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We show how the location of Lagrangian coherent structures, such as unstable manifolds of
Lagrangian separation points, can be controlled via feedback control in two-dimensional shear
flows. Such control can be used, for instance, to guide fuel transport into designated regions of the
flame in a combustor. Motivated by this example, we consider an unsteady vortex model for flow
past a bluff body, and create unstable manifolds in this model at prescribed locations by applying
control along the boundary. We find that oscillating the newly created unstable manifolds in 1:1
resonance with the von Kaan vortex shedding frequency enhances mixing in the wake
significantly. © 2003 American Institute of Physic§DOI: 10.1063/1.1588636

I. INTRODUCTION used chaos control ideas to capture and stabilize a concen-
Active f irol is tvpicall d with . trated vortex near a bluff body.
ctive flow control is typicaily concerned with maxi- In this article, we propose a new nonlinear-dynamics-

mizing or minimizing Eulerian cost functions such as . . .
- " . . based control approach: We control the location of distin-
pressure-, energy-, or vorticity-related quantities. This objec-

tive is achieved via adaptive controDNS-based optimal guished material structures in the flow. Specifically, we use
controP3 or robust controf. linear control of the linearized CONtro! to create and shape attracting material lines, the

Navier—Stokes equatigh’ linear control of the full Navier— structures responsible for the formation of global folding pat-
Stokes equatioft ene’rgy-minimization by boundary terns in fluid mixing. While attracting material lines of time-
feedback® or ph)}sics—based phenomenological control Ofperiodic fluid flows are readily visualized as unstable mani-

specific flow phenomend® Reviews of all these ap- folds. of-a Poincaremap (Fig. 1), analogous lines in .g(-eneral
proaches are given in Refs. 3, 14, 15. aperiodic or turbulent flows turn out to be more difficult to

Despite the above advances, the fundamental question gefine. ) _ )
flow control remains unanswered: How does localized actua- R€Cent progress in nonlinear dynamics has shown, how-
tion lead to global changes in the flow behavior? Or, phrase§Ver: that attracting and repelling material lines continue to
in the language of micro-adaptive flow control: How can onefrganize mixing in fluid flows with general time
excite instabilities via local actuation to achieve a desireciependencé’ > In general, theselLagrangian coherent
change in global mixing? Answering these questions willStructuresare no longer isolated curves in a turbulent flow:
require a better understanding of the nonlinear dynamics ofhey form families of finite width and of finite life-span.
the Navier—Stokes equations, as well as of the particle mixNumerical and analytic methods for their detection are now
ing induced by the solutions of these equations. Promising@vailable, as surveyed in Refs. 26, 27.
applications of nonlinear dynamics have already appeared in Because attracting material lines collect and organize
controlling nonlinear reduced-order flow mod&is, using  fluid particles into thinning filaments, increasing the density
chaos control to stabilize unstable vortex trajectoffdSpop-  of attracting lines in any particular flow region leads to en-
timizing mixing in discrete map models of two-dimensional hanced advective mixing. As an example, consider a two-
fluid motion2® and maximizing Lagrangian particle flux via dimensional flow behind a bluff body, as shown in Fi¢g)2
the control of two-dimensional point-vortex motiéhMore ~ We envision enhancing mixing in the wake region of this
closely related to the subject of this papernf& et al??  flow by creating an attracting material line that collects par-
ticles near the horizontal boundary of the bluff body, and
dAuthor to whom correspondence should be addressed. Electronic maiF.hen injects them into the wake. These injected particles will
ghaller@mit.edu spread out along the newly created attracting material line
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unstable manifold ——
(attracting material line)

p()

FIG. 3. Attracting material line emanating from a fluid trajectp(y) on the
wall. The pointp(t) is a separation point in the Lagrangian sense, with the
attracting material line acting as its unstable manifold.

stable manifold
(repelling material line)
FIG. 1. Deformation of a fluid blob in a two-dimensional time-periodic The organization of this paper is as follows. First, in Sec.
flow. Stable and unstable manifolds near saddle-type fixed points of th?l we discuss Lagranglan Separatlon control in general terms
Poincaremap act as repelling and attracting material lines, respectively. fo,r two-dimensional inviscid flows. In Sec. lll. we describe
our unsteady vortex model for a bluff body, as well as the
and ultimately lead to enhanced mixing in the wdkeg. fegdbe}ck controlller that we add to it 'Fo cre'ate atFractlng ma-
2(b)]. terial lines. Section IV shows numerical simulations of our
In this paper we develop an algorithm for the abovecontrol scheme, and Sec. V offers a summary as well as an

control idea, then implement it on a bluff-body shear flow OUtline of future work.

model originally due to Clementé.Our interest in this flow

geometry is driven by the need to control heat release in thg. LAGRANGIAN SEPARATION CONTROL
flame behind a bluff-body flameholder of a combustor. By ,
transporting fuel to targeted spots in the wake of the flame- nge \We propose a way FO create and move attracting
holder, one hopes to control heat release indirectly. Thénaterlal lines in a two-dimensional flow by active flow con-

present work represents the first step in this direction, giviniiml' In our setting, the material lines attach to the horizontal

a control scheme for the unstable manifold, the structure th oundary of an inviscid shear flow, with their points of at-

will carry fuel to the desired location. We show that a precisetachment moving in time according to a prescribed rule. In

control of the unstable manifold location is possible everodr later example of a bluff body shear flow, we transform

under unsteady flow conditions. As a side result, we obtai he actual physical _ﬂOW geometry into the canonical shear
that just by oscillating the unstable manifold at the frequenc low geometry considered below.

of vortex shedding will increase mixing in the wake signifi-
cantly.

For bluff-body flows, the actuation of the wake dynam- To set the stage for a later control design, we first discuss
ics by both passive contrd ! and active contrdf*®has the notion of a Lagrangian separation point for two-
certainly been explored. We believe, however, that ours is thdimensional flows. Using a Cartesian set of spatial coordi-
first model study of a feedback control scheme that rigornates(¢,»), we consider a two-dimensional incompressible
ously delivers the objective of micro-adaptive flow control: flow of the form
“Excite large scale ‘instabilities’ that carry the effect of local . .
actuation along the wall into distant flow regions.” In our E=u&n ), n=v(&n),
scheme, these instabilities are Lagrangian: They are reprevhere the velocity field is assumed to admit two continuous
sented by attracting material lines that act as unstable mangterivatives with respect to the spatial coordinates with the
folds for prescribed moving points on the wall. Despite itspossible exception of finitely many locations. At these excep-
Lagrangian nature, however, our control scheme only retional points, differentiability is allowed to fail due to the
quires sensing of boundary velocities. In particular, unlikepresence of point vortices, point sources or sinks, or vertex
earlier studies on the control of vortic&s;** our work does points of the boundary. We assume slip boundary conditions
not rely on measurements of the position or the strength ot »=0:

int ti .
point vortices b(£.01)=0. R

We call a moving fluid particlgpg(t) = (po(t),0) along
the »=0 boundary d.agrangian separation poinf an at-
tracting material line emanates from the wall @j(t). In
dynamical systems terms, the attracting material line will
then serve as the unstable manifold of the Lagrangian sepa-
ration point, as shown in Fig. 3. By collecting other fluid

A. Lagrangian separation points

Sflow
—Ig 00
target area for

enhanced mixing particles near the wall and injecting them into more distant

(a) (b) flow regions, this unstable manifold will have a significant

FIG. 2. (a) Bluff-body flow. (b) Schematic view of mixing enhancement due mﬂuen(_:e on parthle mixing. We note t_hat while the point
to a moving unstable manifold created by control. po(t) will necessarily be a stagnation point for steady veloc-
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ity fields, it will typically have no Eulerian signature for HereF; denotes the flow map that maps the fluid particle

unsteady velocity fields: It will remain an undistinguished positionos €0, m0) at timet,, to their positions £(t), 5(t)) at
point in instantaneous pressure, vorticity, and streamlingimet. In our notation)\ (M) refers to the maximal eigen-
plots. value of the matrixM, andM T denotes the transpose bf.

To find conditions for a fluid trajectorpo(t) to be a  Finjte-time stable manifolds—or repelling material lines—at
Lagrangian separation point, we pass to a frame commovingme t, appear as ridges ofr, if t>t,. Calculating
with po(t). To this end, we define the new horizontal vari- (&, 5,) in backward time witit<t, gives finite-time un-
able y=£—po(t). In the new frame(y,7), we have the ve-  stable manifolds—or attracting material lines—tatt, .
locity field To evaluates(£&,, 7o) humerically, one chooses an ini-

. tial grid of fluid particles, and numerically advects them to

y=U(Po()+ 7,70 = U(Po(1).00), approximateFE0 over the initial grid. Differentiating ad-
n=v(po(t)+ 7, ,1). vected positions of the grid with respect to initial positions—

say, using central differences—one first finds the deforma-

Using a Taylor expansion aty(t) [now at (y,7)=(0,0)],  tion gradientVF! , then calculates the scalar fiedq.
we separate the linear and nonlinear terms of the velocity 0

field by writing B. Control of Lagrangian separation points

y=a(t)y+p(t)n+P(y,nt), We now design a control algorithm that creates Lagrang-
. (2)  ian separation points al prescribed locationsp;(t)
n=—at)n+Q(y,7.1), =(p(t),0), j=1,...L. We achieve this by employin§\

fixed actuators, modelled by potential flows, located at
(ék.0), k=1,... N, along the wall. We shall use the notation
ug(&, »,t) for theu component of the uncontrolled velocity
Of_ield, which is also assumed to be potential.

Using potential flow components, we ensure that the full
velocity field is the sum ofi; and the control velocity field.
Alternatively, we could assume that both the uncontrolled
flow and the actuator flow are Stokes flows. In a real-life
implementation of our controller for a Navier—Stokes flow,

"one would start from the control law derived below, then
consider nonadditive velocity terms as nonlinear perturba-
tions that are to be handled in an adaptive fashion. We shall
elaborate on this approach elsewhere.

Away from the actuators, the walj=0 remains an in-
variant line in the controlled flow. Restricting the control

where a(t) = (9§U|po(t) , ﬂ(t) = (77]U|p0(1) , and (?”U |p0(t)

= — «a(t) by incompressibility. The terms nonlinear jrand

n are collected inP and Q. Note that there is no linear
y-term in the second equation in accordance with the boun
ary condition(1).

Classic results from dynamical systéfhguarantee the
existence of an unstable manifold fpg(t) off the wall and
a stable manifold along the wall if all the following holt)
a(t) is negative and uniformly bounded from zero, i.e
a(t)<ay<0 for someay<0 and for allt; (2) B(t) is uni-
formly bounded, i.e.[8(t)|<C for someC>0 and for allt;
(3) P andQ are uniformly Lipschitz continuous ig and
nearpy(t). Note that all three conditions are somewhat re-
strictive: They require uniform bounds on the velocity field

and its derivatives over infinite time intervals. velocity field generated by the actuators to the wall, we ob-

To design our flow control algorithm, we shall rely on : . . oo
SO . . L tain N one-dimensional velocity contributiona,(é,t), k
less restrictive invariant manifold results that do not insist on .
=1,...N, to be designed below. We assume that

uniformity in their assumptions. As shown by Halféyec-
tor fields of the typ&?2) admitfinite-time stableandunstable
manifolds over a time intervalZ if P and Q are smooth a(&,1) = au(t) Wi (€),
functions in a vicinity ofpy(t) over the time intervall and

3) i.e., thata,(¢,t) is a time-modulated version of the spatial
velocity distribution of thekth actuator running in steady

While not unique, these finite-time manifolds become expoState-[An example of such an actuator lmodel IS a point
nentially close to each other as the length of the time intervaf@uUrce at §,0) with time-varying strength’] Our goal be-
7 increases. As a result, the unstable manifolgggt) will 0w is to find the actuator strengttig(t) that generate the
become unique for practical purposes once condi@n Prescribed Lagrangian separation poipit). _
holds over long enough time intervals. Since bothug(§,7,t) and a,(¢,t) describe potential
To visualize a Lagrangian separation point and the finiteﬂ‘?WSv the _resultmg controlled velocny_fleld alor_lg the .waII
time unstable manifold emanating from it, we shall emp|0yWI|| be their sum. As a result, the.motlon_ of fluid .part|cles
the Direct Lyapunov ExponentDLE) algorithm® which along the wallp=0 will obey the differential equation
renders Lagrangian coherent structures at tignas local
maximizing curves oridgesof the scalar field

a(t)=&§u|p0(t)<0, tel.

N
. E=Uo(£,0)+ 2 aHWi(). 5
(&0, 7m0) = Z(t—_to)bg)\max
If (p;(t),0) is a Lagrangian separation point, then it must be
t T t J
X ([VF (&0, 70) ] VFi,(£0.770))- 4 4 solution to this equation, i.e., we must have
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N
bj=Uo(pj(1),00)+ 2 G OWA(P;(D), j=1... L.
(6)

Using the variabley; = {—pj(t) introduced in the previous
section, and Taylor expanding E(p) at y=0, we rewrite
Eq. (6) as

¥i=ajy;+P(y ), (7

whereP(y;,t) is a smooth function and
N

a,—(t)=(9guo(pj(t),01)+gl k() Wi (pj (1)) 8 Cplane

We finally select a constant; <0 and set
N

a;=dU(pj(1),00)+ X, q)Wi(pj(1), j=1,..L.
k=1

S B C D E
By condition (3) of the previous section, if no velocity FIG. 4. The geometry of the bluff-body model on taeplane (physical
singularities occur in the spatial interval covered yt), ~ Pland and on thef-plane(transformed plane

and Eq.(9) is enforced over a time intervdl, then p;(t)
=(p;j(t),0) becomes a Lagrangian separation point dker

Combining Eqs(6) and(9), we obtain the linear control law Valid in the framework of inviscid flows, the above al-

gorithm represents a first step in the general program of La-
A(t)qg(t)=h(t), (10 grangian separation control. While the inviscid assumption is
a limitation of our study, the bluff-body model that we shall
control does include a continuous feed of regularized point
Wi(py(t)) -+ Wy(pi(t)) vortices into the flow, thereby modelling vorticity generation

: : : near the wall. As a result, the von Kaan vortex street, a

for the unknown vectog(t) = (qy(t),...,qn(t)) " with

) ] main feature of three-dimensional separated bluff-body
Wa(pc(t) -+ W(pc(D)) flows, is reproduced by our two-dimensional inviscid model

AD= Wi(pg(t)) - WY (p(t) [ to the extent that a qualitative comparison with experiments
: . : gives favorable resultd
A more serious limitation of the inviscid controller is its

WipL(t)) -+ Wy(pL(t)) reliance on slip boundary conditions, which makes feedback-

b1— Uo(py(1),0) 11 linearization possible. For viscous flows, the corresponding

. no-slip boundary conditions are more difficult to handle.
. ) Nevertheless, the Lagrangian control strategy proposed
b(t)= PL=Uo(pL(D),01) ) above can be modified to bear on the wall shear field instead

a1~ deUo(Pa(t),00) of the velocity field.

: Finally, boundary-layer effects remain unaccounted for

ap—dgUo(pL(1),01) in our setting, and hence our control scheme primarily targets

To obtain a unique control inpui(t) for any measured 9eneral large-scale flow separation as opposed to boundary-
b(t), the dimension ob(t) must necessarily equal the di- layer separation. By large-scale flow separation we mean

mension ofg(t), which implies separation in low-Reynolds-number fidvsr even in invis-
cid flows*® both of which lie outside the realm of classical
N=2L. (12 poundary-layer theory.

This means that for our flow-control problem to be well-
defined, the number of actuators must be twice the number dfl. BLUFF BODY SHEAR FLOW MODEL
Lagrangian separation points to be controlled. In addition to
this, the matrixA(t) must be nonsingular in order for Eq.
(10) to yield the unique solution

Here we describe an inviscid bluff body model that will
illustrate the Lagrangian control ideas discussed in the pre-
vious section. Our model is an adaptation of the work of
q(t)=A"1(t)b(t). (13  Clements®

Note thatA(t) is nonsingular if and only if the actuator
velocity component®V,,...,.W,, and their derivatives form
a linearly independent set of functions over the points We consider a two-dimensional bluff body with right
pa(t),..., pL(t) for all teZ. If this is satisfied, the control angle between the side and the rear base Fig. 4 The
law (13) uniquely determines the outpujs(t) to be applied width of the base i8D=2h; the upper and lower sides of
by individual actuators. the body extend to infinity. Since the edges of the bluff body

A. Potential flow around a bluff body
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are all straight lines, a conformal mapping can be con-
structed that maps the exterior and the interior of the body—<
into the upper and lower halves of a complex pl&h&lore
specifically, using the complex variable=x+iy on the
original physical plane and the new complex variabite¢
+i#n on the transformed plane, the conformal mapping can

z-plane
actuator

A

unstable manifold

be written as F
2h . . z ;
2=2()s=—[sin 1 £+ 1= 7). (14) actuator
For later reference, we note that
4ih 4ih ¢ E C—plane
Z2'()=-—1-8 Z"({)=— .oa
(£ - & (0)=— - (15
— (abie pranifold po
The bluff body sits in a two-dimensional crossflaw wetuator / weinaro B ARPOL |  N actuator
=(u,v) which is assumed incompressible and inviscid, sat-2 B e AP E
isfying the vorticity equation

D Lagrangian separation point Lagrangian separation point
_w:O (16) FIG. 5. Actuator locations and unstable manifolds to be created by the
Dt controller. The sensors are distributed between the actuators along the wall

to measure the tangential velocity along the boundary.

with vorticity w=4d,v—dyu. Due to the no-flow boundary
conditions, thev-component of the velocity vanishes on the

boundary. N
Recall that the complex potential associated with such and{ 1 deo i Z"(&o)
inviscid and irrotational velocity field isw(z)= ¢(X,y) Tl Tzl dar | Ao
+iy(x,y), whereg is the (real) potential function andy is dt ¢ 2" (&7 d¢ do 4mz (o)
the stream function. At points where is analytic, we can ) — —
write the velocity field as . ow, iaT ¢ 20
16n??-1] df  64h* |1-(2(1-7))
d?_dw_dwdg_dwg 1 i dw, a
dt dz dfdz df Z'(0) ahJ1-¢2 do B. Point vortex model with actuators
with w, referring to the complex potential expressed in ¢he Following ClementsS? we shall express the solution of

variable, and with the overbar referring to conjugation.the vorticity equatior(16) for our bluff body flow as a sum
Given the transformed Comp|ex poten“"aél, we can use the of potential flows. In Clements’s Work, these flows include a
above equation to calculate fluid velocities away from singu-Potential inflow from infinity,N point vortices and their im-

larities of w in the z-plane. Because designing our Lagrang-2ge vortices on the other side of the bluff body boundary, and
ian control algorithm turns out to be easier on the transa potential disturbance that breaks the symmetry of the wake

formed g_p|ane’ we shall also need the Ve|ocity field and induces vortex Shedding consistent with eXperimentS.

expressed in terms qf Diﬁerentiating Eq(14) with respect Clements models the generation of VortiCity at the wall
to t and using Eqgs(15) and (17) gives by releasing a new pair of point vortices near the edges of the
bluff body at equal time intervals. At the same time, vortices
d¢ 1 dz - d_vvg colliding with the wall during the numerical solution of the
at Z(0) at 1607 2= 1] d_g (18 model are constantly removed. As a result, after an initial

start-up period, the number of active vortices becomes nearly
As discussed by Saffmdf the velocity at a singularity constant, and a periodic structure reminiscent of the von

Z, of w can be obtained from the Routh formula Karman vortex street emerges. _ N
The new element in our model will be the addition of a
Z 1 dw, iT Z"({o) control loop: Sensing the instantaneous velocity along the
0

(19 boundary, we shall use potential point-sources to create and
control two Lagrangian separation points in order to enhance
mixing in the wake region. Mixing is enhanced because the

wherew, ~denotes the complex potential evaluated at theinstable manifoldgattracting material linesemanating from

transformed singularityy, andI is the circulation around the two separation points collect fluid particles from the wall

Z,. In analogy with Eq(18), the corresponding velocity on region, then inject them into the waksee Fig. 5. As indi-

the {-plane is given by cated in the figure, we aim to create one controlled Lagrang-

dt|, ~Z'(Zo) dZ |, aw 20"
0 0
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ian separation point on each horizontal boundary of the bluffor j=1,2. Hereq,;=q,;/(hU.) and §;;=q;;/(hU..) de-
body. According to formuld12), this will require the use of note the nondimensionalized flux from the actuators jfor

four actuators along the boundary. =1,2.

To describe the model in more detail, let us first nondi-  Combining Eqs(21)—(25), we obtain the full complex
mensionalize variables by letting potential

~ U, z u w P - - - - - -

t:T' 2=H, GZU—OC, i}:ULoo, Wzm, W{:Wvort+ww+wasym+Wu1+Wu2+WI1+WI2- (26)

Substituting Eq(26) into Eq.(20), we obtain the equation of

whereU., is the velocity that appears in the following inflow ) - ’
motion for thejth point vortex:

boundary conditions at= — o:

li Yy)y=U., i ,y)=0. .
X_ITOOU(X y) X:njwv(x y) i im 1 ( ! Fk i
~ _s2 2

To derive the transformed velocity field Eq4.8)—(20), t 401 §J| k=1k*i 8 |§' &
we need the complex potenti&l ¢), which is the sum of the n A —
following potentials: The complex potential of the inflow Fk 51 5k i+ p+1"_ ¢ )
f infinity i —Z !
rom infinity is k18 1, o2 161— 51

2
W()=— =22, 21 T 1 ) ST
(&) T 4 @D +— ( Gui() - 2

. . . . i 16 |1 é{] | |§J gul|
while the complex potential for the asymmetric potential dis-
turbance is of the form N {i—Lu -

+Qu2(t)—u 4. () ——=
R 4p |gj_§u2| |§] §I1|
Wasyn(g): - 7§ (22
WG (27)
The complex potential induced by point vortices and their G2 1£i— 2152 '
image vortices is .
no.n no.n The vortex motion in the physic&plane is then obtained

R Ifk |Fk — R -
Wyor($)== 2, 5—10g({~ )+ 2, 5—log(¢~ &0, (23 from the relation; = 2(¢).
k=1 k=1 For a fluid particle away from vortex cores, substitution

if the point ¢ does not coincide with any of the point vortex Of Ed. (26) into Eq. (17) yields the transformed equation of
locations¢, . The constanf’ =T /(hU.,) is the nondimen- Motion

sionalized counterpart of theth vortex circulationl’y. The R R N
complex potential induced by the vortices at the point vortex dg |7r 1 ( " Fk =& " Fk =&

location ¢; is of the form a4t 4 -2\ &8 |- §k|2 &8 g
N R
Iy
Wyor(£)) == 2 5—10g(¢;= &) _ -
vortt>J k=Tk#j 27 g ek +iZ+ip Gua(d) ‘ §U12
16|1 & |{=Lul
+2 Iog(z, &) (24) il 4
+QU2(t) 2 |1( )
We now discuss the complex potential associated with =Ll |{= 4l
the actuators of the control loop. We place two point sources [~
as actuators on the upper boundary with strengthét) and +8,(1) '22) , (28
qu2(t) and locationsx,;+ih and x,,+ih, where x,; [{= ¢l

<X,2- Similarly, we place two sources on the lower bound-

ary with strengthgy,;(t) and g;,(t) and locationsx;;—ih which again trzjmsforms back to the physical plane through
andx;,—ih, wherex;; =X, andx;,=X,;. For positive val- the relationz=Z2(¢).

ues ofqy;(t) andqj;(t), the actuators are indeed sources: In the actual numerical implementation of the above
They blow fluid into the flow domain. For negative values of model, we will regularize all point vortices into “smeared”
quj(t) and q;;(t), the actuators act as sinks by removingvortices. A common trick in vortex simulations, regulariza-

fluid from the flow domain. We show the actuators in thetion eliminates excessively large velocities near vortex cores.
z-plane and their images in thieplane in Fig. 5. The com- Without regularization, large velocities would introduce
plex potentials for the four actuators are of the form large errors in the particle advection calculations when the

particles drift too close to vortex cores. For details on the

quj( ) qu( t) vortex regularization procedure, we refer the reader to Sec.

Wy == —log({~ &), Wy=——log(t=¢y). (29 (€

Downloaded 03 Jul 2003 to 152.66.33.152. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 15, No. 8, August 2003 Closed-loop Lagrangian separation control 2257

C. Control law IV. NUMERICAL SIMULATIONS

We now adapt the general Lagrangian separation control  Here we discuss the numerical implementation of the
algorithm of Sec. IIB to our bluff-body vortex model. We ¢ontrol law designed in the previous section. We first locate
shall use four actuators to control two Lagrangian Separatioﬂagrangian coherent structures in our uncontrolled bluff
points, thus the first controllability conditiaii2) is satisfied. body flow, then show how active control creates further such
The second 9ondition for controllability is the invertibility of gtryctures at prescribed locations. As expected, these addi-
the matrixA(t) defined in Eq(11). For any prescribed paths tional Lagrangian structures turn out to enhance mixing in
pu(t)=(p,(1),0) and p,(t)=(p,(t),0) of the upper and the wake of the bluff body.

lower Lagrangian separation points, we have
A. Uncontrolled system

A(t
® We start the uncontrolled simulation of the vortex model
W1 (pu(t) Wea(pu(1) Wip(pu(t)) Wia(py(t)) att=0 with an impulsive asymmetric potential flow distur-
A A A - bance
| Wua(pi(t)) Wia(pi(t)) Wia(pi(1)) Wiz(pi(1))
Wia(Pu(1) Win(Pu(D)) Wi (py() Wia(pu(D)) | oty 28T, OSt=B,
Wi (pi(1) Wia(pi(D) Wi (pi(E) Win(pi(D) 0. t>8,
(29) in order to trigger asymmetric vortex shedding behavior. The
frequency ofp(t) is 0.25, the frequency used in the original
where model of Clement8® We have verified that the qualitative
T 1 1 clustering of vortices does not change for excitation frequen-
Wyj(€) = 16 £2—1 E— &y cies close to 0.25.
1 1 We obtain the evolution of point vortices by employing a
Wi (&)= Nl —_——, second order Runge—Kutta scheme with time stép-0.1.
16 £°=1 £=¢; To emulate vorticity input form the wall, we introduce a
, o 352—2§§uj—1 point vortex pair at the pointd= *=1.05 in the z—plane at
Woj(6)=- 16 (£2-1)2(6—£,)% times %At for k=1,2,... . In contrast to the algorithm of
Clements® we determine the strength of a new vortex pair
N 352—255” -1 upon release from the Kutta-conditiofzero velocity at
Wi (§)=— 16 (E2-1)%(¢— §|j)2 ' pointsB andD at the time of vortex releageThis condition
for |£>1 and forj=1,2. eliminates the(unphysical occurrence of infinitely large

A(t) turns out to be invertible under fairly general con- pressure gradients & and D at least at the moments of
Y9 vortex release. Other conditions with different advantages

ditions. For instance, we show in the Appendix tAqt) is  ¢4n also be employed.Once the strength of a point vortex
nonsingular if the following three conditions are all satisfied:is yetermined. it is kept constant unless it collides with the

solid boundary. In case of such a collision, the vortex
strength is reset to zero, i.e., the vortex is removed from the
flow.

To avoid excessively large velocities, we regularize the

tween the lower actuator locatiods, and &». . ) ; . X
(iii) Inthe{-plane, the distance between the two lower anopOInt vortices in the model by using the complex velocity
' distribution

the two upper actuators is less than one half of the
distance betweef; and¢,,. iC({— &)
O 2l Lo

(i) The upper Lagrangian separation pqi:;;’(f) lies be-
tween the upper actuator locatiofig and &, .
(i)  The lower Lagrangian separation popn(t) lies be-

(1_e—|{—{o\2/52)’
For Lagrangian separation point paths satisfying condi-

tions I-1ll, the control law that creates them is of the form wherel is the strength of the point vorte¥, is the location

of the point vortex, and is a radius parameter that is set to

a(t)=A"4(D)b(1), (30 0,01 in our simulation. Due the the exponential decay of the
with regularizing term, the velocity induced by the smeared vor-
R . o tex on a fluid particle lying at is almost identical to the
Qua(t) Pu(t) = Uo(py(t),0t) velocity induced by the original point vortex at the same
. Quz(t) . (1) — uo(pi(1),01) location, provided that is not too close the vortex coi.
q(t)= » b(t)= (3D At locations close to the vortex cores, the velocity induced

Ai(t) a1~ Iglo(Py(1).00) by the particular vortex is roughly zero.

q2(t) az = dUo(pi(1),0.t) Running the simulation with all the above ingredients,
The positive constants; and a, determine the strengths of We obtain the point vortex distribution shown in Fig. 6 at
the separation points, i.e., the exponents in their rate of atime t=40. As the figure shows, in the far wake region each
traction near the upper and lower boundaries. vortex cluster contains vortices of the same sign, with the
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- FIG. 6. Vortex distribution after the formation of the
von Karman vortex street for the uncontrolled system at

time t=40.
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signs of the clusters alternating. Thus, as we noted earliewye fix a rectangular mesh of 7850 fluid particles with
Clements’s model indeed reproduces the two-dimensionajrid spacing 0.01. Starting from the initial tinig=40, we
cross-section of the von Kaan vortex street with sufficient integrate trajectories starting from the mesh in backward
gualitative accuracy. time over the interval30,40, just over one period of the von
To find attracting material lines in the uncontrolled flow, Karman vortex shedding which is around 8.7. Calculating
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FIG. 7. (Colon Uncontrolled attracting material linéanstable manifoldsat timet,=40 as local maximizing curves of the fieg(£)* |t—1o|. Hereo(Zo)
is the DLE-field defined in Eq4).
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the deformation gradienI’F}0 over thel-plane, we plot the The corresponding Lagrangian separation points in the

scaled scalar fieldr(Z)*|t—1o| in Fig. 7. As we noted physicalz-plane are given by (p,(1)) andZ(p(1)), with

earlier, local maximizing curves in this figure signal attract-the conformal mapping defined in Eq(14). Here, for sim-

ing material lines at=t,, the Lagrangian signatures of the plicity, we have prescribed sinusoidal separation point paths,

von Karman vortex street behind the body. Notice that therebut our control law allows for arbitrary time dependence in

are no attracting material lines that connect to the horizontap,(t) andp,(t). Note that¢,= ¢, causes the two separation

bluff body boundaries, which indicates a lack of Lagrangianpoints to move in phase in the transformed plane, but in

separation points along these boundaries in the uncontrollesbunter-phase in the original physical plaieé Fig. 4).

flow. We have set the frequency of Lagrangian separation

We finally note that the attracting material lines of Fig. 7 point oscillation to

closely resemble the experimental streaklines observed be- B

hind a bluff body?® This is no surprise, because streaklines =0, 0, 40, 8o, (33

are formed by passive particles that are drawn to attractingespectively, in our different numerical runs, with= /4

Lagrangian coherent structuréBnite-time unstable mani- approximating the dominant vortex shedding frequency of

folds). the uncontrolled system. Further important design param-
eters in the control law30) are a, and «;, which we set to

B. Closed-loop system ay=a=—-0.1.

We now discuss a numerical implementation of the feed-
back control law designed in Sec. Ill. Recall that the controlThis value represents a relatively small actuation authority,
law aims to create attracting material lines at prescribed lowhich is generally desirable in flow control to avoid insta-
cations. These lines collect fluid particles from the horizontaPilities due to system noise and uncertainties. _
wall regions and inject the particles into the wake. The con- 10 evaluate the control la80), we assume continuous
troller impacts the attracting material lines by controlling S€nsing along the wall portions enclosed by actuator pairs.
their points of attachments, the Lagrangian separation pointd,"is means that the velocity at any point between the actua-
along the walls. tors is assumefj toA be at our disposal at any time. We also
On the physicak-plane, we select the actuator locations need d.ug(p,,(t),0t), the derivative of the uncontrolled
5 —_12+i 3.=—02+i wall-tangential velocity field along the designed separation
ut b ’ point path. We calculate this quantity from the sensed veloc-
2,=—0.2-1i, Zp,=-1.2-1i, ity field by central differencing:
which transform to the-plane locations Uop(Py, (1) +A,t) —ug(py, (1) —A,t)

{u=—1.9223, {,=—1.2944, Ieuo(py,(1),00)~ A

61=1.2944, (,,=1.9223. Hereuy is obtained by subtracting the known tangential ve-
Again, to avoid large numerical errors due to unboundedocity field generated by the actuators from the sensed tan-
velocities, we regularize the point source/sink actuators byential velocity fieldu. In our simulations, the spatial step-
using the complex velocity distribution sizeA is set to 0.01.

Q&) We show a representative time history for the closed-
= 27— Lo loop actuator strengths for the ca§p=w in Fig. 8._ (The_

same figure also shows actuator signals for a strictly time-

whereQ is the strength of the original point sourdg,is the  periodic, open-loop controller that we shall use as reference
location of the point source, andlis set to 0.01 in our simu- in our mixing comparison study belowNote that the two

u(g) (1—e 12l

lation. actuators upstreami(, and §,,) are sinks, while the two
Next, we prescribe periodic Lagrangian separation pointlownstream actuatorsj(, andg,,) are sources, with their
paths in theZ-plane in the form mean strengths being roughly the negative of each other.
- A Also note that the closed-loop controller is not exactly peri-
Pu(t) =Puo+t Pus SINQLL+ ¢y), (32 odic: It is the resulting Lagrangian separation point that is

- PP meant to be periodic.
t)=pio+ pi1SINQt+ @), ) . A
PI(D)=Pio+ Pra sin( H) Figures 9 and 10 show the attracting material lines at
with parameters =40 obtained for the Lagrangian separation point frequen-
_1 _ cies w,=Q) and w,=4(, respectively. In each case, the
Puo=2 (1t fu2) 1.6084, controller indeed creates the desired Lagrangian separation
points on both horizontal boundaries, as seen in the figures.

a
Pu1= ¢ ({uz— £u1) =0.1047, bu=7 To evaluate the accuracy of our controller, we have com-
pared the actual location of Lagrangian separation points
Yio=3({11+ {12)=1.6084, (LSP) on the boundary with their desired location. The actual

location was found as a local maximum of finite-time
= 1(f1— 61)=0.1047, & _m Lyapunov exponents along the boundary. Shown in Fig. 11,
V1T sle1z™ e11) =Y RPN the desired and actual LSP locations are close to each other,
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FIG. 8. Actuator strengths for the closed-loop system
with Q= w (solid lineg, and for a reference open-loop
controller (34) (dashed lines

0 5 10 15 20 25 30 35 40 45 50
Nondimensional Time

with a small error coming from delay and discretization ef-into the wake region. This results in enhanced mixing, as
fects, as well as from errors in locating the actual LSP. evidenced by the striking increase in the density of attracting
As expected, the unstable manifolds created by the cormmaterial lines in the wakéFigs. 9 and 10 As we noted
troller leave the vicinity of the wall and enter the vortex earlier, these material lines attract streaklines, thus their en-
street, thereby injecting fluid particles from the wall region hanced density leads to increased interface length and thin-
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FIG. 9. (Color) Attracting material linegunstable manifoldsat fo=40 for the case when the Lagrangian separation point is controlled to oscillate with
frequencyQ = w. Actuator locations are marked by squares.
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FIG. 10. (Color) Same as Fig. 9, except that here the oscillation frequency for the Lagrangian separation point is se4fb.

ner filaments for passive tracers released into the flow. 8. (D) =81
. o Qua(t)=0q2(t)
For comparison, we have also calculated unstable mani-
folds created by an open-loop controller scheme that simply =—1(t)=—guo(t)
blows fluid periodically through the same actuators. We se- .
lected this open-loop controller to be =-0.9-0.7siMwt), (34
-0.2 T T T T T T
I ] S R R R |

FIG. 11. Comparison of desired and measured Lagrang-
ian separation pointdSP) for the closed-loop system
at 1:1 resonance.
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FIG. 12. (Color) Attracting material linegunstable manifolo)satf0=40 for the reference open-loop controli@4) at timet=40.

which means two upstream-actuat@rg andq,, of the same erage of a designated spatial region by attracting material
strength, but out-of-phase byr relative to the two lines. This measure specifically targdisite-time mixing
downstream-actuatoig,; andq;,. We picked the mean and caused by finite-time unstable manifolds in the flow. We are
amplitude for this controller to match our Lagrangian closed-interested in finite-time mixing enhancement, because par-
loop actuators for the case 6i=w (see Fig. 8 The un- ticles in related industrial devicésay, in a combustdspend
stable manifolds(attracting material lineéscreated by this fairly short times in the device. Employing infinite-time mix-
purely periodic controller are shown in Fig. 12. While this ing measures over short time scales would give questionable
controller also creates Lagrangian separation points on bottesults in the absence of a separate study dedicated to the
horizontal walls, the position and strength of these separationonvergence properties of the given mixing measure. Be-
points is beyond our control. As a result, the created unstableause our main focus here is not mixing, we have chosen not
manifolds are weaker, and their influence is localized to théo undertake such a study, and use a geometrically motivated
near-wake regiofsee Fig. 12 For these reasons, such mani- finite-time mixing measure instead.

folds do not provide a starting point for future Lagrangian Consider the fixed rectangular domaif®®=[0,12]
control efforts that aim to transport fluid particles to specifiedX [ —5,5], and for anyr >0, defineP(r) to be the probabil-

locations. ity that a randomly placed ball of radius with its center
inside D, intersects the set of attracting material lifesIn
C. Mixing enhancement due to control other words,P(r) denotes the probability that a randomly

aDlacedr-ball experiences exponential stretching over the

Our primary control objective has been the creation f int | of the simulation. Wi lcul .
Lagrangian structure that ejects particles from a vicinity of Ime interval of the simuiation. We calcu ar(r) numert-
cally by placingN balls of radiusr inside the domairD

the wall at prescribed locations. The long-term goal motivat-

ing this control objective is to transport fluifuel) into des- _randomly, then identifying the numbex(r,N) of balls that

ignated regions of the wake, which will control heat releas%;tersect at least one attract!ng material fine witiin For
in combustion applications. Although we have not addresse rge enougtN, we then obtain
this long-term goal in the present paper, we already find mix- n(r,N)
ing enhancement in the wake due to the presence of the P(r)~ N
unstable manifolds we have created.

To evaluate the mixing enhancement in the controlledWe prefer this mixing measure over other statistical mea-
flow, we shall use a mixing measure that quantifies the covsures, because it makes use of the detailed geometric infor-
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mation that finite-time invariant manifolds provide about ad-viscid two-dimensional shear flow. These points serve as
vective mixing. In particular, the dependence Bfon r points of attachments for attracting material lines that collect
ensures that this measure gives a scale-dependent assessnfieid particles from the boundary regions and transport them
of mixedness in the flow, a feature that is particularly usefulto remote locations in the flow. To induce this transport
in assessing the advective mixing of, say, fuel drops of parmechanism, we sensed the wall-tangential velocity field
ticular size. For large enough P(r) becomes identically along the boundary, then altered it through a feedback linear-
equal to one, whereas for small valuesrofthe measurd ization scheme to create Lagrangian separation points at de-
approaches the relative area occupied by finite-time unstabkred locations. Our feedback control relied on discrete invis-
manifolds withinD. This relative area is zero for classical cid actuators that modeled tangential blowing and suction via
unstable manifolds of infinite-time flows, but becomes non-synthetic jets placed at the boundary.
zero for finite-time flow-data because of the inherent nonu-  We used the above control scheme to enhance mixing in
nigueness of finite-time invariant manifolds. a point vortex model of a bluff-body shear flow. In this prob-
To evaluateP(r), we selected values from the spatial lem, our objective was to create attracting material lif@s
interval [0.2,6.4. To test whether a randomly selected ball unstable manifoldsthat collect particles from the wall re-
intersects a ridge of the,-field, we tested whether, admits  gion and inject them into the wake. We observed the greatest
values exceeding a preset threshold within the ball. In oumixing improvement in the wake when the attachment points
calculations, this threshold was selected tarfie=5, and the  of the unstable manifolds were controlled to move in a 1:1
number of random balls wad=1000 for eachr. We plot  resonance with the von Kaan vortex shedding frequency.
P(r) as a function of for different choices of the Lagrang- We evaluated finite-time mixing improvement in the flow by
ian separation point frequency in Fig. 13. Notice that eaclemploying a geometric measure of coverage of the wake by
controlled case produces better mixing than the uncontrolleéinite-time unstable manifolds.
case. Notably, however, the case of a 1:1 resonance between Undoubtedly, much room is left for further development.
the separation point frequency and the vonrdan vortex  First, it may be unrealistic to assume twice as many actuators
shedding frequency results in the largest mixing enhanceas Lagrangian separation points, especially if a large number
ment for intermediate scales. of such points is to be controlled. In that case, assumption
Figure 13 also showB(r) for the purely periodic open- (12) and the control law13) will fail, and one needs to allow
loop controller(34). This reference controller was also se- for some error in the position of the controlled separation
lected to be in 1:1 resonance with the vortex shedding frepoints. A solution is to enforce the original control objective
quency, and results in significant overall mixing (10) in a least-square sense, by requiring the eff@ft)q
improvement. Our 1:1 resonant closed-loop controller, how— b(t)||, to be minimal. This leads to the relaxed control law
ever, still provides noticeably better finite-time mixing for A =[AT(DA(t)] *AT()b(t),

intermediate scales.
which only assume#\(t) to have full rank for allt, a re-
quirement that can be achieved with less thanaZtuators.
Second, one would ultimately like to control the global
We have proposed a control algorithm that creates movshape of Lagrangian structures involved in the control
ing Lagrangian separation points on the boundary of an inscheme. In our present work, only the points of attachment

V. CONCLUSIONS

Downloaded 03 Jul 2003 to 152.66.33.152. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



2264 Phys. Fluids, Vol. 15, No. 8, August 2003 Wang et al.
of these structures were controlled actively; their global | O\/E F E F
shape formed according to the flow conditions. Having more _GE-! I)(G H) =( 0 H—GE‘lF)'
control over the shape of attracting material lines will require
more actuation authority away from the wall, which, for ex-
ample, can be secured through the application of magnetig,o have
actuators in the case of a conducting fluid.
Three-dimensional extensions of the present work would
also be highly desirable, but conceptually more important '%etA _ detA
the development of Lagrangian separation control for vis-
cous flows. The main challenge there is the treatment of = —de{(E)de{H—GEF)
no-slip boundary conditions along the wall: Having zero
WaII-tgngential v)élocity makes feeé]back Iinearization?mpos- =—de(E)de(H)de(l ~H'GE"'F).
sible. An alternative—and mathematically = more
challenging—approach is feedbadknlinearization i.e., a
nonlinear alteration of the flow field in a vicinity of the wall.

To show that this last product is nonzero, we shall use, for
any vectorxeR", the norm
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APPENDIX: PROOF OF NONDEGENERACY OF A (1) IE"F.<1, |H 'Gl.<1, (A2)

Here we show thaf(t) is nonsingular under conditions
I-1ll. By interchanging the second and the third rows of
A(t), we obtain the matrix

ul(pu(t)) Wuz(pu(t)) Wll(pu(t)) WI2(pu(t))
W1 (Pu(t)) Wia(py(t)) Wiz(pu(t)) Win(pu(t))

then

de(l—H 'GE 'F)+0.

At)=
® Wy (pi(t)) Waa(pi(t)) Wia(pi(t)) Wia(p(t))
/ Assume the contrary, i.e., assume that Idet(
w t)) W)/ t) W t) W
n(Pi(B) Wea(pi(1) Wia(pi(1) Wi(pi(t) —~H™!GE~!F)=0. Then there existse R2—{0} such that
o
G H (I-H 'GE 'F)x=0,
where
l(pu(t) W&Z(pu(t))
F=<W|l ) I =H1GE 2],
W/ (py( W/5(pu(t)) )’ _ _ _ _
e e <[IH"*GE ™ *Fll[[X|..<|H G| E~*FlL.[IX]L...
G_< ul(pl Wu2(pl(t)))
Waa(Pi(1) - Wi(pi(D)) Therefore, we obtaifiH ~*G||..|E~*F|..=1, which con-
(Wll(pl(t)) le(p,ﬂ))) tradicts Eq(A2). Consequently, EA2) is indeed sulfficient
=\ ., , . conditions for the nondegeneracy Aft).
Win(pi(1) - Wia(pi(1)) Next we argue that the inequaliti€a2) do hold under
Noting that conditions I-lll. Note thak& is of the form
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T 1

16 (p2—1)(py— £u)

7 3pi—2pufu—1
16 (P2~ 1)%(py—£u)?
with the determinant

2
w i w2

T 1
16 (p5—1)(py— &)
7 3p5—2p,énn—1

16 (pP-1)2(p—éw)?

detE= (1—6

(P5—1)2(py— €u1)*(Pu— €u2)?’
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which is nonvanishing by condition I. This ! exists and can be written as

7 3pi—2puéu—1

T 1

1 | 16(p2-1%pu—£€w)?  16(p2—1)(py—éyw)

71:
E detE

7 3p;—2puén—1

T 1

16 (p2—1)2(py— éu1)?

SinceF is given by

T 1

16 (p3—1)(pu—&11)
™ 3pg—2puéin—1

S 16(p2-1)2(py—&1)?  16(pE—1)%(py—£12)?

T 1
16 (p5—1)(py—é&12)
7 3pa—2puéi—1

we have
fll_fuz ( pu_ful)2 §I2_§u2 ( pu_ful)2
= §u1_§u2 pu_§I1 §u1_§u2 pu_EIZ
gul_gll ( pu_§u2)2 §u1_§|2 ( pu_§u2)2
gul_fuz pu_fll ful_guz pu_§|2
_(511(pu) 512(pu))
521(pu) 522(pu) .
Because we have
Ell<pPu<éw<&1<pi<ép
by conditions I-Il, the following identities must hold:
§uo— €&
sup  [81(pu)l =l ou(éul =| 5,
pue (§u1.éu2) u2 11
§ua— €&
sup  [81pu) =181 €)= ﬁ,
pue (éur-éu2) u2 12
§ua— €
sup  |81(pu)|=1621(&u1)|= ;fgulr
pue (éur.éu2) I ul
§ur—&u1
sup [ 1apu)| =104 u)l =| -1
pue (§u1.éu2) 12 ul

But, by condition 11, we have ,— £,1<3(&1— £42), Which

gives

sup
Pue (§u1.éu2)

|5ij(pu)|<%,

ij=1,2.

16 (p2—1)(pu— éu1)

This last estimate along with EAL) implies the first in-
equality in Eq.(A2). The second inequality in EgA2) fol-
lows from an identical argument after one interchanges the
subscriptd andu in the quantities defined above.
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