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ABSTRACT

Lagrangian ocean drifters provide highly accurate approximations of ocean surface currents but are

sparsely located across the globe. As drifters passively follow ocean currents, there is minimal control on

where they will be making measurements, providing limited temporal coverage for a given region.

Complementary Eulerian velocity data are available with global coverage but are themselveslimited by the

spatial and temporal resolution possible with satellite altimetry measurements. In addition, altimetry mea-

surements approximate geostrophic components of ocean currents but neglect smaller submesoscale motions

and require smoothing and interpolation from raw satellite track measurements. In an effort to harness the

rich dynamics available in ocean drifter datasets, we have trained a recurrent neural network on the time

history of drifter motion to minimize the error in a reduced-order Maxey–Riley drifter model. This approach

relies on a slow-manifold approximation to determine the most mathematically relevant variables with which

to train, subsequently improving the temporal and spatial resolution of the underlying velocity field. By

adding this neural-network component, we also correct drifter trajectories near submesoscale features missed

by deterministic models using only satellite and wind reanalysis data. The effect of varying similarity between

training and testing trajectory datasets for the blendedmodel was evaluated, as was the effect of seasonality in

the Gulf of Mexico.

1. Introduction

Ocean currents play a critical role in the climate at

time scales from weeks to decades. Ocean mixing is re-

sponsible for the scalar transport of temperature and

salinity, impacting physical processes ranging from

weather system formation, the melting rate of sea ice,

the abundance and location of ocean ecosystems and the

dispersion of microplastics (Trenberth andHurrell 1994;

Martin et al. 2002; Maximenko et al. 2012; Lévy et al.

2018). With the public availability of satellite altimetry

measurements, researchers actively study global ocean

currents and mesoscale features in the ocean, ranging in

size from 10 to 200 km (Stewart 2008), in near–real time

from anEulerian perspective. These data have allowed a

better understanding of the role of prominent circula-

tion features in the deep ocean, like theGulf Stream and

the Pacific Gyre, as well as smaller coherent structures

like the Agulhas rings (Wang et al. 2015). In shallower

waters, or at the interface of two mesoscale features, the

influence of submesoscale dynamics on ocean transport

increases. The interaction of meso- and submesoscale

motions, however, is still poorly understood (Beron-

Vera et al. 2019a). Satellite observations typically rep-

resent the mixing and energy transport in submesoscale

features (1–10 km) inaccurately, with coastal features

and tidal influences largely overlooked as they do not

have significant sea surface height signatures (Thomas

et al. 2008; Ferrari and Wunsch 2009).

Complementary Lagrangian measurements of ocean

currents are also available, with their origins dating back

to drifter deployments during the 1872 voyage of theCorresponding author: N. O. Aksamit, naksamit@ethz.ch
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HMS Challenger (Niiler 2001). Since then, the quality

and coverage of Lagrangian drifter data have improved

through the use of satellite positioning systems and im-

proved drifter designs. Lagrangian drifters come in

varying geometries but are universally composed of a

drogue that is fully submerged in the water, behaving

as a sail, a float on the ocean surface that communicates

location and velocity data, and a tether connecting the

two. The size of the entire apparatus is typically on the

order of 1–5m, with recent designs at the lower end

of that range. The finite-size (inertial) effects and the

buoyancy of every drifter prevent perfect adherence to

fluid-particle path lines. Considerable research has been

conducted quantifying the ocean-drifter slip velocity;

thorough reviews of such processes have been presented

over the years in great detail by Niiler et al. (1987),

Niiler and Paduan (1995), D’Asaro (2003), and others.

Even with the disadvantages of nonzero slip velocities,

Lagrangian drifters have been pivotal in our under-

standing of the oceans by providing velocity and position

data for a range of motions spanning meters to thou-

sands of kilometers. Such drifters continue to play a

crucial role in understanding physical oceanography in

changing climates with improving technology (Lumpkin

et al. 2017).

Typically, efforts to model Lagrangian drifter motions

suffer in accuracy away from large structures, as noted

in a recent evaluation of remotely sensed products for

drifter modeling near the Gulf Loop Current by Liu

et al. (2014). This increased error is, in large part, due

to the relatively low temporal and spatial resolution

available for ocean and wind velocity fields that drive

drifter models. The focus of the present research is

to harness the rich dynamics available in Lagrangian

drifter data to enable better predictions of drifter ve-

locities and trajectories from low-resolution Eulerian

measurements of geostrophic ocean currents and wind

reanalysis.

Our research capitalizes on theoretical work byHaller

and Sapsis (2008), who developed reduced-order ap-

proximations of the computationally expensive Maxey–

Riley (MR) equation for asymptotic inertial particle

dynamics in unsteady flows. They identified an attract-

ing slow manifold in the equation and gave sufficient

conditions for the manifold to attract other trajectories.

This theoretical advance then allowed Beron-Vera and

LaCasce (2015) and Beron-Vera et al. (2016, 2019b)

to subsequently develop deterministic reduced-order

models of ocean drifters that capture inertial aspects

witnessed in cyclonic and anticyclonic eddies. In a

numerical setting, Wan et al. (2018) and Wan and

Sapsis (2018) also utilized this slow-manifold reduc-

tion to develop a leading-order particle motion model

by introducing a blended model approach with a re-

current neural network (RNN) to learn the higher-order

terms in the slow dynamics. This blended machine-

learning and reduced-order model proved very suc-

cessful in representing bubble motion for both laminar

and turbulent flows while only using a limited lami-

nar dataset for neural-network training (Wan and

Sapsis 2018).

Here we use these recent modeling developments by

first constructing a reduced-order model of Lagrangian

ocean drifter motion similar to that of Beron-Vera et al.

(2016), but also including a priori unknown functions for

wind drag, wave rectification, and near-surface shear

forces.We then train a long short-termmemory (LSTM)

RNN (Hochreiter and Schmidhuber 1997) to learn the

unknown functions and missing higher-order motion

terms. Our slow-manifold approach provides us with an

improved Lagrangian drifter model, and also deter-

mines the most relevant parameters and variables to use

for learning submesoscale dynamics. This develop-

ment provides a new avenue for representing and

understanding the role of submesoscale motions in

Lagrangian ocean dynamics and is fundamentally

trainable for any basin worldwide. It is worth men-

tioning that the machine-learning corrections devel-

oped may depend on the particular drifter geometry.

Different drifters may not necessarily be characterized

by the same data-driven model corrections just as dif-

ferent shapes will follow different trajectories in turbu-

lent flow. As is shown below, the model is robust to

different flow features, seasons, and weather systems,

and, as with other machine-learning applications, the

similarity of trained and modeled features should be

considered prior to widespread use.

2. Methods

Our main objective is to improve upon publicly

available geostrophic ocean current estimates for the

Gulf of Mexico. Our approach fundamentally differs

from data-assimilation methods by the inclusion of

drifter history and special consideration of blended

machine-learning and deterministic models. We start by

adding an Ekman current component induced by wind

shear at the sea surface to geostrophic velocities ob-

tained from satellite altimetry measurements. We then

use this flow field in a reduced-order MR equation

for baseline Lagrangian drifter-velocity predictions. An

LSTMRNN (Hochreiter and Schmidhuber 1997) is then

trained to minimize the modeled and real velocity re-

sidual along the real drifter trajectories. We evaluated

the ability of our blended MR–LSTM model to predict

drifter velocities given low-resolution input, as well as
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the ability to trace major flow features in a chaotic flow

regime. Details of each of these steps can be found in the

following subsections.

a. Data

1) FLUID FLOW FIELDS

The geostrophic velocity component ug used in our

ocean current analysis is the freely available Archiving,

Validation and Interpretation of Satellite Ocean

Data (AVISO) L4 gridded velocity field hosted by the

Copernicus Marine Environment Monitoring Service.

The geostrophic current is the result of balancing pres-

sure, as measured through sea surface height by satellite

altimetry, and the Coriolis effect of a spinning Earth.

The equations of motion of the geostrophic flow are

1
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where r is the density of water, p is the pressure, g is

the constant of gravity, f is the Coriolis parameter, and

ug 5 (ug,1, ug,2).

We modify this flow field with an Ekman wind cor-

rection derived from ERA-5 reanalysis of 10-m wind

fields (Copernicus Climate Change Service 2017).

Several recent ocean drifter modeling studies have

shown that the addition of windage influence in ocean

current estimation can greatly improve modeled drifter

velocities (Liu et al. 2014; Beron-Vera et al. 2016,

2019b). The ERA-5 data are freely available from the

European Centre for Medium-RangeWeather Forecasting

(ECMWF) and are currently hosted by the Copernicus

Programme Climate Change Service. We estimate the

wind shear contribution to ocean current using the

Ekman model of wind influence, such that our resultant
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U10 is the magnitude of the 10-m wind, u is the wind

direction in radians, and f is the latitude (Stewart 2008).

More detailed estimations of wind drag are possible at

this stage in the model development. For example, we

know the angle of Ekman influence actually varies be-

tween 408 and 708 at this latitude, but the seasonal and

spatial variability of this angle is also most extreme in

regions like the Gulf of Mexico (Rio and Hernandez

2003; Zavala-Hidalgo et al. 2014). Instead, we rely on

machine learning to account for the variability around

the classic 458 Ekman theory estimate (Ekman 1905).

This approach to including wind stress influences is

comparable to the Geostrophic and Ekman Current

Observatory (GEKCO) velocity products (Sudre et al.

2013). For our blended model, we used a spline inter-

polant to upscale the geostrophic velocity from the

original 24-h time step and 1/48 resolution to the 15-min

resolution of the drifter experiments. In addition, the

ERA-5 reanalysis was originally collected at a 6-h time

step and 1/48 resolution, and interpolated to the drifter

resolution.

2) OCEAN DRIFTER DATA

The Lagrangian ocean drifter data used for train-

ing and validation in the current study were obtained

from deployments during the Lagrangian Submesoscale

Experiment (LASER; Novelli et al. 2017; D’Asaro et al.

2018; Haza et al. 2018) in January–February of 2016 and

the Grand Lagrangian Deployment (GLAD) in July of

2012 (Olascoaga et al. 2013; Poje et al. 2014; Jacobs et al.

2014; Coelho et al. 2015). Position and velocity data

during these extensivefield campaigns in theGulf ofMexico

were measured on Consortium for Advanced Research on

Transport ofHydrocarbon in theEnvironment (CARTHE;

Novelli et al. 2017) and Coastal Dynamics Experiment

(CODE; Davis 1985) drifters and were interpolated to

15-min intervals. TheGLADexperiment was conducted

with CODE drifters near the Deepwater Horizon spill

site in the Gulf of Mexico during summer, with the

follow-up LASER experiment, designed to identify

submesoscale motions in the same and different regions

of the Gulf during winter with biodegradable CARTHE

drifters. These experiments provide an unprecedented

density of Lagrangian drifter trajectories near very

complex flow features that are not clearly resolved in

satellite altimetry or wind reanalysis data. The LASER

and GLAD experiment data are a perfect test for as-

sessing the feasibility of machine learning to adapt a

reduced-order, low-resolution drifter model to complex

flow features that are only resolved at high spatial and

temporal resolution.

During LASER and GLAD, more than 1100 drifters

were deployed in the Gulf of Mexico, with the GLAD

deployments being replicated by the first LASER de-

ployment, and subsequent LASERdeployments located

near various structures in the Gulf. Many drifters were

released on the continental shelf, close to the outlet of

the Mississippi river in a region of strong salinity and

temperature gradients at the freshwater–saltwater in-

terface. Other drifters were deployed in deeper waters,

thus providing drifter trajectories that measure sub-

mesoscale motions of varying physical origin. As noted
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previously, the spatial and seasonal variability of wind

influence in the Gulf of Mexico is dramatic (Zavala-

Hidalgo et al. 2014), and, as part of our study, we sought

to identify the shortcomings of a single data-driven

model applied to both GLAD and LASER weather

conditions. This helps to identify the current limitations

of data-driven approaches given different physical

inputs.

Throughout the LASER experiment, several large

El Niño winter storms occurred with significant sur-

face wave generation, resulting in considerable drifter

motion and sporadic drogue loss (Haza et al. 2018). As

this loss is noted in the published dataset, we focused

our training and modeling on the drogued drifters.

The summertime GLAD deployment was affected by

much stronger onshore–offshore winds than LASER,

and the velocity data contained much stronger evi-

dence of windage and inertial oscillations (Beron-

Vera and LaCasce 2015).

b. Data-driven model error reduction

We utilize the drifter data to improve the perfor-

mance of an existing model (to be described in the next

subsection). Specifically, we complement the imperfect

model, a slow-manifold reduction of the MR equation,

with a machine-learning component (Wan and Sapsis

2018). InWan and Sapsis (2018) the authors represented

the true dynamics as a superposition of an imperfect

dynamical system and an unknown function of both the

current system state and its history (expressed through

discrete time delays). A motivation for the inclusion

of time delays is the observation (through Takens’s

embedding theorem; Takens 1981) that the inclusion

of memory into the model essentially increases the

degrees of freedom allowing for a more complex

family of models than those obtained with the Markov

property.

For the unknown function, we adopt a data-driven

RNN representation with an LSTM structure (Hochreiter

and Schmidhuber 1997). RNN is a deep neural-network

architecture that can be viewed as a nonlinear dynamical

system mapping from sequences to sequences. The

most distinct feature of an RNN is the presence of

hidden states whose values are dependent on those of

the previous temporal steps and the current input.

These units represent the internal memory of the

model and are designed to address the strong temporal

dependence of the state variables. LSTM takes ad-

vantage of the sequential nature of the time-delayed

reduced space coordinates by processing the input in

chronological order and keeping memory of the useful

state information that complements the imperfect dy-

namics at each time step.

c. Blended reduced-order drifter model

Starting from the MR equation of motion for a small,

perfectly spherical particle in an unsteady flow (Maxey

and Riley 1983), we present a modified version for the

motion of our Lagrangian drifter in an ocean current in

the form:
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where u and ue are the ocean and Ekman velocities

defined by Eq. (2); rf, rp, and ra are representative

densities of the surface ocean water, drifter, and air,

respectively; a is the radius of the drifter; nf and na are

the kinematic viscosities of the ocean and air; and t and s

are time variables. The first five terms on the right-hand

side of Eq. (3) are standard in MR frameworks and

represent the force of the current on the drifter (3a), the

buoyancy effect (3b), the Stokes drag on the drogue (3c),

the force from the fluid moving with the particle (3d),

and the Basset–Boussinesq memory term (3e). Specific

to the motion of ocean drifters, we identified three ad-

ditional forces that contribute significantly to a slip ve-

locity between the drifter and ocean current. These last

forces include the Stokes drag of the surface wind on the

exposed drifter float (3f), the Coriolis force (3g), the

drag on the tether and drogue induced by shear currents,

and motions induced by surface waves, (Geyer 1989;

Niiler and Paduan 1995; Beron-Vera and LaCasce 2015).

Because of the complexity of the processes, we tempo-

rarily represent the combined shear current and surface

wave effects in one unknown function of current velocity

and wind speed (3i). Following the slow-manifold ap-

proach described in the appendix, we reduce this set of

equations to the leading-order approximation
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where H is assumed to be a bounded function of the

Ekman velocity and the current velocity, representing

wind-wave and shear drag contributions; there is no

known a priori differential operation on u, or ue in H.

For example, similar slip velocity estimates have been

found to scale as linear functions of the ocean surface

velocity (Geyer 1989; Edwards et al. 2006).We avoid the

assumptions necessary for such a linear slip-velocity

estimate and relegate the learning of potentially more

complicated wind-influence and shear drag terms to the

data-driven component of our model. As detailed in the

appendix, the missing higher-order terms are shown to

be functions of u, ue, and Du/Dt.

From this reduced-order model, we follow an ap-

proach similar to that of Wan and Sapsis (2018) by

employing an LSTM to learn the contribution from the

missing higher-order terms and the wind-wave function

H. Through the model order reduction detailed in the

appendix, we can identify which variables the higher-

order terms are functions of. These variables inform

with which time series to meaningfully train our RNN.

We write out the 2D blended drifter model in the fol-

lowing form, neglecting vertical motion:

_x5 u(x, t)1 «

��
3R

2
2 1

�
Du

Dt
2Rf (d

p
2 1)u?

	

1G[j(t), j(t2 t), j(t2 2t), . . .]

j(t)5

�
u(x, t),u

e
(x, t),

Du

Dt

	
. (5)

Here G is an LSTM neural network and j is a vector of

time-delayed values of u, ue, and the material derivative

Du/Dt. Using our training set of real drifter trajectories,

G is designed to learn both the error in our drifter ap-

proximation in Eq. (4) and the unknown functionH, as a

function of j over the full drifter history. We use a half-

mean-squared-error loss function for our training.

The results presented here come from using a simple

LSTM architecture similar to that used by Wan and

Sapsis (2018). This architecture consists of one LSTM

layer with 200 hidden units, and one fully connected layer

trained for 100 epochs, and a time delay of t 5 15min.

This choice of training parameters has not been fully

optimized, although we found it to result in sufficiently

accurate predictions without overfitting when compared

with training between 50 and 400 epochs and using

LSTM layers of 50–400 units.

Note that a sensitivity analysis was conducted by

removing individual variables from j, and removing

Du/Dt and the Coriolis term from the baseline model in

Eq. (5). While these results have not been presented for

brevity, the blended model performed best in the form

of Eq. (5). The largest modeling errors were caused by

removing u from j, followed by removing ue. The

blended model was actually able to appropriately cor-

rect for modifications in the deterministic model, but

this provided a poorer performing baseline comparison

for the Lagrangian metrics discussed below.

3. Results

We tested the blended model approach with a variety

of training datasets from the LASER and GLAD ex-

periments. The two experiments were similar, differing

mainly in season (winter and summer), the number of

drifters and a subset of the seeding locations. Though

differing in geometry, the CARTHE and CODE drifter

designs used in the LASER and GLAD experiments,

respectively, have been found to have nearly identical

trajectories in both coastal and deep ocean currents

(Novelli et al. 2017). We trained and tested blended

models on each experiment separately, as well as train-

ing a blended model with a combined set of drifters

spanning both seasons and experiments. As mentioned

previously, the combined drifter set includes trajectories

influenced by varying weather systems with different

magnitudes of inertial oscillation, thus providing much

more complex physics for the neural network to interpret.

Many of the drifters in both experiments were deployed

in small clusters. By randomly selecting drifters, we

created a rich training set that included many trajecto-

ries similar to those found in the test set. Because

machine-learning approaches are most accurate when

interpolating between features that the networks have

already seen, using randomized training test sets pro-

vided a relatively simple task when testing the blended

model. A cartoon example of random training-test

drifter designation is shown in Fig. 1a. However, we

also wanted to test the extrapolative ability of the

blended model for a scenario with limited similarity

between training and test sets. We achieved this by

handpicking the drifters, making sure drifters from the

same tight deployment clusters were not separated into

both the training and test sets. This approach is dem-

onstrated in contrast in Fig. 1b. Hereinafter we will refer

to these two methods of separating training and test

drifters as random and clustered.

As with all machine learning, potentially overfitting

the model to the training data is an important consid-

eration. With this in mind, we required our training set
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to consist of 80% of our drifter data for both the random

and clustered training. This forced an imperfect sepa-

ration of drifters for the clustered method, but, as is

discussed below, still generated a more complex testing

scenario. A comparison of the modeling capabilities of

each method is detailed in the context of statistical

measures of similarity in sections 3b and 4.

The LASER campaign involved a much larger de-

ployment of drifters thanGLADand hence serves as the

primary source of discussion for the specific abilities of

the blended model. We also briefly present the results

from the summer GLAD model to complement the

conclusions from the LASER data. By training and

testing on a combined LASER and GLAD dataset, we

show it may also be possible to train blendedmodels for a

progressively wider range of meso- and submesoscale

features, but additional modeling considerations are

likely necessary.

a. Interpolative LASER testing

To test the ability of our blended model to recognize

and predict motion around similar submesoscale fea-

tures, we initially trained the data-driven component G

in Eq. (5) with 668 randomly selected Lagrangian drifter

trajectories from the winter (LASER) dataset with time

series length ranging from 16 to 60 days. The remaining

167 drifters were reserved as a test dataset in order to

evaluate the model on new data. For model comparison,

we used our Ekman-modified flow field and the MR

drifter model of Beron-Vera and LaCasce (2015) as a

baseline. The Beron-Vera et al. model is precisely

Eq. (4) without the wind-wave function H.

After training, we evaluated the blended model’s

single-step prediction ability of drifter velocity, that is,

the model’s ability to predict velocity at each time step

along the actual drifter trajectory. As shown in Fig. 2,

the randomly trained blended model showed consider-

able improvement in accuracy over the baseline model.

Figure 2a displays histograms of the root-mean-square

error (RMSE) of the zonal velocity for the MR model

and the blended model along all trajectories in the

randomized LASER test set. A significant shift toward

smaller errors with the blended model indicates an im-

provement in the model’s ability to accurately predict the

15-min drifter velocity from daily 1/48 geostrophic velocity
and 6-h wind reanalysis data. Example time series of the

zonal component of modeled and actual drifter velocities

are shown in Figs. 2b–d, with theMRmodel in blue, ocean

current u(x, t) in green, output of the blended model in

black and the real drifter velocity in orange. While po-

tentially important for Lagrangian prediction, the «-term

contribution in Eq. (5) is very small, making the blue and

green plots hard to differentiate. An inset has been in-

cluded to highlight the small difference. Thedistance to the

nearest drifter in the training dataset, the time to the

soonest deployment of a trained drifter, and the RMSE of

the blendedmodel are all noted on the respective subplots.

We also tested the model’s multistep predictive ca-

pabilities to evaluate how accurately we can forecast the

trajectory of a real drifter in an environment with rich

submesoscale features. For multistep prediction, we

used blended model velocity output to update drifter

positions over time with a fourth-order Runge–Kutta

scheme, allowing modeling errors to accumulate in both

the neural-network memory and in the drifter position.

For a chaotic flow such as in the ocean, it is nearly im-

possible for a perfect one-to-one model-drifter trajec-

tory match. To account for uncertainty in the underlying

chaotic dynamics, we introduced uncertainty in the ini-

tial conditions by seeding a grid of synthetic drifters in a

small neighborhood (,10 km) of a real drifter position.

Each drifter in the grid had the same initial velocities,

but small perturbations in their positions. This ensemble

approach provided an insightful evaluation as dominant

flow features began to appear in the cluster trajectories.

Two test examples of this ensemble trajectory model

are shown in Fig. 3. The real LASER drifter trajectory is

mapped as a bold red line in each row. The left panels

FIG. 1. Two types of training and test drifter selection used in this study: (a) Random selectionmaximizes training

and test drifter trajectory similarity, whereas (b) clustered training provides a more difficult test for blended-model

performance by limiting training and test set similarities. Drifter initial positions are overlain on ocean current

vectors.
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show the trajectories of all blended model drifters ini-

tialized in a small neighborhood in black, with their

median trajectory displayed in yellow. The right panels

show analogous trajectories with blueMRmodel output

and the green median path. Over nearly 50 days of

transport, the upper-left blended model drifters were

able to trace out the large spiraling flow feature that was

largelymissed by the purely deterministicMR equations

in the upper right. In the bottom plots, the real drifter

followed a flow path more closely mimicked by the MR

model. Upon further investigation, we found that the

several major flow pathways drawn by the blended model

correspond closely with trajectories of different drifter

clusters (not pictured). This means that while small per-

turbations in the blended model initial conditions can re-

veal multiple flow features, only a subset of these features

were actually revealed by the reduced-MR equations.

We quantified the ability of the ensemble models

to approximate real trajectories with the normalized

cumulative separation distance, or skill score, s from Liu

and Weisberg (2011). For a drifter time series of length

n, this metric normalizes the cumulative separation

distance between the modeled drifter position y(tj) and

the actual drifter position xD(tj) by the cumulative

length of the real drifter trajectory, l(tj), in the follow-

ing form:

c5

�
n

j51

ky(t
j
)2 x

D
(t

j
)k

�
n

j51

l(t
j
)

, s5 12 c .

A skill score s of less than 0 indicates that the modeled

and real drifter paths are deviating faster than the real

drifter is actually moving. As shown in Fig. 4a, the mean

skill score for an ensemble of blended drifters was better

than the reduced-order model 67% of the time. This

improved trajectory modeling is also apparent in the

skill score of the median ensemble trajectory (yellow

and green paths in Fig. 3) in Fig. 4b, where the blended

drifters outperformed the reduced-order model 68% of

the time. Of particular note are the different ranges of

skill score values for the MR and blended model out-

puts. Specifically, there are large negative values present

FIG. 2. Single-step prediction velocity test comparisons: (a) Histograms of RMSE for nondimensionalized zonal components

[u1 5 (u1/u)] for the reduced MR equations and the blended model. (b)–(d) Examples of reduced-MR velocities, real drifter

velocities, blended model velocities, and the underlying low-resolution ocean current velocity. A significant reduction in error can

be found with the blended approach. The minor difference between the reduced-MR velocity and underlying ocean current is

shown in the inset in (d). The magnitude of the data-driven componentG can be seen as the difference between the blue and black

curves.
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in the MRmodel evaluation that are nonexistent for the

blended model.

We investigated these negative skill scores and found

that 75% of them correspond to drifters deployed on

7 February 2016. In Figs. 5a and 5b, we show the

7 February location of drifters near this deployment,

with drifters colored by their skill scores for the

blended and MR models, respectively. These colored

coordinates are overlaid on the daily sea surface

temperature from Aqua MODIS thermal infrared

measurements on 7 February. The MR drifters with

the worst MR skill scores are clustered in the strong

mixing regions between the cold coastal and warm

offshore waters in Fig. 5b. From this position, the

warm waters extend south and east throughout the

rest of the Gulf of Mexico and into the Loop Current.

For the blended model, there was no discernible dif-

ference in model performance across this interface, or

elsewhere in the domain.

In Figs. 5c and 5d, we show the median path drawn by

37 blended and MR drifters residing on the freshwater–

saltwater interface in Figs. 5a and 5b. The MR en-

semble exits the cool waters and quickly becomes

entrained by the mesoscale geostrophic motions away

from the coast. In contrast, the real drifters and

blended model drifters stay near the mixing interface,

in the cooler waters in the northern part of the do-

main. This submesoscale model improvement was

precisely the result of training the blended model on

drifter velocity and acceleration data from similar

mixing regions. The LSTM component was able to

identify a signature of this mixing in j and prevent

entrainment into the larger currents, forcing drifters

to remain in the high temperature gradient mixing

region on the shelf.

RMSE histograms of the random training of GLAD

andLASER1GLADdatasets are shown in the following

section. Randomly selecting training drifters always re-

sulted in model improvements over the MR equations.

However, we analyze the robustness of these data-driven

improvements in the following section by looking at

minimally repetitive training and test sets.

b. Extrapolative drifter testing

We compared the blended model’s ability to correct

velocities and trajectories for clustered datasets to the

randomized training method for LASER, GLAD,

and combined GLAD1LASER datasets. In hopes to

understand the different model performance with each

training set, we generated several metrics comparing

FIG. 3. Multistep ensemble trajectory prediction comparisons: (left) Ensembles of two blended model drifters in

black, and theirmedian trajectories in yellow. (right) Reduced-MRdrifter ensembles and theirmedian trajectory in

green. On all plots, the true drifter trajectory is indicated by the thick red line. Note that, for both trajectories, some

fraction of the blended model ensemble was able to make the correct prediction, whereas the reduced-MR tra-

jectories were largely confined to one flow feature.
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trajectories in test and training sets. To quantify how

similar the training and test datasets were in the time

domain, we calculated the maximum normalized cor-

relation for zonal velocity of each test drifter against all

drifters in the training set. To complement these values

in the frequency domain, we also calculated the maxi-

mum mean magnitude spectral coherence between

each test drifter and the training datasets. Last, we

calculated distance of the initial position for each

drifter to the nearest training drifter, and the time to

the closest training drifter. Mean values of all these

metrics from the randomized data separation are

displayed in Table 1 for the LASER and GLAD data,

with values inside parentheses indicating the clustered

separation scheme.

As can be seen in Table 1, maximum correlation and

magnitude squared coherence change very little for the

LASER data between the random and clustered train-

ing schemes, but there is a significant increase in both the

mean distance and time to nearest trained drifter. For

the GLAD dataset, there was a decrease in correlation

and MS coherence as well as an increase in distance and

time to trained drifters when using the clustered sepa-

ration. To highlight the details of these influences, a

drifter by drifter comparison of the single-step zonal

velocity model RMSE values for the random and clus-

tered LASER sets are compared to the metrics from

Table 1 (Fig. 6). There appears to be little relationship

between similar test and training power spectra and low

RMSE values, though a slight decrease in RMSE can be

noted with increasing correlation, especially for the

random training set. For both the random and clustered

models, increasing distance between test and training

drifters resulted in higher RMSE values, but there is

notable scatter in RMSE for short distances and time

lapses. The red dot indicates a drifter present in both the

random and clustered test sets that is further analyzed in

section 4.

The overall influence of the decreased similarity

between trained and tested trajectories can be found

in the histograms of Fig. 7. For GLAD and LASER

separately, the blended model was able to obtain

better single-step velocity prediction when there was

more similarity in trained and tested flow features and

the training and test drifters were geographically and

temporally proximal. Even with the handicap of se-

lectively limiting the kinds of features previously seen

by the data-driven component, the blended model was

still able to outperform the purely deterministic ap-

proach. Analysis of one such trajectory is further

discussed in section 4.

The last dataset that the blended model was tested

against was a combination of both LASER and GLAD

drifters, referred to as LASER1GLAD in Figs. 7e

and 7f. This increasingly complex collection of drifters

spanned both winter and summer conditions in the

Gulf with different flow features and disparate evi-

dence of inertial oscillations. Again, training with a

random selection of LASER and GLAD drifters al-

lowed themodel to outperform the single-step predictive

FIG. 4. Skill scores of the randomly trained blended model and MR model on the LASER

dataset: (a) The mean skill score of all drifters in an ensemble prediction for each LASER test

drifter. (b) Skill scores for the median trajectory from an ensemble prediction for LASER

drifters. The gray-shaded area indicates the region where model and real drifter trajectory

separation outpaces the actual drifter motion.
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capability of clustered test method, and both blended

model approaches outperformed the purely deter-

ministic model. There still remain large RMSE values

for the combined blended models, indicating an in-

ability to always make the proper corrections, or

recognize submesoscale features from a wider library

of options.

For all three datasets, training with a randomly se-

lected training set resulted in the lowest RMSE for

single-step predictions. As the LSTM was trained with

single-step predictions, and because of the greater sim-

ilarity in training and test drifter trajectories for random

training, this improvement supports the notion that a

blendedmodel can increasemodel accuracy around flow

features similar to those seen previously. Because of the

currently limited amount of high-resolution training data

available globally, a more realistic forecasting situation

was simulated by multistep predictions for clustered

training on the LASER training set. Further supporting

the blended model approach, we found comparable skill

TABLE 1. Mean values of velocity statistics (correlation and

mean MS coherence) that compare test and training datasets for

LASER and GLAD drifter trajectories. The first values are for

randomly selected training sets, and the values in parentheses are

for ordered, clustered datasets.

LASER

(winter)

GLAD

(summer)

Max correlation 0.8 (0.7) 0.8 (0.74)

Max mean MS coherence 0.56 (0.56) 0.8 (0.62)

Distance to trained drifter (km) 5.2 (19.1) 4.6 (13.7)

Time to trained drifter (h) 0.95 (18.72) 0.25 (79)

FIG. 5. Positions and skills scores for the (a) blended and (b) reduced-MRmodels on 7 Feb 2016 overlaid on daily

AquaMODISThermal IR sea surface temperature measurements and bathymetry contours.White areas in the top

left correspond to the outlet of theMississippi river.Also shown for the (c) blended and (d) reduced-MRmodels are

the median trajectories of the drifters with negative skill scores. Reduced-MR drifters quickly leave the coastal

zone, whereas the drifters in the blendedmodel wander for their entire lifetime. The time elapsed for trajectories in

(c) and (d) is approximately 23 days.
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score improvements for both clustered and random

training, when test and training drifters were often from

the same deployment cluster. Figure 8 shows analogous

skill score data as Fig. 4 for the clustered training. Again,

many of the lowest skill scores from the reduced-MR

predictions were avoided with the blended model, and

the blended model outperformed for 63.4% of the test

set. This is a slight decrease from 67% to 68% from the

random training and the range of skill scores was larger

for the clustered case, actually extending into negative

FIG. 6. Cross correlation, meanMS coherence, time, and distance between test drifters’ deployment and soonest

or closest train drifter deployment vs RMSE values for zonal velocity of blended drifter modeling from (left)

random and (right) clustered training methods. There is the clearest decrease in RMSE with increased correlation

for the random scheme and a general increase in RMSEwith increasing distance between training and test drifters.

All other relationships remain less defined. The same test drifter marked by a red dot in all plots is further explored

in section 4.
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values. Because we are testing with a different drifter

set, we also do not have the strong negative skill scores

from the reduced-MR drifters as in Fig. 4.

4. Discussion

A blended deterministic and neural-network model

for predicting Lagrangian ocean drifter trajectories

substantially outperformed a deterministic reduced-

order MR model for two experimental datasets in the

Gulf of Mexico. We approximated drifter velocities

with significantly less error (Fig. 7) along drifter paths,

indicating a better representation of the underlying

flow field is available if given the appropriate initial

conditions. The blended model also had increased

multistep predictive capabilities, outperforming the

ability of the reduced-MR equations to correctly

predict drifter locations at time scales up to two

months. Skill scores were typically higher for both

repetitive and clustered training, with improved be-

havior linked to correct identification of dominant

flow features in several cases.

Specifically, the blended model was also able to ac-

curately trace several large vortical features in Fig. 3 that

were missed by the MR equation. Though these fea-

tures were mesoscale in size, inaccuracies in the baseline

model combined with low-resolution flow data prevented

the MR model from resolving many features for several

drifters, even with perturbations in initial conditions. For

oil spill, search and rescue, and ocean ecosystem research

purposes, it is precisely these transport features that are

of utmost importance to model and resolve.

FIG. 7. RMSE histograms of nondimensionalized zonal velocity for surface drifters during the (top) LASER

(winter), (middle) GLAD (summer), and (bottom) LASER1GLAD datasets for (left) random and clustered

trajectory training. Blue bars indicate the performance of the deterministic reduced MR equations, and orange

stem plots represent the performance of the blended model.
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Model improvement was also evident in the shallow

waters near the outlet of the Mississippi River where a

large number of the LASER drifters remained for sev-

eral weeks, but currents in the geostrophic data brought

the MR drifters off the continental shelf. In this region,

there is complex fresh–saltwater mixing as previously

highlighted by Gonçalves et al. (2019), and strongly in-

fluential submesoscale signatures not immediately evi-

dent in the geostrophic currents or 10-mwind fields. The

collocation of poorly performing drifters and the mixing

interface was verified in satellite sea surface tempera-

ture measurements during the LASER campaign. Near

this transport barrier, the MR model obtained nega-

tive skill scores whereas the randomly trained blended

model performed just as well as in other areas. As the

two models only differed by the inclusion of the LSTM

component, this improvement can be attributed to the

ability of the neural network to mimic a real drifter ve-

locity from a similar signature in j(t) that was seen

during training. It is also worth reiterating that j(t)

contains no position information, and thus the model

was able to make changes based solely on the time his-

tory of the physical motion of the drifter and the sur-

rounding fluid flow.

Testing the blended model with more difficult tasks,

such as using distinctly dissimilar training and test tra-

jectories or testing over a broader range of dynamics

(combined summer and winter) started to highlight

the current limitations of a blended-model approach.

While the blended-model always outperformed the base-

line deterministic model upon which it was improving

(Fig. 7), the improvements were less significant than with

random training. An incremental model improvement

from baseline MR equations, to clustered training, to

random training is examined in Fig. 9. Single-step pre-

dictions for the drifter represented by the red dot in

Fig. 6 are examined for the three models in Fig. 9 (top).

Clearly, the modeled velocity approaches the drifter

velocity as the data-driven component is introduced and

improves with more similar training data.

This single-step improvement is complemented by

trajectories prediction improved in Fig. 9 (bottom row).

Because the MR model underpredicts the drifter speed,

the ensemble trajectories quickly diverge from the real

drifter path, resulting in a poor skill score (inset). The

clustered model performs with enhanced physics, re-

sulting in an improved skill score, even though the

nearest training drifter was deployed nearly 70 km and

4h away. The random training provided a drifter only

34 km away from the test, and the arcing features of the

real drifter were most closely mimicked. An increased

proximity to training drifters likely aided in this model

performance, but there are other strong influences as

can be seen in the lack of clear trends in Fig. 6.

There is currently no metric for determining the do-

main of applicability for this kind of machine learning

with a given training dataset. As seen in Figs. 6 and 9,

neither correlation nor spectral coherence between a

tested drifter and the training set can fully account

for the differing performance between the random

and clustered training methods. Higher correlation and

spectral coherence values typically result in lower RMSE

values for single-step prediction, but low RMSEs are also

possible with poor correlation or coherence. While using

random training to obtain similar deployment coordi-

nates (space and time) for test and training drifter results

FIG. 8. Skill scores calculated for the clustered winter (LASER) test and training dataset,

similar to Fig. 4.
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in better blended model performance, this does little to

help us understand why drifters seeded away from the

training set can also perform well, or to predict if a

blended Lagrangian model will perform well in a region

without drifters nearby. Further investigation of a

definition of Lagrangian similarity for this kind of

forecasting and modeling would be beneficial for con-

straining models to appropriate domains of applica-

tion, but is currently beyond the scope of this initial

investigation as there is no guarantee of stationarity

with this data.

5. Conclusions

Because of the lack of availability of high spatial- and

temporal-resolution flow data that can resolve sub-

mesoscale motions, the use of machine learning for im-

proving Lagrangian drifter models shows great promise.

The blended model approach pursued here prevents

user-defined parameterization and tuning with respect

to one specific drifter geometry, drag, buoyancy cor-

rections, and other factors that can complicate physical

models of drifter trajectories. For drifters of the same

type in similar environments and similar seasons, sig-

natures in drifter velocity and acceleration time series

can be identified with recurrent neural networks and

used to autocorrect velocity fields, even in the presence

of strong coastal temperature and salinity gradients, and

inertial oscillations. With the current availability of

high-resolution drifter data, it is difficult to evaluate the

utility of a one-size-fits-all blendedmodel for all seasons.

Seasonally restricting the domain of training and testing,

however, provides significant improvements over de-

terministic drifter modeling.

Similar to other machine-learning approaches, this

blended model may be further improved by training on

additional datasets that include more submesoscale

features. This added physical complexity will likely need

to be met with increased LSTM complexity. The flexible

blended approach is also adaptable to include additional

physical parameters in its training (e.g., temperature,

salinity) should a physical basis for their inclusion be

justified for a different baseline model. As well, the

blended approach can be adapted for further advances in

deterministic drifter modeling, such as the recent slow-

manifold developments of Beron-Vera et al. (2019b). The

broad implications of machine-learning improvements

could be particularly advantageous to the oceanography

community as data from future field campaigns can be

harnessed to better understand the motions present in a

particular region, and compared to others. Because the

blended approach uses highly accurate Lagrangian data

to approximate the underlying physics of drifter trans-

port, we believe there is a theoretical finite limit on

additional training datasets that are necessary for ac-

curate drifter modeling in all regions of the globe.

Applications of this method to other regions are cur-

rently under way.
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APPENDIX

Blended Drifter Model Derivation

The MR equation defines the path x(t) of a small

spherical particle in a time-dependent flow as follows:
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where the individual force terms on the right-hand side

of Eq. (A1) are the force of the fluid on the particle by

the undisturbed flow, the buoyancy force, the Stokes

drag, an addedmass term from the fluid moving with the

particle, and the Basset–Boussinesq memory term. We

consider four additional influences on an ocean drifter

trajectory following the suggestions of Niiler et al.

(1987), Geyer (1989), Edwards et al. (2006), and Beron-

Vera et al. (2016). These forces include the wind drag on

floats above the sea surface, drag on the tether and

drogue induced by shear currents, motions induced by

surface waves, and the Coriolis force.

The wind drag on the exposed float and Coriolis effect

can be considered directly, but explicit forms of the

shear current drag and surface wave influences are be-

yond the scope of this research and remain open prob-

lems in oceanography. Near-surface shear current effects

are significantly complicated by stratification in the ocean

caused by temperature or salinity gradients, and the

degree of turbulence in a specific ocean region (Niiler

and Paduan 1995). It is assumed that the Ekman effect

decreases exponentially over the Ekman layer depthDE

(estimated at 10–40m for this study) in a well-mixed

upper-ocean layer. The current changes from u 5 ue 1
ug at the surface to u 5 ug at a depth of DE (Stewart

2008). Thus the resulting shear acting on the drogue

and tether is a function of du/dz which is a function of

ue/(zDE), depending on stratification and the shape of

the exponential. The effect of this motion is thus in-

cluded as an unknown function of Ekman current, a

linear function of wind speed, that will be learned by

the machine-learning corrections. For a summary of

wind-induced wave effects and specific details of wave

effects on drifters from this study, refer to Niiler et al.

(1987) and Haza et al. (2018), respectively. The effect

of surface waves will be included as an unknown

function of the Ekman contribution (which itself is a

linear function of wind speed) and the surface ocean

velocity. By training to predict the discrepancy be-

tween our deterministic model that does not account

for surface waves and true drifter we motion, the

neural network will then learn to account for surface

wave contributions, among other motions, as dis-

cussed below.

We then write an adapted form of Eq. (A1) for ocean

drifter motion as follows [this is identical to Eq. (3) in

the main text]:
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where a is a drag coefficient depending on the unique

geometry and surface area of the float not submerged in

the ocean at any point in time, f is the Coriolis param-

eter, and F is an unknown function combining surface

wave effects and shear influences. We can remove the

Fauxen terms because a/L � 1, where L is a dominant

length scale of our ocean flow (Wan and Sapsis 2018). If

we can assume that a/(nf)
1/2 is very small, then we can

remove the Basset–Boussinesq term. After rescaling

space, time, and velocity by a characteristic length scale

L, characteristic time scale T 5 L/U, and characteristic

velocity U, we have
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with R 5 2rf /(rf 1 2rp), m 5 R/St, St 5 (2/9)(a/L)2Re,

da 5 ra/rf � 1, dp 5 rp/rf ’ 1 by design, and R is close

to 2/3. Introducing the small parameter « 5 1/m � 1, we

can rewrite our system as
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Here, assuming the Ekman current velocity to be

u
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where A is a 458 rotation to the right in the Northern

Hemisphere and l is latitude, we combine the additional

slow wind functions into one function of Ekman velocity

and ocean current, and drifter velocity H[ue(x, t), u, v]:
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Upon introducing the fast time by letting «t 5 t 2 t0,

f 5 t0 1 «t be a dummy variable, and denoting differ-

entiation with respect to t by prime, we can rewrite our

system as the autonomous dynamical system
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The « 5 0 limit of the system

x0 5 0

f0 5 0

v0(x,u)5 u(x,f)2 v (A6)

has a set of fixed points. Taylor expanding these solu-

tions in « gives

M
«
5 [(x,f, v): v5 u(x,f)1 «u1(x,f)1 � � �
1 «rur(x,f)1O(«r11), (x,f) 2 D

0
]. (A7)

Equation (A6) restricted to M« is a slowly varying sys-

tem of the form

x0 5 «vj
M«

5 «[u(x,f)1 «u1(x,f)1 � � � 1 «rur(x,f)1O(«r11)].

(A8)

Now, differentiating

v5 u(x,f)1 �
r

k51

«kuk(x,f)1O(«r11) (A9)

with respect to t gives

v0 5 u
x
x0 1 u

f
f0 1 �

r

k51

«k(uk
xx

0 1 uk
ff

0)1O(«r11) .

(A10)

From Eqs. (A6) and (A10) we also have

v0 52�
r

k51

«kuk(x,f)1 «

(
3R

2

Du(x,f)

Dt
1

�
12

3R

2

�
g

2Rf

�
d
p�

r

k50

«kuk(x,f)2u

�?

1H

�
u
e
(x,f), u, �

r

k50

«kuk(x,f)

	)
1O(«r11) .

(A11)

Equating terms of equal power of epsilon in Eqs.

(A10) and (A11) gives a leading-order approximation

in our original time t: [this is identical to Eq. (4) in the

main text]:

_x5 u(x, t)1 «


�
12

3R

2

��
Du(x, t)

Dt
2 g

	

2Rf (d
p
2 1)u? 1H[u

e
(x, t),u]

�

The sign of the Coriolis term is the same as in Beron-

Vera and LaCasce (2015) but appears different because

of multiplication by R and differing definitions d and dp.
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Without better models of the wind-wave coupling, upper-

ocean stratification, or more information on drifter spe-

cifics (size, geometry, density, compressibility, float-drifter

tension, etc.), we have limited our modeling approach to a

leading-order approximation of drifter behavior, and let a

machine-learning algorithm learn the remaining terms as

introduced by Wan et al. (2018) and Wan and Sapsis

(2018). We remove gravity and are left with the following

form of our blended model [this is identical to Eq. (5) in

the main text]:

_x5 u(x, t)1 «

��
3R

2
2 1

�
Du

Dt
2Rf (d

p
2 1)u?

	
1G[j(t), j(t2 t), j(t2 2t), . . .]

j(t)5

�
u(x, t), u

e
(x, t),

Du

Dt

	
,

where t is a time delay, optimized for the frequency at

which we want the LSTM to include prior trajectory

information. We are thus forcing the data-driven model

G to learn our as yet unknown float–drifter–wind cou-

pling functionH, as well as the higher-order terms from

the Taylor expansion. The actual function we then

model with our LSTM is of the form

G[j(t), j(t2 t), j(t2 2t), . . .]5 _x|{z}
Real drifter data

2 u(x, t)2 «

��
3R

2
2 1

�
Du

Dt
2Rf (d

p
2 1)u?

	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Remote sensing and reanalysis data

,

(A12)

where all forces influencing _x that are not explicitly cal-

culated from the remote sensing and reanalysis data on the

right-hand side of Eq. (A12) are implicitly learned by G.
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