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Closed-loop Lagrangian separation control in a bluff body
shear flow model
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We show how the location of Lagrangian coherent structures, such as unstable manifolds of
Lagrangian separation points, can be controlled via feedback control in two-dimensional shear
flows. Such control can be used, for instance, to guide fuel transport into designated regions of the
flame in a combustor. Motivated by this example, we consider an unsteady vortex model for flow
past a bluff body, and create unstable manifolds in this model at prescribed locations by applying
control along the boundary. We find that oscillating the newly created unstable manifolds in 1:1
resonance with the von Ka´rmán vortex shedding frequency enhances mixing in the wake
significantly. © 2003 American Institute of Physics.@DOI: 10.1063/1.1588636#
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I. INTRODUCTION

Active flow control is typically concerned with maxi
mizing or minimizing Eulerian cost functions such
pressure-, energy-, or vorticity-related quantities. This obj
tive is achieved via adaptive control,1 DNS-based optima
control2,3 or robust control,4 linear control of the linearized
Navier–Stokes equation,5–7 linear control of the full Navier–
Stokes equation,8 energy-minimization by boundar
feedback,9,10 or physics-based phenomenological control
specific flow phenomena.11–13 Reviews of all these ap
proaches are given in Refs. 3, 14, 15.

Despite the above advances, the fundamental questio
flow control remains unanswered: How does localized ac
tion lead to global changes in the flow behavior? Or, phra
in the language of micro-adaptive flow control: How can o
excite instabilities via local actuation to achieve a desi
change in global mixing? Answering these questions w
require a better understanding of the nonlinear dynamic
the Navier–Stokes equations, as well as of the particle m
ing induced by the solutions of these equations. Promis
applications of nonlinear dynamics have already appeare
controlling nonlinear reduced-order flow models,16,17 using
chaos control to stabilize unstable vortex trajectories,18,19op-
timizing mixing in discrete map models of two-dimension
fluid motion,20 and maximizing Lagrangian particle flux vi
the control of two-dimensional point-vortex motion.21 More
closely related to the subject of this paper, Pe´ntek et al.22
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used chaos control ideas to capture and stabilize a con
trated vortex near a bluff body.

In this article, we propose a new nonlinear-dynamic
based control approach: We control the location of dist
guished material structures in the flow. Specifically, we u
control to create and shape attracting material lines,
structures responsible for the formation of global folding p
terns in fluid mixing. While attracting material lines of time
periodic fluid flows are readily visualized as unstable ma
folds of a Poincare´ map ~Fig. 1!, analogous lines in genera
aperiodic or turbulent flows turn out to be more difficult
define.

Recent progress in nonlinear dynamics has shown, h
ever, that attracting and repelling material lines continue
organize mixing in fluid flows with general time
dependence.23–25 In general, theseLagrangian coherent
structuresare no longer isolated curves in a turbulent flo
They form families of finite width and of finite life-span
Numerical and analytic methods for their detection are n
available, as surveyed in Refs. 26, 27.

Because attracting material lines collect and organ
fluid particles into thinning filaments, increasing the dens
of attracting lines in any particular flow region leads to e
hanced advective mixing. As an example, consider a tw
dimensional flow behind a bluff body, as shown in Fig. 2~a!.
We envision enhancing mixing in the wake region of th
flow by creating an attracting material line that collects p
ticles near the horizontal boundary of the bluff body, a
then injects them into the wake. These injected particles
spread out along the newly created attracting material
il:
1 © 2003 American Institute of Physics
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2252 Phys. Fluids, Vol. 15, No. 8, August 2003 Wang et al.
and ultimately lead to enhanced mixing in the wake@Fig.
2~b!#.

In this paper we develop an algorithm for the abo
control idea, then implement it on a bluff-body shear flo
model originally due to Clements.28 Our interest in this flow
geometry is driven by the need to control heat release in
flame behind a bluff-body flameholder of a combustor.
transporting fuel to targeted spots in the wake of the flam
holder, one hopes to control heat release indirectly. T
present work represents the first step in this direction, giv
a control scheme for the unstable manifold, the structure
will carry fuel to the desired location. We show that a prec
control of the unstable manifold location is possible ev
under unsteady flow conditions. As a side result, we ob
that just by oscillating the unstable manifold at the frequen
of vortex shedding will increase mixing in the wake signi
cantly.

For bluff-body flows, the actuation of the wake dynam
ics by both passive control29–31 and active control32–38 has
certainly been explored. We believe, however, that ours is
first model study of a feedback control scheme that rig
ously delivers the objective of micro-adaptive flow contr
‘‘Excite large scale ‘instabilities’ that carry the effect of loc
actuation along the wall into distant flow regions.’’ In ou
scheme, these instabilities are Lagrangian: They are re
sented by attracting material lines that act as unstable m
folds for prescribed moving points on the wall. Despite
Lagrangian nature, however, our control scheme only
quires sensing of boundary velocities. In particular, unl
earlier studies on the control of vortices,39–41 our work does
not rely on measurements of the position or the strength
point vortices.

FIG. 1. Deformation of a fluid blob in a two-dimensional time-period
flow. Stable and unstable manifolds near saddle-type fixed points of
Poincare´ map act as repelling and attracting material lines, respectively

FIG. 2. ~a! Bluff-body flow. ~b! Schematic view of mixing enhancement du
to a moving unstable manifold created by control.
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The organization of this paper is as follows. First, in Se
II, we discuss Lagrangian separation control in general te
for two-dimensional inviscid flows. In Sec. III, we describ
our unsteady vortex model for a bluff body, as well as t
feedback controller that we add to it to create attracting m
terial lines. Section IV shows numerical simulations of o
control scheme, and Sec. V offers a summary as well as
outline of future work.

II. LAGRANGIAN SEPARATION CONTROL

Here we propose a way to create and move attrac
material lines in a two-dimensional flow by active flow co
trol. In our setting, the material lines attach to the horizon
boundary of an inviscid shear flow, with their points of a
tachment moving in time according to a prescribed rule.
our later example of a bluff body shear flow, we transfo
the actual physical flow geometry into the canonical sh
flow geometry considered below.

A. Lagrangian separation points

To set the stage for a later control design, we first disc
the notion of a Lagrangian separation point for tw
dimensional flows. Using a Cartesian set of spatial coo
nates~j,h!, we consider a two-dimensional incompressib
flow of the form

j̇5u~j,h,t !, ḣ5v~j,h,t !,

where the velocity field is assumed to admit two continuo
derivatives with respect to the spatial coordinates with
possible exception of finitely many locations. At these exc
tional points, differentiability is allowed to fail due to th
presence of point vortices, point sources or sinks, or ve
points of the boundary. We assume slip boundary conditi
at h50:

v~j,0,t !50. ~1!

We call a moving fluid particlep0(t)5(p0(t),0) along
the h50 boundary aLagrangian separation pointif an at-
tracting material line emanates from the wall atp0(t). In
dynamical systems terms, the attracting material line w
then serve as the unstable manifold of the Lagrangian s
ration point, as shown in Fig. 3. By collecting other flu
particles near the wall and injecting them into more dist
flow regions, this unstable manifold will have a significa
influence on particle mixing. We note that while the poi
p0(t) will necessarily be a stagnation point for steady velo

e

FIG. 3. Attracting material line emanating from a fluid trajectoryp(t) on the
wall. The pointp(t) is a separation point in the Lagrangian sense, with
attracting material line acting as its unstable manifold.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2253Phys. Fluids, Vol. 15, No. 8, August 2003 Closed-loop Lagrangian separation control
ity fields, it will typically have no Eulerian signature fo
unsteady velocity fields: It will remain an undistinguish
point in instantaneous pressure, vorticity, and stream
plots.

To find conditions for a fluid trajectoryp0(t) to be a
Lagrangian separation point, we pass to a frame commo
with p0(t). To this end, we define the new horizontal va
ableg5j2p0(t). In the new frame~g,h!, we have the ve-
locity field

ġ5u~p0~ t !1g,h,t !2u~p0~ t !,0,t !,

ḣ5v~p0~ t !1g,h,t !.

Using a Taylor expansion atp0(t) @now at (g,h)5(0,0)],
we separate the linear and nonlinear terms of the velo
field by writing

ġ5a~ t !g1b~ t !h1P~g,h,t !,
~2!

ḣ52a~ t !h1Q~g,h,t !,

where a(t)5]juup0(t) , b(t)5]huup0(t) , and ]hvup0(t)

52 a(t) by incompressibility. The terms nonlinear ing and
h are collected inP and Q. Note that there is no linea
g-term in the second equation in accordance with the bou
ary condition~1!.

Classic results from dynamical systems42 guarantee the
existence of an unstable manifold forp0(t) off the wall and
a stable manifold along the wall if all the following hold:~1!
a(t) is negative and uniformly bounded from zero, i.
a(t),a0,0 for somea0,0 and for allt; ~2! b(t) is uni-
formly bounded, i.e.,ub(t)u,C for someC.0 and for allt;
~3! P andQ are uniformly Lipschitz continuous inj andh
nearp0(t). Note that all three conditions are somewhat
strictive: They require uniform bounds on the velocity fie
and its derivatives over infinite time intervals.

To design our flow control algorithm, we shall rely o
less restrictive invariant manifold results that do not insist
uniformity in their assumptions. As shown by Haller,43 vec-
tor fields of the type~2! admitfinite-time stableandunstable
manifolds over a time intervalI if P and Q are smooth
functions in a vicinity ofp0(t) over the time intervalI and

a~ t !5]juup0(t),0, tPI. ~3!

While not unique, these finite-time manifolds become ex
nentially close to each other as the length of the time inte
I increases. As a result, the unstable manifold ofp0(t) will
become unique for practical purposes once condition~3!
holds over long enough time intervals.

To visualize a Lagrangian separation point and the fin
time unstable manifold emanating from it, we shall empl
the Direct Lyapunov Exponent~DLE! algorithm,44 which
renders Lagrangian coherent structures at timet0 as local
maximizing curves orridgesof the scalar field

s t~j0 ,h0!5
1

2~ t2t0!
loglmax

3~@¹Ft0
t ~j0 ,h0!#T¹Ft0

t ~j0 ,h0!!. ~4!
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Here Ft0
t denotes the flow map that maps the fluid partic

positions (j0 ,h0) at timet0 to their positions (j(t),h(t)) at
time t. In our notation,lmax(M ) refers to the maximal eigen
value of the matrixM , andMT denotes the transpose ofM .
Finite-time stable manifolds—or repelling material lines—
time t0 appear as ridges ofs t if t.t0 . Calculating
s t(j0 ,h0) in backward time witht,t0 gives finite-time un-
stable manifolds—or attracting material lines—att5t0 .

To evaluates t(j0 ,h0) numerically, one chooses an in
tial grid of fluid particles, and numerically advects them
approximateFt0

t over the initial grid. Differentiating ad-

vected positions of the grid with respect to initial positions
say, using central differences—one first finds the deform
tion gradient¹Ft0

t , then calculates the scalar fields t .

B. Control of Lagrangian separation points

We now design a control algorithm that creates Lagra
ian separation points atL prescribed locationspj (t)
5(p(t),0), j 51,...,L. We achieve this by employingN
fixed actuators, modelled by potential flows, located
(jk,0), k51,...,N, along the wall. We shall use the notatio
u0(j,h,t) for the u component of the uncontrolled velocit
field, which is also assumed to be potential.

Using potential flow components, we ensure that the
velocity field is the sum ofu0 and the control velocity field.
Alternatively, we could assume that both the uncontrol
flow and the actuator flow are Stokes flows. In a real-l
implementation of our controller for a Navier–Stokes flo
one would start from the control law derived below, th
consider nonadditive velocity terms as nonlinear pertur
tions that are to be handled in an adaptive fashion. We s
elaborate on this approach elsewhere.

Away from the actuators, the wallh50 remains an in-
variant line in the controlled flow. Restricting the contr
velocity field generated by the actuators to the wall, we o
tain N one-dimensional velocity contributionsak(j,t), k
51,...,N, to be designed below. We assume that

ak~j,t !5qk~ t !Wk~j!,

i.e., thatak(j,t) is a time-modulated version of the spati
velocity distribution of thekth actuator running in stead
state. @An example of such an actuator model is a po
source at (jk,0) with time-varying strength.21# Our goal be-
low is to find the actuator strengthsqk(t) that generate the
prescribed Lagrangian separation pointspj (t).

Since both u0(j,h,t) and ak(j,t) describe potential
flows, the resulting controlled velocity field along the wa
will be their sum. As a result, the motion of fluid particle
along the wallh50 will obey the differential equation

j̇5u0~j,0,t !1 (
k51

N

qk~ t !Wk~j!. ~5!

If ( pj (t),0) is a Lagrangian separation point, then it must
a solution to this equation, i.e., we must have
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ṗ j5u0~pj~ t !,0,t !1 (
k51

N

qk~ t !Wk~pj~ t !!, j 51,...,L.

~6!

Using the variableg j5j2pj (t) introduced in the previous
section, and Taylor expanding Eq.~5! at g50, we rewrite
Eq. ~6! as

ġ j5a jg j1P~g j ,t !g j
2 , ~7!

whereP(g j ,t) is a smooth function and

a j~ t !5]ju0~pj~ t !,0,t !1 (
k51

N

qk~ t !Wk8~pj~ t !!. ~8!

We finally select a constanta j,0 and set

a j5]ju0~pj~ t !,0,t !1 (
k51

N

qk~ t !Wk8~pj~ t !!, j 51,...,L.

~9!

By condition ~3! of the previous section, if no velocity
singularities occur in the spatial interval covered bypj (t),
and Eq.~9! is enforced over a time intervalI, then pj (t)
5(pj (t),0) becomes a Lagrangian separation point oveI.
Combining Eqs.~6! and~9!, we obtain the linear control law

A~ t !q~ t !5b~ t !, ~10!

for the unknown vectorq(t)5(q1(t),...,qN(t))T with

A~ t !5S W1~p1~ t !! ¯ WN~p1~ t !!

] ] ]

W1~pL~ t !! ¯ WN~pL~ t !!

W18~p1~ t !! ¯ WN8 ~p1~ t !!

] ] ]

W18~pL~ t !! ¯ WN8 ~pL~ t !!

D ,

~11!

b~ t !5S ṗ12u0~p1~ t !,0,t !
]

ṗL2u0~pL~ t !,0,t !
a12]ju0~p1~ t !,0,t !

]

aL2]ju0~pL~ t !,0,t !

D .

To obtain a unique control inputq(t) for any measured
b(t), the dimension ofb(t) must necessarily equal the d
mension ofq(t), which implies

N52L. ~12!

This means that for our flow-control problem to be we
defined, the number of actuators must be twice the numbe
Lagrangian separation points to be controlled. In addition
this, the matrixA(t) must be nonsingular in order for Eq
~10! to yield the unique solution

q~ t !5A21~ t !b~ t !. ~13!

Note that A(t) is nonsingular if and only if the actuato
velocity componentsW1 ,...,W2L and their derivatives form
a linearly independent set of functions over the poi
p1(t),..., pL(t) for all tPI. If this is satisfied, the contro
law ~13! uniquely determines the outputsqi(t) to be applied
by individual actuators.
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Valid in the framework of inviscid flows, the above a
gorithm represents a first step in the general program of
grangian separation control. While the inviscid assumption
a limitation of our study, the bluff-body model that we sha
control does include a continuous feed of regularized po
vortices into the flow, thereby modelling vorticity generatio
near the wall. As a result, the von Ka´rmán vortex street, a
main feature of three-dimensional separated bluff-bo
flows, is reproduced by our two-dimensional inviscid mod
to the extent that a qualitative comparison with experime
gives favorable results.28

A more serious limitation of the inviscid controller is it
reliance on slip boundary conditions, which makes feedba
linearization possible. For viscous flows, the correspond
no-slip boundary conditions are more difficult to hand
Nevertheless, the Lagrangian control strategy propo
above can be modified to bear on the wall shear field inst
of the velocity field.

Finally, boundary-layer effects remain unaccounted
in our setting, and hence our control scheme primarily targ
general large-scale flow separation as opposed to bound
layer separation. By large-scale flow separation we m
separation in low-Reynolds-number flows45 or even in invis-
cid flows,46 both of which lie outside the realm of classic
boundary-layer theory.

III. BLUFF BODY SHEAR FLOW MODEL

Here we describe an inviscid bluff body model that w
illustrate the Lagrangian control ideas discussed in the p
vious section. Our model is an adaptation of the work
Clements.28

A. Potential flow around a bluff body

We consider a two-dimensional bluff body with righ
angle between the side and the rear base~see Fig. 4!. The
width of the base isBD52h; the upper and lower sides o
the body extend to infinity. Since the edges of the bluff bo

FIG. 4. The geometry of the bluff-body model on thez-plane ~physical
plane! and on thez-plane~transformed plane!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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are all straight lines, a conformal mapping can be c
structed that maps the exterior and the interior of the b
into the upper and lower halves of a complex plane.47 More
specifically, using the complex variablez5x1 iy on the
original physical plane and the new complex variablez5j
1 ih on the transformed plane, the conformal mapping c
be written as

z5Z~z!ª
2h

p i
@sin21 z1zA12z2#. ~14!

For later reference, we note that

Z8~z!52
4ih

p
A12z2, Z9~z!5

4ih

p

z

A12z2
. ~15!

The bluff body sits in a two-dimensional crossflowu
5(u,v) which is assumed incompressible and inviscid, s
isfying the vorticity equation

Dv

Dt
50 ~16!

with vorticity v5]xv2]yu. Due to the no-flow boundary
conditions, thev-component of the velocity vanishes on th
boundary.

Recall that the complex potential associated with such
inviscid and irrotational velocity field isw(z)5f(x,y)
1 ic(x,y), wheref is the ~real! potential function andc is
the stream function. At points wherew is analytic, we can
write the velocity field as

dz̄

dt
5

dw

dz
5

dw

dz

dz

dz
5

dwz

dz

1

Z8~z!
5

ip

4hA12z2

dwz

dz
, ~17!

with wz referring to the complex potential expressed in thz
variable, and with the overbar referring to conjugatio
Given the transformed complex potentialwz , we can use the
above equation to calculate fluid velocities away from sin
larities of w in the z-plane. Because designing our Lagran
ian control algorithm turns out to be easier on the tra
formed z-plane, we shall also need the velocity fie
expressed in terms ofz. Differentiating Eq.~14! with respect
to t and using Eqs.~15! and ~17! gives

dz

dt
5

1

Z8~z!

dz

dt
5

p2

16h2uz221u
dwz

dz
. ~18!

As discussed by Saffman,48 the velocity at a singularity
z0 of w can be obtained from the Routh formula

dz̄

dt U
z0

5
1

Z8~z0!

dwz0

dz
U

z0

1
iG

4p

Z9~z0!

Z8~z0!2 , ~19!

where wz0
denotes the complex potential evaluated at

transformed singularityz0 , andG is the circulation around
z0 . In analogy with Eq.~18!, the corresponding velocity on
the z-plane is given by
Downloaded 03 Jul 2003 to 152.66.33.152. Redistribution subject to A
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dz

dt
U

z0

5
1

uZ8~z0!u2 F dwz0

dz
U

z0

2
iG

4p

Z9~z0!

Z8~z0!
G

5
p2

16h2uz221u

dwz

dz
2

ipG

64h2

z̄

u12z2u~12 z̄2!
. ~20!

B. Point vortex model with actuators

Following Clements,28 we shall express the solution o
the vorticity equation~16! for our bluff body flow as a sum
of potential flows. In Clements’s work, these flows include
potential inflow from infinity,N point vortices and their im-
age vortices on the other side of the bluff body boundary, a
a potential disturbance that breaks the symmetry of the w
and induces vortex shedding consistent with experiments

Clements models the generation of vorticity at the w
by releasing a new pair of point vortices near the edges of
bluff body at equal time intervals. At the same time, vortic
colliding with the wall during the numerical solution of th
model are constantly removed. As a result, after an ini
start-up period, the number of active vortices becomes ne
constant, and a periodic structure reminiscent of the v
Kármán vortex street emerges.

The new element in our model will be the addition of
control loop: Sensing the instantaneous velocity along
boundary, we shall use potential point-sources to create
control two Lagrangian separation points in order to enha
mixing in the wake region. Mixing is enhanced because
unstable manifolds~attracting material lines! emanating from
the two separation points collect fluid particles from the w
region, then inject them into the wake~see Fig. 5!. As indi-
cated in the figure, we aim to create one controlled Lagra

FIG. 5. Actuator locations and unstable manifolds to be created by
controller. The sensors are distributed between the actuators along the
to measure the tangential velocity along the boundary.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ian separation point on each horizontal boundary of the b
body. According to formula~12!, this will require the use of
four actuators along the boundary.

To describe the model in more detail, let us first non
mensionalize variables by letting

t̂5
U`t

h
, ẑ5

z

h
, û5

u

U`
, v̂5

v
U`

, ŵ5
w

hU`
,

whereU` is the velocity that appears in the following inflo
boundary conditions atx52`:

lim
x→2`

u~x,y!5U` , lim
x→2`

v~x,y!50.

To derive the transformed velocity field Eqs.~18!–~20!,
we need the complex potentialŵ(z), which is the sum of the
following potentials: The complex potential of the inflo
from infinity is

ŵ`~z!52
2

p
z2, ~21!

while the complex potential for the asymmetric potential d
turbance is of the form

ŵasym~z!52
4p

p
z. ~22!

The complex potential induced byn point vortices and their
image vortices is

ŵvort~z!52 (
k51

n
i Ĝk

2p
log~z2zk!1(

k51

n
i Ĝk

2p
log~z2 z̄k!, ~23!

if the point z does not coincide with any of the point vorte
locationszk . The constantĜk5Gk /(hU`) is the nondimen-
sionalized counterpart of thekth vortex circulationGk . The
complex potential induced by the vortices at the point vor
locationz j is of the form

ŵvort~z j !52 (
k51,kÞ j

n
i Ĝk

2p
log~z j2zk!

1 (
k51

n
i Ĝk

2p
log~z j2 z̄k!. ~24!

We now discuss the complex potential associated w
the actuators of the control loop. We place two point sour
as actuators on the upper boundary with strengthsqu1(t) and
qu2(t) and locationsxu11 i h and xu21 i h, where xu1

,xu2 . Similarly, we place two sources on the lower boun
ary with strengthsql1(t) and ql2(t) and locationsxl12 i h
andxl22 i h, wherexl15xu2 andxl25xu1 . For positive val-
ues of qu j(t) and ql j (t), the actuators are indeed source
They blow fluid into the flow domain. For negative values
qu j(t) and ql j (t), the actuators act as sinks by removi
fluid from the flow domain. We show the actuators in t
z-plane and their images in thez-plane in Fig. 5. The com-
plex potentials for the four actuators are of the form

ŵu j5
q̂u j~ t̂ !

p
log~z2zu j!, ŵl j 5

q̂l j ~ t̂ !

p
log~z2z l j !, ~25!
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for j 51,2. Hereq̂u j5qu j /(hU`) and q̂l j 5ql j /(hU`) de-
note the nondimensionalized flux from the actuators foj
51,2.

Combining Eqs.~21!–~25!, we obtain the full complex
potential

ŵz5ŵvort1ŵ`1ŵasym1ŵu11ŵu21ŵl11ŵl2 . ~26!

Substituting Eq.~26! into Eq.~20!, we obtain the equation o
motion for thej th point vortex:

dz j

d t̂
5

ip

4

1

u12z j
2u S (

k51,kÞ j

n
Ĝk

8

z j2zk

uz j2zku2

2 (
k51

n
Ĝk

8

z j2 z̄k

uz j2 z̄ku2
1 i z̄ j1 ip1

Ĝ j

16

z̄ j

12 z̄ j
2D

1
p

16

1

u12z j
2u
S q̂u1~ t̂ !

z j2zu1

uz j2zu1u2

1q̂u2~ t̂ !
z j2zu2

uz j2zu2u2
1q̂l1~ t̂ !

z j2z l1

uz j2z l1u2

1q̂l2~ t̂ !
z j2z l2

uz j2z l2u2
D . ~27!

The vortex motion in the physicalẑ-plane is then obtained
from the relationẑj5Ẑ(z j ).

For a fluid particle away from vortex cores, substitutio
of Eq. ~26! into Eq. ~17! yields the transformed equation o
motion

dz

d t̂
5

ip

4

1

u12z2u S (
k51

n
Ĝk

8

z2zk

uz2zku2
2 (

k51

n
Ĝk

8

z2 z̄k

uz2 z̄ku2

1 i z̄1 ip D 1
p

16

1

u12z2u
S q̂u1~ t̂ !

z2zu1

uz2zu1u2

1q̂u2~ t̂ !
z2zu2

uz2zu2u2
1q̂l1~ t̂ !

z2z l1

uz2z l1u2

1q̂l2~ t̂ !
z2z l2

uz2z l2u2
D , ~28!

which again transforms back to the physical plane throu
the relationẑ5Ẑ(z).

In the actual numerical implementation of the abo
model, we will regularize all point vortices into ‘‘smeared
vortices. A common trick in vortex simulations, regulariz
tion eliminates excessively large velocities near vortex co
Without regularization, large velocities would introduc
large errors in the particle advection calculations when
particles drift too close to vortex cores. For details on t
vortex regularization procedure, we refer the reader to S
IV A.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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C. Control law

We now adapt the general Lagrangian separation con
algorithm of Sec. II B to our bluff-body vortex model. W
shall use four actuators to control two Lagrangian separa
points, thus the first controllability condition~12! is satisfied.
The second condition for controllability is the invertibility o
the matrixA( t̂ ) defined in Eq.~11!. For any prescribed path
pu( t̂ )5(pu( t̂ ),0) and pl( t̂ )5(pl( t̂ ),0) of the upper and
lower Lagrangian separation points, we have

A~ t̂ !

5S Wu1~pu~ t̂ !! Wu2~pu~ t̂ !! Wl1~pu~ t̂ !! Wl2~pu~ t̂ !!

Wu1~pl~ t̂ !! Wu2~pl~ t̂ !! Wl1~pl~ t̂ !! Wl2~pl~ t̂ !!

Wu18 ~pu~ t̂ !! Wu28 ~pu~ t̂ !! Wl18 ~pu~ t̂ !! Wl28 ~pu~ t̂ !!

Wu18 ~pl~ t̂ !! Wu28 ~pl~ t̂ !! Wl18 ~pl~ t̂ !! Wl28 ~pl~ t̂ !!

D ,

~29!

where

Wu j~j!5
p

16

1

j221

1

j2ju j
,

Wl j ~j!5
p

16

1

j221

1

j2j l j
,

Wu j8 ~j!52
p

16

3j222jju j21

~j221!2~j2ju j!
2 ,

Wl j8 ~j!52
p

16

3j222jj l j 21

~j221!2~j2j l j !
2 ,

for uju.1 and for j 51,2.
A( t̂ ) turns out to be invertible under fairly general co

ditions. For instance, we show in the Appendix thatA( t̂ ) is
nonsingular if the following three conditions are all satisfie

~i! The upper Lagrangian separation pointpu( t̂ ) lies be-
tween the upper actuator locationsju1 andju2 .

~ii ! The lower Lagrangian separation pointpl( t̂ ) lies be-
tween the lower actuator locationsj l1 andj l2 .

~iii ! In thez-plane, the distance between the two lower a
the two upper actuators is less than one half of
distance betweenj l1 andju2 .

For Lagrangian separation point paths satisfying con
tions I–III, the control law that creates them is of the form

q~ t̂ !5A21~ t̂ !b~ t̂ !, ~30!

with

q~ t̂ !5S qu1~ t̂ !

qu2~ t̂ !

ql1~ t̂ !

ql2~ t̂ !

D , b~ t̂ !5S ṗu~ t̂ !2u0~pu~ t̂ !,0,t̂ !

ṗl~ t̂ !2u0~pl~ t̂ !,0,t̂ !

a12]ju0~pu~ t̂ !,0,t̂ !

a22]ju0~pl~ t̂ !,0,t̂ !

D . ~31!

The positive constantsa1 anda2 determine the strengths o
the separation points, i.e., the exponents in their rate of
traction near the upper and lower boundaries.
Downloaded 03 Jul 2003 to 152.66.33.152. Redistribution subject to A
ol

n

:

d
e

i-

t-

IV. NUMERICAL SIMULATIONS

Here we discuss the numerical implementation of
control law designed in the previous section. We first loc
Lagrangian coherent structures in our uncontrolled bl
body flow, then show how active control creates further su
structures at prescribed locations. As expected, these a
tional Lagrangian structures turn out to enhance mixing
the wake of the bluff body.

A. Uncontrolled system

We start the uncontrolled simulation of the vortex mod
at t̂50 with an impulsive asymmetric potential flow distu
bance

p~ t̂ !5H 0.2 cos~p t̂ /4!, 0< t̂<8,

0, t̂.8,

in order to trigger asymmetric vortex shedding behavior. T
frequency ofp( t̂ ) is 0.25, the frequency used in the origin
model of Clements.28 We have verified that the qualitativ
clustering of vortices does not change for excitation frequ
cies close to 0.25.

We obtain the evolution of point vortices by employing
second order Runge–Kutta scheme with time stepD t̂50.1.
To emulate vorticity input form the wall, we introduce
point vortex pair at the pointsẑ561.05i in the ẑ–plane at
times 5kD t̂ for k51,2,... . In contrast to the algorithm o
Clements,28 we determine the strength of a new vortex p
upon release from the Kutta-condition~zero velocity at
pointsB andD at the time of vortex release!. This condition
eliminates the~unphysical! occurrence of infinitely large
pressure gradients atB and D at least at the moments o
vortex release. Other conditions with different advantag
can also be employed.28 Once the strength of a point vorte
is determined, it is kept constant unless it collides with t
solid boundary. In case of such a collision, the vort
strength is reset to zero, i.e., the vortex is removed from
flow.

To avoid excessively large velocities, we regularize t
point vortices in the model by using the complex veloc
distribution

u~z!5
iG~z2z0!

2puz2z0u2 ~12e2uz2z0u2/d2
!,

whereG is the strength of the point vortex,z0 is the location
of the point vortex, andd is a radius parameter that is set
0.01 in our simulation. Due the the exponential decay of
regularizing term, the velocity induced by the smeared v
tex on a fluid particle lying atz is almost identical to the
velocity induced by the original point vortex at the sam
location, provided thatz is not too close the vortex corez0 .
At locations close to the vortex cores, the velocity induc
by the particular vortex is roughly zero.

Running the simulation with all the above ingredien
we obtain the point vortex distribution shown in Fig. 6
time t̂540. As the figure shows, in the far wake region ea
vortex cluster contains vortices of the same sign, with
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Vortex distribution after the formation of the
von Kármán vortex street for the uncontrolled system

time t̂540.
lie
n

t

w,

ard

ng
signs of the clusters alternating. Thus, as we noted ear
Clements’s model indeed reproduces the two-dimensio
cross-section of the von Ka´rmán vortex street with sufficien
qualitative accuracy.

To find attracting material lines in the uncontrolled flo
Downloaded 03 Jul 2003 to 152.66.33.152. Redistribution subject to A
r,
al
we fix a rectangular mesh of 7003450 fluid particles with
grid spacing 0.01. Starting from the initial timet̂0540, we
integrate trajectories starting from the mesh in backw
time over the interval@30,40#, just over one period of the von
Kármán vortex shedding which is around 8.7. Calculati
FIG. 7. ~Color! Uncontrolled attracting material lines~unstable manifolds! at time t̂0540 as local maximizing curves of the fields t(z0)* u t̂2 t̂0u. Heres t(z0)
is the DLE-field defined in Eq.~4!.
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the deformation gradient¹Ft0
t over thez-plane, we plot the

scaled scalar fields t(z0)* u t̂2 t̂0u in Fig. 7. As we noted
earlier, local maximizing curves in this figure signal attra
ing material lines att̂5 t̂0 , the Lagrangian signatures of th
von Kármán vortex street behind the body. Notice that the
are no attracting material lines that connect to the horizo
bluff body boundaries, which indicates a lack of Lagrang
separation points along these boundaries in the uncontro
flow.

We finally note that the attracting material lines of Fig.
closely resemble the experimental streaklines observed
hind a bluff body.49 This is no surprise, because streaklin
are formed by passive particles that are drawn to attrac
Lagrangian coherent structures~finite-time unstable mani-
folds!.

B. Closed-loop system

We now discuss a numerical implementation of the fe
back control law designed in Sec. III. Recall that the cont
law aims to create attracting material lines at prescribed
cations. These lines collect fluid particles from the horizon
wall regions and inject the particles into the wake. The c
troller impacts the attracting material lines by controllin
their points of attachments, the Lagrangian separation po
along the walls.

On the physicalz-plane, we select the actuator locatio

ẑu1521.21 i , ẑu2520.21 i ,

ẑl1520.22 i , ẑl2521.22 i ,

which transform to thez-plane locations

zu1521.9223, zu2521.2944,

z l151.2944, z l251.9223.

Again, to avoid large numerical errors due to unbound
velocities, we regularize the point source/sink actuators
using the complex velocity distribution

u~z!5
Q~z2z0!

2puz2z0u2 ~12e2uz2z0u2/d2
!,

whereQ is the strength of the original point source,z0 is the
location of the point source, andd is set to 0.01 in our simu-
lation.

Next, we prescribe periodic Lagrangian separation po
paths in thez-plane in the form

pu~ t̂ !5pu01pu1 sin~V t̂1fu!, ~32!

pl~ t̂ !5pl01pl1 sin~V t̂1f l !,

with parameters

pu05 1
2 ~zu11zu2!521.6084,

pu15 1
6 ~zu22zu1!50.1047, fu5

p

2
,

g l05 1
2~z l11z l2!51.6084,

g l15 1
6 ~z l22z l1!50.1047, f l5

p

2
.
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The corresponding Lagrangian separation points in
physicalz-plane are given byZ(pu( t̂ )) and Z(pl( t̂ )), with
the conformal mappingZ defined in Eq.~14!. Here, for sim-
plicity, we have prescribed sinusoidal separation point pa
but our control law allows for arbitrary time dependence
pu( t̂ ) andpl( t̂ ). Note thatfu5f l causes the two separatio
points to move in phase in the transformed plane, but
counter-phase in the original physical plane~cf. Fig. 4!.

We have set the frequency of Lagrangian separa
point oscillation to

V50, v, 4v, 8v, ~33!

respectively, in our different numerical runs, withv5 p/4
approximating the dominant vortex shedding frequency
the uncontrolled system. Further important design para
eters in the control law~30! areau anda l , which we set to

au5a l520.1.

This value represents a relatively small actuation author
which is generally desirable in flow control to avoid inst
bilities due to system noise and uncertainties.

To evaluate the control law~30!, we assume continuou
sensing along the wall portions enclosed by actuator pa
This means that the velocity at any point between the ac
tors is assumed to be at our disposal at any time. We
need ]ju0(pu,l( t̂ ),0,t̂ ), the derivative of the uncontrolled
wall-tangential velocity field along the designed separat
point path. We calculate this quantity from the sensed vel
ity field by central differencing:

]ju0~pu,l~ t̂ !,0,t̂ !'
u0~pu,l~ t̂ !1D, t̂ !2u0~pu,l~ t̂ !2D, t̂ !

2D
.

Hereu0 is obtained by subtracting the known tangential v
locity field generated by the actuators from the sensed
gential velocity fieldu. In our simulations, the spatial step
sizeD is set to 0.01.

We show a representative time history for the close
loop actuator strengths for the caseV5v in Fig. 8. ~The
same figure also shows actuator signals for a strictly tim
periodic, open-loop controller that we shall use as refere
in our mixing comparison study below.! Note that the two
actuators upstream (q̂u1 and q̂l2) are sinks, while the two
downstream actuators (q̂u2 and q̂l1) are sources, with their
mean strengths being roughly the negative of each ot
Also note that the closed-loop controller is not exactly pe
odic: It is the resulting Lagrangian separation point that
meant to be periodic.

Figures 9 and 10 show the attracting material lines at̂
540 obtained for the Lagrangian separation point frequ
cies vu5V and vu54V, respectively. In each case, th
controller indeed creates the desired Lagrangian separa
points on both horizontal boundaries, as seen in the figu

To evaluate the accuracy of our controller, we have co
pared the actual location of Lagrangian separation po
~LSP! on the boundary with their desired location. The actu
location was found as a local maximum of finite-tim
Lyapunov exponents along the boundary. Shown in Fig.
the desired and actual LSP locations are close to each o
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. Actuator strengths for the closed-loop syste
with V5v ~solid lines!, and for a reference open-loo
controller ~34! ~dashed lines!.
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with a small error coming from delay and discretization
fects, as well as from errors in locating the actual LSP.

As expected, the unstable manifolds created by the c
troller leave the vicinity of the wall and enter the vorte
street, thereby injecting fluid particles from the wall regi
Downloaded 03 Jul 2003 to 152.66.33.152. Redistribution subject to A
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into the wake region. This results in enhanced mixing,
evidenced by the striking increase in the density of attract
material lines in the wake~Figs. 9 and 10!. As we noted
earlier, these material lines attract streaklines, thus their
hanced density leads to increased interface length and
with
FIG. 9. ~Color! Attracting material lines~unstable manifolds! at t̂0540 for the case when the Lagrangian separation point is controlled to oscillate
frequencyV5v. Actuator locations are marked by squares.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 10. ~Color! Same as Fig. 9, except that here the oscillation frequency for the Lagrangian separation point is set tovu54V.
an
p
se
ner filaments for passive tracers released into the flow.
For comparison, we have also calculated unstable m

folds created by an open-loop controller scheme that sim
blows fluid periodically through the same actuators. We
lected this open-loop controller to be
Downloaded 03 Jul 2003 to 152.66.33.152. Redistribution subject to A
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q̂u1~ t̂ !5q̂l2~ t̂ !

52q̂l1~ t̂ !52q̂u2~ t̂ !

520.920.7 sin~v t̂ !, ~34!
ng-
FIG. 11. Comparison of desired and measured Lagra
ian separation points~LSP! for the closed-loop system
at 1:1 resonance.
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FIG. 12. ~Color! Attracting material lines~unstable manifolds! at t̂0540 for the reference open-loop controller~34! at time t̂540.
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which means two upstream-actuatorsq̂u1 andq̂l2 of the same
strength, but out-of-phase byp relative to the two
downstream-actuatorsq̂u1 and q̂l1 . We picked the mean an
amplitude for this controller to match our Lagrangian close
loop actuators for the case ofV5v ~see Fig. 8!. The un-
stable manifolds~attracting material lines! created by this
purely periodic controller are shown in Fig. 12. While th
controller also creates Lagrangian separation points on
horizontal walls, the position and strength of these separa
points is beyond our control. As a result, the created unst
manifolds are weaker, and their influence is localized to
near-wake region~see Fig. 12!. For these reasons, such man
folds do not provide a starting point for future Lagrangi
control efforts that aim to transport fluid particles to specifi
locations.

C. Mixing enhancement due to control

Our primary control objective has been the creation
Lagrangian structure that ejects particles from a vicinity
the wall at prescribed locations. The long-term goal motiv
ing this control objective is to transport fluid~fuel! into des-
ignated regions of the wake, which will control heat relea
in combustion applications. Although we have not addres
this long-term goal in the present paper, we already find m
ing enhancement in the wake due to the presence of
unstable manifolds we have created.

To evaluate the mixing enhancement in the control
flow, we shall use a mixing measure that quantifies the c
Downloaded 03 Jul 2003 to 152.66.33.152. Redistribution subject to A
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erage of a designated spatial region by attracting mate
lines. This measure specifically targetsfinite-time mixing
caused by finite-time unstable manifolds in the flow. We a
interested in finite-time mixing enhancement, because
ticles in related industrial devices~say, in a combustor! spend
fairly short times in the device. Employing infinite-time mix
ing measures over short time scales would give question
results in the absence of a separate study dedicated to
convergence properties of the given mixing measure.
cause our main focus here is not mixing, we have chosen
to undertake such a study, and use a geometrically motiv
finite-time mixing measure instead.

Consider the fixed rectangular domainD5@0,12#
3@25,5#, and for anyr .0, defineP(r ) to be the probabil-
ity that a randomly placed ball of radiusr , with its center
insideD, intersects the set of attracting material linesD. In
other words,P(r ) denotes the probability that a random
placed r -ball experiences exponential stretching over t
time interval of the simulation. We calculateP(r ) numeri-
cally by placingN balls of radiusr inside the domainD
randomly, then identifying the numbern(r ,N) of balls that
intersect at least one attracting material line withinD. For
large enoughN, we then obtain

P~r !'
n~r ,N!

N
.

We prefer this mixing measure over other statistical m
sures, because it makes use of the detailed geometric in
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 13. The mixing measureP(r ) as a function of the
scale parameterr for the uncontrolled system, for the
closed-loop system with different control frequencie
and for the open-loop controller~34!. In all cases,P(r )
was calculated for unstable manifolds computed ov
the time interval@30,40#.
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mation that finite-time invariant manifolds provide about a
vective mixing. In particular, the dependence ofP on r
ensures that this measure gives a scale-dependent asses
of mixedness in the flow, a feature that is particularly use
in assessing the advective mixing of, say, fuel drops of p
ticular size. For large enoughr , P(r ) becomes identically
equal to one, whereas for small values ofr , the measureP
approaches the relative area occupied by finite-time unst
manifolds withinD. This relative area is zero for classic
unstable manifolds of infinite-time flows, but becomes no
zero for finite-time flow-data because of the inherent no
niqueness of finite-time invariant manifolds.

To evaluateP(r ), we selectedr values from the spatia
interval @0.2,6.2#. To test whether a randomly selected b
intersects a ridge of thes t-field, we tested whethers t admits
values exceeding a preset threshold within the ball. In
calculations, this threshold was selected to bes t* 55, and the
number of random balls wasN51000 for eachr . We plot
P(r ) as a function ofr for different choices of the Lagrang
ian separation point frequency in Fig. 13. Notice that ea
controlled case produces better mixing than the uncontro
case. Notably, however, the case of a 1:1 resonance betw
the separation point frequency and the von Ka´rmán vortex
shedding frequency results in the largest mixing enhan
ment for intermediate scales.

Figure 13 also showsP(r ) for the purely periodic open
loop controller~34!. This reference controller was also s
lected to be in 1:1 resonance with the vortex shedding
quency, and results in significant overall mixin
improvement. Our 1:1 resonant closed-loop controller, ho
ever, still provides noticeably better finite-time mixing fo
intermediate scales.

V. CONCLUSIONS

We have proposed a control algorithm that creates m
ing Lagrangian separation points on the boundary of an
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viscid two-dimensional shear flow. These points serve
points of attachments for attracting material lines that coll
fluid particles from the boundary regions and transport th
to remote locations in the flow. To induce this transp
mechanism, we sensed the wall-tangential velocity fi
along the boundary, then altered it through a feedback lin
ization scheme to create Lagrangian separation points a
sired locations. Our feedback control relied on discrete inv
cid actuators that modeled tangential blowing and suction
synthetic jets placed at the boundary.

We used the above control scheme to enhance mixin
a point vortex model of a bluff-body shear flow. In this pro
lem, our objective was to create attracting material lines~or
unstable manifolds! that collect particles from the wall re
gion and inject them into the wake. We observed the grea
mixing improvement in the wake when the attachment poi
of the unstable manifolds were controlled to move in a 1
resonance with the von Ka´rmán vortex shedding frequency
We evaluated finite-time mixing improvement in the flow b
employing a geometric measure of coverage of the wake
finite-time unstable manifolds.

Undoubtedly, much room is left for further developmen
First, it may be unrealistic to assume twice as many actua
as Lagrangian separation points, especially if a large num
of such points is to be controlled. In that case, assump
~12! and the control law~13! will fail, and one needs to allow
for some error in the position of the controlled separat
points. A solution is to enforce the original control objectiv
~10! in a least-square sense, by requiring the erroriA(t)q
2b(t)i2 to be minimal. This leads to the relaxed control la

q~ t !5@AT~ t !A~ t !#21AT~ t !b~ t !,

which only assumesA(t) to have full rank for allt, a re-
quirement that can be achieved with less than 2L actuators.

Second, one would ultimately like to control the glob
shape of Lagrangian structures involved in the cont
scheme. In our present work, only the points of attachm
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of these structures were controlled actively; their glo
shape formed according to the flow conditions. Having m
control over the shape of attracting material lines will requ
more actuation authority away from the wall, which, for e
ample, can be secured through the application of magn
actuators in the case of a conducting fluid.

Three-dimensional extensions of the present work wo
also be highly desirable, but conceptually more importan
the development of Lagrangian separation control for v
cous flows. The main challenge there is the treatmen
no-slip boundary conditions along the wall: Having ze
wall-tangential velocity makes feedback linearization imp
sible. An alternative—and mathematically mo
challenging—approach is feedbacknonlinearization, i.e., a
nonlinear alteration of the flow field in a vicinity of the wal
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APPENDIX: PROOF OF NONDEGENERACY OF A „t …

Here we show thatA(t) is nonsingular under condition
I–III. By interchanging the second and the third rows
A(t), we obtain the matrix

Ã~ t !5S Wu1~pu~ t !! Wu2~pu~ t !! Wl1~pu~ t !! Wl2~pu~ t !!

Wu18 ~pu~ t !! Wu28 ~pu~ t !! Wl18 ~pu~ t !! Wl28 ~pu~ t !!

Wu1~pl~ t !! Wu2~pl~ t !! Wl1~pl~ t !! Wl2~pl~ t !!

Wu18 ~pl~ t !! Wu28 ~pl~ t !! Wl18 ~pl~ t !! Wl28 ~pl~ t !!

D
5S E F

G HD ,

where

E5S Wu1~pu~ t !! Wu2~pu~ t !!

Wu18 ~pu~ t !! Wu28 ~pu~ t !!
D ,

F5S Wl1~pu~ t !! Wl2~pu~ t !!

Wl18 ~pu~ t !! Wl28 ~pu~ t !!
D ,

G5S Wu1~pl~ t !! Wu2~pl~ t !!

Wu18 ~pl~ t !! Wu28 ~pl~ t !!
D ,

H5S Wl1~pl~ t !! Wl2~pl~ t !!

Wl18 ~pl~ t !! Wl28 ~pl~ t !!
D .

Noting that
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S I 0

2GE21 I D S E F

G HD 5S E F

0 H2GE21FD ,

we have

detA52detÃ

52det~E!det~H2GE21F!

52det~E!det~H!det~ I2H21GE21F!.

To show that this last product is nonzero, we shall use,
any vectorx«Rn, the norm

ixi`5max
i

uxi u,

which induces an operator norm for any matrixMPRn3n:

iM i`5 sup
ixi`51

iMx i`< max
1< i<n

(
j 51

n

uMi j u. ~A1!

First, we want to show that if

iE21Fi`,1, iH21Gi`,1, ~A2!

then

det~ I2H21GE21F!Þ0.

Assume the contrary, i.e., assume that deI
2H21GE21F)50. Then there existsxPR22$0% such that

~ I2H21GE21F!x50,

implying

ixi`5iH21GE21Fxi`

<iH21GE21Fi`ixi`<iH21Gi`iE21Fi`ixi` .

Therefore, we obtainiH21Gi`iE21Fi`>1, which con-
tradicts Eq.~A2!. Consequently, Eq.~A2! is indeed sufficient
conditions for the nondegeneracy ofA(t).

Next we argue that the inequalities~A2! do hold under
conditions I–III. Note thatE is of the form
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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S
2

16
u u u1

~pu
221!2~pu2ju1!2 2

16
u u u2

~pu
221!2~pu2ju2!

2

D
with the determinant

detE5S p

16D
2 ju12ju2

~pu
221!2~pu2ju1!2~pu2ju2!2 ,

which is nonvanishing by condition I. ThusE21 exists and can be written as

E215
1

detE S 2
p

16

3pu
222puju221

~pu
221!2~pu2ju2!2 2

p

16

1

~pu
221!~pu2ju2!

p

16

3pu
222puju121

~pu
221!2~pu2ju1!2

p

16

1

~pu
221!~pu2ju1!

D .

SinceF is given by

F5S p

16

1

~pu
221!~pu2j l1!

p

16

1

~pu
221!~pu2j l2!

2
p

16

3pu
222puj l121

~pu
221!2~pu2j l1!2 2

p

16

3pu
222puj l221

~pu
221!2~pu2j l2!2

D ,
the

al

h.

of
id

st

the
s in

nt
-

of

der
rs,’’
rol

ce

c-

-

f

we have

E21F5S j l12ju2

ju12ju2
S pu2ju1

pu2j l1
D 2 j l22ju2

ju12ju2
S pu2ju1

pu2j l2
D 2

ju12j l1

ju12ju2
S pu2ju2

pu2j l1
D 2 ju12j l2

ju12ju2
S pu2ju2

pu2j l2
D 2D

5S d11~pu! d12~pu!

d21~pu! d22~pu!
D .

Because we have

ju1,pu,ju2,j l1,pl,j l2

by conditions I–II, the following identities must hold:

sup
puP(ju1 ,ju2)

ud11~pu!u5ud11~ju2!u5Uju22ju1

ju22j l1
U,

sup
puP(ju1 ,ju2)

ud12~pu!u5ud12~ju2!u5Uju22ju1

ju22j l2
U,

sup
puP(ju1 ,ju2)

ud11~pu!u5ud21~ju1!u5Uju22ju1

j l12ju1
U,

sup
puP(ju1 ,ju2)

ud12~pu!u5ud22~ju1!u5Uju22ju1

j l22ju1
U.

But, by condition III, we haveju22ju1, 1
2(j l12ju2), which

gives

sup
puP(ju1 ,ju2)

ud i j ~pu!u, 1
2 , i , j 51,2.
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This last estimate along with Eq.~A1! implies the first in-
equality in Eq.~A2!. The second inequality in Eq.~A2! fol-
lows from an identical argument after one interchanges
subscriptsl andu in the quantities defined above.
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