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Abstract. We study the Maxwell–Bloch equations governing a two-level laser in a ring cavity.
For Class A lasers, these equations have two widely separated time scales and form a singularly
perturbed, semilinear hyperbolic system with two distinct characteristics. We extend Fenichel’s
geometric singular perturbation theory [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53–98]
to the Maxwell–Bloch equations by proving the persistence of a Ck, 0 < k < ∞, slow manifold under
an unbounded perturbation. The proof is obtained by a modified graph transform method. We use
uniform decay estimates of Constantin, Foias, and Gibbon [Nonlinearity, 2 (1989), pp. 241–269] to
obtain a cone condition. These estimates rely on the energy preserving nature of the nonlinearity
and the existence of two distinct characteristics. The cone condition and the fact that the unbounded
perturbation generates a continuous group are used to define the graph transform. The slow manifold
is a globally attracting, positively invariant manifold, with infinite dimension and codimension, that
contains the attractor of the system. The slow manifold depends only continuously on ε and converges
uniformly on (strongly) compact sets to the critical manifold. This enables us to rigorously decouple
the slow and fast time scales and obtain a reduced (but still infinite-dimensional) dynamical system
described by a functional differential equation.
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1. Introduction.

1.1. The Maxwell–Bloch equations. We shall study the asymptotic dynam-
ics of the laser equations proposed by Risken and Nummedal [25]. These are amplitude
equations describing a two-level laser derived by a semiclassical approximation. The
electric field obeys the classical Maxwell equations, and the light-matter interaction
is modeled by the quantum mechanical Bloch equations. There are numerous simpli-
fications in this model, several of which are pointed out in [25]. Nevertheless, these
equations are quite faithful to the underlying physics and are also mathematically
tractable in certain limits. The equations we will study are

Eτ + Ex = κ(P − E),(1.1)

Pτ = γ⊥[ED − (1 + iδ)P ],(1.2)

Dτ = γ‖

[
λ+ 1−D − λ

2
(E∗P + EP ∗)

]
.(1.3)

E,P ∈ C, and D ∈ R are periodic on the domain [0, 1]; E is the electric field, P is
the polarization of the gain medium, and D is a measure of the population inversion;
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κ, γ⊥, γ‖ > 0 are phenomenological damping constants; λ > 0 is a pumping term;
δ ∈ R is a detuning parameter. All the variables are dimensionless and have been
scaled to the continuous wave (cw) solutions. By these we mean spatially homogeneous
steady states of (1.1)–(1.3) that correspond to a steady output from the laser. In
another scaling these equations are also known as the Lorenz PDE. The Lorenz ODEs
are contained in the system (1.1)–(1.3) when δ = 0, and attention is restricted to real
valued, spatially independent solutions.

Constantin, Foias, and Gibbon were the first to study these equations rigor-
ously [9]. They proved the existence of global weak solutions and a C∞ global at-
tractor in L2 with finite Hausdorff dimension. Recently Xin and Moloney studied the
equations in three dimensions with the addition of a transverse dispersive term [28].
They proved the existence and uniqueness of weak solutions in Lp, 2 ≤ p < ∞, and
an attractor with finite regularity. Naturally, one must expect the dynamics to de-
pend strongly on the parameter values, and in some parameter ranges the analysis
will be easier than in others. Kovacic and Wettergren studied the Maxwell–Bloch
equations (in a different scaling) near an integrable limit in [20, 27], respectively. The
motivation there is to use the knowledge of the geometry of the integrable limit to
understand the dynamics when the damping and forcing are small.

1.2. Adiabatic elimination for Class A lasers. Different types of lasers have
vastly different dynamics because of the wide variation in parameters κ, γ⊥, and γ‖.
Arecchi proposed a characterization of lasers based on the range of damping param-
eters, and we shall consider what he terms Class A lasers [1, p. 17]. For this class
of lasers, we have γ⊥ ≈ γ‖ � κ. This scaling has also been called the good cav-
ity limit [10], but strictly speaking, the good cavity limit refers to the case where
γ⊥ + γ‖ ≥ κ and includes a much broader range of dynamics than we consider.
Nevertheless, the range of Class A lasers is sufficiently wide to be physically and
mathematically interesting. For Class B lasers, γ⊥ � κ>̃γ‖, and for Class C lasers,
all three damping constants are comparable. For Class A and B lasers one may hope
to simplify the dynamics by separating the evolution on fast and slow time scales.
Such adiabatic eliminations are common in the physics literature (see the expository
article [1] and the references therein). Our aim is to examine such a reduction from a
more mathematical viewpoint. The simplest case is of Class A lasers, and we consider
only this scaling henceforth.

Let γ⊥ → 1
ε , γ‖ → γ‖

ε , with 0 < ε 	 1. The laser equations are rewritten as

Eτ + Ex = κ(P − E),(1.4)

εPτ = ED − (1 + iδ)P,(1.5)

εDτ = γ‖

[
λ+ 1−D − λ

2
(E∗P + EP ∗)

]
.(1.6)

This suggests we formally eliminate the “fast” variables P and D, i.e., we set the left-
hand sides of (1.5) and (1.6) to zero, solve for P,D as functions of E, and substitute in
(1.4). This adiabatic approximation is often used in the physics literature [1, 10, 15]
although it is typically used with finite-dimensional modal truncations [16, pp. 156,
290]. It is not apparent that this formal reduction is valid or if the solutions to the
singular limit are similar to those of the full system. Indeed, we will show that this
reduction leads to false predictions about the asymptotic behavior.

The failure of the formal reduction should not be unexpected. The laser equations
are a semilinear hyperbolic system with two characteristics: x − t =constant and
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x =constant. The formal reduction procedure eliminates one of these characteristics
and thus neglects essential information. Nevertheless, there is some merit in studying
the reduced system since it provides some insight into the range of possible asymptotic
behavior. We may then attempt to verify if similar behavior persists when γ⊥ and γ‖
are sufficiently large but finite.

1.3. Geometric singular perturbation theory. A rigorous geometric theory
for singularly perturbed ODE was developed by Fenichel [12]. To apply his methods
to this problem, one would proceed as follows. First, one regularizes the problem
by rescaling time, t = τ

ε . The new time scale, t, is referred to as fast time. In this
variable, the laser equations are

Et = ε[−Ex + κ(P − E)],(1.7)

Pt = ED − (1 + iδ)P,(1.8)

Dt = γ‖

[
λ+ 1−D − λ

2
(E∗P + EP ∗)

]
.(1.9)

Here E changes slowly with time (O(ε)), and P and D have a time rate of change
that is O(1). In the limit ε = 0 the slow variable E is constant. The fast variables
still change rapidly except at the equilibria of (1.7)–(1.9). Solving for these equilibria
we see that they form a manifold, M0, given as a graph over the slow variable E.
Thus the singularities of the slow time system (1.4)–(1.6) are equilibria of the fast
time system (1.7)–(1.9). The formal reduction is equivalent to the assumption that
M0 remains invariant and there is a well-defined flow in slow time restricted to it.
How good is this assumption? Some intuition is provided by considering ODE.

The underlying geometry is essentially the same for singularly perturbed ODE.
We are given a manifold of equilibria and we want to justify a reduction of the flow to
this manifold. Under the crucial hypothesis of normal hyperbolicity, Fenichel proved
that a compact manifold of equilibria, M0, continues smoothly to a family of slow
manifolds,Mε, for sufficiently small ε > 0. Furthermore, if we consider the augmented
system obtained by appending the equation εt = 0 to the ODE, then these manifolds
are contained in a global center manifold given as a graph over the slow variable
and ε. The singular perturbation problem is then reduced to a regular perturbation
problem restricted to this center manifold, and asymptotic expansions in ε are reduced
to Taylor series calculations. Fenichel’s methods are powerful, and several problems
that lie outside the reach of conventional (and typically heuristic) asymptotic methods
are easily studied within his framework. There has been much progress in this area;
see [19] for a readable introduction.

For PDE the situation is not so simple. There are several obstructions, some of
which are technical; for instance, the phase space is no longer locally compact. But
another obstruction is essential. For ε > 0 the perturbed flow is not close to the
unperturbed flow in the C1 topology because of the unbounded operator ε∂x. Hence
there are no general persistence theorems that one can invoke to prove the existence
of the slow manifolds Mε (the definitive results in this direction are due to Bates,
Lu, and Zeng and may be found in a set of articles beginning with [4]). Furthermore,
even if these manifolds exist, one should not expect them to fit together smoothly
in ε or to be contained in a smooth global center manifold restricted to which we
obtain a regular perturbation problem. Thus there are difficulties in justifying the
existence of asymptotic expansions. The addition of an unbounded perturbation also
leads to some unexpected phenomenon. For example, one finds new instabilities that
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are hidden in the adiabatic elimination. Risken and Nummedal [25] showed that the
cw solutions of (1.1)–(1.3) are linearly unstable for sufficiently large λ. On the other
hand, the adiabatic elimination predicts that these solutions are always stable. We
comment on this point again in section 6.

1.4. Main results. The goals of this paper are to understand rigorously the
relation between the adiabatic elimination and the full Maxwell–Bloch system and to
develop in the process geometric singular perturbation theory for PDE in the setting
of a concrete example. Our main theorem, Theorem 4.1, establishes the persistence
of a globally attracting, positively invariant manifold diffeomorphic to the manifold of
equilibria. This manifold contains the attractor of the system. In infinite dimensions,
the persistence of a global invariant manifold under unbounded perturbations is itself
a significant fact, and Theorem 4.1 lies considerably outside the scope of general
theorems in this field (see, e.g., [2, 3, 8, 4]). This being said, we must in fairness note
that the proof relies strongly on the structure of the Maxwell–Bloch equations and
is special to this system. There are two facts that play a key role in the analysis.
The first is that the addition of the unbounded perturbation for ε > 0 corresponds
to the splitting of characteristics that are parallel in the limit. The second is that
the nonlinearities of the Maxwell–Bloch equations satisfy strong energy estimates
that follow from their physical origin. In particular, the nonlinearities in (1.1)–(1.3)
appear only as skew terms and ensure the uniform decay of the polarization and
inversion (see 2.5). These estimates were derived by Constantin, Foias, and Gibbon [9].
We utilize these estimates to establish a cone condition of the flow similar to that
in [4, 13]. The cone condition, and the fact that the unbounded perturbation generates
a continuous group, are crucial ingredients of the proof.

The convergence of the slow manifold to the critical manifold is subtly altered
by the unbounded perturbation. We are only able to prove that the convergence is
uniform on strongly compact sets (Theorem 6.1). However, one should keep in mind
that the phase space is not locally compact.

As a sidelight, we note that the persistence theorem provides an example of an
inertial manifold (albeit infinite dimensional) in a problem with no diffusion. Infinite-
dimensional inertial manifolds for reaction diffusion equations coupled to ODE (e.g.,
the Hodgkin–Huxley equations) have been studied by Marion [22]. Marion’s methods
are a natural complement to methods used for reaction diffusion equations [13] and
depend on the control over high wave numbers provided by diffusion. Our methods
are quite different and depend strongly on the absence of diffusion.

The rest of this paper is organized as follows. Section 2 contains a priori estimates
and results on well-posedness. Section 3 studies the peculiarities of the singular limit.
Sections 4 and 5 are dedicated to a proof of the main theorem. The existence of the
invariant manifold provides a basis for rigorously decoupling the slow and fast time
scales in the system. This is considered in section 6. We also remark on the relation
between the formal limit and the slow dynamics there.

2. Existence and uniqueness. In this section we will prove that the laser equa-
tions define a smooth (C∞) dynamical system in the space of continuous functions.
Constantin, Foias, and Gibbon [9] proved that the laser equations define a Lipschitz
dynamical system in L2. The reason for choosing a more restrictive phase space is
that smoothness of the flow is essential for invariant manifold techniques. The ob-
struction to smoothness in L2 is the quadratic nonlinearity in (1.8) and (1.9). The
product of two L2 functions does not lie in L2 in general. For continuous functions,
however, multiplication is a smooth map. The motivation for choosing L2 as a phase
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space is that the laser rises out of noise and the initial data cannot be prepared to
be smooth. In view of this, choosing C0 as the phase space is obviously a restriction
in our study. Nevertheless, Theorem 4.2 of [9] states that asymptotically all solutions
approach an attractor composed of C∞ functions. Thus, in order to study asymptotic
behavior it is sufficient to restrict our attention to continuous functions.

Our work relies strongly on the a priori estimates proved by Constantin, Foias,
and Gibbon and the estimates of this section are largely rescaled versions of their
work [9]. A derivation of these estimates, motivated by the underlying physics, may
be found in their work. We make no claim to originality for these estimates, and they
are included for completeness and to prove well-posedness of the laser equations in a
form appropriate for this paper.

To better illustrate the structure of the equations, we rescale the dependent vari-
ables. Define µ =

√
λγ‖ and set

u = E , v = µP, w = D.(2.1)

Thus, (1.7)–(1.9) are transformed to

ut = ε

[
−ux + κ

(
v

µ
− u

)]
,(2.2)

vt = µuw − (1 + iδ)v,(2.3)

wt = γ‖(λ+ 1− w)− µ

2
(u∗v + uv∗).(2.4)

2.1. Notation. The space of continuous functions from the circle into a Eu-
clidean space E is denoted by C(S1;E). The phase space for our dynamical system
is X = X1 × X2, where X1 = C(S1;C) and X2 = C(S1;C × R). A typical element of
X is denoted by the triplet (u, v, w). The norm in X1 is ‖u‖ = supx∈S1 |u(x)|, and
the norm of (v, w) ∈ X2 is ‖(v, w)‖ = supx∈S1(|v(x)|2 + |w(x)|2)1/2. The norm of
(u, v, w) ∈ X is (‖u‖2 + ‖(v, w)‖2)1/2. The projections from X into Xi are denoted
by Πi. The space of k-linear maps between two Banach spaces Y1 and Y2 will be
denoted as Lk(Y1,Y2). For k = 1, we drop the superscript.

2.2. A priori estimates. Notice that if ε > 0, it is sufficient to obtain a priori
estimates for either the slow or fast system since they are equivalent. In the rest of
this section ε > 0 is fixed.

We first derive a pointwise decay estimate. For all x ∈ S1, we have

∂t(|v(t, x)|2 + |w(t, x)|2) = −2|v|2 − 2γ‖|w|2 + 2(λ+ 1)γ‖w
≤ −2β(|v|2 + |w|2) + γ‖(λ+ 1)2,

where β = min(1, γ‖/2). Integrating the resulting inequality and taking the sup over
x ∈ S1 we obtain

‖(v, w)(t)‖2 ≤ e−2βt(‖(v, w)(0)‖2) + (λ+ 1)2
γ‖
2β

|1− e−2βt|

=: e−2βt(‖(v, w)(0)‖2) + ρ2
v|1− e−2βt|,(2.5)

where we have defined the constant ρ2
v = γ‖(λ+1)2/2β. The miraculous cancellation in

the nonlinear terms that leads to this strong energy estimate is actually a consequence
of the underlying physics; see [9] for details. Since the nonlinear terms uv∗ and uw
in (2.3)–(2.4) do not influence the change in energy, we say that the nonlinearity
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is energy preserving. Equation (2.2) admits an equally strong estimate. A smooth
solution satisfies

(∂t + ε∂x)(|u(t, x)|2) = −2κε|u(t, x)|2 + 2εκ
µ
Re (u∗v)

≤ −εκ|u(t, x)|2 + εκ

µ2
|v(t, x)|2.

Integrating this inequality along the characteristic x− εt =constant, we have

|u(t, x)|2 ≤ e−εκt|u(0, x− εt)|2 + εκ

µ2

∫ t

0

e−εκ(t−s)|v(s, x− ε(t− s))|2ds.(2.6)

Taking the sup over x ∈ S1, and using the energy estimate (2.5), we obtain

‖u(t)‖2 ≤ e−εκt‖u(0)‖2 +
εκ

µ2
e2β(t)‖(v, w)(0)‖2 +

ρ2
v

µ2
(1− e−εκt),(2.7)

where we have defined the exponentially decaying function

eα(t) =
e−εκt − e−αt

α− εκ
,(2.8)

assuming that εκ < α.
These energy estimates will be used to establish the existence of global mild

solutions. They also immediately establish the existence of positively invariant regions
in X. Trajectories will satisfy ‖(v, w)(t)‖ < ‖(v, w)(0)‖, for all t > 0, provided

‖(v, w)(0)‖ > ρv.(2.9)

Let c(ε) = supt≥0 εκe2β(t)/(1− e−εκt). Since e2β(t) ≤ te−εκt we find that

c(ε) ≤ sup
y>0

y

ey − 1 = 1.

Suppose that the initial conditions satisfy (2.9). The energy estimate (2.7) shows that
a sufficient condition for ‖u(t)‖ < ‖u(0)‖ for all t > 0 is

‖u(0)‖2 >
‖(v, w)(0)‖2

µ2
+

ρ2
v

µ2
.(2.10)

Conditions (2.9) and (2.10) show that the region

D0 = {‖u‖2 ≤ 4ρ2
v/µ

2, ‖(v, w)‖2 ≤ 2ρ2
v}(2.11)

is strictly positively invariant. D0 is also an absorbing region for the flow. The energy
estimates (2.5) and (2.7) show that all trajectories enter D0 at the slow exponential
rate e−εκt and that the time taken to enter D0 is uniform on bounded sets.

Remark 2.1. It is important to note that the size of the absorbing region is
uniform for 0 < εκ < 2β. We will use this in our construction of slow manifolds.

Let (ui, vi, wi), i = 1, 2, be two smooth solutions. We will estimate the growth of
their difference. Define (ξ, η, ζ) = (u1, v1, w1)−(u2, v2, w2) and (ū, v̄, w̄) = ((u1, v1, w1)
+(u2, v2, w2))/2. The differences satisfy

ξt = ε

[
−ξx + κ

(
η

µ
− ξ

)]
,(2.12)

ηt = −(1 + iδ)η + µ(ūζ + w̄ξ),(2.13)

ζt = −γ‖ζ − µ Re (ū∗η + v̄∗ξ).(2.14)
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Equations (2.13) and (2.14) give the pointwise error estimate

∂t(|η|2 + |ζ|2) = −2|η|2 − 2γ‖|ζ|2 + 2µ Re (ξη∗w̄ − ξζv̄∗)

≤ −β(|η|2 + |ζ|2) + µ2|ξ|2
β

(|v̄|2 + |w̄|2).

In the second step we have used the elementary inequality 2pq ≤ βp2 + q2/β. Inte-
grating and taking the sup over x ∈ S1, we obtain

‖(η, ζ)(t)‖2 ≤ e−βt‖(η, ζ)(0)‖2 +
µ2

β

∫ t

0

e−β(t−s)‖ξ(s)‖2‖(v̄, w̄)(s)‖2ds.(2.15)

The definition of (v̄, w̄), combined with the energy estimate (2.5), gives

‖(v̄, w̄)(t)‖2 ≤ C ∀t ≥ 0,(2.16)

where C is a constant that is uniform for initial conditions in any fixed ball.
An energy estimate for ξ can be obtained from (2.12). For two smooth solutions

we have

(∂t + ε∂x)(|ξ|2) = 2εκ
(
−|ξ|2 + 1

µ
Re (ξ∗η)

)

≤ 2εκ

(
−|ξ|2 + |ξ|2

2
+

|η|2
2µ2

)
= −εκ|ξ|2 + εκ

µ2
|η|2.

Integrating this inequality along the characteristic x− εt =constant, we have

|ξ(t, x)|2 ≤ e−εκt|ξ(0, x− εt)|2 + εκ

µ2

∫ t

0

e−εκ(t−s)|η(s, x− ε(t− s))|2ds,

and taking the sup over x ∈ S1 we obtain

‖ξ(t)‖2 ≤ e−εκt‖ξ(0)‖2 +
εκ

µ2

∫ t

0

e−εκ(t−s)‖(η, ζ)(s)‖2ds.(2.17)

Since the expressions ‖ξ(t)‖2 and ‖(η(t), ζ(t))‖2 occur often below, we now intro-
duce separate notation for them. Let

a(t) = ‖ξ(t)‖2, b(t) = ‖(η, ζ)(t)‖2.(2.18)

Combining the inequalities (2.15), (2.16), and (2.17) with the notation of (2.18), we
obtain

b(t) ≤ b(0)e−βt +
Cµ2

β

∫ t

0

e−β(t−s)
(
e−εκsa(0) +

εκ

µ2

∫ s

0

e−εκ(s−τ)b(τ)dτ
)
ds

= b(0)e−βt +
Cµ2

β
a(0)eβ(t) +

Cεκ

β

∫ t

0

∫ s

0

e−β(t−s)−εκ(s−τ)b(τ)dτds

= b(0)e−βt +
Cµ2

β
a(0)eβ(t) +

Cεκ

β

∫ t

0

b(τ)e−βt+εκτ
∫ t

τ

e(β−εκ)sdsdτ.

Computing the inner integral we obtain the estimate

b(t) ≤ b(0)e−βt +
Cµ2

β
a(0)eβ(t) +

Cεκ

β

∫ t

0

eβ(t− τ)b(τ)dτ.(2.19)
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Here eβ(t) is defined as in (2.8). Thus, we have eβ(t) ≤ te−εκt for positive times (we
suppose that 0 < εκ < β). As in [9], we apply Gronwall’s inequality to (2.19), and
use the resulting estimate in (2.17) to obtain

sup
t∈[0,T ]

(a(t) + b(t)) ≤ C(T, ‖(ui, vi, wi)(0)‖)(a(0) + b(0)).

We have made the assumption that t ≥ 0 for simplicity. One may work through the
estimates again to find that for any fixed T > 0,

sup
t∈[−T,T ]

(a(t) + b(t)) ≤ C(T, ‖(ui, vi, wi)(0)‖)(a(0) + b(0)).(2.20)

2.3. Existence of a smooth flow. We now define precisely the dynamical
system we will be studying and then prove the existence of a smooth global flow.

Definition 2.2. (u(t), v(t), w(t)) ∈ X is a mild solution to the laser equations
(2.2)–(2.4) if it satisfies the integral equations

u(t) = e−εκte−εt∂xu(0) +
εκ

µ

∫ t

0

e−εκ(t−s)e−ε(t−s)∂xv(s)ds,(2.21)

v(t) = e−(1+iδ)tv(0) + µ

∫ t

0

e−(1+iδ)(t−s)u(s)w(s)ds,(2.22)

w(t) = e−γ‖tw(0) + (λ+ 1)(1− e−γ‖t)− µ

∫ t

0

e−γ‖(t−s) Re (u(s)∗v(s))ds.(2.23)

The notation e−εt∂x , with t ∈ R, refers to the one parameter linear group gener-
ated by the wave equation ut + εux = 0 in C(S1;C). It is defined by the shift map
(e−εt∂xu)(x) = u(x− εt).

Remark 2.3. The integrals in (2.21)–(2.23) are interpreted as elements in X.
Since we are considering continuous functions, the integrals are well defined if and
only if they are defined at each point x ∈ S1. Notice that the product u(s)w(s) is a
well-defined continuous function. In [9] the laser equations do not admit a variation
of constants formula in L2. In our work a variation of constants formula is essential.

Remark 2.4. The integral equations (2.22) and (2.23) are equivalent to the differ-
ential equations (2.3) and (2.4) since the right-hand side of the differential equations
contains no unbounded operator. Thus the a priori estimates (2.5) and (2.15) apply to
all mild solutions, not just smooth solutions. The a priori estimates on u and ξ, (2.7)
and (2.17), are extended to all mild solutions by approximating continuous functions
with C1 functions.

Theorem 2.5 (C∞ flow). The laser equations define a C∞ global flow in the
sense of mild solutions. That is, there exists a C∞ map Φ : R × X → X with the
following properties:

(a) Φ(t, u0, v0, w0) is the unique solution to (2.21)–(2.23) with initial conditions
Φ(0, u0, v0, w0) = (u0, v0, w0).

(b) The set of maps ϕt : X → X, t ∈ R defined by ϕt(u0, v0, w0) = Φ(t, u0, v0, w0)
is a one parameter group of C∞ diffeomorphisms of X.

Sketch of the proof. A contraction mapping argument shows that for every point in
X within the ball of radius ρ there is a unique mild solution defined for a time interval
[−T (ρ), T (ρ)]. A well-known theorem of Segal [26] asserts that solutions fail to exist
after a finite time, Tcrit, if and only if they blow up, i.e., ‖(u(t), v(t), w(t))‖ → ∞
as t → Tcrit. The a priori estimates (2.5) and (2.7) show that this is impossible.
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Thus through every point (u0, v0, w0) there is a unique solution for all t ∈ R denoted
by Φ(t, u0, v0, w0) with Φ(0, u0, v0, w0) = (u0, v0, w0). Let ϕt be defined as in (b).
Clearly, ϕ0 = Id. Then (2.20) shows that each ϕt is continuous (in fact, locally
Lipschitz). The group property follows from uniqueness of solutions.

The proof that the flow is C∞ is by induction on the order of the derivative.
Each step of the argument follows. For any positive integer r, formal differentiation
of the equations for the (r − 1)th derivative yields a linear integral equation that the
rth derivative must satisfy (for r = 1, we differentiate (2.21)–(2.23)). The existence
of a unique solution to this integral equation on a time interval [−T (ρ, r), T (ρ, r)]
is proven by a contraction mapping argument. Gronwall estimates show that the
derivative grows at worst exponentially in time. Thus, the derivatives of the flow are
defined for all t ∈ R. This is a standard calculation (see, e.g., [6, 18]) and we omit the
details. The heart of the matter is that the nonlinear terms on the right-hand side of
(2.22)–(2.23) are smooth, and thus all derivatives exist.

Remark 2.6. We did not need the full strength of the estimates for differences
(2.15)–(2.17) in this proof. The estimates will be used in section 4 to prove the cone
property.

2.4. Asymptotic dynamics. The laser equations are dissipative. All trajec-
tories must enter the trapping region D0 in finite time. To capture the asymptotic
behavior of the system, we define the global attractor

A =
⋂
t≥0

ϕt(D0).

Since D0 is absorbing and closed, this agrees with the definition of the attractor as
the ω-limit set of the absorbing ball

ω(D0) =
⋂
T≥0

⋃
t≥T

ϕt(D0).

Although the flow is dissipative, it is not smoothing, and it is not obvious that
this definition of the attractor is meaningful. However, this follows from the asymp-
totic smoothing property of the laser equations proved by Constantin, Foias, and
Gibbon [9]; see also [23]. Let B denote the attractor in L2. The main result of
Constantin, Foias, and Gibbon is that B is composed of C∞ functions and that it
has finite Hausdorff dimension. Thus it also has finite topological dimension. In [23]
the regularity result was improved: The attractor B is in every Gevrey class Gs for
s > 1, i.e., the attractor is “almost analytic.” Furthermore, the estimates in [9, 23]
show that the attractor is compact by the Arzela–Ascoli theorem. Since the inclusion
ι : X → L2 is continuous, these results apply immediately to the flow in X. Applying
the regularity result we see that ι(A) = B. Furthermore, since B is compact, the
inverse map restricted to B is continuous. Hence A and B are homeomorphic and
have the same topological dimension.

These theorems are independent of the scaling assumptions of our paper. We
assert that under suitable scaling hypotheses, one can simplify the geometry further
by constructing a normally hyperbolic invariant manifold that contains the attractor.

3. Geometry in the limit ε = 0. If ε = 0, then ut = 0 in (2.2). By inspection
one sees the existence of a manifold of equilibria, M0, given as the graph of a map
h : X1 → X2. We denote its components by h(u) = (hv(u), hw(u)). These maps are
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defined pointwise for x ∈ S1 by

hv(u)(x) = µ(1− iδ)
(λ+ 1)u(x)

1 + δ2 + λ|u(x)|2 , hw(u)(x) =
(1 + δ2)(λ+ 1)

1 + δ2 + λ|u(x)|2 .(3.1)

For large |u(x)| the denominator dominates; therefore,M0 is uniformly bounded. The
pointwise maps hv(u)(x) and hw(u)(x) are C

∞ as functions of u(x). Since pointwise
operations extend naturally in C(S1), we find that h is C∞ as a map between X1 →
X2. Thus, M0 is a C∞ manifold.

In this limit we can solve the laser equations explicitly. We split (u, v) into their
real and imaginary parts, i.e., (u, v) = (Re(u),Re(v)) + i(Im(u), Im(v)), and then
rewrite (2.3)–(2.4) as

∂t


 Re(v)
Im(v)
w


 = A(u)


 Re(v)
Im(v)
w


+


 0

0
γ‖(λ+ 1)


 ,(3.2)

where A(u) is the bounded multiplication operator defined by

A(u) =


 −1 δ µRe(u)

−δ −1 µIm(u)
−µRe(u) −µIm(u) −γ‖


 .(3.3)

Thus, the solution to the laser equations (2.3)–(2.4) in this limit is u = u(x), and
 Re(v)(t)
Im(v)(t)
w(t)


 = etA(u)


 Re(v)(0)
Im(v)(0)
w(0)


+ ∫ t

0

e(t−s)A(u)


 0

0
γ‖(λ+ 1)


 ds.(3.4)

Here u is treated as a parameter and the fibers of constant u are invariant under the
flow. Within each fiber, trajectories decay to the equilibrium (u, h(u)). The next
lemma states that the decay rate is uniform over M0.

Lemma 3.1. ‖etA(u)‖ ≤ e−βt for all u ∈ X1.
Proof. This follows from an estimate similar to (2.5). The operator A(u) is broken

into two parts: a diagonal matrix that is independent of u and a skew matrix that
depends on u. The skew matrix does not influence the growth or decay of energy, and
hence u cannot influence the decay in ‖(v, w)(t)‖.

Clearly, Lemma 3.1 reflects a strong stability of M0 that depends on the skew
nonlinearity. As we have emphasized earlier, this is actually a consequence of the
underlying physics. Figure 3.1 describes the geometry of the flow with two key ge-
ometric objects. The first is the critical manifold M0, the second is the smooth
invariant family Fu0 := {(u, v, w)|u = u0} parametrized by u0 ∈ X1. There is a
purely metric characterization of Fu0 : For any 0 < γ < β these manifolds are γ-stable
manifolds in the sense of Chow, Lin, and Lu [7]; i.e., for t ∈ R+ and fixed (u0, h(u0))
the set of points {(u, v, w) : ‖ϕt(u, v, w) − ϕt(u0, h(u0))‖ = O(e−γt)} is identical to
Fu0

. For ε > 0 the system is dissipative in the X1 direction as well, and all trajecto-
ries are sucked into the absorbing region D0. Thus, it is sufficient to show that M0

and Fu0 persist within D0. Roughly speaking, we shall show that there is an ε∗ > 0
so that for all 0 ≤ ε ≤ ε∗, there is a smooth (but not C∞) invariant manifold Mε

given as a graph (u, hε(u)) over Π1(D0) that contains the asymptotic dynamics (in
particular the attractor A) and is exponentially attracting.
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u (slow)

fixed points
Manifold of

Stable foliations
(v,w)  (fast)

Fig. 3.1. Geometry in the singular limit ε = 0.

4. Existence of the invariant manifold.

4.1. The main theorem.
Theorem 4.1. For any integer r, there is an ε∗(r) > 0 so that for each

ε ∈ [0, ε∗(r)] there is a positively invariant Cr manifold, Mε, given as a graph over
Π1(D0). This manifold attracts all initial conditions exponentially fast and contains
the attractor A of the Maxwell–Bloch equations.

Sections 4 and 5 are devoted to a proof of the main theorem. The consequences
of this theorem are explored in section 6.

4.2. The modified equations. We will use Hadamard’s graph transform method
to prove the existence of a persisting manifold [14]. We will restrict our attention to
the flow within an absorbing ball and modify the nonlinearity outside this ball. This
approach has been used to prove the existence of finite-dimensional attracting mani-
folds for dissipative dynamical systems (e.g., reaction diffusion equations) [13].

Let R1 = 2ρv/µ and R2 =
√
2ρv. Then R1 and R2 are sufficiently large that the

region

D = {‖u‖X1 ≤ 2R1, ‖(v, w)‖X2 ≤ 2R2}(4.1)

is absorbing and positively invariant (see (2.11) and the discussion preceding it). We
denote this region by D and note that D = 2D0.

Let χ1 : C → [0, 1] be a C∞ function with compact support that takes the values
χ1(s) = 1, 0 ≤ |s| ≤ 1, χ1(s) = 0 for 2 ≤ |s| < ∞ and has uniformly bounded
derivative |Dχ1(s)| ≤ 2. Let χ2 : C × R → [0, 1] be a cut-off function with analogous
properties. Define the cut-off functions χRi : Xi → [0, 1] by χR1(u)(x) = χ1(u(x)/R1)
and χR2(v, w)(x) = χ2((v(x), w(x))/R2). One may prove that χRi , i = 1, 2, are C

∞.
As is common in invariant manifold theory, we will modify the laser equations so as
to obtain global estimates. Let

κ

(
v

µ
− u

)
χR1(u)χR2(v, w) = g(u, v, w) and uχR1(u) = f(u).(4.2)
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Consider the modified laser equations

ut = −εux + εg(u, v, w),(4.3)

vt = −(1 + iδ)v + µf(u)w,(4.4)

wt = γ‖(λ+ 1− w)− µRe(f(u)v∗).(4.5)

We modify only the u term in the nonlinearity in (2.3)–(2.4). This allows us to retain
an estimate similar to the energy estimate (2.15).

Lemma 4.1. For (ui, vi, wi) ∈ X, i = 1, 2, we have
(a) ‖f(u1, v1, w1)− f(u2, v2, w2)‖ ≤ 5‖u1 − u2‖,
(b) ‖g(u1, v1, w1)−g(u2, v2, w2)‖ ≤ κ(5+4

√
2)(‖u1−u2‖+µ−1‖(v1, w1)−(v2, w2)‖).

Proof. Without loss of generality suppose max(|ui(x)|) = |u2(x)|. If |u2(x)| ≤
2R1,

|u1χR1(u1)(x)− u2χR1(u2)(x)|
≤ |u1(x)− u2(x)||χR1(u1)(x)|+ |u2(x)||χR1(u1)(x)− χR1(u2)(x)|
≤ |u1(x)− u2(x)|+ 2R1

2

R1
|u1(x)− u2(x)| ≤ 5‖u1 − u2‖.

If min(|u1(x)|, |u2(x)|) > 2R1, the above inequality is trivial since the left-hand side
is zero. Finally, if |u2(x)| > 2R1 and |u1(x)| ≤ 2R1, we have

|u1χR1(u1)(x)−u2χR1(u2)(x)| = |u1χR1(u1)(x)−u1χR1(u2)(x)| ≤ 4‖u1−u2‖.(4.6)

Taking the sup over x we obtain (a). Similar calculations show that the difference in
g is bounded by

κ

((
5 +

4R2

µR1

)
‖u1 − u2‖+

(
5

µ
+
4R1

R2

)
‖(v1, w1)− (v2, w2)‖

)
.

But R2/R1 = µ/
√
2. Simplifying the above estimate, we obtain (b).

Remark 4.2. We make the following important observation regarding the modi-
fied flow. Suppose ‖u(0)‖ > 2R1. Then there exists an open interval I in S1 so that
|u(0)(x)| > 2R1 for all x ∈ I, and hence g((u, v, w)(0)) = 0, on this interval. Integrat-
ing (4.3) along the characteristic x − εt = constant, we find that u(t, x) is constant
on the characteristics through I × {t = 0}. Thus, ‖u(t)‖ > 2R1 for all t ∈ R, and the
region {‖u‖ > 2R1} in phase space is invariant for the modified flow. This implies its
complement is also invariant. Hence the phase space splits into two invariant regions,
the closed cylinder {‖u‖ ≤ 2R1} and its exterior.

Remark 4.3. Within the region {‖u‖ ≤ R1, ‖(v, w)‖ ≤ R2} the modified and
unmodified equations agree on a dense set, and hence their flows agree locally in
time. But by the choice of Ri, this region is positively invariant, and thus the flows
agree for all positive time. As a result they have identical asymptotic dynamics
within this region. We will prove the following invariant manifold theorem for the
mild formulation of the modified equations (4.3)–(4.5). The mild formulation is

u(t) = e−εt∂xu(0) + ε

∫ t

0

e−ε(t−s)∂xg(u(s), v(s), w(s))ds,(4.7)

v(t) = e−(1+iδ)tv(0) + µ

∫ t

0

e−(1+iδ)(t−s)f(u(s))w(s)ds,(4.8)

w(t) = e−γ‖tw(0) + (λ+ 1)(1− e−γ‖t)(4.9)

−µ

∫ t

0

e−(t−s)γ‖ Re (f(u(s))∗v(s))ds.
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Theorem 4.4. For any integer r, there exists an ε∗(r) > 0 so that for each
ε ∈ [0, ε∗(r)] there is a Cr manifold, Mε, invariant under the flow of the modified
Maxwell–Bloch equations (4.7)–(4.9). Mε is given as a graph over Π1(D). This
manifold attracts all points in the absorbing region exponentially fast and contains the
attractor A of the Maxwell–Bloch equations (2.21)–(2.23).

Theorem 4.4 implies Theorem 4.1 because, by Remark 4.3, the asymptotic dy-
namics of modified and unmodified systems agree within D0. Since D0 is only posi-
tively invariant, the invariance of the manifold in Theorem 4.4 is weakened to positive
invariance in Theorem 4.1.

4.3. A priori estimates. We reconsider the a priori estimates of section 2 in
light of the above modifications. Henceforth, in sections 4 and 5, ϕt denotes the
flow of the modified equations (4.7)–(4.9). In all that follows, we will only consider
trajectories that start within the positively invariant region D. Thus the constants,
Cj , that occur in inequalities will generally depend on Ri and the parameters κ, λ, γ‖,
and µ. We also assume that the time t is positive.

Remark 4.2 implies the uniform bound

‖u(t)‖ ≤ 2R1, t ∈ R,(4.10)

for all trajectories starting within D. The modification has also been chosen so that
the energy estimate (2.15) is unchanged (i.e., we retain the cancellation of nonlinear
terms). Thus, by the choice of R2 trajectories starting within D satisfy the uniform
bound

‖(v, w)(t)‖ ≤ 2R2, t ≥ 0.(4.11)

Estimates for differences between trajectories are derived as in section 2. As in (2.17)
we have

a(t) ≤ eC1εta0 + C2ε

∫ t

0

eC1ε(t−s)b(s)ds(4.12)

for Ci = Ci(κ, µ,Ri), i = 1, 2. The analogue of (2.15) is derived from (4.3) and (4.4).
The differences (η, ζ) now satisfy

∂t(|η|2 + |ζ|2) = −2|η|2 − 2γ‖|ζ|2 + 2Re (η∗(f(u1)w1 − f(u2)w2))

−2Re (ζ(f(u1)v
∗
1 − f(u2)v

∗
2))

= −2|η|2 − 2γ‖|ζ|2 +Re ((f(u1)− f(u2))(w̄η
∗ − v̄∗ζ)) .(4.13)

Notice that the choice of the modification is such that the term involving f(u1)+f(u2)
cancels. This is important as it ensures that we retain the uniform decay normal to
the manifold M0, independent of the basepoint u. One can now use Lemma 4.1 and
the energy estimate (4.11) in (4.13) and integrate to find

b(t) ≤ e−βtb(0) + C3

∫ t

0

e−β(t−s)a(s)ds.(4.14)

The constant C3 depends only on the parameters κ, µ, λ, β and the radii Ri. We also
need lower estimates on a(t) and b(t) that are derived similarly. For example, (4.3)
yields

(∂t + ε∂x)|ξ(t, x)|2 ≥ −Cε|ξ|(|ξ|+ |η|) ≥ −C1ε|ξ|2 − C2ε|η|2,
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so that integrating between t1 ≤ t2 and taking the sup over x we have

a(t2) ≥ e−C1ε(t2−t1)a(t1)− C2ε

∫ t2

t1

e−C1ε(t2−s)b(s)ds.(4.15)

Finally, from (4.13) and the energy estimate (4.11) we have the pointwise inequality

∂t(|η(t, x)|2 + |ζ(t, x)|2) ≥ −3β̃(|η|2 + |ζ|2)− C|ξ|2,(4.16)

where we have defined β̃ = max(1, γ‖). Integrating this inequality and taking the sup
over x ∈ S1 we obtain

b(t2) ≥ e−3β̃(t2−t1)b(t1)− C4

∫ t2

t1

e−3β̃(t2−s)a(s)ds.(4.17)

These a priori estimates can be used to prove the existence of a C∞ flow for the
dynamical system defined by (4.7)–(4.9) as in Theorem 2.5. We will not state a
separate theorem.

4.4. The cone property. The graph transform will be defined by applying the
map ϕT to Lipschitz sections of the normal bundle of the critical manifoldM0. Over
sufficiently large time we expect the flow to contract strongly in the normal direction.
This is made precise in the cone condition formulated by Conley, and used since then
by several authors. It is an essential geometric feature in the persistence theorem of
Bates, Lu, and Zeng and a comprehensive list of references may be found in their
article [4].

Choose T > 0 so that

e−βT/2 =
1

32
.(4.18)

T will be held fixed in all that follows. In the following propositions ε∗ denotes an
upper limit that may only decrease from one assertion to the next. This follows the
convention in [4]. For (u, v, w) ∈ D, we will use the cone

KL(u, v, w) = {(u1, v1, w1) ∈ D : ‖(v1, w1)− (v, w)‖X2 ≤ L‖u1 − u‖X1}.(4.19)

Lemma 4.2 (the moving cone lemma). There exists ε∗ > 0 and L > 0 such that
for ε ∈ [0, ε∗], t ∈ [0, T ], and each point (u, v, w) ∈ D, the cone KL(u, v, w) is carried
by the diffeomorphism ϕt into the cone KL(ϕt(u, v, w)).

Remark 4.5. The statement of Lemma 4.2 is uniform over all points in the
absorbing region. Geometrically, this implies a squeezing property of the flow.

Proof. D is positively invariant: thus for any (u, v, w) ∈ D, L > 0, and t ≥ 0, ϕt
carries the cone KL(u, v, w) into D. It remains to prove that for suitable L > 0, if two
trajectories start in D and satisfy b0 ≤ L2a0, then b(t) ≤ L2a(t) for all t ∈ [0, T ]. Since
the initial conditions lie in D, a(t) and b(t) must satisfy the a priori estimates (4.12)
and (4.14). Our proof will demonstrate a technique of dealing with these coupled
inequalities by exploiting the gap in the exponential rates.

For any γ ∈ (C1ε, β) we define |a|γ,t = sups∈[0,t] a(s)e
γs. Similarly, we define

|b|γ,t. It follows that |a|γ,t is an increasing function of t. We will use γ = β/2, though
the argument will work for any γ that satisfies the gap condition C1ε < γ < β. We
further assume that ε∗ is so small that C1ε∗ < β/2.
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We multiply (4.12) by eβs/2 to obtain

a(s)eβs/2 ≤ e(β/2+C1ε)sa0 + C2ε

∫ s

0

e(β/2+C1ε)(s−τ)eβτ/2b(τ)dτ

≤ e(β/2+C1ε)sa0 +
C2ε

β/2 + C1ε

(
e(β/2+C1ε)s − 1

)
|b|β/2,s

≤ e(β/2+C1ε)s
(
a0 + εC2s|b|β/2,s

)
.

In the last step we have used the elementary inequality 1 − e−t ≤ t for positive t.
Taking the sup over s ∈ [0, t], and using the fact that |a|γ,s is an increasing function
of s, we obtain

|a|β/2,t ≤ e(β/2+C1ε)t
(
a0 + C2εt|b|β/2,t

)
.(4.20)

We apply a similar calculation to (4.14) to obtain

b(s)eβs/2 ≤ b0e
−βs/2 + C3

∫ s

0

e−β(s−τ)/2eβτ/2a(τ)dτ

≤ b0 + C3
(1− e−βs/2)

β/2
|a|β/2,s ≤ b0 + C3s|a|β/2,s.

Taking the sup over s ∈ [0, t] we find
|b|β/2,t ≤ b0 + C3t|a|β/2,t.(4.21)

Combining the inequalities (4.20) and (4.21) we find

|b|β/2,t ≤ b0 + C3te
(β/2+C1ε)t

(
a0 + C2εt|b|β/2,t

)
.(4.22)

We suppose that ε∗ is chosen so small that for all ε ∈ [0, ε∗], we have

εe(β/2+C1ε)tC2C3t
2 ≤ 1

2
.(4.23)

Then using the hypothesis b0 ≤ l2a0, and (4.23) in (4.22) we find

|b|β/2,t ≤ a0

[
l2 + C3te

(β/2+C1ε)t

1− εC2C3t2e(β/2+C1ε)t

]
=: a0θ(t, ε),(4.24)

where we have defined a new function θ(t, ε) to simplify notation. Furthermore, we
set t1 = 0, and t2 = t in the backward time estimate (4.15) to deduce that

a0 ≤ eC1εta(t) + C2ε

∫ t

0

eC1εsb(s)ds(4.25)

≤ eC1εt
(
a(t) + C2εt|b|β/2,t

)
.

Thus, combining (4.24) and (4.25), we have

|b|β/2,t ≤ θ(t, ε)a0 ≤ θ(t, ε)eC1εt
(
a(t) + C2εt|b|β/2,t

)
.(4.26)

We reduce ε∗ if necessary so that supt∈[0,T ] εC2tθ(t, ε)e
C1εt ≤ 1/2. Then we have

b(t) ≤ e−β/2t|b|β/2,t ≤ θ(t, ε)e−(β/2−C1ε)t

1− C2εtθ(t, ε)eC1εt
a(t).(4.27)
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Thus, the cone condition (i.e., b(t) ≤ L2a(t)) will be satisfied if we ensure that for all
t ∈ [0, T ] we have

θ̃(t, ε) :=
θ(t, ε)e−(β/2−C1ε)t

1− C2εtθ(t, ε)eC1εt
− L2 ≤ 0.(4.28)

The function θ̃(t, ε) is smooth in t and ε for 0 ≤ t ≤ T, 0 ≤ ε ≤ ε∗, since by the choice
of ε∗ the denominator is bounded away from zero. Notice that if we let t = 0 in (4.24)
we have θ(0, ε) = L2; hence θ̃(0, ε) = 0. If ε = 0, then the inequality (4.28) reduces to

θ̃(t, 0) = −L2(1− e−βt/2) + C3t ≤ 0.(4.29)

Thus we choose

L2 ≥ 2C3max
(
2/β, T (1− e−βT/2)−1

)
= 2C3T

32

31
(4.30)

(see 4.18). This choice ensures that θ̃(t, 0) is a decreasing function of t in the range
[0, T ] and the inequality (4.29) is an equality only at t = 0. But then to show that
(4.28) is true for small positive ε, it suffices to ascertain its validity near t = 0. The
choice of L in (4.30) ensures that the slope

dθ̃(t, 0)

dt
|t=0 ≤ −C3 < 0,

which implies that for sufficiently small ε∗ the inequality maxt∈[0,T ] θ̃(t) ≤ 0 is satis-
fied. In other words, b(t) ≤ L2a(t) for all t ∈ [0, T ].

Remark 4.6. To simplify some estimates later, we further suppose that

L2 = 8max(C3T,C9),(4.31)

where C9 is a constant that occurs in the proof of Lemma 5.1. This simplifies some
estimates in the proof of existence and smoothness of the slow manifold Mε.

A point about the proof that an expert may find strange is the use of direct
estimates on the flow as opposed to estimates from the linearization near the mani-
fold. The laser equations admit strong estimates which is why this approach works.
Typically, the best one can do is obtain a cone condition in a neighborhood of the
manifold. Another unusual feature is the use of a Lipschitz constant L that is not
small. In Fenichel’s work [11] the slope of the Lipschitz sections (i.e., L) is small. The
distinction is that we use a single coordinate chart for M0, so L is finite to account
for the nonzero slope ofM0. This is to avoid a global coordinate transformation that
would lead to vexing technical difficulties.

The next three lemmas pick out special cases of estimates in the moving cone
lemma that will be used in the proof that the graph transform is a contraction mapping
(see Proposition 4.11).

Lemma 4.3. Suppose that a0 = 0. Then there is ε∗ > 0 so that for all ε ∈ [0, ε∗],

b(T ) ≤ b0/16.

Proof. The inequality (4.20) with t = T , and a0 = 0, reduces to

|a|β/2,T ≤ C2εTe
(β/2+C1ε)T |b|β/2,T ,
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and inserting this in (4.21) we have

|b|β/2,T ≤ b0 + εC2C3T
2e(β/2+C1ε)T |b|β/2,T

≤ b0 +
1

2
|b|β/2,T

by the choice of ε∗ in Lemma 4.2 (see (4.23)). Thus |b|β/2,T ≤ 2b0. But then

b(T ) ≤ e−βT/2|b|β/2,T ≤ 2

32
b0 =

1

16
b0.

Lemma 4.4. Suppose b0 = 0. There is ε∗ > 0 such that for all ε ∈ [0, ε∗],

b(T ) ≤
(
3L

4

)2

a0.

Proof. A calculation similar to that above reveals that b(T ) ≤ 2C3Te
C1εTa0.

When ε = 0 this reduces to

b(T ) ≤ 2C3Ta0 ≤ L2

4
a0

by the choice of L2 in Remark 4.6. Thus, for sufficiently small ε∗ we obtain the
required estimate.

We conclude with a backward time estimate.
Lemma 4.5. Suppose a(T ) = 0. There is ε∗ > 0 such that for all ε ∈ [0, ε∗]

a0 ≤ 1

4L2
b(T ).

Proof. We use (4.15) with t1 = t and t2 = T to find

a(t) ≤ eC1ε(T−t)a(T ) + C2ε

∫ T

t

eC1ε(s−t)b(s)ds

= C2ε

∫ T

t

eC1ε(s−t)b(s)ds

by our hypothesis. We multiply by eβt/2 and take the sup over t ∈ [0, T ] to obtain

|a|β/2,T ≤ C2ε

β/2− C1ε
|b|β/2,T .

Similarly by (4.17), the backward time estimate for b(t) is

b(t) ≤ e3β̃(T−t)b(T ) + C4

∫ T

t

e3β̃(s−t)a(s)ds.

We multiply by eβt/2 and take the sup in t to obtain

|b|β/2,T ≤ e3β̃T
(
b(T ) +

C4e
−βT/2

3β̃ − β/2
|a|β/2,T

)

≤ e3β̃T
(
b(T ) +

C4e
−βT/2

3β̃ − β/2

C2ε

β/2− C1ε
|b|β/2,T

)
.
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Let ε∗ be so small that for all ε ∈ [0, ε∗],

ε
C4

3β̃ − β/2

C2

2β − C1ε
e(3β̃−β/2)T ≤ 1

2
.

Then |b|β/2,T ≤ 2e3β̃T b(T ), and hence

a0 ≤ |a|β/2,T ≤ ε
2C2e

3β̃T

β/2− C1ε
b(T ).

We further reduce ε∗ if necessary to obtain a0 ≤ b(T )/4L2 for all ε ∈ [0, ε∗].
4.5. The graph transform. Define the metric space

SL =
{
h : Π1(D)→ X2| Lip(h) ≤ L, sup

u∈Π1(D)

‖h(u)‖X2 ≤ 2R2

}

with the distance function

d(h1, h2) = sup
u∈Π1(D)

‖h1(u)− h2(u)‖X2 .

SL is complete in this metric. We show below that for any h ∈ SL, the image of
graph (h) under ϕt, t ∈ [0, T ], is the graph of a function in SL. Taking t = T , we
define the graph transform G : SL → SL by graph (G(h)) = ϕT (graph (h)). Most of
this subsection is devoted to showing that this definition is unambiguous.

Proposition 4.7 (uniqueness). Fix h ∈ SL and a point u ∈ Π1(D). There is at
most one preimage u0 ∈ Π1(D) so that Π1(ϕt(u0, h(u0))) = u.

Proof. Suppose that u1 �= u2 but Π1(ϕt(u1, h(u1)) − ϕt(u2, h(u2))) = 0. Since
Lip(h) ≤ L, the point (u2, h(u2)) lies in the cone KL(u1, h(u1)). By the mov-
ing cone lemma ϕt(u2, h(u2)) ∈ KL(ϕt(u1, h(u1))). But then Π1(ϕt(u1, h(u1)) −
ϕt(u2, h(u2))) �= 0.

To prove the existence of at least one preimage requires more effort. If Π1(D)
were finite-dimensional one could use topological arguments based on degree and
the Wazewski principle to prove existence (see, e.g., [3]). This approach would fail
here since the manifold to be constructed has both infinite dimension and infinite
codimension. Moreover, though we know that there is a solution for ε = 0, we cannot
use an implicit function theorem (e.g., as in Fenichel’s work [11]) to establish existence
for ε > 0 since the perturbation is not Lipschitz in ε. We resort to an explicit solution
of the modified equations (4.3)–(4.5) in backward time.

Let uT ∈ Π1(D) be fixed. We will show that there exists (u0, h(u0)) ∈ D such that
Π1(ϕT (u0, h(u0))) = uT . We will rewrite the modified differential equations (4.3)–
(4.5) as integral equations in a form different from the mild formulation (4.7)–(4.9).
The motivation for this will be clear in the consequent estimates.

Let S(t, s;uT ), t, s ∈ R, be the two-parameter family in L(X2,X2) defined as the
solution operator to the following linear nonautonomous differential equation:

 Re(v)t
Im(v)t
wt


 =


 −1 δ µRef1(t)

−δ −1 µImf1(t)
−µRef1(t) −µImf1(t) −γ‖




 Re(v)
Im(v)
w


 ,(4.32)

where

f1(t) = f(eε(T−t)∂xuT ),
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and f is defined in (4.2). S(t, s;uT ) is well defined since the right-hand side is a
bounded linear operator, and we have the a priori estimate

|v(t, x)|2 + |w(t, x)|2 ≤ e−2β(t−s)(|v(s, x)|2 + |w(s, x)|2),
which ensures the existence of global solutions. In fact, this a priori estimate proves
the following.

Lemma 4.6. ‖S(t1, t2;uT )‖ ≤ e−β(t1−t2) for each uT ∈ X1.
Any mild solution to (4.7)–(4.9) that passes through uT at time T must satisfy

the integral equations

u(t) = eε(T−t)∂xuT − ε

∫ T

t

eε(s−t)∂xg(u(s), v(s), w(s))ds,(4.33) (
v(t)
w(t)

)
= S(t, 0;uT )

(
v(0)
w(0)

)
(4.34)

+

∫ t

0

S(t, s;uT )

(
0

γ‖(λ+ 1)

)
ds

+µ

∫ t

0

S(t, s;uT )F (u(s))

(
v(s)
w(s)

)
ds,

where F (u(s)) is a skew-symmetric multiplication operator in L(X2,X2) whose only
nonzero terms are

F13 = −F31 = Re(f(u(s)))− f(eε(T−s)∂xuT ),(4.35)

F23 = −F32 = Im(f(u(s)))− f(eε(T−s)∂xuT )

(we split v into its real and imaginary parts). The virtue of rewriting the equations
in this form is that the nonlinear terms are now small. More precisely, by Lemma 4.1
and (4.33)–(4.34), the norm of F is bounded by

sup
s∈[0,T ]

‖F (u(s))‖ = sup
s∈[0,T ]

‖f(u(s))− f(eε(T−s)∂xuT )‖(4.36)

≤ 5 sup
s∈[0,T ]

‖u(s)− eε(T−s)∂xuT ‖ ≤ εC5T

for a constant C5 = sup ‖g(u, v, w)‖ = C5(µ, κ,Ri) .
Proposition 4.8 (existence). There is ε∗ > 0 such that for each ε ∈ [0, ε∗] there

exists u0 ∈ Π1(D) with Π1(ϕT (u0, h(u0))) = uT .
Proof. If a preimage exists it must lie in Π1(D) by Remark 4.2. To prove the

existence of such a preimage we use iteration on the integral equations (4.33) with
the additional condition (v, w)(0) = h(u(0)).

Let u0(t) = 0 and (v, w)0(t) = 0 for 0 ≤ t ≤ T . For n ≥ 0 we define the sequence
of iterates

un+1(t) = eε(T−t)∂xuT − ε

∫ T

t

eε(s−t)∂xg(un(s), vn(s), wn(s))ds,(4.37) (
vn+1(t)
wn+1(t)

)
= S(t, T ;uT )h(u

n+1(0))(4.38)

+

∫ t

0

S(t, s;uT )

(
0

γ‖(λ+ 1)

)
ds

+

∫ t

0

S(t, s;uT )F (u
n+1(s))

(
vn(s)
wn(s)

)
ds.



334 GOVIND MENON AND GYÖRGY HALLER

Notice that we solve (4.37) before (4.38).
The sequence defined above satisfies some uniform bounds. First, it is clear that

‖un+1(t)− eε(T−t)∂xuT ‖0,T ≤ εT sup ‖g(u, v, w)‖ = εC5T.(4.39)

Thus, by Lemmas 4.1, 4.6, and (4.36), we have

‖(v, w)n+1(t)‖ ≤ eβ(T−t)‖h‖+ (1− e−βt)
β

(λ+ 1) + 5εC5T

∫ t

0

e−β(t−s)‖(v, w)n(s)‖ds.

Now ‖h‖ ≤ 2R2 since h ∈ SL, so reducing ε∗ further if necessary we have

‖(v, w)n+1‖0,T ≤ 1

2
‖(v, w)n‖0,T +

(λ+ 1)

β
+ 2R2e

βT ,

where ‖ · ‖0,T = supt∈[0,T ] ‖ · ‖. This implies the uniform bound

sup
n≥0

‖(v, w)n‖0,T ≤ C6(β, µ, κ, λ,Ri, T ).(4.40)

Next, we note that by (4.37) and Lemma 4.1, the difference between consequent
iterates of u must satisfy

‖un+1 − un‖0,T ≤ εC7T (‖un − un−1‖0,T + ‖(v, w)n − (v, w)n−1‖0,T ).(4.41)

We will estimate each term in the difference between (v, w)n+1 and (v, w)n separately
(see (4.38)). The first term is controlled by the uniform Lipschitz constant L.

sup
t∈[0,T ]

‖S(t, T ;uT )(h(un+1(0))− h(un(0)))‖(4.42)

≤ sup
t∈[0,T ]

‖S(t, T ;uT )‖‖h(un+1(0))− h(un(0))‖

≤ sup
t∈[0,T ]

e−β(t−T )L‖un+1(0)− un(0)‖ ≤ eβTL‖un+1 − un‖0,T

≤ εC7Te
βTL(‖un − un−1‖0,T + ‖(v, w)n − (v, w)n−1‖0,T )

by Lemma 4.6 and inequality (4.41). The differences between the terms on the second
line of (4.38) cancel, and the differences between the integrands in the third line are
estimated as follows:∥∥∥∥F (un+1(s))

(
vn(s)
wn(s)

)
− F (un(s))

(
vn−1(s)
wn−1(s)

)∥∥∥∥
≤ ‖F (un)‖‖(v, w)n − (v, w)n−1‖+ ‖(v, w)n‖‖F (un+1)− F (un)‖
≤ εC5T‖(v, w)n(s)− (v, w)n−1(s)‖+ 5C6‖un+1(s)− un(s)‖.

In the last step we have used Lemma 4.1 and the uniform estimates (4.36) and (4.40).
These terms estimate the integrands. Take the sup over t ∈ [0, T ] and combine the
resulting inequality with (4.41) and (4.42) to conclude that the difference between
two iterates in (v, w) must satisfy

‖(v, w)n+1− (v, w)n‖0,T ≤ εC8T (‖un−un−1‖0,T +‖(v, w)n− (v, w)n−1‖0,T ).(4.43)

We choose ε∗ so small that max(C7, C8)ε∗T < 1/2. Then the sequence of iterates is
a contraction in the Banach space C([0, T ];X). The limit is a trajectory (u, v, w)(t)
with u(T ) = uT and (v, w)(0) = h(u(0)).
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Remark 4.9. A closer look reveals that we have not used the condition that
T is large anywhere in the proof. Thus we have in fact established the stronger
statement that for fixed uT and any t ∈ [0, T ], there is a preimage u0 so that
Π1(ϕt(u0, h(u0))) = uT . Since u0 is obtained from a contraction mapping, a slight
variant of this argument may be used to prove the existence and uniqueness simul-
taneously, providing another proof of Proposition 4.7 without invoking Lemma 4.2
(the moving cone lemma). However, the moving cone lemma is of independent inter-
est, and as the proof of Proposition 4.7 shows, it directly implies uniqueness of the
preimage.

In essence, the proof reduces to compensating for the unbounded perturbation
by viewing the equation in a rotating frame. However, despite the direct proof, the
proposition is not trivial. The perturbation is not small but the argument works since
the unbounded part of the perturbation generates a unitary group.

We are now in a position to conclude that the graph transform is well defined as
a map from SL into itself.

Corollary 4.10. G : SL → SL.
Proof. Proposition 4.7 and Proposition 4.8 prove that the image of a Lipschitz

graph in SL is a graph. That the image is also Lipschitz, with Lipschitz constant
L, follows from the moving cone lemma. Finally, since D is positively invariant, the
image must satisfy ‖G(h)‖ ≤ 2R2. Thus the graph transform is well defined.

Now we establish that the graph transform is a contraction mapping on SL.
Proposition 4.11. For ε ∈ [0, ε∗] the graph transform G : SL → SL is a

contraction.
Proof. Let hi ∈ SL, i = 1, 2. We will show that d(G(h1),G(h2)) ≤ d(h1, h2)/2.

Fix uT in Π1(D). Let (ui, hi(ui)) be the unique preimages of (uT ,G(hi)(uT )). The
distance

‖G(h1)(uT )− G(h2)(uT )‖
= ‖Π2(ϕT (u1, h1(u1))− ϕT (u2, h2(u2)))‖
≤ ‖Π2(ϕT (u1, h1(u1))− ϕT (u1, h2(u1)))‖(4.44)

+‖Π2(ϕT (u1, h2(u1))− ϕT (u2, h2(u1)))‖(4.45)

+‖Π2(ϕT (u2, h2(u1))− ϕT (u2, h2(u2)))‖.(4.46)

By Lemma 4.3, (4.44) ≤ ‖h1(u1)−h2(u1)‖/4. By Lemma 4.4, (4.45) ≤ 3L‖u1−u2‖/4.
And by Lemma 4.3, (4.46) ≤ ‖h2(u1)− h2(u2)‖/4 ≤ L/4‖u1 − u2‖. Thus,

‖G(h1)(uT )− G(h2)(uT )‖ ≤ 1

4
‖h1(u1)− h2(u1)‖+ L‖u1 − u2‖

≤ 1

4
d(h1, h2) + L‖u1 − u2‖.

Furthermore, by the backward time estimate in Lemma 4.5

‖u1 − u2‖ ≤ 1

2L
‖G(h1)(uT )− G(h2)(uT )‖

so that

‖G(h1)(uT )− G(h2)(uT )‖ ≤ 1

2
d(h1, h2).

Since uT was arbitrary, the lemma is proved.
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Corollary 4.12. There is a unique solution to G(hε) = hε in SL. The graph of
hε, denoted by Mε, is invariant under ϕt.

Proof. We have established that ϕT (Mε) = Mε. If 0 < t < T , then ϕt(Mε) is
the graph of a Lipschitz map in SL. This follows from Remark 4.9 and the moving
cone lemma (notice that Lemma 4.2 is true for all t ∈ [0, T ]). But then ϕT+t(Mε) =
ϕt(Mε) so that ϕt(Mε) is also a fixed point of G. By uniqueness, it follows that
ϕt(Mε) = Mε. Since ϕt is a diffeomorphism, we must have ϕt(Mε) = Mε for all
t ∈ R.

Mε is a slow manifold, as it is given as a graph over the slow variable, u. It is clear
that all solutions within D0 are attracted exponentially fast onto the slow manifold.
Indeed, given any point in D0 that does not lie in Mε, we may construct a graph in
SL that passes through this point. Then Proposition 4.11 shows that this graph is
attracted exponentially fast onto Mε. In particular, this means that the attractor A
is contained within Mε. Hence this construction partially answers the open question
in [9] on the existence of an inertial manifold in the Maxwell–Bloch equations in the
sense that we significantly simplify the geometry of the flow and prove the existence
of a smooth, normally hyperbolic invariant manifold attracting all initial conditions.
The answer is only partial since this manifold is infinite dimensional.

5. Smoothness of the invariant manifold. The smoothness of the slow man-
ifold, Mε, is established by differentiating the following functional equation that h
must satisfy:

h(Π1(ϕT (u, h(u)))) = Π2(ϕT (u, h(u))), u ∈ Π1(D).(5.1)

For brevity we let uT = Π1(ϕT (u, h(u))) so that (5.1) may be rewritten as

h(uT ) = Π2(ϕT (u, h(u))), u ∈ Π1(D).(5.2)

We differentiate (5.2) to obtain a nonlinear functional equation that the derivative of
h must satisfy. We prove the existence of a solution to this equation by a contraction
mapping argument.

5.1. Notation. We use the notation in [12] for differentiation. Let Xi,Y be
Banach spaces. If F : X → Y, then DF : X → L(X,Y). If F is a function of
several variables, say, F : X1 × · · · × Xn → Y, then DF = (D1F, . . . ,DnF ), where
DiF : X1 × · · · × Xn → L(Xi,Y). In the interest of brevity we denote

Pi = Di(Π1 ◦ ϕT ), Qi = Di(Π2 ◦ ϕT ), i = 1, 2.(5.3)

5.2. C1 smoothness. Differentiating (5.2) with respect to u we obtain

Dh(uT )DuT (u) = Q1(u, h(u)) +Q2(u, h(u))Dh(u).

Since uT = Π1 ◦ ϕT (u, h(u)), its derivative is
DuT (u) = P1(u, h(u)) + P2(u, h(u))Dh(u).

Thus, we obtain the formal expression

Dh(uT ) = [Q1 +Q2Dh(u)] [P1 + P2Dh(u)]
−1

(5.4)

for the derivative of h. (Here and henceforth we suppress the arguments of Pi, Qi
to simplify notation.) When ε = 0, the derivatives satisfy P1 = Id, P2 = 0, and
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‖Q2‖ ≤ e−βT . Furthermore, uT = u. Thus, in this limit, (5.4) reduces to Dh(u) =
Q1 + Q2Dh(u), which has a unique solution since ‖Q2‖ is small. This suggests that
we use iteration to solve (5.4) for ε > 0.

We now define the function space in which we wish to construct the derivative
Dh. Let

TL =
{
A : Π1(D)→ L(X1,X2)| sup

u∈Π1(D)

‖A(u)‖L(X1,X2) ≤ L

}

be the metric space of continuous maps with the distance function

d(A1, A2) = sup
u∈Π1(D)

‖A1(u)−A2(u)‖L(X1,X2).

TL is complete in this metric.
We also define a map F : TL → TL as

F(A)(uT ) = [Q1 +Q2A(u)] [P1 + P2A(u)]
−1

.(5.5)

We shall prove that F is a contraction and the unique fixed point F(A) = A is the
derivative of h. This will imply that Mε is at least of class C

1.
We will use the following lemmas to estimate the terms in (5.5).
Lemma 5.1. There is ε∗ > 0 so that for ε ∈ [0, ε∗]
(a) supu∈Π1(D) ‖P1 − e−εT∂x‖L(X1,X1) = O(ε),
(b) supu∈Π1(D) ‖P2‖L(X1,X2) = O(ε),
(c) supu∈Π1(D) ‖Q1‖L(X2,X1) ≤ L/4,
(d) supu∈Π1(D) ‖Q2‖L(X2,X2) ≤ 1/8.
Proof. The proof entails estimating the growth of derivatives using the equation

of variations. The arguments are direct but tedious so we will omit a few details. The
main point is that despite the singular perturbation, we can control the derivatives
with knowledge of the limit ε = 0 provided we account for the unbounded terms
properly (e.g., as in statement (a) of the lemma).

We start by redefining S(t, s;u0), t, s ∈ R, as the solution operator to the linear
nonautonomous differential equation (4.32) with

f1(t) = f(e−εt∂xu0).(5.6)

Notice that Lemma 4.6 remains valid with this definition of f1. The mild formulation is
the obvious analogue of (4.33)–(4.34) provided we redefine F (u) as the skew-symmetric
multiplication operator whose only nonzero terms are

F13 = −F31 = Re(f(u(s))− f(e−εs∂xu0)),(5.7)

F23 = −F32 = Im(f(u(s))− f(e−εs∂xu0)).

The estimate (4.36) shows that F (u(s)) is uniformly small on [0, T ]. Differentiating
(4.33) with respect to the initial point u0, we obtain linear integral equations that the
derivatives must satisfy.

Du0u(t) = e−εt∂x + ε

∫ t

0

e−ε(t−s)∂x (D1gDu0u(s) +D2gDu0v(s)) ds(5.8)

+ ε

∫ t

0

e−ε(t−s)∂xD3gDu0w(s)ds
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and(
Du0

v(t)
Du0

w(t)

)
= Du0S(t, 0;u0)

(
v0

w0

)

+

∫ t

0

Du0(S(t, s;u0))

((
0

λ+ 1

)
+ F (u(s))

(
v(s)
w(s)

))
ds

+

∫ t

0

S(t, s;u0)DF (u(s))Du0u(s)

(
v(s)
w(s)

)
ds

+

∫ t

0

S(t, s;u0)F (u(s))

(
Du0v(s)
Du0w(s)

)
ds.(5.9)

The derivative of S(t, 0;u0) is computed from its definition in (4.32). Since S(t, 0;u0)
is defined by the solution to a system of linear nonautonomous equations, its derivative
Du0S(t, 0;u0) is a linear map from X1 → L(X2,X2) defined for any u1 ∈ X1 by

Du0
S(t, 0;u0)u1 =

∫ t

0

S(t, s;u0)(Du0G(s, 0;u0)u1)S(s, 0;u0)ds,

where G(t, 0;u0) is the matrix defined on the right-hand side of (4.32) with f1(t) re-
defined as in (5.6). It follows from Lemma 4.1 and Lemma 4.6 that ‖Du0S(t, 0;u0)‖ ≤
5te−βt. Thus the “linear” part of Du0

(v(t), w(t)) is bounded for all u0 and for all
t ∈ [0, T ] by some constant C9. By the choice of L (see Remark 4.6) C9 ≤ L/8.
The nonlinear part in (5.9) (i.e., the terms with F and DF ) are O(ε) by Lemma 4.6
and the estimate (4.36). The nonlinear terms in (5.8) are also O(ε) since Dig is
uniformly bounded (see Lemma 4.1). Thus, one may prove that a solution to the
equation of variations (5.8) and (5.9) exists for sufficiently small ε∗ by a contraction
mapping argument as in the proof of Proposition 4.8. Then Gronwall estimates show
that supt∈[0,T ]max(‖Du0

u(t)‖, ‖Du0
(v(t), w(t))‖) ≤ C(T,Qi) for all (u0, v0, w0) ∈ D

so that for all ε ∈ [0, ε∗],
‖Du0u(T )− e−εT∂x‖L(X1,X1) ≤ εC(T,Ri).

This proves (a). Similarly, the deviation ofQ1 from its linear part is O(ε) and for small
ε we have (c). Estimates (b) and (d) are obtained from the equation of variations for
the derivative in (v0, w0). These are

D(v0,w0)u(t) = ε

∫ t

0

e−ε(t−s)∂x
[
D1gD(v0,w0)u(s) +D2gD(v0,w0)v(s)

]
ds

+ ε

∫ t

0

e−ε(t−s)∂xD3gD(v0,w0)w(s)ds,(
D(v0,w0)v(t)
D(v0,w0)w(t)

)
= S(t, 0;u0) +

∫ t

0

S(t, s;u0)DF (u(s))D(v0,w0)u(s)ds

+

∫ t

0

S(t, s;u0)F (u(s))

(
D(v0,w0)v(s)
D(v0,w0)w(s)

)
ds.

Again, the nonlinear terms are O(ε) so these equations can be solved by a contraction
mapping argument. Gronwall estimates show that ‖D(v0,w0)u(t)‖ and ‖D(v0,w0)(v(t),
w(t)) − S(t, 0;u0)‖ are O(ε) with constants that depend only on Ri and T . But
‖S(t, 0;u0)‖ is exponentially decaying by Lemma 4.6, and since T has been chosen so
large that e−βT/2 = 1/32, we may further reduce ε∗ to obtain (b) and (d).
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Lemma 5.2. There is ε∗ > 0 so that for each ε ∈ [0, ε∗] and A ∈ TL we have

sup
u∈Π1(D)

‖[P1 + P2A(u)]
−1‖L(X1,X1) ≤ 1 +O(ε) ≤ 2.

Proof. We fix u ∈ Π1(D) and write

[P1 + P2A]
−1
= [e−εT∂x − (e−εT∂x − P1 − P2A)]

−1

= eεT∂x [Id− eεT∂x(e−εT∂x − P1 − P2A)]
−1

.

This suggests that we write the inverse as a Neumann series. If A ∈ TL, then its norm
is bounded by L. Thus by Lemma 5.1,

‖e−εT∂x − P1 + P2A(u)‖ ≤ ‖e−εT∂x − P1‖+ L‖P2‖ ≤ Cε.(5.10)

Also note that eεT∂x is an isometry on X1. Thus, the Neumann series converges
for [P1 + P2A]

−1 for ε∗ sufficiently small, and the norm of the sum does not exceed
1 +O(ε), which for sufficiently small ε is less than 2.

Let A ∈ TL. Then we obtain

‖F(A)‖ ≤ (‖Q1‖+ L‖Q2‖)(1 +O(ε))

by the previous lemma. Furthermore, by Lemma 5.1, ‖Q1‖+‖Q2‖L ≤ L/2. Thus, for
ε∗ sufficiently small ‖F(A)‖ ≤ L, and hence F is well defined. The next proposition
shows that for sufficiently small ε∗, it is in fact a contraction.

Proposition 5.1. There is ε∗ > 0 such that for ε ∈ [0, ε∗] the mapping F :
TL → TL is a contraction.

Proof. We let A,B ∈ TL, fix u ∈ Π1(D), and let uT = Π1 ◦ ϕT (u, h(u)). Then

F(A)(uT )−F(B)(uT ) = Q2(A(u)−B(u))[P1 + P2A(u)]
−1(5.11)

+(Q1 +Q2B(u))
(
[P1 + P2A(u)]

−1 − [P1 + P2B(u)]
−1
)
.

Applying Lemmas 5.1 and 5.2 to the first term we have

‖Q2(A(u)−B(u))[P1 + P2A(u)]
−1‖ ≤ 2

8
‖A(u)−B(u)‖.(5.12)

We use the identity (M − A)−1 − (M − B)−1 = (M − A)−1(A − B)(M − B)−1 and
Lemma 5.2 to estimate the second term in (5.11)

(Q1 +Q2B(u))
(
[P1 + P2A(u)]

−1 − [P1 + P2B(u)]
−1
)

(5.13)

≤ 4(‖Q1‖+ L‖Q2‖)‖P2‖‖A(u)−B(u)‖ ≤ 2L‖P2‖‖A(u)−B(u)‖
≤ Cε‖A(u)−B(u)‖ ≤ 1

2
‖A(u)−B(u)‖

for sufficiently small ε∗. Thus, ‖F(A)(uT ) − F(B)(uT )‖ ≤ 3/4‖A(u) − B(u)‖. Since
u was arbitrary, this proves the lemma.

To complete the proof that Mε is C
1, we must show that the unique fixed point

of F is indeed the derivative Dh. This step is essentially the same as Proposition 7
in Fenichel’s paper [11], so the proof is omitted.
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5.3. Ck smoothness. Higher order smoothness will be proven using the follow-
ing bootstrapping argument of Fenichel [11]. The unique fixed point A = F(A) can
be realized as the limit of a sequence of iterates An = FnA0 with A0 = 0. For any
u ∈ Π1(D),

An+1(uT ) = [Q1 +Q2A
n(u)][P1 + P2A

n(u)]−1.(5.14)

Since h is C1, the maps Pi = P1(u, h(u)) and Qi are differentiable, so An+1 is differ-
entiable if An is. Thus, to show that the limit A is differentiable it suffices to show
that the sequence {DAn} converges in the space C(Π1(D), L2(X1,X2)).

We will show this with estimates similar to those of Proposition 5.1. From the
proof of Proposition 5.1 (in particular, (5.12) and (5.13) with An−1 = A and An =
B) we see that the principal term in the contraction estimate at the nth step is

‖(P1 + P2A
n−1)−1‖ (‖Q2‖+ ‖P2‖‖Q1 +Q2A

n‖‖(P1 + P2A
n)−1‖)(5.15)

≤ (1 + Cε)

(
1

8
+ Cε

)
:= α1

by Lemma 5.1 and Lemma 5.2. Higher order derivatives can be obtained in the same
way. Differentiating (5.14) we obtain

DAn+1(uT )DuT (u) = Q2DAn(u)[P1 + P2A
n(u)]−1(5.16)

−[Q1 +Q2A
n][P1 + P2A

n]−1P2DAn[P1 + P2A
n]−1 + lower order terms,

where the lower order terms do not involve derivatives in A. Thus, the principal term
in the contraction estimate is now(‖Q2‖+ ‖P2‖‖Q1 +Q2A

n‖‖(P1 + P2A
n)−1‖) ‖(P1 + P2A

n−1)−1‖2(5.17)

≤ (1 + Cε)2
(
1

8
+ Cε

)
:= α2.

For ε∗ sufficiently small, α2 < 1 holds for 0 ≤ ε ≤ ε∗. Let an = supu ‖DAn+1(uT )−
DAn(uT )‖. It follows from (5.16) and (5.17) that

an+1 ≤ α2an + rn,

where rn is a remainder term obtained from the differences in lower order terms. rn
diminishes to zero as n increases since An converges. Thus, for any η > 0 there exists
an N such that rn ≤ η for all n ≥ N . Hence,

aN+m ≤ αm2 aN +
η

1− α2
,

and thus lim supn→∞ an ≤ η/(1− α2). Since η was arbitrary, an → 0, and it follows
that the sequence {DAn} converges. Thus, Mε is of class C

2.
We now proceed inductively. To show thatMε is C

k assuming that it is Ck−1, it
is sufficient to show that the sequence {DkAn} converges. Each term in the sequence
is of the form

DkAn+1(uT )DuT (u) = Q2D
kAn(u)[P1 + P2A

n(u)]−k

−[Q1 +Q2A
n][P1 + P2A

n]−1P2D
kAn[P1 + P2A

n]−k + terms of order k − 1,
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and the principal term in the contraction estimate is bounded by

(1 + Cε)k
(
1

8
+ Cε

)
:= αk.

For ε∗(k) sufficiently small, αk < 1 for all ε ∈ [0, ε∗] and the sequence {DkAn} is
convergent. Thus, Mε is of class C

k. The manifold is not C∞ since it is clear that
ε∗(k) must decrease to zero as k increases arbitrarily. This completes the proof of the
Ck smoothness and the proof of Theorem 4.4.

6. Geometric singular perturbation theory.

6.1. Notation. In this section we need to distinguish carefully between the flow
for different values of ε. To emphasize this, we will use the superscript ε. For ex-
ample, ϕεt denotes the flow with a particular choice of ε, (u

ε(t), vε(t), wε(t)) denotes
a trajectory, and Aε denotes the attractor for ϕεt . We use the same notation for the
modified and unmodified flow, but the flow under consideration will be clear from the
context.

6.2. Reduced dynamics and the slaving principle. Theorem 4.4 provides a
rigorous decomposition of the flow and a justification of the “slaving principle.” First
consider the modified flow. Since Mε is invariant, any trajectory on it must satisfy

u(t) = e−εt∂xu(0) + ε

∫ t

0

e−ε(t−s)∂xg(u(s), hε(u(s)))ds,(6.1)

hεv(u(t)) = e−(1+iδ)thεv(u(0)) + µ

∫ t

0

e−(1+iδ)(t−s)f(u(s))hεw(u(s))ds,(6.2)

hεw(u(t)) = e−γ‖thεw(u(0)) + (λ+ 1)(1− e−γ‖t)(6.3)

−µ

∫ t

0

e−(t−s)γ‖ Re (f(u(s))∗hεv(u(s)))ds.

Thus, the slow dynamics decouples from the fast dynamics. This is only half the story:
we have established the existence of a reduced equation that is a functional differen-
tial equation, but we have not prescribed a formula to compute the reduced equation.
Theorem 4.4 proves the existence of a family of invariant manifolds {Mε}ε∈[0,ε∗]. In
Fenichel’s theory [12] these manifolds Mε fit together smoothly in ε and there is a
global center manifold given as a function h(ε, u) = hε(u). Thus we may expand
hε(u) = h(0, u)+D1h(0, u)ε+R(u, ε), where R = o(ε). In infinite dimensions the sit-
uation is considerably more delicate. The issue is, of course, the unbounded term ε∂x.
For flows that are close in the C1 topology, it usually follows from an implicit function
theorem, or the proof of the existence of the invariant manifold, that the unperturbed
and perturbed manifolds are close. In the presence of unbounded perturbations the
convergence of hε to h0 is expressed in the following theorem.

Theorem 6.1. ‖hε(u)− h0(u)‖ → 0 uniformly on compact sets.
Proof. The only information we have is that Mε is invariant under the flow

ϕεt . Thus the proof will rely on the closeness of ϕ
ε
t to ϕ0

t . We fix u ∈ Π1(D0) and let
u(0) = u. We will estimate the difference hε(u)−h0(u) by using the integral equations
(6.1)–(6.3). When ε = 0, (6.1)–(6.3) reduce to the algebraic equations u(t) ≡ u and

 1 δ −µRef(u)
−δ 1 −µImf(u)

µRef(u) µImf(u) γ‖




 Reh0

v(u)
Imh0

v(u)
h0
w(u)


 =


 0

0
γ‖(λ+ 1)


 ,(6.4)
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or, more briefly,

B(u)h0(u) = (0, 0, γ‖(λ+ 1))T ,(6.5)

where B(u) is the multiplication operator in (6.4). This is the expression that was
computed in (3.1). For every x ∈ S1, the matrix B(u(x)) is invertible since

det(B(u(x))) = γ‖(1 + δ2) + µ2|f(u)(x)|2 ≥ γ‖(1 + δ2)(6.6)

is uniformly bounded away from zero. Thus, B(u) is invertible and its inverse, B(u)
−1
,

is the multiplication operator in L(X2,X2) defined for every x ∈ S1 by the matrix

B(u(x))
−1
. From the algebraic formula for the inverse of a matrix, and the estimate

(6.6), we see that

sup
u∈Π1(D)

‖B(u)−1‖ ≤ CB(R1).(6.7)

Define the function Ψ : X → X2 by

Ψ(u, v, w) = B(u)

(
v
w

)
−
(

0
γ‖(λ+ 1)

)
.(6.8)

Notice that Ψ(u, v, w) = 0 if and only if (v, w) = h0(u). Let K be a compact subset of
Π1(D). We will show that limε↓0 supu∈K ‖Ψ(u, hε(u))‖ = 0. This implies the theorem
since

hε(u)−h0(u) = B(u)−1B(u)hε(u)−B(u)−1(0, γ‖(λ+1))T = B(u)−1Ψ(u, hε(u)),
(6.9)
and hence from (6.7) we obtain

sup
u∈K

‖hε(u)− h0(u)‖ ≤ CB sup
u∈K

‖Ψ(u, hε(u))‖.

We will consider the components of Ψ separately. The first two components of Ψ
are (1+ iδ)hεv(u)−µf(u)hεw(u) (taking the real and imaginary components together).
We estimate this term using (6.2). We start with the initial condition (u, v, w)(0) =
(u, hε(u)) and then calculate that for any t > 0,

(1− e−(1+iδ)t) [−(1 + iδ)hεv(u) + µf(u)hεw(u)] = (1 + iδ)

[
hεv(u

ε(t))− hεv(u)(6.10)

−µ

∫ t

0

e−(1+iδ)(t−s) (f(uε(s))hεw(u
ε(s))− f(u)hεw(u)) ds

]

(since u is a constant, we can take µf(u)hεw(u) under the integral sign). Notice that

Lip(fhεw) ≤
(
sup
u

‖f(u)‖
)
Lip(hεw) +

(
sup
u

‖hεw(u)‖
)
Lip(f)

≤ 2R1L+ 2R2 · 5 := C10

by Lemma 4.1 and the definition of SL. Thus, we obtain from (6.10) that

‖(1 + iδ)hεv(u)− µf(u)hεw(u)‖

≤ |1 + iδ|
|1− e−(1+iδ)t|

[
L‖uε(t)− u‖+ µ

∫ t

0

C10e
−(t−s)‖uε(s)− u‖ds

]

≤ C11

[
‖uε(t)− u‖

|1− e−(1+iδ)t| +
1− e−t

|1− e−(1+iδ)t| sups∈[0,t]

‖uε(s)− u‖
]
.
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Notice that (1− e−t)/|1− e−(1+iδ)t| is uniformly bounded for all t > 0. And for t in
any fixed domain (0, T ] we have 1/|1− e−(1+iδ)t| ≤ C(T )/t. Thus we find that

‖(1 + iδ)hεv(u)− µf(u)hεw(u)‖ ≤ C

[
‖uε(t)− u‖

t
+ sup
s∈[0,t]

‖uε(s)− u‖
]
.(6.11)

A similar calculation shows that we obtain the same result for the second component
of Ψ. Thus, we find

‖Ψ(u, hε(u))‖ ≤ C

[
‖uε(t)− u‖

t
+ sup
s∈[0,t]

‖uε(s)− u‖
]
.(6.12)

Finally, we use (6.1) to estimate the difference uε(t) − u. The difference consists of
two parts, the deviation from the linear part of the flow e−εt∂xu and the deviation of
the linear flow from the nonlinear flow. Precisely,

‖uε(t)− u‖ ≤ ‖uε(t)− e−εt∂xu‖+ ‖e−εt∂xu− u‖ ≤ Cεt+ ‖e−εt∂xu− u‖.
Inserting this estimate in (6.12) we have

‖Ψ(u, hε(u))‖ ≤ C

[
‖e−εt∂xu− u‖

t
+ sup
s∈[0,t]

‖e−εt∂xu− u‖+ ε(1 + t)

]
.(6.13)

For fixed t and u, the right-hand side of (6.13) goes to zero as ε ↓ 0. Next suppose
that we fix t but consider u ranging over a compact subset K. Since functions in K
are equicontinuous, supu∈K ‖e−εt∂xu− u‖ → 0 as ε ↓ 0.

The estimate (6.13) highlights why the convergence of hε to h0 is not any better
than uniform convergence on compact subsets. Since t is a free parameter, the estimate
is best when we take the infimum with respect to t. Since the flow is continuous in t
we must have sups∈[0,t] ‖uε(s) − u‖ → 0 as t → 0. But the first term in (6.12) may

not have a limit. The reason is that limt↓0 ‖e−εt∂xu − u‖/t does not exist for most
functions (in the sense of category). If u is C1, then we find that

‖Ψ(u, hε(u))‖ ≤ C

(
‖Du‖∞ε+ sup

s∈[0,t]

‖Du‖∞εt+ ε(1 + t)

)
,

and since t is a free parameter, we take the infimum over t to find

‖Ψ(u, hε(u)) ≤ C(‖Du‖∞ + 1)ε.(6.14)

Another example of more rapid convergence is provided by taking K to be a bounded
subset of C0,α(S1;C), the space of Hölder continuous functions with modulus α ∈
(0, 1]. In this case we find that

sup
u∈K

‖e−εt∂xu− u‖ ≤ Hεαtα−1,

where H is the maximum Hölder seminorm of the functions in K. Then we take the
infimum in t on both sides of (6.13) to find that

sup
u∈K

‖hε(u)− h0(u)‖ ≤ Cεα.



344 GOVIND MENON AND GYÖRGY HALLER

6.3. Formal asymptotic expansions. Equations (6.1)–(6.3) are also the start-
ing point for a formal asymptotic expansion. Theorem 6.1 shows that we can control
the remainder only if u(s) has some smoothness in x. However, a formal asymptotic
expansion may be obtained by using the invariance of Mε. Make the ansatz

hε(u) = h0(u) + εh1(u) + ε2h2(u) + · · · .(6.15)

Substituting this ansatz in (6.1)–(6.3) and matching the powers of ε we obtain after
some calculations that

hn(u) = cn(u)∂
n
xu+ dn(u, ∂xu, . . . , ∂

n−1
x u), n ≥ 1,(6.16)

where cn(u)(x) depends only on u(x). This expansion suggests that hε(u)(x) actually
depends on the germ of u at x. Thus, we expect hε(u) to have a nonlocal dependence
on u. The expansion also suggests that the reduced equation (6.17) is not hyper-
bolic because hn(u) includes higher order diffusive and dispersive terms. In fact, the
reduced equation cannot be hyperbolic for if it were, there would be no asymptotic
smoothing on the attractor. Similar questions arise in hyperbolic conservation laws
with relaxation. We refer especially to the article by Chen, Levermore, and Liu, sec-
tion 2 of which contains the same geometric description of formal reductions in the
context of conservation laws [5].

6.4. Regular dynamics. We can now revert to a description of the unmodified
Maxwell–Bloch equations in the slow (and natural) time scale. Changing the time
scale to τ = εt we have for all u(0) ∈ Π1(D0) and τ ≥ 0 ,

u(τ) = e−κτe−τ∂xu(0) +
κ

µ

∫ τ

0

e−κ(τ−s)e−(τ−s)∂xhεv(u(s))ds.(6.17)

We have used the positive invariance of Π1(D0) and the fact that g(u, v, w) reduces to
v within the domain D0. To make the comparison with the formal reduction precise,
we shall write (6.17) as

u(τ) = e−κτe−τ∂xu(0) +
κ

µ

∫ τ

0

e−κ(τ−s)e−(τ−s)∂xh0
v(u(s))ds(6.18)

+
κ

µ

∫ τ

0

e−κ(τ−s)e−(τ−s)∂x(hεv(u(s))− h0
v(u(s)))ds.

The attractor Aε is an invariant set contained in Mε. On the attractor, the
reduction is valid uniformly in time. Applying (6.14) to u ∈ Π1(Aε) we have∥∥∥∥u(τ)− e−κτe−τ∂xu(0)− κ

µ

∫ τ

0

e−κ(τ−s)e−(τ−s)∂xh0
v(u(s))

∥∥∥∥
≤ κ

µ

∫ τ

0

e−κ(τ−s)‖hε(u(s))− h0(u(s))‖ds ≤ Cε

(
sup
u∈Aε

‖Du‖∞ + 1

)

for all τ . Unfortunately, this isn’t enough as the estimates of section 4 in [9] show that
supu∈Aε

‖Du‖∞ = O(1/ε). Furthermore, based on numerical evidence we expect that
this estimate is sharp. In several parameter regimes the Lorenz ODEs have periodic
solutions with arbitrarily large period. These solutions in turn imply the existence of
traveling wave solutions to the Maxwell–Bloch equations with gradients of O(1/ε). In
fact, estimating supu∈Aε

‖∂nxu‖∞ we find that the series (6.16) diverges even on the
attractor.
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6.5. Change of stability under perturbation. The guiding philosophy of ge-
ometric singular perturbation for ODEs is that normally hyperbolic manifolds within
the formally reduced flow persist for the perturbed flow, provided the critical man-
ifold is normally hyperbolic. As an example of this, Fenichel proved a theorem of
Anosov on the persistence of periodic orbits for a singularly perturbed ODE [12]. A
simpler example is to consider hyperbolic fixed points. Let the reduced flow have
an exponentially attracting fixed point, and let the critical manifold be exponentially
attracting. Then Theorem 12.1 in [12] shows that the fixed point persists for ε > 0
and remains attracting.

Even this simple assertion is false for PDE; i.e., the unbounded perturbation may
change the stability type of a fixed point within the persisting slow manifold. For
simplicity suppose δ = 0 and consider only real (u, v, w). In this case the reduced
equation is a gradient dynamical system with a double well potential, and u = 1 is
a spatially homogenous equilibrium of the reduced equation. It is attracting since
it lies at the minimum of the well. A calculation reveals that the point (u, v, w) =
(1, h0(1)) = (1, µ, 1) is an equilibrium of the full equations for all ε > 0. Nevertheless,
it need not retain the stability type of the ε = 0 limit. Risken and Nummedal [25]
showed that the fixed point is unstable for large λ for all positive ε and the number
of linearly unstable modes diverges like 1/ε. Thus the divergence between the formal
limit and the full system is dramatic for small ε.

6.6. Conclusions. We have developed a geometric method of studying the sin-
gularly perturbed Maxwell–Bloch equations. The main merit of this method is that
it rigorously separates the dynamics of this problem into slow and fast evolution. The
geometric principles underlying the method are simple and thus it should be of use in
other problems. However, the Maxwell–Bloch equations have several simplifying fea-
tures and there are often many technical difficulties inherent in a rigorous analysis of
PDEs with multiple scales. Thus transporting these ideas to other PDEs will be a dif-
ficult (but rewarding) task. Moreover, we have shown that global invariant manifolds
with infinite dimension and codimension arise naturally in evolution equations with
two scales. One may rigorously find reduced equations for such systems, but these are
functional differential equations, and naive approximations to these equations seem
to fail. There are several subtle features in geometric singular perturbation theory
in infinite dimensions, and the Maxwell–Bloch equations illustrate some of these in a
setting with few technicalities.

There have been several recent developments in geometric singular perturbation
theory for PDE. We mention the work by Li et al. [21], Haller [17], and Zeng [29] on the
damped and driven nonlinear Schrödinger equation. The motivation and methods are
different there: in that case the ε = 0 limit is integrable, and a lot of effort is expended
in solving problems associated with nonhyperbolicity and weak hyperbolicity. We also
mention that Hale, Raugel, Sell, and coworkers have studied PDE in thin domains
(see the references in [24]).
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