Remark 3 To check the non-resonance condition in the
above theorem,we need to know all eigenvalues, which
are not available in general for high-dimensional sys-
tems. Indeed, the computation of all natural frequen-
cies of a high-dimensional system is computationally
expensive and challenging. In practice, we only cal-
culate a subset of eigenvalues in SSM analysis. For
instance, we may calculate the first ns modes with low-
est natural frequencies and then find the inner reso-
nance among a subset of these ns modes to determine
the master subspace. Then, the non-resonance condi-
tion is checked for the ns modes.

Remark 4 In structural systems described by spatially
discretized PDEs, the highest-frequency modes often
experience the highest dissipation as well. This implies
that the spectral quotient 
(E), which depends on the
highest decay rate, can be a large number in practice.
Thus, in order to approximate the uniquely smooth
SSM on larger domains, one needs to compute Tay-
lor expansions up to the very high degree imposed by
the spectral quotient. At the same time, this also means
that to a very high degree, the SSM’s Taylor expansion
agrees with those of the less smooth invariant mani-
folds tangent to E at the origin. Physically, this is a
desirable setting for model reduction, given that even
lower-order approximations of the SSMand its reduced
dynamics represent the full system’s behavior in a size-
able neighborhood of the origin.

Remark 5 The parameterization coordinates p are m
pairs of complex conjugate coordinates, namely

p = (q1, q̄1, . . . , qm, q̄m), (18)

where qi and q̄i denote the parameterization coordi-
nates corresponding to vEi and v̄Ei , respectively. In this
paper, we refer to such coordinates as normal coor-
dinates as well because they characterize the reduced
dynamics on SSM.

4 Computation of SSM

In this section, we briefly review the computation
procedure developed by Jain and Haller [28], which
enables computation of SSMs in physical coordinates
using only the eigenvectors associated with the mas-
ter modal subspace E . The procedure in [28] is based
on the parameterizationmethod for invariant manifolds
(see Haro et al. [25] for an overview).

We seek the unknown parametrizations W ε( p, φ)

and Rε( p, φ) as an asymptotic series in ε given their
smooth dependence on ε. It follows that

W ε( p, φ) = W( p) + εX( p, φ) + O(ε2). (19)

Rε( p, φ) = R( p) + εS( p, φ) + O(ε2). (20)

Substituting the above expansions into the invariance
Eq. (16) and collecting terms according to the order of
ε yields
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O(ε0) : BD pW( p)R( p) = AW( p) + F(W( p)),

(21)

which turns out the same as the invariance equation for
the autonomous SSM in the ε = 0 (unforced) limit of
system (1). Furthermore, we obtain

O(ε) : BD pW( p)S( p, φ) + BD pX( p, φ)R( p)

+ BDφX( p, φ)Ω = AX( p, φ)

+ DF(W( p))X( p, φ) + Fext(φ). (22)

4.1 Autonomous part

We first solve (21) to obtain a Taylor expansion for
the autonomous SSM W( p) and its reduced dynamics
R( p) on it. The basic idea of solving (21) is summa-
rized here but we refer to [28] for more details. Specifi-
cally, a Taylor series is used to expandW( p) and R( p)
in the normal coordinates p

W( p) =
∑
k

wk p
k, R( p) =

∑
k

rk p
k, |k| ≥ 1,

(23)

where pk = pk11 ·…·pk2m2m and |k| = k1+· · ·+k2m . We
have omitted the leading order (|k| = 0) terms in the
expansions because W(0) = 0 and R(0) = 0. Substi-
tuting (23) into (21) and balancing the terms of pk for
k satisfying |k| = j yields a set of linear equations of
the form

Akwk = Bkrk − Ck, |k| = j, (24)

where Ak, Bk and Ck depend on the expansion coef-
ficients at lower order if j ≥ 2. When j = 1, the
expansion coefficients are related to the master sub-
space E and can be solved for directly. Subsequently,
we can solve the linear Eq. (24) recursively to obtain
the expansion coefficients at higher orders.

As a demonstration of the above procedure, we con-
sider the case j = 1. Let ei ∈ R

2m be the unit vector
aligned along the i th coordinate axis. It follows that
|ei | = 1 for 1 ≤ i ≤ 2m, and we have

B
∑
ei

wei

∑
e j

(re j )i p
e j = A

∑
e j

we j p
e j . (25)

With the notation

W I = (we1, . . . ,we2m ), RI = (re1 , . . . , re2m ),

(26)

balancing the two sides of (25) yields

BW IRI = AW I, (27)

from which we obtain

W I = (vE1 , v̄E1 , . . . , vEm, v̄Em), (28)

RI = diag(λE1 , λ̄E1 , . . . , λEm, λ̄Em). (29)

Hence, the eigenvectors and eigenvalues associated
with the master spectral subspace E solve the
autonomous invariance Eq. (21) at the leading order,
j = 1. Using this solution at the leading order, the
linear Eq. (24) can be recursively solved to approxi-
mate the autonomous SSM up to arbitrarily high orders
( j ≥ 2) of accuracy. We refer to [28] for details on the
higher-order case.

Now, let the autonomous part of the vector field of
the reduced dynamics be arranged in complex conju-
gate blocks as follows:

R( p) =
⎛
⎜⎝

R1( p)
...

Rm( p)

⎞
⎟⎠ , (30)

where Ri ( p) ∈ C
2 contains the complex conjugate

components of the autonomous part of the vector field
associated with the i th pair of master mode (vEi , v̄Ei ).
Under the (near) inner resonances given by (11), we
define a set containing the corresponding monomial
multi-indices as

Ri = {(l, j) : λEi ≈ l · λE + j · λ̄
E }. (31)

Then, it follows from the result of [28] that the
normal-form-style parameterization of the autonomous
reduced dynamics is given by:

Ri ( p) =
(

λEi qi
λ̄Ei q̄i

)
+

∑
(l, j)∈Ri

(
γ (l, j)ql q̄ j

γ̄ (l, j)q j q̄l

)
, (32)

where the normal form coefficients γ (l, j) along with
the expansion coefficients of W( p) are obtained using
the computation method in [28].
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Remark 6 The computational cost for formulating and
solving (24) is significant for large j . In practice, the
expansion is truncated at some order jmax. It follows
that j ≤ jmax ≤ r in (24) and jmax is referred to as
the expansion order of SSM. In this paper, we deter-
mine the necessary expansion order based on the con-
vergence of the FRC under increasing order, given that
the computed approximate SSM will converge to the
unique C
(E)+1-smooth SSM as the order of approxi-
mation, j , increases.

4.2 Non-autonomous part

With W( p) and R( p) at hand, we solve (22) to obtain
X( p, φ) and S( p, φ). Likewise, Taylor expansion in p
is used to approximate X and S. The expansion coef-
ficients here are not constant but functions of φ and
hence periodic. In this work, we restrict ourselves to a
leading-order approximation in p for X and S [7,28],
i.e.,

X( p, φ) = X0(φ) + O(| p|),
S( p, φ) = S0(φ) + O(| p|). (33)

Then, the reduced dynamics (17) takes the form

ṗ = R( p) + εS0(φ) + O(ε| p|). (34)

Similar to (30), we arrange the non-autonomous part
of the vector field of reduced dynamics in complex
conjugate blocks as follows:

S0(φ) =
⎛
⎜⎝
S0,1(φ)

...

S0,m(φ)

⎞
⎟⎠ , (35)

where S0,i (φ) ∈ C
2 contains the complex conjugate

components of the leading-order non-autonomous part
of the vector field associated with the i th pair of master
modes, (vEi , v̄Ei ). Let

Fext(φ) = Faeiφ + Fae−iφ, (36)

where the forcing amplitude vector Fa ∈ R
2n with

superscript ‘a’ stands for ‘amplitude’. It follows then

from the derivation in Appendix 8.1 that

S0,i (φ) =
(

S0,i eiφ

S̄0,i e−iφ

)
, i = 1, . . . ,m, (37)

with

S0,i =
{

(uEi )∗Fa if λEi ≈ iΩ
0 otherwise

. (38)

In addition, letting S0(φ) = s+0 eiφ +s−0 e−iφ , we obtain

X0(φ) = x0eiφ + x̄0e−iφ, (39)

where x0 is the solution to the system of linear equa-
tions

(A − iΩB)x0 = BW Is
+
0 − Fa. (40)

5 Reduced dynamics on SSM

In this section, we establish the form of the leading-
order reduced dynamics on a multi-dimensional, time-
periodic SSM with internal resonance. As the SSM is
an attracting slow manifold, its reduced dynamics will
serve as a reduced-order model for the evolution of
all nearby initial conditions. In the special case that
Re(λ2n) = Re(λ2n−1) = · · · = Re(λ1), e.g., when the
system has a purely mass-proportional damping, we
do not have a slow SSM. However, as we will see in
this section, we select master subspace based on exter-
nal and internal resonance, and the slowness of SSM
is not an essential ingredient. The attractiveness of the
SSM is automatically ensured because the remaining
modes will decay quickly due to damping. In unforced
systems, however, the slowness of SSMplays an essen-
tial role in model reduction because the slowest SSM
attracts all nearby trajectories of the full system [23]
(see also Remark 2).

5.1 Main theorems

When the excitation frequency Ω is not close to any of
the natural frequencies, i.e., the external excitation is
not in (near-) resonance with the system’s eigenvalues,
then it follows from (38) that the non-autonomous part
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of the reduced dynamics vanishes. Indeed, the reduced
dynamics is autonomous in this setting as the normal
form style of parametrization of the non-autonomous
SSM removes the non-resonant terms from its reduced
dynamics. Hence, the trivial fixed point of the reduced
dynamics is a stable focus. Substituting the steady-state
p(t) = 0 into (19) andutilizing (33) and (39),weobtain
the periodic response of the full system at steady state
as follows

z(t) = −2εRe
(
(A − iΩB)−1FaeiΩt

)
. (41)

Substituting (3) into the above equation, letting

f ext(Ωt) = f aeiΩt + f ae−iΩt (42)

andutilizing (36),we can rewrite (41) in amore familiar
representation as

x(t) = 2εRe
(
(−Ω2M + iΩC + K )−1 f aeiΩt

)
.

(43)

Therefore, the system behaves as a linear system at
leading order.

We are mainly concerned with the response of the
system (2) near an external resonance with the forcing
frequency. We assume that the excitation frequency Ω

is resonant with themaster eigenvalues in the following
way:

λE − irΩ ≈ 0, λ̄
E + irΩ ≈ 0, r ∈ Q

m . (44)

As an example of the resonance relation (44), we con-
sider an internally resonant system such that the master
subspace E has two pairs of modes that exhibit near 1:3
inner resonances, i.e., λE2 ≈ 3λE1 and λ̄E2 ≈ 3λ̄E1 . Then,
if the external forcing frequency Ω is nearly resonant
with the first pair of modes, i.e., λE1 ≈ iΩ, λE2 ≈ i3Ω ,
we have r = (1, 3). However, if the external forcing
resonates with the second pair of modes, i.e., λE1 ≈
1
3 iΩ, λE2 ≈ iΩ , then we have r = (1/3, 1).

Theorem 2 (Reduced dynamics in polar coordinates)
Under the inner resonance condition (11), the external
resonance condition (44), and with polar coordinates
(ρi , θi ) defined as

qi = ρi e
i(θi+riΩt), q̄i = ρi e

−i(θi+riΩt), (45)

for i = 1, . . . ,m, the following statements hold for any
ε > 0 small enough:

(i) Under the coordinate transformation (45), the
reduced dynamics (17) on the 2m-dimensional
SSM can be simplified to yield a slow-fast
dynamical system. In the rotating frame, the
slow-phase reduced dynamics in polar coordi-
nates (ρ, θ) ∈ R

m × T
m is given by

(
ρ̇i
θ̇i

)
= rpi (ρ, θ ,Ω, ε) + O(ε|ρ|)gpi (φ), (46)

for i = 1, . . . ,m. Here the superscript p stands
for ‘polar’, gpi is a periodic function and

rpi =
(

ρiRe(λEi )

Im(λEi ) − riΩ

)

+
∑

(l, j)∈Ri

ρ l+ j Q(ρi , ϕi (l, j))
(
Re(γ (l, j))
Im(γ (l, j))

)

+ ε Q(ρi ,−θi )

(
Re( fi )
Im( fi )

)
(47)

with Ri defined in (31) and with ϕi and Q
defined as

ϕi (l, j) = 〈l − j − ei , θ〉, (48)

Q(ρ, θ) =
(

cos θ − sin θ
1
ρ
sin θ 1

ρ
cos θ

)
(49)

fi =
{

(uEi )∗Fa if ri = 1
0 otherwise

. (50)

Here ei ∈ R
m is the unit vector aligned along

the i th axis.
(ii) Any hyperbolic fixed point of the leading-order

truncation of (46), viz.,

(
ρ̇i
θ̇i

)
= rpi (ρ, θ ,Ω, ε), i = 1, . . . ,m, (51)

persists as a periodic solution p(t) of the
reduced dynamics (17) on the SSM W(E,Ωt).
For a given excitation amplitude ε0, the leading-
order approximation to the FRC is given by the
zero level set of the components of the function
Fp

ε0 : Rm × T
m × R → R

2m
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Fp
ε0(ρ, θ ,Ω) :=

⎛
⎜⎝
rp1(ρ, θ ,Ω, ε0)

...

rpm(ρ, θ ,Ω, ε0)

⎞
⎟⎠ . (52)

(iii) The stability type of a hyperbolic fixed point
of (51) coincides with the stability type of the
corresponding periodic solution on the SSM
W(E,Ωt).

Proof Wepresent the proof of this theorem inAppendix
8.2. �

We restrict ourselves to the leading-order approxi-
mation (see (33) and (34)) for the following three rea-
sons: (i) the proof of the theorem implies the persistence
of hyperbolic periodic orbits under the additionof terms
at order O(ε| p|) or higher; (ii) numerical experiments
show that the results with this approximation already
have satisfied accuracy; (iii) we obtain a parametric
reduced-order model (51) with the forcing frequency
Ω and the amplitude ε as system parameters, enabling
efficient parameter continuation (see Sect. 5.2). When
the higher-order terms at O(ε| p|k) with k ≥ 1 for the
non-autonomous part are taken into consideration, the
slow-phase reduced dynamics is still of the form (51).
However, the coefficients of these higher-order terms
are implicit functions of Ω and one has to solve sys-
tems of linear equations to obtain the coefficients for
each Ω [53]. In Ref. [34], the equations of motion are
transformed into modal coordinates. A Galerkin-based
method was used to solve a system of PDEs governing
the invariant manifold. The resulting reduced dynam-
ics is not parametric inΩ . Thus, one needs to construct
reduced-order models for a number of discrete exci-
tation frequencies to approximate a forced response
curve [34].

We note that the reduced dynamics (46) becomes
singular at ρi = 0 for any i ∈ {1, . . . ,m} due to
the blow-up of Q(ρi ,−θi ) at ρi = 0. Such a singu-
larity always arises in the study of a 1:1 resonance
between the higher-frequency master mode and exter-
nal forcing frequency [41]. For instance, if Ω ≈ ω2

with ω2 ≈ 3ω1, we have a solution branch with van-
ishing ρ1 [42]. One is tempted to simply ignore the
corresponding component in the vector field (46), but
this prevents us from determining the correct stability
of the fixed point based on the simplified system [43].
For this reason, we also give the Cartesian coordinate
representation of the reduced dynamics on the SSM in
the following theorem.

Theorem 3 (Reduced dynamics on Cartesian coordi-
nates)

Under the inner resonance condition (11), the exter-
nal resonance condition (44), and with Cartesian coor-
dinates (qRi,s, q

I
i,s) defined as

qi = qi,se
iriΩt = (qRi,s + iqIi,s)e

iriΩt ,

q̄i = q̄i,se
−iriΩt = (qRi,s − iqIi,s)e

−iriΩt , (53)

for i = 1, . . . ,m, where qRi,s = Re(qi,s) and qIi,s =
Im(qi,s), the following statements hold for any ε > 0
small enough:

(i) Under the coordinate transformation (53), the
reduced dynamics (17) on the 2m-dimensional
SSM can be simplified to yield a slow-fast
dynamical system with the coordinate transfor-
mation (53). In the rotating frame, the slow-
phase reduced dynamics in Cartesian coordi-
nates (qRs , qIs) ∈ R

m × R
m is given by:

(
q̇Ri,s
q̇Ii,s

)
= rci (qs,Ω, ε) + O(ε|qs|)gci (φ), (54)

for i = 1, . . . ,m. Here the superscript c stands
for ‘Cartesian’, gci is a periodic function, and

rci =
(

Re(λEi ) riΩ − Im(λEi )

Im(λEi ) − riΩ Re(λEi )

) (
qRi,s
qIi,s

)

+
∑

(l, j)∈Ri

⎛
⎝Re

(
γ (l, j)qls q̄

j
s

)
Im

(
γ (l, j)qls q̄

j
s

)
⎞
⎠ + ε

(
Re( fi )
Im( fi )

)
.

(55)

(ii) Any hyperbolic fixed point of the leading-order
truncation of (54), viz.,

(
q̇Ri,s
q̇Ii,s

)
= rci (qs,Ω, ε), i = 1, . . . ,m, (56)

corresponds to a periodic solution p(t) of the
reduced dynamics (17) on SSMW(E,Ωt). For a
given excitation amplitude ε0, the leading-order
approximation to the FRC is given by the zero
level set of the components of the functionF c

ε0
:

C
m × R → R

2m

F c
ε0

(qs,Ω) :=
⎛
⎜⎝
rc1(qs,Ω, ε0)

...

rcm(qs,Ω, ε0)

⎞
⎟⎠ . (57)
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(iii) The stability type of a hyperbolic fixed point
of (56) coincides with the stability type of the
corresponding periodic solution on the SSM
W(E,Ωt).

Proof Wepresent the proof of this theorem inAppendix
8.3 �
Remark 7 The Cartesian coordinates and polar coor-
dinates featured in Theorems 2 and 3 are related by

ρi = ||qi,s|| =
√(

qRi,s

)2 +
(
qIi,s

)2
,

θi = arg(qi,s) = atan2(qIi,s, q
R
i,s) (58)

for i = 1, . . . ,m. In this paper, we will plot the results

of ρi instead of
(
qRi,s, q

I
i,s

)
for easier interpretation of

the vibration amplitudes.

5.2 Continuation of fixed points

The above theorems indicate that we can find peri-
odic orbits by locating the fixed points of the reduced
dynamics for (ρ, θ) in polar coordinate representa-
tion or (qRs , qIs) in Cartesian coordinate representa-
tion. The solution manifold of the fixed points is two-
dimensional and may be parameterized by the sys-
tem parameters (Ω, ε). For a given ε = ε0, a one-
dimensional solutionmanifold is obtained, correspond-
ing to the FRC stated in the theorems.

For a two-dimensional SSM (m = 1), we have l =
j + e1 [51,53] and hence in equation (48) ϕ1(l, j) = 0
for all (l, j) ∈ R1. It follows that one can obtain
FRC from the joint zero level set of Fp

εo(ρ1, θ1,Ω),
which is the intersection of two two-dimensional sur-
faces in a three-dimensional space parameterized by
(ρ1, θ1,Ω). Following this approach, all equilibrium
points in a given computational domain for (ρ1, θ1,Ω)

can be found. Therefore, this level-set-based method is
able to find isolas, namely isolated solution branches
of FRC. The reader may refer to [28,51,53] for more
details about this level-set-based technique.

Under the internal resonance assumption (11) with
m ≥ 2, the level-set-based detection of fixed points
becomes impracticable due to the increment of dimen-
sions. Instead, we seek the fixed points by solving
the set of nonlinear algebraic equations defining them
numerically. Parameter continuation provides a pow-
erful tool to cover the solutionmanifold of fixed points.

Several packages are available to perform such contin-
uation, including auto [20], matcont [19] and coco
[16]. The last one is distinguished from the first two
because it uses a staged construction paradigm where
larger problems are assembled from smaller ones.More
details about the staged construction and its applica-
tions can be found in [16].

In this paper, we use the ep toolbox in coco [16]
to perform the continuation of fixed points of (51)
or (56). The ‘ep’ stands for equilibrium point. Note
that the implementation of our method does not neces-
sarily rely on coco. One can use other toolboxes such
as auto [20] and matcont [19] for the continuation
of fixed points, or even manually solve for the fixed
points of (51) or (56).

Along with the computation of fixed points, ep
also calculates the eigenvalues of the Jacobian of the
reduced vector field and hence provides information
about the stability and bifurcation of the fixed points.
Leveraging this capability, we have built a toolbox
SSM-ep1, based on the ep toolbox in coco. The
SSM-ep toolbox performs one-dimensional continu-
ation of fixed points with respect to changes in Ω or
ε. For each fixed point obtained in this fashion, the
corresponding periodic solution in the SSMW(E,Ωt)
in normal coordinates p(t) is mapped back to physi-
cal coordinates z(t). We provide more details on this
inverse mapping in next subsection.

As a starting point of continuation, an initial fixed
point is needed.SSM-ep provides two options for find-
ing such an initial fixed point:

– fsolve: The matlab nonlinear equation solver
fsolve is called to locate the zeros of the vector
field. This solver finds zeros by optimization tech-
niques. In particular, the square of the Euclidean
norm of the residual of nonlinear equations is
selected asminimization objective. Interested read-
ers can refer to [46] for various numerical optimiza-
tion algorithms.

– forward: A long-time forward simulation is per-
formed, and a fixed point is sought based on the
fact that the initial condition is now in the basin of
attraction of the assumed fixed point.

1 SSM-ep toolbox is included in SSMTool 2.1 [30]

123



Nonlinear analysis of forced mechanical systems with internal 1015

The above two options ask for an initial guess for
the initial point in the optimization or the initial con-
dition in the forward simulation. By default, we set
ρ = θ = 0.1 in the case of the polar representation
(Theorem 2) and qs = 0 in the case of the Cartesian
representation (Theorem 3) as the initial guess. Numer-
ical experiments suggest that these choices are robust
in general.

5.3 FRC in physical coordinates

With the fixed points of the reduced dynamics on the
SSM computed, the corresponding periodic orbits on
the SSM can be computed from the transformation (45)
or (53). We then need to map the periodic orbits in nor-
mal coordinates back to physical coordinates. If p(t) is
a trajectory in normal coordinates, we obtain the cor-
responding trajectory in physical coordinates, namely
z(t), by substituting p(t) into (19). With the leading
order approximationof non-autonomousSSM,wehave

z(t) = W( p(t)) + ε
(
x0eiΩt + x̄0e−iΩt

)
(59)

where x0 is the Ω-dependent solution of the system
of linear equations (cf. (40)). The stability type of the
periodic orbit, z(t), is the same as that of the p(t), given
that the SSM is invariant and attracting.

When a FRC is obtained from a numericalmethod, it
is represented as a set of periodic solutions, { p(t,Ωi )},
for a set of sampled excitation frequencies, {Ωi }. For
each sampled Ωi , the corresponding x0 is obtained
by solving the system of linear equations (40). All
numerical results reported in this paper have been
obtained with a nonuniform sampling for Ω , which
is automatically determined by atlas algorithms in
coco [16,17]. Specifically, we perform ep continua-
tion in a given frequency span, allowing an adaptive
change of the continuation step size by the atlas
algorithms. This enables continuation along complex
paths and results in a non-uniform sampling for Ω .
The SSM-ep toolbox supports uniform sampling and
the coco-based nonuniform sampling forΩ . Note that
the sampling strategy forΩ does not necessarily rely on
coco. One can simply use uniform sampling or adopt
other suitable nonuniform sampling methods that cap-
ture complicated geometry of the FRC.

5.4 Computational cost

The main computational cost of FRC from SSM anal-
ysis is composed of three factors:

– A one-time computation of the autonomous SSM,
– Parameter continuation of the fixed points of the
reduced dynamics,

– NΩ times computation of the non-autonomous
SSM, where NΩ is the number of sampled frequen-
cies in {Ωi }.

The second factor is the smallest among the three
because 1) the reduced dynamical systemon the SSM is
2m-dimensional and m is equal to two or three in most
practical applications; 2) we perform a continuation of
fixed points instead of periodic orbits. In contrast, the
computational cost of the first factor increases signif-
icantly with the increment of the expansion order of
the SSM, as discussed in [28]. For the third factor, we
need to solve a system of linear equations with size 2n
for each sampled excitation frequency Ω . This process
is computationally intensive if the number of samples
is large and the system is high dimensional. Parallel
computing can be utilized to speed up this part of the
computation. As an alternative, we may simply ignore
the contribution of x0, given that ε is a small parameter.
Such a simplification has been adopted in the method
of normal forms [65,71]. Unless otherwise stated, the
reported computational time of FRC using SSM in this
paper includes all the three factors.

6 Examples

In this section, we illustrate our computational algo-
rithm for resonant SSMs in examples of increasing
complexity. The numerical package used in these com-
putations is available from [30].

6.1 A chain of oscillators

Consider the chain of nonlinear oscillators shown in
Fig. 1 with their equations of motion given by

ẍ1 + x1 + c1 ẋ1 + K (x1 − x2)
3 = ε f1 cosΩt,

ẍ2 + x2 + c2 ẋ2 + K [(x2 − x1)
3 + (x2 − x3)

3] = 0,

ẍ3 + x3 + c3 ẋ3 + K (x3 − x2)
3 = 0. (60)
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Fig. 1 A chain of three oscillators with identical natural fre-
quencies

The unforced linearized system around the origin has
eigenvalues:

λ1,2 = −c1
2

± i
√
1 − 0.25c21 ≈ ±i,

λ3,4 = −c2
2

± i
√
1 − 0.25c22 ≈ ±i,

λ5,6 = −c3
2

± i
√
1 − 0.25c23 ≈ ±i, (61)

provided that 0 < c1,2,3 � 1. Hence, the system has a
1:1:1 internal resonance, yielding r = (1, 1, 1) in (44)
for Ω = 1.

With c1 = 5 × 10−4 N.s/m, c2 = 1 × 10−3 N.s/m,
c3 = 1.5 × 10−3 N.s/m, K = 1 × 10−3 N/m3, f1 =
1N and ε = 0.005, we obtain the FRC in the normal
coordinates (ρ1, ρ2, ρ3) and in the physical coordinates
(||x1||∞, ||x2||∞, ||x3||∞) in Fig. 2. Here and in the
upcoming examples, || • ||∞ := maxt∈[0,T ] || • (t)||
denotes the amplitude of the periodic response.

The FRC in Fig. 2 displays rich dynamic behav-
ior due to modal interactions, including stable and
unstable periodic orbits, as well as saddle–node and
Hopf bifurcations. Recall that only the first degrees-of-
freedom (DOF) is excited. However, we observe non-
trivial dynamics in the second and third DOF, resulting
from modal interactions due to the 1:1:1 internal reso-
nance.

We now use the po-toolbox of coco to illustrate the
accuracy and efficiency of the SSM-based FRC anal-
ysis. In po, a periodic orbit is sought as the solution
to a boundary-value problem with periodic boundary
condition and an appropriate phase condition if the
system is autonomous. Then, the collocation method
is used to discretize the boundary-value problem and
parameter continuation is performed to obtain a solu-
tion manifold of periodic orbits representing the FRC.
In the continuation with po, a variational problem is
solved for each periodic orbit, and then, the stability
of the periodic orbit is obtained. As seen in Fig. 2,
the results from SSM match closely with the reference
solutions from po (labelled as Collocation). The com-

putation here was performed on an Intel(R) Core(TM)
i7-6700HQprocessor (2.60GHz) of a laptop. The com-
putational times for the SSM analysis and the po tool-
box were 27.5 s and 56.4 s, respectively. This speed-
up gain will become substantially more significant in
higher-dimensional problems, as will see in later exam-
ples. Indeed, the dimension of the continuation prob-
lem of fixed point is 2m. For most practical applica-
tions with internal resonance, we have m ∈ {2, 3},
independently of n. In contrast, the dimension of the
continuation problem of periodic orbits is 2nk, which
increases linearly with respect to n. We typically have
k ∼ O(100) in the collocation discretization. Such a
significant difference between the dimensions of the
two continuation problems results in a major speed-up
gain.

In this example, SSM computations were conducted
in both polar and Cartesian coordinates. The two repre-
sentations generate consistent results whenever results
can be obtained. As we discussed in Sect. 5.1, however,
the polar coordinate representation can have the singu-
larity issue. Indeed, the continuation of fixed points in
the vector field with polar representation terminates at
Ω ≈ 1.0054 rad/s where ρ3 ≈ 2.08 × 10−8, as indi-
cated by the green arrow in Fig. 2. Such a termination
results from the failure of Newton iteration at a nearly
singular point where ρ3 ≈ 0. By contrast, the continu-
ation of fixed points in the vector field with Cartesian
representation is successfully performed in the given
range of Ω with no singularity encountered.

No reduction is involved in this example, namely
m = n. It follows that the SSM analysis here is equiv-
alent to the application of the method of normal form
[45]. Unlike the approach in [45], however, no assump-
tions are made here on the smallness of the nonlinear-
ity in the SSM analysis. In the remaining examples, we
will have m � n to demonstrate the effectiveness and
efficiency of SSM-based model reduction.

6.2 A prismatic beam with axial stretching

Next we consider a forced hinged-clamped beam of the
type treated in [42]. Let E be the elastic modulus, r ,
A and I be the radius of gyration, area and moment
of inertia of the cross section, L be the characteristic
length and ρ be the density of the beam. The governing
equation for the transverse deflection w(x, t) of the
beam in dimensionless form is given by [42]:
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Fig. 2 The FRCs of the nonlinear oscillator chain (60) in normal
coordinates (ρ1, ρ2, ρ3) and physical coordinates (x1, x2, x3).
Here, and throughout the paper, the solid lines indicate sta-
ble solution branches, while dashed lines mark unstable solu-
tion branches. The cyan circles denote saddle–node bifurcation
points, and black squares denote Hopf bifurcation points. The
label SSM-O(k) suggests that the expansion order of SSM is k.
In the panels for FRC in physical coordinates, the results obtained
by continuation of periodic orbits with the collocation method
are presented as well to illustrate the accuracy of the SSM-based
results. The SSM results plotted here are obtained with Cartesian
coordinate representation. The continuation path in polar coordi-
nates terminates at Ω ≈ 1.0054 with ρ3 ≈ 2.08× 10−8 (see the
green arrow in the third panel), which triggers near singularity
and then the failure of the Newton iteration. (Color figure online)

∂4w

∂x4
+ ∂2w

∂t2
= δ

(
H

∂2w

∂x2
− 2c

∂w

∂t

)
+εp,

w(0) = w′′(0) = w(l) = w′(l) = 0. (62)

Here H represents the nonlinear axial stretching force
due to large deformation

H = 1

2l

∫ l

0

(
∂w

∂x

)2

dx, (63)

x , t are dimensionless length and time; p and c are
dimensionless distributed loading and damping coeffi-
cients; and δ characterizes the slenderness ratio of the
beam and ε is a load scaling parameter. These dimen-
sionless quantities are defined as follows in [42]:

x = x̂

L
, t =

√
Er2

ρL4 t̂, w = ŵL

r2
,

p = p̂L7

r6E A
, c = ĉL4

2r3A
√

ρE
, δ = r2

L2 , (64)

where x̂ , t̂ , ŵ are the length, time and transverse deflec-
tion with units; p̂ and ĉ are distributed loading and
damping coefficient. Here we have x̂ ∈ [0, l L] and
then x ∈ [0, l].

With a modal expansion

w(x, t) =
n∑

i=1

ψi (x)ui (t) (65)

followed by a Galerkin projection, the governing
partial-differential Eq. (62) is transferred into a set of
ordinary differential equations

üi + ω2
i ui = δ

⎛
⎝−2cu̇i + 1

2l

∑
j,k,s

αi jksu j ukus

⎞
⎠

+ ε fi cosΩt, (66)

for i = 1, . . . , n, where

fi =
∫ l

0
ψi (x)p(x)dx, (67)

αi jks =
(∫ l

0
ψi (x)ψ

′′
s (x)dx

) (∫ l

0
ψ ′

j (x)ψ
′
k(x)dx

)
.

(68)

Here the eigenfunction ψi (x) and the corresponding
natural frequencyωi are the solutions of the eigenvalue
problem
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d4ψi

dx4
− ω2

i ψi = 0,

ψi (0) = ψ
′′
i (0) = ψi (l) = ψ

′
i (l) = 0, (69)

whose solutions have been documented in [42]
For l = 2, the first two modes have a near 1:3 inter-

nal resonance, i.e., ω2 ≈ 3ω1, where ω1 = 3.8533
andω2 = 12.4927 . The forced response of this system
under external harmonic response has been investigated
in [42] using the method of multiple scale (MMS) at
Ω ≈ ω1 andΩ ≈ ω2 for ε = δ. Here we use reduction
to the 1:3 resonant SSM to study such a system and
compare the results obtained by the two methods. With
n = 10, we take the first two pairs of modes as the mas-
ter spectral space, namely E = span{v1, v̄1, v2, v̄2}.
Consequently, the dimension of the phase space for
the full system is 20, while the reduced system on the
resonant SSM will be four-dimensional. The physical
coordinates x in (1) are actuallymodal coordinates u in
this example. Note that the MMS used in [42] requires
δ to be small, but SSM theory does not require that.

This example does not satisfy a slow/fast assump-
tion, which is need for some nonlinear reduction meth-
ods such as the implicit condensation methods and
the quadratic manifold methods to work [24,60,70].
When the assumption is not satisfied, the two meth-
ods produce inaccurate or even qualitatively different
results for flat symmetric beam examples, as shown in
[60,70]. We calculate the frequency ratio between the
slave and master eigenfrequencies following [60,70].
The slow/fast assumption is satisfied if the ratio of the
smallest slave natural frequency to the largest master
natural frequency is larger than 6 [60]. In this example,
we have ω3 = 26.0610 and hence ω3/ω2 ≈ 2.09 < 6.
Thus, the slow/fast assumption is not satisfied. As we
will see, none of the remaining examples satisfy this
assumption either.

6.2.1 Primary resonance of the first mode

For implementing the MMS, we choose ε = δ =
1 × 10−4, c = 100, ε f1 = 5 and f2 = · · · = f10 = 0,
we are interested in the forced response for Ω ≈ ω1.
The first mode is excited and hence ρ1 �= 0. Due to
the internal resonance, ρ2 �= 0 as well. This allows
the use of polar coordinates with r = (1, 3). The
obtained FRCs in the coordinates (ρ1, ρ2) and (u1, u2)
for Ω ∈ [3.7782, 4.0867] are presented in Fig. 3.
Although nonzero, ρ2 is still small compared to ρ1, and

Fig. 3 The FRC for the forced beam Eq. (66) in normal coordi-
nates (ρ1, ρ2) and modal coordinates (u1, u2) with Ω ≈ ω1 =
3.8533. The results obtained by the method of multiple scales
(MMS), as well as the continuation of periodic orbits with the
collocation method, are presented for comparison and validation

hence the response of the system is mainly contributed
by the first mode, as seen in the first two panels of
Fig. 3. An excellent match between the results of SSM
analysis and MMS is observed for ||u1||∞, while dis-
crepancies occur in the FRC of ||u2||∞.We also use the
po toolbox in coco to extract the FRC of the full sys-
tem as the reference solution to compare the accuracy
of solutions obtained by the two methods. The results
from po are labelled as Collocation. As can be seen
in the last panel of Fig. 3, SSM reduction yields more
accurate results than MMS.

In MMS, the response of u2 at steady state is not
affected by f2 because f2 is not involved in the cor-
responding secular equation when Ω ≈ ω1 [42]. In
addition, MMS predicts u3 = · · · = u10 = 0, inde-
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Fig. 4 The FRC for the forced beam equations (66) in modal
coordinates (u2, u3) for Ω ≈ ω1 = 3.8533 and ε f1 = · · · =
ε f10 = 5. The MMS incorrectly predicts ||u3||∞ ≡ 0 (not
shown)

pendently of f1,...,10 [42]. In contrast, the results of
SSM depend on f1,...,10 because the non-autonomous
SSM depends on the external forcing, as can be seen in
Eq. (40). Therefore, SSM reduction yields more accu-
rate results than MMS. To further demonstrate this
advantage, we consider the case ε f1 = · · · = ε f10 = 5,
in which all 10 modes are excited. In this case, MMS
returns the same results as in previous loading case,
while the results obtained by SSM reduction change,
as seen in Fig. 4. Indeed, the amplitude ||u2||∞ at
Ω ≤ 3.85 and Ω ≥ 3.95 increases due to the non-
vanishing f2. In addition, SSM reduction correctly pre-
dicts the nontrivial response of u3, whereas MMS pre-
dicts zero response in u3.

A further advantage of SSM analysis over MMS is
that the reduced dynamics on the SSM is four dimen-
sional, while the MMS has to be applied to the full sys-
tem. Therefore, the computational cost of SSM reduc-
tion is smaller than that of MMS when it comes to
the size of problems. In addition, MMS is a symbolic
method that requires significant efforts in symbolic
computation and derivation. The SSM computation, in
contrast, is a fully automated, recursive numerical pro-
cedure [28,52].

6.2.2 Primary resonance of the second mode

Again with ε = δ = 1 × 10−4, c = 10, f1 = 0,
ε f2 = 40 and f3 = · · · = f10 = 0, we are interested
in the forced response for Ω ≈ ω2. In this setting, the

second mode is excited and hence ρ2 �= 0. The first
mode, however, can be either excited or inactive. As
a consequence, there are two solution branches where
ρ1 = 0 and ρ1 �= 0, respectively [42]. Given the pos-
sibility that ρ1 = 0, we use Cartesian coordinates here
with r = (1/3, 1).

We first consider the solution branch with non-
vanishing ρ1. Providing an initial solution on such a
branch to parameter continuation is a challenging task
because this branch is an isola: it is isolated from
the branch with vanishing ρ1 [53]. Here we provide
an initial guess for parameter continuation based on
the solution from the MMS. The FRCs obtained in
this way in the coordinates (ρ1, ρ2) and (u1, u2) for
Ω ∈ [11.7431, 13.9918] are shown in Fig. 5. From the
first two panels, we have O(ρ1) ∼ O(ρ2) for Ω ≥ 13
and ρ1 � ρ2 for Ω ≤ 12.5. Therefore, the system
response can be dominated by the first mode although
the external forcing is applied to the second mode
( f1 = 0, f2 �= 0). This intriguing phenomenon is a
result of the modal interaction arising from the internal
resonance. As can be seen in the last two panels, the
results of the two methods match well.

We then move to the solution branch with van-
ishing ρ1. The FRCs in the coordinates (ρ1, ρ2) and
(u1, u2) are shown in Fig. 6. From the first two pan-
els, we have ρ1 ≡ 0 and the FRC of ρ2 is similar to
that of forced Duffing oscillator. Here the upper and
lower branches are computed separately because their
connecting point, namely the other saddle–node (SN)
point, is outside the computational domain of Ω . In
fact, the other SN point is not detected for Ω ≤ ω3. In
the last panel, we observe a good match between the
results of ||u2||∞ obtained by the two methods. Again,
MMS predicts vanishing u1. In contrast, SSM-based
analysis is more accurate, predicting non-vanishing u1
even though ρ1 ≡ 0, as can be seen in the third panel
of Fig. 6.

6.3 A viscoelastic beam with gyroscopic force

Next, to demonstrate the capability of our SSM reduc-
tion for systems with gyroscopic and nonlinear damp-
ing forces, we consider a viscoelastic axially moving
beam subject to harmonic base excitation, as illustrated
in Fig. 7.

Themechanics of axiallymoving slender beams and
strings have received much attention in the past several
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Fig. 5 The FRC for the forced beam Eq. (66) in normal coor-
dinates (ρ1, ρ2) and modal coordinates (u1, u2) for Ω ≈ ω2 =
12.4927 and ρ1 �= 0. The results obtained by the method of
multiple scale (MMS) are also shown for comparison

decades in connection with power transmission belts,
tramways, and band saw blades, etc. [49]. Consider a
uniform axially moving viscoelastic beam, with den-
sity ρ, cross-sectional area A, moment of inertia I and
initial tension P , travelling at an axial speedΓ between
two simple supports that are distance L apart. The sup-
port foundation is subject to a harmonic oscillation
H cosΩ t̂ . Let the transverse displacement of the beam
observed in a frame attached to the oscillating founda-
tion be ŵ(x̂, t̂), which is a function of time t̂ and axial
coordinate x̂ . With viscoelastic Kelvin constitutive law

σ̂ = E ε̂ + η
∂ε̂

∂ t̂
, (70)

Fig. 6 The FRC for the forced beam Eq. (66) in normal coor-
dinates (ρ1, ρ2) and modal coordinates (u1,u2) for Ω ≈ ω2 =
12.4927 andρ1 ≡ 0. TheMMSpredicts ||u1||∞ ≡ 0 (not shown)

Fig. 7 A pinned–pinned axially moving beam subject to har-
monic base excitation

where σ̂ and ε̂ denote stress and strain, and E and η

are the Young’s modulus and viscosity of the beam
material, the equation of motion is given by [74]

ρA

(
∂2ŵ

∂ t̂2
+ 2Γ

∂2ŵ

∂ x̂∂ t̂
+ Γ 2 ∂2ŵ

∂ x̂2

)
− P

∂2ŵ

∂ x̂2

+ E I
∂4ŵ

∂ x̂4
+ ηI

∂5ŵ

∂ t̂∂ x̂4
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= A

L

∫ L

0

[
E

2

(
∂ŵ

∂ x̂

)2

+ η
∂ŵ

∂ x̂

∂2ŵ

∂ x̂∂ t̂

]
dx̂

∂2ŵ

∂ x̂2

+ ρAHΩ2 cosΩ t̂ (71)

and boundary conditions

ŵ(0, t̂) = ŵ(L , t̂) = 0,

∂2ŵ

∂ x̂2
(0, t) = ∂2ŵ

∂ x̂2
(L , t) = 0. (72)

Similarly to [74], we introduce the following dimen-
sionless variables and parameters

w = ŵ

L
, x = x̂

L
, t = t̂

√
P

ρAL2 ,

γ = Γ

√
ρA

P
, k2f = E I

PL2 , α = Iη

L3
√

ρAP
,

k1 =
√

E A

P
, ω = Ω

√
ρAL2

P
, ε = H

L
, (73)

to obtain the nondimensionalized form of (71) as

∂2w

∂t2
+ 2γ

∂2w

∂x∂t
+ (γ 2 − 1)

∂2w

∂x2
+ k2f

∂4w

∂x4
+ α

∂5w

∂t∂x4

=
∫ 1

0

[
1

2
k21

(
∂w

∂x

)2

+ α
k21
k2f

∂w

∂x

∂2w

∂x∂t

]
dx

∂2w

∂x2

+ εω2 cosωt. (74)

The equation above is consistent with the literature
(equivalent to equation (15) in [74] when the nonlin-
ear damping effects are ignored; equivalent to equation
(6) in [49] when both damping and forcing terms are
ignored).

Similar to the previous example, we apply the
Galerkin approach to discretize the equation of motion.
With a modal expansion

w(x, t) =
n∑
j=1

sin( jπx)u j (t), (75)

the Galerkin projection yields a system of ODEs as
follows

ü + (C + G)u̇ + Ku + f (u, u̇) = εω2g cosωt, (76)

where u = (u1, . . . , un) and similarly to [49], we have

Ci j = α(iπ)4δi j ,Gi j = 4γ
i j

i2 − j2

(
1 − (−1)i+ j

)
,

Ki j =
(
k2f (iπ)4 − (γ 2 − 1)(iπ)2

)
δi j ,

fi = 1

4
k21π

4i2
∑
j

(
j2u2j

)
ui

+α

2

k21
k2f

π4i2
∑
j

(
j2u j u̇ j

)
ui ,

gi = 1 − (−1)i

iπ
(77)

for i, j = 1, . . . , n. The δi j above is Kronecker delta
and Gii = 0. Note that GT = −G is a gyroscopic
matrix, and we have cubic nonlinear damping due to
the viscoelastic constitutive law (70).

Following [62], the parameters of the model are
chosen as A = 1.2 × 10−3 m2, I = 9 × 10−8 m3,
ρ = 7680 kg/m3, E = 30 × 109 Pa, L = 1m and
P = 6.75 × 104N. The dimensionless parameters
are obtained as k f = 0.2 and k1 = 23.0940. With
γ = 0.5128, the first two natural frequencies of the lin-
ear, unforced part of (76) are given byω1 ≈ 3.1954 and
ω2 ≈ 9.5862 ≈ 3ω1. In the following computation, we
select the viscoelastic parameter η = 1 × 10−4E and
n = 10.

Similarly to the previous example, we take the first
two pairs of modes as the master spectral subspace to
account for the near 1:3 internal resonance, resulting in
a four-dimensional reduced-order model. Since ω3 ≈
19.6529 and ω3/ω2 ≈ 2.05 < 6, this example also
does not satisfy the slow/fast assumption either, which
would be needed for the implicit condensationmethods
and the quadratic manifold methods to apply [24,60,
70].

For the base excitation amplitude ε = 1.5 × 10−4,
we found that the forced response curve converges well
at O(5). The FRC is plotted in Fig. 8, where we also
observe agreement between the results of SSM reduc-
tion and collocation method applied to the full sys-
tem using the po toolbox in coco [16]. To explore the
effects of nonlinear damping,we also calculate theFRC
for system (76) with the nonlinear damping ignored.
We observe that the nonlinear damping effects become
significant as the response amplitudes increase.

6.4 A von Kármán beam with support spring

To demonstrate the computational efficiency of our
SSM-based reduction procedure, we shift our focus
to higher-dimensional finite element models. First, we
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Fig. 8 The FRC for the axiallymoving beam (76) inmodal coor-
dinates (u1, u2) for ω ≈ ω1 = 3.1954. The ‘LD’ and ‘ND’ in
the legend represent linear and nonlinear damping, respectively.
The results obtained by the continuation of periodic orbits with
the collocation method agree with those obtain via SSM-based
reduced-order models. (Color figure online)

consider a clamped-pinned von Kármán beam with a
support linear spring at its midspan, as shown in Fig. 9.
This example is distinct from the example in Sect. 6.2
in the following aspects:

– A linear spring is attached at the midspan of the
beam and the stiffness of the spring is tuned to trig-
ger an exact 1:3 internal resonance,ω2 = 3ω1, such
that the modal interaction in the primary resonance
of the first mode is highlighted;

– The beam structure is modeled using the von Kár-
mán beam theory [54], and hence, both axial and
transverse displacements are included as

Fig. 9 A clamped-pinned von Kárman beam with a spring sup-
port and a harmonic excitation at its midspan

unknowns. Thus, the axial stretching effect is taken
into account automatically.

– The governing equation is discretized using the
finite elementmethod insteadof amodal expansion.
With an increasing number of elements, ranging
from 8 to 10,000, we demonstrate the remarkable
computational efficiency of SSM reduction relative
to the harmonic balance method and collocation
schemes applied to the full systems.

We set the width and height of the cross sec-
tion to be 10mm and the length of the beam to be
2700mm. Material properties are specified with the
density 1780 × 10−9 kg/mm3 and the Young’s modu-
lus 45×106 kPa. Following a finite element discretiza-
tion, three DOF are introduced at each node: the axial
and transverse displacements, and the rotation angle.
The equations of motion of the discrete model can be
written as:

Mẍ + Cẋ + Kx + N(x) = ε f cosΩt (78)

where x ∈ R
3Ne−2 is the assembly of all DOF, and

Ne is the number of elements in the discretization. We
use Rayleigh damping matrix of the form (6). In this
example, we set α = 0 and β = 2

9 × 10−4 s−1 such
that the system is weakly damped, and from eq. (7), we
have λ2i−1,2i ≈ ωi for i ≤ 2. More details about the
formulation of M, K and N can be found at [29,32].

We first tune the stiffness of the support spring, ks,
such thatω2 = 3ω1 holds and hence an 1:3 internal res-
onance occurs. As can be seen in Fig. 10, such an inter-
nal resonance arises at ks ≈ 37 kg/s2. In the following
computations, we set ks = 37 kg/s2 which gives ω1 =
33.20 rad/s, ω2 = 99.59 rad/s and ω3 = 207.9 rad/s.
Similarly to the previous two examples,we take the first
two pairs of modes as the master subspace to account
for the 1:3 internal resonance. In this example, the fre-
quency ratio is calculated asω3/ω2 ≈ 2.09 < 6, which
indicates the slow/fast assumption is not satisfied. Con-
sequently, the implicit condensation methods and the
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Fig. 10 Natural frequencies of the clamped-pinned beam with a
support spring at its midspan, as functions of the stiffness of the
support spring ks. At the intersection pointed by the arrow, ω2 =
3ω1. The beam here is discretized with 100 elements resulting
in 298 DOF. Numerical experiments suggest that the position
of such an intersection is robust with respect to the number of
elements used in the discretization

quadratic manifold methods would produce inaccurate
results for this example [24,60,70].

Now we consider the forced response of the dis-
cretized beam with a transverse load applied at its
midspan. Let F = 1000mN and ε = 0.02, we cal-
culate the FRC for Ω over the interval [0.96, 1.05]ω1

using SSM reduction, the harmonic balance method
with nlvib tool [37], and the collocation method with
the po toolbox of coco [16]. These three methods will
be applied to the samediscretizedbeamwith an increas-
ing number of beam elements. Notably, when the num-
ber of elements is large enough, the mesh is artificially
over-refined and the round-off errors are known to accu-
mulate [40]. Indeed, when the number of elements is
30,000, the first natural frequency significantly devi-
ates from the correct value. For this reason, here we
set the upper bound for the number of elements to be
10,000, even though we could handle orders of magni-
tude more.

The following computations are all performed on
a remote Intel Xeon E3-1585Lv5 processor (3.0–
3.7GHz) on the ETH Euler cluster. In the SSM reduc-
tion method, we take the first two pairs of complex
conjugate modes as the master subspace to account for
the 1:3 internal resonance, the same resonance consid-
ered in the example in Sect. 6.2. This time, however, we
use polar coordinates because we are interested in the
primary resonance of the first mode for which no singu-
larity occurs. It follows that the phase space for the full
system is 6Ne − 4 dimensional, while the one for the

Fig. 11 The FRCs in the amplitude of transverse displacement
at the midspan of the clamped-pinned von Kármán beam dis-
cretized with 8 elements. These FRCs are obtained using SSM
computations at different orders. (Color figure online)

reduced dynamical system is only four dimensional.
We observed that cubic approximation of SSM is not
able to produce convergent FRC, as seen in Fig. 11.
Instead, we use O(7) expansion in this example given
the curve converges well at this order. The nlvib tool
and the po toolbox of coco are used to extract the FRC
of the full system directly. We have carefully tuned the
setting of coco such that the computational time of
the collocation method using po is reasonable. Such
tuning efforts include disabling some advanced fea-
ture of po and increasing maximal continuation step
size. More details about the tuning are presented in
Appendix Sect. 8.4. As for the setting of nlvib, we
set the number of harmonics to be 10 and the nominal
step size to be 2. Note that stability analysis of periodic
orbits is not provided in nlvib.

The computational times of FRC using the three
methods with various number of elements are summa-
rized in Fig. 12. In the case of 40 elements, the system
has 118 DOF, giving a 236-dimensional phase space.
The computation times of FRC using SSM reduction,
the harmonic balance method with nlvib, and the col-
location method with coco are 14s, 12.5h, and 58.5h,
respectively. Therefore, the SSM reduction produces
a significant speed-up gain relative to the other two
methods applied to the full system. When the number
of elements is further increased, the FRC computations
with the harmonic balance method and the collocation
method were no longer feasible. On the other hand, the
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Fig. 12 Computational times for the FRC of the clamped-
pinned von Kármán beam discretized with different number
of elements. The number of DOF is given by 3Ne − 2 when
the beam is discretized with Ne elements. Here we have
Ne ∈ {8, 20, 40, 100, 200, 500, 1000, 3000, 10,000}. The upper
bound of Ne is set to be 10,000 to avoid the accumulation of
round-off errors induced by over-refined meshes. (Color figure
online)

SSM reduction only took about one hour to obtain the
FRC in the case of 10,000 elements with 29,998 DOF.

The FRC obtained for the transverse vibration at the
midspan and 1/4 of the beam is plotted in Fig. 13. The
results obtained by the above threemethodsmatch well
in the case of 8, 20, and40 elements.Wealsouse numer-
ical integration to validate the results obtained by SSM
reduction for the beam discretized with larger number
of elements, where the harmonic balance method and
the collocation method become impractical. Specifi-
cally, Newmark-beta integration is applied to the full
systems and the responses at the Poincaré section
{t : mod(t, T ) = 0}, namely z(0), z(T ), z(2T ), . . .

are recorded, where T = 2π/Ω is the period of har-
monic excitation. The numerical integration terminates
once the following periodicity condition is satisfied:

||z(iT ) − z((i − 1)T )||
||z((i − 1)T )|| < Tol. (79)

In this paper, we set Tol = 0.001. To speed up the
convergence to steady state in numerical integration, a
point on the trajectory obtained by SSM reduction has
been chosen as z(0). As can be seen in the last two pan-
els of Fig. 13, the results obtained by SSM reduction
match well with the ones from direct numerical inte-
gration. Results for Ne ∈ {500, 1000, 3000, 10,000}
are not plotted here because the results at Ne = 200
already converge with respect to the increment of the
number of elements.

Energy transfer due to modal interaction is observed
in the FRCs discussed above. In particular, when the
transverse vibration amplitude at 1/4 of the beam’s
length arrives its peak around Ω = ω1, the trans-
verse vibration amplitude at the midspan drops, as seen
in Fig. 13. This phenomenon results from the energy
transfer between thefirst and the secondbendingmodes
due to the 1:3 internal resonance. Indeed, as can be seen
in Fig. 14, the amplitude of the second mode ρ2 has a
peak at Ω ≈ ω1. In other words, the vibration ampli-
tude of the second mode approaches a maximumwhen
Ω is around the natural frequency of the first mode.
Meanwhile, the amplitude of the first mode ρ1 drops
slightly when ρ2 approaches its maximum. Therefore,
the energy of the first mode is transferred to the second
mode due to the internal resonance. From the mode
shapes of the first and second modes, one can infer
that the transverse vibrations at the mid span and at the
1/4 of the beam are representatives of the vibration of
the first and the second modes, respectively. Therefore,
the FRC of ||w0.25l ||∞ and ||w0.5l ||∞ are qualitatively
similar to that of ρ2 and ρ1, respectively.

6.5 A Timoshenko beam carrying a lumped mass

As pointed out in [66], there are two main physical
sources of geometric nonlinearities. The first source
is the axial/longitudinal coupling in axially restrained
beams and arcs, or the membrane/bending coupling in
axially restrained plates and shells. The second one is
the large rotation in cantilever beams and plates with
free boundary conditions. In the previous examples,
we have demonstrated the effectiveness of the SSM
reduction for systems with the first source of geomet-
ric nonlinearties. In this section, we consider a finite
element model of a geometrically nonlinear cantilever
Timoshenko beam with an attached mass, as shown in
Fig. 15, to demonstrate the capability of SSM reduction
for systems undergoing large rotations.

The beam model here is the same as the one in
section 7 of [51]. The length, width, and height of
the beam are 1200mm, 40mm, and 40mm, respec-
tively. We choose the following values for the material
parameters: Density is 7850 kg/mm3, Young’s modu-
lus is 90MPa, shear modulus is 34.6MPa, axial mate-
rial damping constant is 13.4Pa-s, and shear material
damping constant is 8.3Pa-s. Inspired by [75], we add
a lumped mass m with mass moment of inertia J at a
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Fig. 13 The FRC in physical coordinates (the amplitude of transverse displacement w at 0.25l and 0.5l) of the clamped-pinned von
Kármán beam discretized with different numbers of elements
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Fig. 14 FRC in (ρ1, ρ2) of the clamped-pinned von Kármán
beam discretized with 8 elements. The corresponding FRC in
||w0.25l ||∞ and ||w0.5l ||∞ is presented in the first panel of Fig. 13

Fig. 15 The schematic of a cantilever beam carrying a lumped
mass m with mass moment of inertia J . The beam is subject to
an external harmonic moment at the free end

position d (cf. Fig. 15) from the fixed end and choose
appropriate values of m, J and d to introduce internal
resonances.

The cantilever beam is discretized in the same way
as the one in section 7 of [51], resulting in a 21
degrees of freedom system (also see Example 7.3 in
[52]). In particular, linear damping is used in the dis-
cretized system. The damping matrix is of the form
C = βaxialK axial + βbendK bend + βshearK shear, where
the subscripts ‘axial’, ‘bend’ and ‘shear’ denote stiff-
ness components corresponding to the axial, bending,
and shear strain energies. Since the ratio of the axial
damping constant to the Young’s modulus is not the
same as the ratio of shear material damping constant to
the shear modulus, we have βaxial = βbend �= βshear

and then the damping is not proportional. For the
lumped mass, we choose d = 300mm, m = 80 kg
and J = 5× 106 kg · mm3, which results in a near 1:3
internal resonance among the first two natural frequen-
cies of the discretized system as ω1 = 2.2562 rad/s
and ω2 = 7.2301 rad/s ≈ 3ω1.

Fig. 16 The FRCs in the amplitude of deflection at the free
end for Timoshenko cantilever beam carrying a lumped mass.
Two families of FRCs corresponding to moment amplitude
M = 0.84N · m and M = 0.24N · m are obtained using SSM
computations at different orders. (Color figure online)

We apply a harmonic external moment M cosΩt
at the free end of the beam and calculate the forced
response curve of the system for Ω ≈ ω1. In particu-
lar, we are interested in the vibration amplitude of the
transverse deflection of the beam at the free end. Since
the system has near 1:3 internal resonance, we again
take the first two pairs of complex conjugate modes as
the master subspace in SSM reduction, reducing the
dimension of phase space from 42 (of the full system)
to four. In this example, we have ω3 = 39.8737 rad/s.
The frequency ratio ω3/ω2 ≈ 5.5 < 614. Following
[60], the slow/fast assumption is therefore not satisfied
for this example.

We set the moment amplitude M = 0.84N · m
to obtain the FRCs in the frequency range Ω ∈
[2.1, 2.7] rad/s via SSM reduction at various orders,
as shown in Fig. 16. We observe that the FRC con-
verges well at O(9) expansion. Remarkably, the peak
vibration amplitude of the FRC reaches 415mm,which
is more than one-third of the length of the beam. It is
not surprising that we need a high-order expansion of
SSM to capture such a large displacement. In contrast,
for smaller excitation amplitude M = 0.24N · m, we
found that the peak response amplitude of the FRC
over the same frequency interval is reduced to 283mm
andO(5) expansion of SSM is already able to produce
converged FRC, as seen in Fig. 16.

Similarly to the previous example, we also use the
collocation method with the po toolbox of coco and
the harmonic balancemethodwith nlvib tool to extract
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Fig. 17 The FRCs in the amplitude of deflection at the free
end for Timoshenko cantilever beam carrying a lumped mass
subject to a harmonic moment M cosΩt at the free end. Here
the continuation of harmonic balance method with nlvib for
M = 0.84N · m terminates after its runtime reaches the one-day
time-threshold. (Color figure online)

the FRC of the full system to validate the results
obtained from SSM reduction. The setting of algorithm
parameters of coco are given in Appendix 8.4. As
seen in Fig. 17, the results from SSM reduction match
closely with the reference solution from po (labelled
as Collocation). In the large amplitude response of
M = 0.84N · m, we notice small discrepancies rel-
ative to the full solution. As these discrepancies are
not observed for the lower excitation amplitude of
M = 0.24N · m, they may be attributed to our restric-
tion of the non-autonomous part of the SSM to its
leading-order approximation (33).

All computations of this example are performed
on a remote Intel Xeon E3-1585Lv5 processor (3.0–
3.7GHz) on the ETH Euler cluster. The computation
times of FRC for M = 0.84 using SSM reduction at
O(9) and the collocation method with coco are 29s
and 3.8h, respectively. We set the time-threshold of the
harmonic balancemethodwith nlvib to be one day, the
number of harmonics to be 10 and the nominal step size
to be 20, which is adapted automatically by the pack-
age. Upon reaching the one-day computational time
limit, the continuation run with the harmonic balance
method using nlvib was terminated at the end cross
at Ω ≈ 2.4 shown in Fig. 17. Thus, the SSM reduc-
tion again produces a significant speed-up relative to
the other two methods applied to the full system.

One can find a small bump at Ω ≈ 2.44 in the FRC
forM = 0.84 shown in Fig. 17. This bump results from

Fig. 18 FRC in (ρ1, ρ2) of the Timoshenko cantilever beam
carrying a lumpedmass subject to a harmonic momentM cosΩt
at the free end with M = 0.84. The corresponding FRC in the
deflection at the free end is presented in Fig. 17. The second peak
near Ω = 2.44 for the FRC in ρ2 explains the small bump for
Ω ≈ 2.44 in the FRC shown in Fig. 17

the modal interaction between the first and the sec-
ond bending modes. As seen in Fig. 18, two peaks are
observed in the FRC for the second mode ρ2 because
of the internal resonance. The second peak results in
the small bump in the FRC shown in Fig. 17.

6.6 A simply supported von Kármán plate

We now consider a two-dimensional structure to
demonstrate the effectiveness of SSM reduction in
the case of high-dimensional systems. Specifically, we
study the forced vibration of a simply supported plate
(see the first panel of Fig. 19). Let the length, width,
and thickness of this plate be a, b, and h, it follows from
classical linear plate theory that its natural frequency
is given by [21]

ω(i, j) =
(
i2

a2
+ j2

b2

)
π2

√
D

ρh
, (80)

where i, j are positive integers, ρ and D are the density
and bending stiffness of the plate, respectively. D is
given as follows:

D = Eh3

12(1 − ν2)
, (81)
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Fig. 19 A simply supported rectangular plate and a mesh for a
square plate (a = b = l)

where E and ν are Young’s modulus and Poisson’s
ratio, respectively. In the case of square plate, we have
a = b = l and

ω(1,2) = ω(2,1) = 5π2

l2

√
D

ρh
. (82)

We conclude that there exists 1:1 internal resonance
between the second and third bending modes of the
simply supported square plate.

The square plate studied here is modeled using the
von Kármán theory, where both the in-plane displace-
ments (u, v) and the out-of-plane displacement w are
modeled as unknowns in the governing equations and
the nonlinear strain due to large transverse deforma-
tion is considered. The reader may refer to [54] for the
nonlinear governing equation of the plate.

We apply the finite element method to discretize the
governing equation. Triangular elements are used to
perform such a discretization following the paradigm
presented in the second panel of Fig. 19.With the length
of the plate uniformly divided into np subintervals, the
number of elements and the number of DOF of the
discretized plate are given by:

Ne = 2n2p, n = 6(n2p + 1) = 3Ne + 6. (83)

For the mesh in Fig. 19, we have np = 10, Ne = 200
and n = 606. We use flat facet shell finite elements to

discretize the displacement field [1,2]. This is a plate
element but can be used to model shell structures with
small curvature. Each node in the element has six DOF,
namely (u, v, w,wx , wy, uy − vx ). The reader may
refer to [1,2,29] for the derivation of the mass and stiff-
ness matrcies, and the coefficients of nonlinear internal
forces. We also use Rayleigh damping in this example
(cf. (6)).

In following computations, we set l = 1m, h =
0.01m, E = 70 × 109 Pa, ν = 0.33 and ρ =
2700 kg/m3. With the mesh in Fig. 19, the natural fre-
quencies of the discrete undamped linear plate are com-
puted and comparedwith the analytical solutions to val-
idate the correctness of M and K of the finite element
model. It follows from (82) that

ω(1,2) = ω(2,1) = 768.4 rad/s. (84)

Meanwhile, the computation of natural frequencies
using the finite element model gives

ω2 = 763.6 rad/s, ω3 = 767.7 rad/s, (85)

which are close to the reference solutions: their relative
errors are 0.62% and 0.09%, respectively. The vibra-
tion modal shapes of these two modes are plotted in
Fig. 20. Given the mesh breaks symmetry between the
two modes, the obtained ω2 is not exactly as ω3. This
discrepancy will become smaller when the mesh size
decreases. Once again, we choose Rayleigh damping
(see Eq. (6)) with α = 1 and β = 4 × 10−6 such that
the eigenvalues of the damped linear plate are approx-
imated according to (7) and we have

λ3 = −1.7+i763.6 ≈ iω2, λ5 = −1.7+i767.7 ≈ iω3.

(86)

We also considered a static nonlinear problem to fur-
ther validate the correctness of nonlinear force N(x) of
the finite element model. Specifically, we have studied
Example 7.9.3 in [54] using our finite element model.
In the example, the transverse displacementw of a sim-
ply supported square plate under uniformly distributed
transverse load is calculated. We have solved the same
problem and our results match well with the reference
results in [54].

We seek to determine the FRC of this plate subject
to a concentric load 50 cosΩt at point A with coordi-
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Fig. 20 Mode shapes of the second and third linear bending
modes of the simply supported square plate

nate (0.2l, 0.3l) (cf. Fig. 19). It follows from the mode
shapes of the plate (see Fig. 20) that point A is close to
the nodal line of the second mode and then the modal
force for the third mode is larger than that of the second
mode. Here we choose the two pairs of complex conju-
gatemodes corresponding to the second and third bend-
ing modes as the master spectral subspace to account
for the 1:1 internal resonance. The selected case here
does not satisfy the slow/fast assumption [24,60,70]
because thefirst bendingmode is included into the slave
subspace, which makes the frequency ratio to be less
than one. We again use polar coordinate representation
because both modes are activated. The computation of
the FRC in this example was performed on a remote
node on the ETH Euler cluster with two Intel Xeon
Gold 6150 processors (2.7–3.7GHz).

Fig. 21 The FRCs in the amplitude of deflection at point A for
von Kármán plate discretized with 200 elements and 606 DOF.
These FRCs are obtained using SSM computations at different
orders. (Color figure online)

As seen in Fig. 21, the FRC under the concentrated
load of 50 cosΩt converges well at O(5) expansion
of the SSM. The peak vibration amplitude of the FRC
is 2.4mm. In Appendix 8.5, we carefully explore the
accuracy of SSM reduction for higher excitation ampli-
tudes resulting in larger vibration amplitudes. We gen-
erally observe that higher-order expansions of the SSM
are required to accurately approximate larger response
amplitudes. Indeed, when the load amplitude is dou-
bled, numerical experiments show that the peak ampli-
tude reaches 5.1 mm at the coordinate (0.3l, 0.3l), and
an O(11)-expansion is needed to yield a converged
FRC, as illustrated in Fig. 30 in Appendix. Further-
more, upon tripling the forcing amplitude, we observe
that the FRC obtained by SSM reduction does not con-
verge, as shown in Fig. 31 in Appendix. This obser-
vation is in agreement with the SSM theory, which is
applicable for limited forcing amplitudes. In the rest
of this example, we study the original forcing case of
50 cosΩt using an O(5) SSM reduction.

The FRC obtained by SSM reduction is plotted in
Fig. 22, where the upper and lower panels present the
amplitudes of transverse vibration at nodes A and B,
respectively (cf. Fig. 19). To validate the effective-
ness of SSM reduction, one may apply the collocation
method or harmonic balance technique to the full sys-
tem as we did in the previous example. However, these
two methods are impractical due to the high dimen-
sionality of the problem. For the same mechanical sys-
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tem with 606 DOF, trial computational experiments
show that the harmonic balancemethodwithnlvibper-
formed only one continuation step and the collocation
method with coco performed only four continuation
steps in ten days of computational time.We consider an
alternative method, namely the shooting method com-
bined with parameter continuation (cf. [48]), to extract
the FRC of the full nonlinear system. In particular, the
computationwas performed using a coco-based shoot-
ing toolbox [39] with the Newmark integrator and the
atlas algorithm of coco. With 1,000 integration steps
per excitation period and a maximum continuation step
size hmax = 50, we obtain the FRC of full system. As
can be seen in the figure, the results of the two tech-
niques match closely.

We also present the results of the linear analysis in
Fig. 22 to demonstrate the essential nature of geomet-
ric nonlinearity. In the linear analysis, we ignore the
nonlinear force and solve the corresponding FRC ana-
lytically in the frequency domain. Specifically, the lin-
ear equation of motion can be written in the following
form:

Mẍ + Cẋ + Kx = ε f cosΩt = εRe(eiΩt ) f . (87)

Letting x(t) = Re(x̂eiΩt ) gives

(
−Ω2M + iΩC + K

)
x̂ = ε f (88)

and hence

x(t) = Re

((
−Ω2M + iΩC + K

)−1
ε f eiΩt

)
.

(89)

The results by linear analysis match well with the ones
of SSM reductionwhen the response amplitude is small
or the excitation frequencyΩ is far away from the natu-
ral frequencyω2. The linear results significantly deviate
from the results of SSM reduction when the response
amplitude is large. In these cases, the deformation is
large and the effects of geometrical nonlinearity are
significant.

Energy transfer between modes due to internal reso-
nance is also observed in this example. As can be seen
in Fig. 22, when the vibration amplitude at node B
arrives at a maximum at Ω ≈ ω2, a notch is observed
in the FRC of node A at the same excitation frequency.

Fig. 22 FRC in physical coordinates for von Kármán plate dis-
cretized with 200 elements and 606 DOF. The upper and lower
panels give the amplitude of deflection at point A and B, respec-
tively. Here the black dotted lines are results of linear analysis.
The red and magenta dots are results of shooting-based continu-
ation of the full nonlinear system. (Color figure online)

Indeed, similar phenomenon is observed in the FRC
of (ρ1, ρ2), as shown in Fig. 23. Note that the normal
coordinates ρ1 and ρ2 of reduced dynamics represent
the responses of the second and third bending modes,
respectively. Interestingly, the hardening of the third
bendingmode ρ2 results in the self-crossing of the FRC
of the second bending mode ρ1. One may note the sim-
ilarity between the FRC of ||wA||∞ and the one of ρ2,
and the similarity between the FRC of ||wB||∞ and the
one of ρ1. Such similarities can be explained by the
fact that node A and node B are (nearly) located at the
peak response of the third and second bending modes,
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Fig. 23 FRC in normal coordinates for von Kármán plate dis-
cretized with 200 elements and 606 DOF. Mode interactions
are observed. Specifically, when ρ1 arrives its peak, a notch is
observed in the FRC of ρ2. In addition, an unstable branch is
observed in ρ1 as well. Such unstable solutions will be missing
if we only include this mode in the SSM analysis

respectively (also at the nodal lines of the second and
third modes, respectively, cf. Figs. 19 and 20).

SSM reduction displays a significant speed-up gain
relative to the shooting method in the above compu-
tations. Specifically, the computational time for SSM
reduction is about one minute, while the one for shoot-
ing method is about 6 days. In order to further demon-
strate the speed-up gain relative to the collocation
method and the harmonic balance method, we con-
sider a discrete plate with np = 5, Ne = 50, result-
ing in 156 DOF. In this case, the point A with coor-
dinate (0.2l, 0.3l) is not at any node of the finite ele-
ment discretization. We take the neighbor node with
coordinates (0.2l, 0.4l) as the location of the imposed
harmonic excitation. This node is also referred to as
point A where the load is applied. The FRC obtained
using SSM reduction, and three methods applied to the
full system (harmonic balance, collocation, and shoot-
ing) are plotted in Fig. 24, which again validates the
accuracy of SSM reduction. In addition, the computa-
tional times for SSMreduction, the collocationmethod,
and the shooting method are 49s, five days, and 17h,
respectively. With nominal step size 10, the continua-
tion with the harmonic balancemethod terminates after
seven continuation steps due to the failure of conver-
gence. Such a continuation run took about 38.7h.

We further perform SSM reduction to the plate dis-
cretized under an increasing number of elements to

Fig. 24 FRC in physical coordinates for von Kármán plate dis-
cretized with 50 elements 156 DOF. Here the continuation of
harmonic balance method terminates around Ω ≈ 740 (see the
arrow) after seven successful continuation steps. (Color figure
online)

further demonstrate the remarkable computational effi-
ciencyof the reductionmethod.Withnp = 20, 40, 100,
200, the corresponding number of elements is Ne =
800, 3200, 20,000, 80,000, and the number of DOF is
n = 2406, 9606, 60,006, 240,006, yielding very high-
dimensional systems. The computational times for cal-
culating FRC of these discrete finite element models
are presented in Fig. 25. When the number of DOF is
240,006, the computational time for SSM analysis is
about 19h. Among the 19h, nearly 8h are used for the
computation of the autonomous part of the SSM, and
nearly 11h are used for the computation of the non-
autonomous part of the SSM (cf. (40)) at 337 sampled
excitation frequencies. In other words, each computa-
tion of a non-autonomous SSM takes about 2min. By
contrast, the continuation of fixed points in reduced
dynamics only took 20s. One may significantly reduce
the computation time for non-autonomous SSMby par-
allel computing, or ignoring the non-autonomous part
of the SSM for small forcing amplitudes, as we dis-
cussed in Sect. 5.4.

We conclude this example by having a close look
into the 8h spent on the calculation of the autonomous
part of the SSM. Specifically, we are interested in how
the 8h are distributed into the times spent on the com-
putation of the SSM at each order. As can be seen in
Fig. 26, the computational time increases nearly expo-
nentially with the increment of the orders, and more
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Fig. 25 Computational times of the FRC of the von Kár-
mán plate discretized with different number of DOF. The
number of DOF is given by 3Ne + 6 when the plate
is discretized with Ne elements. Here we have Ne ∈
{50, 200, 800, 3200, 20,000, 80,000}. (Color figure online)

Fig. 26 Runtime and memory used in the computation at each
order of the autonomous SSM of the von Kármán plate dis-
cretized with 240,006 DOF

than 6h among the 8h are used in the computation of
the fifth order SSM. In addition, Fig. 26 shows that
the memory cost also increases significantly with the
increment of orders. This shows that distributed mem-
ory needs to be utilized in the computation of SSM at
higher orders for such high degree of freedom.

6.7 A shallow shell structure

This example is adapted from the shallow-arc example
of [28]. We consider a finite element model of a geo-
metrically nonlinear shallow shell structure, illustrated
in Fig. 27. The shell is simply supported at the two
opposite edges aligned along the y-axis in Fig. 27.

Let L , H and t be the length, width and thickness
of the shell, w be a curvature parameter (defined as the
height of the midpoint relative to the end, cf. Fig. 27).

Fig. 27 The schematic of a shallow shell structure [28]

We set L = 2m, H = 1m, t = 0.01m and w =
0.041m.Material properties are specifiedwith the den-
sity ρ = 2700 kg/m3, Young’s modulus E = 70×109

Pa, and Poisson’s ratio ν = 0.0.33. Note that we have
chosen a different value of w compared to [28], where
w = 0.1m. Here we set w = 0.041m because numer-
ical experiments show that this choice induces a 1:2
internal resonance between the first two modes.

Similarly to the previous plate example, this model
is discretized using flat, triangular shell elements and
each node in the elements has six DOF. The discrete
model here contains 400 elements (cf. Fig. 11(b) in [28]
for the schematic of the mesh of the discrete model),
resulting in n = 1320 DOF. Again, the matrices M and
K and the coefficients of nonlinear terms are provided
by the open-source finite element code [29]. Here, we
choose α and β in the Rayleigh damping (6) such that
the damping ratios of the first two modes are equal to
0.002.

The eigenvalues of the first two pairs of modes of
the discrete model are given by

λ1,2 = −0.30 ± i149.22, λ3,4 = −0.60 ± i298.78.

(90)

Therefore, the system indeed has a near 1:2 internal
resonance between the first two pairs of modes. We
take these two pairs of modes as the master subspace
for model reduction. Since ω2 ≈ 298.78 and ω3 ≈
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Fig. 28 The FRC in the amplitude of z-displacement at the
mesh node (x, y) = (0.5L , 0.5H) of the shallow shell struc-
ture discretized with 400 elements and 1320 DOF. These FRCs
are obtained using SSM computations at different orders. (Color
figure online)

339.73, the frequency ratio isω3/ω2 ≈ 1.14 and hence
the slow/fast assumption is not satisfied [24,60,70].
Next, we apply a concentrated load 10 cosΩt N in
z−direction at the mesh node located at (x, y) =
(0.25L , 0.5H). We are concerned with the forced
response curve in terms of the z-displacement of the
node for Ω ∈ [0.92Im(λ1), 1.07Im(λ1)].

The FRCs obtained by SSM reduction computations
at different orders are presented in Fig. 28.Weobserved
that the FRC converges well at O(5) expansion of the
SSM. The computation time of the FRC by SSM reduc-
tion at O(5) is about two minutes.

Once again, we apply the coco-based shooting tool-
box [39] to extract the FRC of the full nonlinear system
and comparewith the results obtained fromSSMreduc-
tion. In particular, the Newmark algorithm is used to
perform numerical integration during shooting. Unlike
the previous example, we need to adopt a smaller num-
ber of integration steps per excitation period in this
model because the number of DOF here is nearly dou-
bled and at the same time, the FRC has a more complex
shape (cf. Figs. 22 and 28). When we set 100 integra-
tion steps per excitation period and the time thresh-
old of shooting-based continuation run to be 180h
(7.5 days), the shooting-based continuation run was
not able to cover the full FRC (see the end point of
the red lines near Ω = 155 in Fig. 29). The FRC
obtained by the shooting method with 100 integration
steps per excitation period matches well with the one

Fig. 29 The FRC in the amplitude of z-displacement at themesh
node (x, y) = (0.5L , 0.5H) of the shallow shell structure dis-
cretizedwith 400 elements and 1320DOF.Here the red and black
lines are results of shooting-based continuation of the full non-
linear system with 100 and 200 integration steps per excitation
period. (Color figure online)

from SSM reduction overall. However, small discrep-
ancies were observed. These discrepancies are resulted
from the low accuracy of numerical integration. Indeed,
when the number of integration steps per excitation
period is increased to 200, another continuation run for
Ω ∈ [145, 152] was performed and the discrepancies
in the full solution are reduced significantly, as seen
in Fig. 29. We observe that even in the restricted fre-
quency range of Ω ∈ [145, 152], the time taken by the
new continuation run is already near five days. Hence,
we conclude that the results from SSM reduction pro-
vide good accuracy, and remarkably, can be obtained
in just about two minutes.

7 Conclusion

We have derived reduced-order models for harmon-
ically excited mechanical systems with internal res-
onance. The phase space of a high-dimensional full
system is reduced to a low-dimensional time-periodic
spectral submanifold (SSM) tangent to resonant spec-
tral subbundles of periodic orbits born out of the origin
under periodic forcing.We have used the reduced-order
model to extract forced response curves (FRCs) of peri-
odic orbits of the full system around internally resonant
modes. Specifically, in normal form coordinates for the
reduced dynamics, time-dependent harmonic terms are
all canceled, yielding slow-phase reduced dynamics,
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whose fixed points correspond to periodic orbits on the
time-varying SSM. We have used parameter continua-
tion to construct the FRCs as solution branches of fixed
points. Such a solution branch is then mapped back
to physical coordinates to obtain the forced response
curve of the full system.

We have demonstrated the accuracy and efficiency
of the SSM-based reduction method using seven exam-
ples. In the first example, a chain of oscillators with
1:1:1 internal resonance was studied to show that the
SSM analysis can be applied to systems with sev-
eral resonant modes. In the second example, a hinged-
clamped beam with 1:3 internal resonance was investi-
gated to illustrate the advantage of SSM reduction over
the method of multiple scales. In the third example,
an axially moving beam with 1:3 internal resonance
was explored to demonstrate the effectiveness of SSM
reduction for systems with gyroscopic and nonlinear
damping forces.

We further considered four examples of the finite
elementmodels of beams, plates, and shell-based three-
dimensional structures to demonstrate the remark-
able computational efficiency of the SSM reduction in
obtaining FRCs. Specifically, the FRC over a given fre-
quency span of a von Kármán beam discretized with
various number of degrees of freedom (DOF), ranging
from 22 to 29,998, has been calculated using the reduc-
tion and other methods whenever the latter methods
were applicable. In the case of 118 DOF, the computa-
tional times for the extraction of FRCusingSSMreduc-
tion, the harmonic balance method and the collocation
method are 14s, 12.5h, and 58.5h, respectively. For
the beam discretized with 29,998 DOF, SSM reduction
only takes approximately 1h to obtain the FRC. Such
a remarkable computational efficiency of the reduction
is also observed in the Timoshenko beam, von Kármán
plate and shallow shell structures. We have calculated
the FRC of a cantilever Timoshenko beam that under-
goes large deformations, where the computational time
for the SSM reduction is just 29 s. At the same time,
the collocation method takes 3.8h and the harmonic
balance method is not able cover the FRC of the full
system even in a full day. Further, the FRC of a 240,006
DOF von Kármán plate over a predefined frequency
span (with 337 sampled frequencies) is obtained via
SSM reduction in less than one day. Finally, the FRC
of a 1320 DOF shallow shell structure is obtained via
a four-dimensional SSM in just two minutes, while
the continuation-based shooting method was unable to

cover the full system’s FRC even in a full week’s com-
putation time.

We have used parameter continuation to locate equi-
libria of the slow-phase reduced dynamics. An intrinsic
limitation of parameter continuation is the dependence
of initial solution. Such a dependence makes it chal-
lenging to find isolated solution branches, or, isolas.
In the case of no internal resonance, the equilibria can
be found as the intersection of two surfaces in a three-
dimensional space [53]. Such a level-set based tech-
nique, however, becomes impractical in general when
the dimension of SSM is higher than two. The com-
putation of isolas using parameter continuation could
be possible with the help of singularity theory [15] or
multidimensional continuation [17].

Another limitation of our current implementation is
that it does not give a estimation of the upper bound
of forcing amplitudes ε for which the reduction results
are reliable. In [53], the domain of convergence has
been used to estimate the upper bound of the reliable
response amplitudes. The method is based on the com-
putation of all zeros of a polynomial function [14,53].
When internal resonance is accounted, this turns into
locating the zeros of a set of polynomial functions,
which is not a trivial task. As an alternative, one may
determine the radius of convergence of power series
based on the coefficients of the series, i.e., some vari-
ants of Cauchy–Hadamard theorem.

In the continuation of equilibria in reduced-order
models, we have observed both saddle–node and Hopf
bifurcation points in numerical examples. In Part II, we
will relate these bifurcations to the bifurcation of peri-
odic orbits. Note that a unique limit cycle will bifurcate
from aHopf bifurcation equilibrium. Such a limit cycle
corresponds to a two-dimensional torus in full system.
In Part II, we will also study the computation and bifur-
cation of quasi-periodic orbits using SSM theory.
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8 Appendix

8.1 Derivation of the leading-order approximation to
the reduced dynamics on a resonant SSM

The derivation of leading-order approximation with
multiple harmonics has been presented in [28]. Here
we restrict attention to one harmonic and give a sim-
ple derivation to adapt for this study. Substituting the
leading order approximation into (22), and collecting
the terms that are independent of p, yield

BW IS0(φ) + ΩBDφX0(φ) = AX0(φ) + Fext(φ).

(91)

Substituting the ansatz

X0(φ) = x0eiφ + x̄0e−iφ,

S0(φ) = s+0 e
iφ + s−0 e

−iφ, (92)

and (36) into (91) and collecting the coefficients of eiφ

and e−iφ , we obtain

(A − iΩB)x0 = BW Is
+
0 − Fa, (93)

(A + iΩB)x̄0 = BW Is
−
0 − Fa. (94)

If (A− iΩB) is nonsingular, we can simply set s+0 = 0
and directly solve the linear system (93) to obtain x0.
However, if there exist eigenvalues equal to iΩ , e.g.,
λEi = iΩ , the coefficient matrix is singular (see Propo-
sition 2 in [28]). In that case, we must choose s+0
such that the right-hand side vector is in the range of

(A − iΩB). This can be done by imposing orthogo-
nality constraint between the right-hand side vector and
the kernel of (A−iΩB)∗. Since uEi spans such a kernel
for λEi = iΩ [28], we have

(uEi )∗BW Is
+
0 − (uEi )∗Fa = 0. (95)

Substituting (28) into the above equation and utilizing
the orthonormalization of the left and right eigenvectors
(cf. (10)) gives S0,i = (uEi )∗Fa, where S0,i is defined
in (37).

In practice, λEi = iΩ does not hold for any Ω ∈ R

given we have assumed ReλEi < 0. However, we
have λEi ≈ iΩ for systems with weak damping, and
the above derivation is still used to avoid the ill-
conditioning in solving the linear equations (93).When
λEi ≈ iΩ , we have λ̄Ei ≈ −iΩ .

8.2 Proof of Theorem 2

8.2.1 A lemma

We first introduce a lemma, which will be used in the
proof of Theorems 2 and 3.

Lemma 1 For all (l, j) ∈ Ri , and r satisfying the
external resonance condition (44), we have

〈l − j − ei , r〉 = 0, (96)

where ei ∈ R
m is the unit vector alinged with the i th

axis.

Proof Note that if the inner resonance condition (11)
and the external resonance condition (44) holding
exactly (i.e., ‘≈’ becomes ‘=’ in (11),(44)), we have

ri = l · r − j · r, (97)

which can be rewritten as 〈l − j − ei , r〉 = 0. Now
even when the inner and external resonance conditions
are approximately satisfied, Eq. (97) still holds as the
entries in l and j are integers. �

8.2.2 Proof of the Theorem

Based on Theorem 1 along with equations (20), (30),
(33), (34) and (35), the reduced dynamics in normal
form coordinates (qi , q̄i ) is given by(
q̇i˙̄qi

)
= Ri ( p) + εS0,i (Ωt) + O(ε| p|) (98)

123

https://github.com/haller-group/SSMTool-2.1
https://github.com/haller-group/SSMTool-2.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1036 M. Li et al.

for i = 1, . . . ,m. From (32) to (45), we have

Ri ( p) =
(

λEi qi
λ̄Ei q̄i

)
+

∑
(l, j)∈Ri

(
γ (l, j)ql q̄ j

γ̄ (l, j)q j q̄l

)

=
(

λEi ρi ei(θi+riΩt)

λ̄Ei ρi e−i(θi+riΩt)

)

+
∑

(l, j)∈Ri

(
γ (l, j)ρ l+ j ei(〈l− j ,θ〉+〈l− j ,r〉Ωt)

γ̄ (l, j)ρ l+ j ei(〈 j−l,θ〉+〈 j−l,r〉Ωt)

)

=
(

λEi ρi ei(θi+riΩt)

λ̄Ei ρi e−i(θi+riΩt)

)

+
∑

(l, j)∈Ri

(
γ (l, j)ρ l+ j ei(〈l− j−ei ,θ〉+〈l− j−ei ,r〉Ωt)ei(θi+riΩt)

γ̄ (l, j)ρ l+ j ei(〈 j−l+ei ,θ〉+〈 j−l+ei ,r〉Ωt)e−i(θi+riΩt)

)

=
(

λEi ρi ei(θi+riΩt)

λ̄Ei ρi e−i(θi+riΩt)

)

+
∑

(l, j)∈Ri

(
γ (l, j)ρ l+ j eiϕi (l, j)ei(θi+riΩt)

γ̄ (l, j)ρ l+ j e−iϕi (l, j)e−i(θi+riΩt)

)
,

(99)

wherewe have usedLemma1 and (48) in the last equal-
ity. Using (37), (38) and (50), we have

S0,i (Ωt) =
(

fi eiriΩt

f̄i e−iriΩt

)
. (100)

Substituting Eqs. (99), (100) and (45) into (98), and
factoring out ei(θi+riΩt) and its complex conjugate, we
obtain

(
ρ̇i + i(θ̇i + riΩ)ρi
ρ̇i − i(θ̇i + riΩ)ρi

)
=

(
λEi ρi

λ̄Ei ρi

)

+
∑

(l, j)∈Ri

(
γ (l, j)ρ l+ jeiϕi (l, j)

γ̄ (l, j)ρ l+ je−iϕi (l, j)

)
+ ε

(
fi e−iθi

f̄i eiθi )

)

+ O(ε|ρ|)gpi (φ), (101)

where gpi : S → R
2 is a periodic function and φ = Ωt .

Note that the second component in the above equation
is simply the complex conjugate of the first component.
Hence, Eq. (101) holds if andonly if thefirst component
holds. Separation of the real and imaginary parts of the
first component yields

ρ̇i = Re(λE
i )ρi +

∑
(l, j)∈Ri

ρ l+ jRe(γ (l, j)) cosϕi (l, j)

−
∑

(l, j)∈Ri

ρ l+ j Im(γ (l, j)) sin ϕi (l, j)

+ εRe( fi ) cos θi + εIm( fi ) sin θi + O(ε|ρ|)gpi,1(φ),

(102)

(θ̇i + riΩ)ρi = Im(λE
i )ρi

+
∑

(l, j)∈Ri

ρ l+ jRe(γ (l, j)) sin ϕi (l, j)

−
∑

(l, j)∈Ri

ρ l+ j Im(γ (l, j)) cosϕi (l, j)

− εRe( fi ) sin θi + εIm( fi ) cos θi

+ O(ε|ρ|)gpi,2(φ), (103)

where gpi,1 and gpi,2 are the first and the second compo-

nent of the gpi , and we have φ̇ = Ω . The above two
equations provide us (46) after rearranging terms. This
concludes the proof of statement (i). To prove state-
ments (ii) and (iii), we first consider the leading-order
reduced dynamics

ṗ = R( p) + εS0(Ωt). (104)

We define rd to be the largest common divisor for
the set of rational numbers {ri }mi=1 and set T =
2π/(rdΩ). Then, from transformation (45), we deduce
that any fixed point of the dynamical system (51) cor-
responds to a T -periodic solution of the leading-order
reduced dynamics (104) on the SSM, W(E,Ωt). This
is because all the polar radii ρi and the phase differ-
ences θi are simultaneously constant at a fixed point.
In addition, the periodic orbit inherits the stability of
the fixed point.

We then need to show the persistence of a hyperbolic
periodic orbit of the leading-order truncated dynamics
under the addition of O(ε|ρ|)g(Ωt) to complete the
proof of the statements (ii) and (iii). Since these state-
ments are not affected by the choice of coordinates,
they hold in Theorem 3 as well. For brevity, we show
the persistence in detail only in the proof of Theorem 3.
Aswewill see, the persistence holds under proper inner
and external resonance conditions. In particular, we ask
for the smallness of |Re(λEi )| and |Im(λEi ) − riΩ| for
1 ≤ i ≤ m such that the dynamics of (ρi , θi ) is rela-
tively slow compared to the phase dynamics φ̇ = Ω .
This enables the construction of a slow-fast dynami-
cal system. The method of averaging is then applied to
complete the proof. Indeed, the leading-order dynam-
ics is an approximated autonomous averaged system
associated with the full reduced dynamics for (ρ, θ).
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8.3 Proof of Theorem 3

In this case, (98) still holds. With (32) and (53), we
have

R0,i ( p) =
(

λEi qi
λ̄Ei q̄i

)
+

∑
(l, j)∈Ri

(
γ (l, j)ql q̄ j

γ̄ (l, j)q j q̄l

)

=
(

λEi (qRi,s + iqIi,s)e
iriΩt

λ̄Ei (qRi,s − iqIi,s)e
−iriΩt

)

+
∑

(l, j)∈Ri

(
γ (l, j)qls q̄

j
s ei〈l− j ,r〉Ωt

γ̄ (l, j)q̄ lsq
j
s ei〈 j−l,r〉Ωt

)

=
(

λEi (qRi,s + iqIi,s)e
iriΩt

λ̄Ei (qRi,s − iqIi,s)e
−iriΩt

)

+
∑

(l, j)∈Ri

(
γ (l, j)qls q̄

j
s ei〈l− j−ei ,r〉Ωt eiriΩt

γ̄ (l, j)q̄ lsq
j
s ei〈 j−l+ei ,r〉Ωt e−iriΩt

)

=
(

λEi (qRi,s + iqIi,s)e
iriΩt

λ̄Ei (qRi,s − iqIi,s)e
−iriΩt

)

+
∑

(l, j)∈Ri

(
γ (l, j)qls q̄

j
s eiriΩt

γ̄ (l, j)q̄ lsq
j
s e−iriΩt

)
,

(105)

where we have used Lemma 1 in the last equality. In
addition, (100) still holds.

SubstitutingEqs. (105), (100) and (53) into (98), and
factoring out eiriΩt and its complex conjugate yield

(
q̇Ri,s + iq̇Ii,s + (−qIi,s + iqRi,s)riΩ
q̇Ri,s − iq̇Ii,s + (−qIi,s − iqRi,s)riΩ

)

=
(

λEi (qRi,s + iqIi,s)
λ̄Ei (qRi,s − iqIi,s)

)

+
∑

(l, j)∈Ri

(
γ (l, j)qls q̄

j
s

γ̄ (l, j)q̄ lsq
j
s

)
+ ε

(
fi
f̄i

)

+ O(ε|qs|)gci (φ), (106)

where gci : S → R
2 is a periodic function and φ = Ωt .

Note that the second component in the above equation is
simply the complex conjugate of the first component.
It follows that the equation holds if and only if the
first component holds. Separation of real and imaginary
parts of the first component yields

q̇Ri,s − qIi,sriΩ = Re(λEi )qRi,s − Im(λEi )qIi,s

+
∑

(l, j)∈Ri

Re
(
γ (l, j)qls q̄

j
s

)

+ εRe( fi ) + O(ε|qs|)gci,1(φ), (107)

q̇Ii,s + qRi,sriΩ = Re(λEi )qIi,s + Im(λEi )qRi,s

+
∑

(l, j)∈Ri

Im
(
γ (l, j)qls q̄

j
s

)

+ εIm( fi ) + O(ε|qs|)gci,2(φ), (108)

where gci,1 and gci,2 are the first and the second com-

ponent of the gci , and we have φ̇ = Ω. After some
algebraic manipulations, we obtain (54).

The proof of statements (ii) and (iii) is analogous to
that given in Sect. 8.2.2. Here we focus on the persis-
tence of the hyperbolic periodic orbits of the leading-
order truncated dynamics under the addition higher
order terms.

Let x = (qR1,s, q
I
1,s, . . . , q

R
m,s, q

I
m,s). Eq. (54) can be

rewritten as

ẋ = Ax+F(x)+εFext+O(ε|x|)G(φ), φ̇ = Ω (109)

where A = diag(A1, . . . , Am) with

Ai =
(

Re(λEi ) riΩ − Im(λEi )

Im(λEi ) − riΩ Re(λEi )

)
, (110)

F(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
(l, j)∈R1

⎛
⎝Re

(
γ (l, j)qls q̄

j
s

)
Im

(
γ (l, j)qls q̄

j
s

)
⎞
⎠

...

∑
(l, j)∈Rm

⎛
⎝Re

(
γ (l, j)qls q̄

j
s

)
Im

(
γ (l, j)qls q̄

j
s

)
⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (111)

Fext = (Re( f1), Im( f1), . . . ,Re( fm), Im( fm)) is a
constant vector, andG(φ) is a periodic function. Let x�

be a hyperbolic fixed point of the leading-order trunca-
tion, i.e.,

Ax� + F(x�) + εFext = 0, (112)

and let the corresponding periodic orbit in the parame-
terization coordinates be p�(t) (see Eq. (53)). We will
prove the persistence of this hyperbolic periodic orbit
with the perturbation of O(ε|x|)G(φ) via the follow-
ing three steps: (i) we estimate the magnitude of the
fixed point x�; (ii) we introduce transverse coordinates
y = x − x� and then show the dynamics of y is slow
relative to φ̇ = Ω; (iii) we use the method of aver-
aging to demonstrate that the hyperbolic fixed point
y = 0 is perturbed as a periodic orbit yp(t) of the same
hyperbolicity as that of y = 0 (see Guckenheimer and
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Holmes [22]). Hence, it is clear that the correspond-
ing trajectory pp(t) that perturbed from p�(t) is also a
periodic orbit of the same hyperbolicity.

Step 1 Let the lowest order of nonlinearity in F(x)
be k, assume that

λE − irΩ = εq t, λ̄
E + irΩ = εq t̄ (113)

for q = 1 − 1
k and some t ∼ O(1). Now, we can

show that x� ∼ O(ε1−q). Indeed, substituting assump-
tion (113) into Eq. (110) gives A = εqÂ, where
Â = diag( Â1, . . . , Âm) with

Âi =
(
Re(ti ) −Im(ti )
Im(ti ) Re(ti )

)
. (114)

In addition, we have F(x) = F̂(x) · x⊗k , where x⊗k :=
x⊗ · · · ⊗ x (k-times) and k ≥ 2 because |l| + | j | ≥ 2,
and F̂(x) = F̂(0)+F̂1x+O(|x|2)with F̂1 appropriately
defined. Thus, introducing the transformation

x = μx̂, μ = ε1−q , (115)

Equation (112) can be rewritten as

εF(x̂�, μ) = 0, (116)

where

F(x̂�, μ) = Âx̂� + F̂(μx̂�) · (x̂�)⊗k + Fext. (117)

Since x̂� is a hyperbolic fixed point, the partial deriva-
tive of F with respect to the first argument, evaluated
at (x̂�, μ), is invertible. Then, the implicit function
theorem implies that x̂� depends on μ smoothly and
we have x̂� = x̂�(μ), i.e., x� = μx̂�(μ). In partic-
ular, x̂�(0) = x̂�(μ) + O(μ). Furthermore, since the
invertible matrix Â ∼ O(1), Fext ∼ O(1), and F̂(0)
can be made arbitrarily small by scaling the eigen-
vectors of the master spectral subspace E , we infer
from F(x̂�, μ) = 0 that for small enough values of
μ, x̂�(μ) ∼ O(1) + O(μ), i.e., x� ∼ O(ε1−q).

Step 2 Following the analysis in Step 1 (see (115)–
(117)), Eq. (109) can be rewritten as

μ ˙̂x = εF(x̂, μ) + O(ε|μx̂|)G(φ), φ̇ = Ω. (118)

The first equation above can be simplified as

˙̂x = εqF(x̂, μ) + O(ε|x̂|)G(φ). (119)

Letting y = x̂ − x̂�, substituting x̂ = y + x̂� into the
above equation, performing Taylor expansion around
the fixed point x̂�, and utilizing the fact thatF(x̂�, μ) =
0, we obtain

ẏ = εqF(y + x̂�, μ) + O(ε|y + x̂�|)G(φ)

= εq D1F(x̂�, μ)y + εqO(|y|2)
+ O(ε|x̂� + y|)G(φ). (120)

where D1F denotes the partial derivative of F with
respect to its first argument. Next we introduce the
transformation y = εr ŷ for some r > 0 and obtain

˙̂y = εq D1F(x̂�, μ)ŷ + εq+rO(|ŷ|2)
+ O(ε1−r |x̂� + εr ŷ|)G(φ)

= εq D1F(x̂�, μ))ŷ + εq+rO(|ŷ|2)
+ ε1−rO(|x̂�|)G(φ) + εO(|ŷ|)G(φ). (121)

Now, we choose r such that q + r = 1 − r , i.e.,

r = 1 − q

2
= 1

2k
. (122)

Then, Eq. (121) is simplified to yield

˙̂y =εq D1F(x̂�, μ)ŷ

+ ε
1+q
2

(
O(|ŷ|2) + O(|x̂�|)G(φ)

)

+ εO(|ŷ|)G(φ). (123)

Step 3 Defining ν1 = εq and ν2 = √
μ, we rewrite

Eq. (123) as

˙̂y = ν1D1F(x̂�, ν22 )ŷ + ν1ν2H(ν2, ŷ, φ) (124)

where H(ν2, ŷ, φ) = O(|ŷ|2) + (O(|x̂�|) + ν2O(|ŷ|))
G(φ). We define A0 = D1F(x̂�, 0), which is ν22 -close
to the Jacobian D1F(x̂�, ν22 ), and hence, these two
matrices share the samehyperbolicity for small-enough
values of ν2. Following the arguments of the proof of
the averaging theorem in [22], we consider two flows
as follows

˙̂y = ν1A0ŷ, φ̇ = Ω, (125)
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˙̂y = ν1D1F(x̂�, ν22 )ŷ + ν1ν2H(ν2, ŷ, φ), φ̇ = Ω.

(126)

Let T = 2π/(rdΩ), where rd has been defined as the
largest common divisor for the set of of rational num-
bers {ri }mi=1 in the Proof of Theorem 8.2. We define the
period-T maps of the above two flows as P0 and Pν ,
respectively. Furthermore, we defineH0 andHν as the
zero functions associated with the fixed points of the
Poincaré maps P0 and Pν as

H0(ŷ, ν1) = 1

ν1
(P0ŷ − ŷ), (127)

Hν(ŷ, ν1, ν2) = 1

ν1
(Pν ŷ − ŷ). (128)

From the linear flow (125), we obtain

P0 : ŷ �→ eν1A0T ŷ. (129)

Then, ŷ = 0 is a fixed point of the map P0, and as a
result, also the zero of the functionH0(ŷ, ν1). In addi-
tion,

lim
ν1→0

∂ŷH0 = lim
ν1→0

eν1A0T − I

ν1
= A0T, (130)

which is invertible. Furthermore, sincePν is ν1ν2-close
to P0, we also have

lim
(ν1,ν2)→0

∂ŷHν = lim
(ν1,ν2)→0

Pν − I

ν1
= A0T . (131)

Now, by the implicit function theorem, the trivial fixed
point ŷ = 0 of the map P0 is perturbed as a nontrivial
fixed point of the map Pν under the addition of the
higher-order terms for small-enough values of ν1, ν2.
In addition, the nontrivial fixed point shares the same
hyperbolicity as that of the trivial one. Therefore, we
obtain a periodic orbit ŷp(t) to (126), and then yp(t) =
εr ŷp(t).

8.4 Settings of COCO

Some settings are tuned as follows to speed up the FRC
computation in examples 6.4–6.6 with po toolbox of
coco

– Disable mesh adaptation. When the mesh is
changed, coco will reconstruct the continuation
problem, which could be time-consuming if the

problem is of high dimension. We have disabled
mesh adaption in the von Kármán beam example
the von Kármán plate example. However, we found
that the default mesh is not able to produce accu-
rate results in the Timoshenko beam example when
the deformation amplitude is large. So we allow for
mesh adaptation every ten continuation steps in the
Timoshenko beam example;

– DisableMXCL. The collocation toolbox incocohas
a posteriori error estimator to evaluate the accu-
racy of obtained numerical solution. If the error
exceeds a threshold value, coco will stop the con-
tinuation run. An often used technique to avoid the
occurrence of MXCL is providing a fine mesh and
adaptively changing the mesh after a few continua-
tion steps. It is noted that the error in the estimator
is based on the Euclidean norm, which means that
MXCLwill be triggered easily for high-dimensional
problems. In the vonKármán beam and plate exam-
ples, we use a fixed (default) mesh with ten subin-
tervals. Five base points and four collocation nodes
are used in each subinterval. In the Timoshenko
beam example, the MXCL is also disabled;

– Increase maximum step size and residual. We use
atlas the 1d algorithm in coco to perform contin-
uation in this paper. The default maximum con-
tinuation step size is 0.5 and maximum residual
allowed for predictor is 0.1. The step size in atlas
1d measures distances in the Euclidean norm of all
continuation variables and parameters. Sowe allow
large continuation step size for high-dimensional
continuation problems. In addition, we increase the
maximum residual for the predictor as well to an
effective end. Here we have increased the maxi-
mum step size and residual to 100 and 10, respec-
tively, in the von Kármán beam example. These
two thresholds are set to be 1000 and 10000 in the
Timoshenko beam example, and 500 and 50 in the
vonKármán plate example. In the continuation runs
of the von Kármán beam example, the residual of
the predictor hit the threshold 10 in some continua-
tion steps and the observed maximum continuation
step size is about 30, which is much larger than the
default. In the continuation run of the Timoshenko
beam example, there are some continuation steps
with step size more than 900, which is also much
larger than the default. In the continuation runs of
the von Kármán plate example, the observed max-
imum residual of predictor is slightly larger than
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Fig. 30 TheFRC for pointAof the vonKármán plate discretized
with 200 elements and 606 DOF under excitation 100 cosΩt ,
obtained by SSM reduction at different orders, along with the
shooting method applied to the full system. The lower panel is
the zoom-in plot of the upper panel. The green lines in the lower
panel are almost invisible because they coincide with the yellow
lines. (Color figure online)

onewhile the observedmaximumcontinuation step
size is about 34, which is again much larger than
the default.

Note that the 2020 March release of coco also sup-
ports k-dimensional atlas algorithm where step size
measures distance of with Euclidean norm of active
continuation parameters only [17]. With (x0/(2n),

ẋ0/(2n),Ω, T ) as active continuation parameters, we
also performed continuation using powith atlas-kd for
the von Kármán beam discretized with 20 elements
and 58 DOF. The default maximum continuation step
size (equal to one) in atlas-kd is utilized. We have the
decreasedminimumcontinuation step size to 10−4 such

Fig. 31 TheFRC for pointAof the vonKármán plate discretized
with 200 elements and 606 DOF under excitation 150 cosΩt ,
obtained by SSM reduction at different orders, along with the
shooting method applied to the full system. The lower panel is
the zoom-in plot of the upper panel. (Color figure online)

that gap between adjacent charts is not encountered (see
[16] for more details). We have set θ < 0.5 in the algo-
rithm such that the predictor in atlas-kd is consistent
with the one in atlas-1d. Given the residual of predic-
tor is evaluated as the same way as atlas-1d, we have
also increased the maximum residual for predictor to
10.

The continuation run with atlas-1d generates the
FRC with 175 points in about six and half hours for the
discrete beam with 20 elements. The observed maxi-
mum continuation step size in this run is about 30. In
contrast, the continuation run with atlas-kd generates
the FRC with 248 points in about 11h. The residual
of predictor in this run again hits the threshold 10 in
some continuation steps, and the observed maximum
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continuation step size is just 0.1. When the maximum
residual for predictor is increased to 100, the contin-
uation run with atlas-kd generates the FRC with 107
points in about 6h, and the observed maximum contin-
uation step size is increased to 0.17. It follows that the
computational times for the two atlas algorithms are
comparable if we allow large continuation step size in
the atlas-1d algorithm.

8.5 Supplementary analysis of Example 6.6

In this subsection, we provide more detail on the
effectiveness of the SSM reduction for higher exci-
tation amplitudes. When a harmonic force 50 cosΩt
is imposed at point A with coordinate (0.2l, 0.3l), the
peak vibration amplitude of transverse displacements
at the point A is 2.4mm, as seen in the upper panel of
Fig. 22. Numerical experiments show that when the
force is increased to 100 cosΩt , the peak vibration
amplitude at point A is increased to 4.4mm (see the
upper panel of Fig. 30), and the corresponding peak
amplitude at the grid with coordinate (0.3l, 0.3l) is
5.1mm, which is already comparable to the thickness
of the plate. However, an SSM expansion at O(11) is
required to obtain convergence in the FRC, as seen in
Fig. 30 (cf. Fig. 21 in the main text where convergence
was attained atO(5)). The results from SSM-reduction
match well with that of the shooting method applied to
the full system.

Upon increasing the forcing further to 150 cosΩt ,
we do not obtain converged FRC when we increase the
expansion orders of SSM, as illustrated in Fig. 30. This
is because we have reached the domain of convergence
of the Taylor expansion for the SSM.
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