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Abstract We use invariant manifold results on Banach spaces to conclude the exis-
tence of spectral submanifolds (SSMs) in a class of nonlinear, externally forced beam
oscillations. SSMs are the smoothest nonlinear extensions of spectral subspaces of
the linearized beam equation. Reduction in the governing PDE to SSMs provides an
explicit low-dimensional model which captures the correct asymptotics of the full,
infinite-dimensional dynamics. Our approach is general enough to admit extensions
to other types of continuum vibrations. The model-reduction procedure we employ
also gives guidelines for a mathematically self-consistent modeling of damping in
PDEs describing structural vibrations.
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submanifolds · Invariant manifolds
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1 Introduction

Most model-reduction techniques, such as the Proper Orthogonal Decomposition
(POD, cf. Holmes et al. 1996) or the method of Modal Derivatives (cf. Idelsohn and

Communicated by Paul Newton.

B Florian Kogelbauer
floriank@ethz.ch

George Haller
georgehaller@ethz.ch

1 Institute for Mechanical Systems, ETH Zürich, Leonhardstrasse 21, 8092 Zurich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-018-9443-4&domain=pdf
http://orcid.org/0000-0002-2896-6435


1110 J Nonlinear Sci (2018) 28:1109–1150

Fig. 1 Classic idea of model
reduction: projection of the
equations of an n-dimensional
dynamical system onto a
lower-dimensional subspace E
spanned by an appropriate basis
u1, . . . uk with k ≤ n. The
unverified hope is then that
trajectories q(t) of the full
system project to trajectories
x(t) of the reduced model. The
subspace E , however, is
generally not invariant: a full
trajectory q̃(t) starting from the
initial conditionq0 ∈ E will
leave E and will not project to
x(t). (Adopted from Haller and
Ponsioen 2016)

Cardona 1985; Rutzmoser et al. 2014), project the dynamics of a nonlinear system
onto a linear subspace or a quadratic manifold, respectively. These subspaces or sur-
faces, however, are generally not invariant under the flow, i.e., a trajectory starting at
a point on the plane used by POD will leave the plane as time evolves, cf. Fig. 1. This
lack of invariance limits the reliability of model reduction to regions that are close
enough to linear evolution. At larger distances from the equilibrium, nonlinear effects
of the underlying model become invariably more dominant and the accuracy of model
reduction is quickly lost.

A seminal idea to remedy the above deficiency in nonlinear vibrations is due to
Shaw and Pierre (1993). These authors proposed to reduce the full nonlinear dynamics
near equilibria to invariant manifolds that are tangent to spectral subspaces of the
linearized dynamical system. In lightly damped structural dynamics problems, the
relevant equilibria are asymptotically stable fixed points with complex eigenvalues.
In that case, the Shaw–Pierre approach seeks invariant manifolds tangent to two-
dimensional eigenspaces of the linearized dynamics. While the existence, uniqueness,
smoothness and robustness of such manifolds have remained unclear in the mechanics
literature, formal Taylor expansions for such manifolds have been found very effective
in capturing the reduced dynamics in a number of examples (see Kerschen et al. 2009;
Avramov and Mikhlin 2010, 2013 for recent reviews). Shaw and Pierre (1994) also
extended their original approach formally to PDEs describing continuum vibrations.

The invariant manifolds envisioned by Shaw and Pierre turn out to be highly non-
unique and non-smooth even in linear systems, as several authors have observed
recently (see, e.g., Neild et al. 2051; Cirillo et al. 2016, 2015). This observation car-
ries over to the full nonlinear setting, as one can conclude from the powerful abstract
results of Cabré et al. (2003) on invariant manifold tangent to spectral subspaces of
maps on Banach spaces.

Very recently, however, Haller and Ponsioen (2016) introduced the notion of a
spectral submanifold (SSM) for finite-dimensional oscillation problems. An SSM is
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the smoothest nonlinear continuation of a spectral subspace of a linear dynamical
system under the addition of nonlinear terms. Based on an analysis of the linearized
spectrum, one can use the Cabré–Fontich–de la Llave results to construct SSMs in
appropriate smoothness classes and develop a Taylor expansion or unique internal
parametrization for them. Haller and Ponsioen (2016) showed applications of this
mathematically rigorous, nonlinear model-reduction procedure for lower-dimensional
mechanical models. Subsequently, Jain et al. (2017) carried out an SSM-based
model reduction on a higher-dimensional finite-element model of a von Kármán
beam.

Up to this point, however, no SSM reduction has been carried out for contin-
uum vibration problems. The existence of such a reduction is important to clarify
for several reasons. First, all practical structural vibration problems arise from dis-
cretizations of PDEs.While SSM-basedmodel reduction for such discretized problems
has been demonstrated (cf. Jain et al. 2017), it is not immediately clear how closely
these reduced models reproduce features of the original infinite-dimensional phys-
ical structure. In fact, as we will see later, convergence of SSM-based reduced
models obtained from discretized PDEs under refinement of the discretization is
by no means guaranteed under the most commonly used damping models. Sec-
ond, the existence of rigorous, SSM-based reduced models for the PDE enables
one to avoid numerical experimentation with discretizations of the PDE and pro-
ceed instead directly to a lower-dimensional model that is guaranteed to capture
the correct asymptotics of the PDE. Third, experimentally observed simple dynam-
ics on SSMs raises the possibility of accurate parameter identification for the full
PDE.

In the present paper, we carry out a rigorous, SSM-basedmodel reduction procedure
for the first time for a nonlinear continuum vibration problem, clarifying the condi-
tions under which the finite-dimensional invariant manifolds envisioned by Shaw and
Pierre (1994) exist and smoothly persist. We believe that this is also the first infinite-
dimensional application of the abstract invariantmanifold results ofCabré et al. (2003).
Specifically,we consider aRayleigh beammodel togetherwith a damping proportional
to the bending rate of the beam as well as viscous damping introduced by external,
linear dampers. We will assume that the beam interacts with its nonlinear foundation
and is also possibly subject to time-periodic external forcing. We choose the damp-
ing mechanism carefully so that the spectrum of linearized flow is contained in the
unit circle, stays bounded away from zero and has monotonically decaying real parts.
These properties turn out to be crucial for the existence of an SSM-based reduced-
order model. For a detailed discussion of the mechanical model used for our analysis,
we refer to Sect. 2, while for a general discussion of damping mechanisms in beams,
we refer to Russell (1992).

As an example, we explicitly compute up to third order a reduced model on a two-
dimensional SSM of the full beam equation with cubic nonlinearity. We perform this
computation both for zero and for sinusoidal external forcing. The SSMs obtained
in this fashion serve effectively as slow manifolds for the beam, even though no
explicit slow–fast decomposition is available for the underlying mechanical model.
In our analysis, we take advantage of the smallness of both the viscous damping
and the internal damping, which permits us to avoid small denominators in the Taylor
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Fig. 2 Simply supported Rayleigh beam on a bed of nonlinear springs and linear dampers

approximation of the SSM. In finite dimensions, similar calculations have been carried
out by Szalai et al. (2017) in the absence of time-periodic forcing. We utilize infinite-
dimensional analogs of their explicit formulas in computing the reduced model on the
slow SSM.

2 The Mechanical Model

Consider a homogeneous thin beamwith fixed end points at x = 0 and x = π , respec-
tively. We assume that the beam is made of an elastic material and that the deflections
from the unforced position of rest are comparably small. We will additionally assume
that a small beam element is endowed with a small mass moment of inertia, so that
the Rayleigh beam theory applies (cf. Russell 1992.

Under the assumption that the beam is composed of perfectly inelastic fibers, we
may add a frequency-dependent damping to the equations of motions. This can be
interpreted as a lateral force acting on the beam which is proportional to the bending
rate. We refer to Russell (1992), p. 126 and pp. 135–140, especially p. 139, for the
details of Rayleigh beam theory and frequency-dependent damping.

Further, we impose that the beam is supported on a nonlinear foundation, like rubber
or springswith higher-order stiffness, andwe assume that the beam is subject to aweak
time-periodic external forcing, cf. Fig. 2.

The equation of motion for the vertical displacement u with initial configuration
u0(x) and initial velocity v0(x) in our model becomes

⎧
⎪⎨

⎪⎩

utt − μuttxx = −αuxxxx + βutxx − γ u − δut + f (u) + εh(x, t),

u(0, x) = u0(x), ut (0, x) = v0(x),

x ∈ (0, π),

(1)

where α = E I/ρ andμ = Iρ/ρ, for the constant mass density ρ, Young’s modulus of
elasticity E , the second moment of area of the beam’s cross section I and the constant
mass moment of inertia Iρ . The parameter β accounts for internal damping due to the
elastic properties of the material, while the parameter γ describes the linear stiffness
of the foundation. The parameter δ accounts for linear external damping, e.g., due to
dampers. The function h, which we assume to be periodic in time with frequency ω,
describes external forcing for some small parameter ε.

The function f : R → R describes the nonlinear external force interaction of the
beam with the foundation. Since the linear part is already described by the parameter
γ , it is reasonable to make the following general assumptions:
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Assumption 2.1 The function f : R → R is of class Cr for some r ∈ N ∪ {∞, a}
and of polynomial growth

| f (x)| � |x |m (2)

for some m > 1, as well as of polynomial growth in its derivative

| f ′(x)| � |x |m−1, (3)

and satisfies
f (0) = 0, f ′(0) = 0. (4)

The indefinite integral of f : R → R is a non-positive function

∫ x

0
f (ξ) dξ ≤ 0, (5)

for all x ∈ R.

Remark 2.2 Assumptions (2) and (3) guarantee that the map u �→ f (u) is sufficiently
regular as a map on Banach spaces, while assumption (5) ensures global existence of
solutions to (1). This will become apparent in the subsequent paragraphs.

Setting
ST := R mod T, (6)

we will be making the following assumptions on the external, time-dependent forcing:

Assumption 2.3 The function h : (0, π) × Sω → R is continuously differentiable
as a map h : R → L2(0, π) and satisfies the same boundary conditions as the beam.
In particular, we have that ‖h(x, t)‖L2(0,π) ≤ H0 and ‖ht (x, t)‖L2(0,π) ≤ H1 for any
t ∈ Sω.

An example for a foundation that leads to an equation like (1) could be a bed
of nonlinear springs. In Shaw and Pierre (1994), a foundation of cubic springs is
considered where f (u) = −Cu3 for some C > 0.

Requiring hinged ends (simply supported beam),we impose the following boundary
conditions on the solution u:

{
u(t, 0) = u(t, π) = 0

uxx (t, 0) = uxx (t, π) = 0.
(7)

Remark 2.4 We could also require clamped ends by imposing the boundary condition

{
u(t, 0) = u(t, π) = 0

ux (t, 0) = ux (t, π) = 0,
(8)

which would change the eigenbasis for the operator ∂4 on L2(0, 2π). The subsequent
analysis could be carried out similarly, though.
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(a) (b)

Fig. 3 Damping types excluded fromour analysis.aPureviscousdamping (μ = β = 0).bPureviscoelastic
damping (μ = 0)

Remark 2.5 (Our choice of damping)
We chose the setup of Rayleigh beam theory together with a damping proportional

to the second derivative in space for two reasons.
First, if we considered Euler–Bernoulli beam theory with purely viscous damping,

i.e., μ = β = 0 in (1), the real parts in the spectrum of the linearization of the right-
hand side would be constant (cf. (19)). Consequently, the eigenvalues of the flow map

of the unperturbed system would lie on a circle of radius e− δ
2 (cf. Fig. 3a), and there

would be no dichotomy of decay rates for any choice of eigenspaces of the linearized
flow map. As a consequence, even the linear system would not admit an obvious
lower-dimensional subspace candidate for model reduction.

Second, we could have also considered Euler–Bernoulli beam theory with Kelvin–
Voigt damping (viscoelastic damping; see, e.g., Russell 1992) by adding a term of the
form −βutxxxx to the right-hand side of (1). In that case, however, the real parts in
the spectrum of the linearization of the right-hand side would decay like n4, where n
is the mode number, as indicated by (19). Therefore, the spectrum of the linearized
flow map for the unperturbed system would accumulate at the origin as n →∞. This
would imply that the flow map is not invertible at the trivial solution, and therefore,
condition (1) of Assumption 6.1 would be violated. This is because the ∂4/∂x4- term
would make the solution analytic for arbitrarily small times and the inverse problem
would therefore be ill-posed. The same would hold true if we merely chose a damping
term of the form βutxx , i.e., a damping term that is proportional to the bending rate
(cf. Fig. 3b).

We remedy these technical difficulties by introducing a damping that is of the same
order as the mass term that comes from Rayleigh beam theory. This essentially allows
us to the treat the fourth-order problem (1) as a second-order problem. In particular,
the spectrum is bounded and a family of slow eigenvalues exists, cf. Fig. 4. We refer
to Russell (1992), pp. 135–140, especially p. 139 for different damping mechanisms.

One caveat of the present beammodel is, however, that the damping ratio, as defined,
e.g., in Banks and Inman (1991), takes the form
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Fig. 4 Typical spectrum of the
linear part of Eq. (1). The
spectrum is inside the unit circle,
and the eigenvalues accumulate
on a smaller circle

ζn = δ + βn2
√

(1+ μn)(αn2 + γ )
, (9)

which converges to zero as n → ∞. In Banks and Inman (1991), Table 3, p. 21, the
experimental measures of ζn remain in the same order of magnitude for the first nine
modes, which makes it plausible to expect that the damping ratio does not converge
to zero. This is generally believed to be true for beams arising in practice. In the
model presented in Banks and Inman (1991),μ = 0, for which expression (9), indeed,
converges to a nonzero value as n →∞.While there are structures in civil engineering
for which the damping ratio decreases as themode number increases (see, e.g., Connor
et al. 2012), we are not aware of a similar result in the context of beams. In conclusion,
there are no experimental data that support our damping model.

For the subsequent analysis, we have to make some further assumptions on the
parameters in (1). The external damping parameter δ, as well as the parameter β,
accounting for internal damping, is small compared to the other parameters of the
system. It is therefore reasonable to make the following set of assumptions:

Assumption 2.6 The nonnegative parameters α, β, γ, δ and μ in equation (1) satisfy

(1) β2 < 4α,
(2) 2βδ < 4γμ,
(3) δ2 < 4γ ,
(4) δμ < β.

Remark 2.7 Themeaning of the above assumptionswill become apparent in the analy-
sis of the linear spectrumof equation (1) (cf. “Appendix I”). The first three assumptions
ensure that all eigenvalues of the linearization have nonzero imaginary parts. This
means that the beam equation is close to a conservative system, and hence, there are
no overdamped modes. The conditions depend on a sign criterion for a third-order
polynomial and can undoubtedly be refined.
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The fourth inequality in Assumption 2.6 guarantees that the real parts of the eigen-
values of the linearization decrease with the frequency. This will permit us to extract a
unique attracting slowmanifold from the dynamics near the equilibrium configuration
of the forced beam. If the inequality in the fourth assumption is reversed, it is possible
to extract a unique attracting fast manifold.

3 Notation and Basic Definitions

Let f, g : R → R be two functions. We write

f (x) � g(x) ⇐⇒ f (x) ≤ Cg(x)

for some C > 0. Similarly for the symbol “ �′′.
Let X be a real or complex Banach space, and let U ⊂ X be an open set. For a

real or complex Banach space Y , let Cr (U,Y ) be the space of r -times continuously
differentiable functions from U to Y . The space C∞(U,Y ) consists of all functions
f : U → Y , which belong to Cr (U,Y ) for all r ≥ 1, while the space Ca(U,Y )

consists of all that are locally analytic inU . The spaces Cr (U,Y ) for some r ≥ 1 and
the space Ca(U,Y ) are Banach spaces, while the space C∞(U,Y ) is a Fréchet space.

For any positive number 1 ≤ p < ∞, let L p(0, π) denote the space of complex-
valued, p-integrable functions on the interval (0, π). Namely, L p(0, π) consists of all
functions f : (0, π) → C such that

‖ f ‖L p =
(∫ π

0
| f (x)|p dx

) 1
p

< ∞.

The space L∞(0, π) consists of all bounded functions on [0, π ], admitting the norm

‖ f ‖L∞(0,π) = sup
x∈[0,π ]

| f (x)|.

Of particular interest for our analysis is the space L2(0, π), which may be endowed
with a Hilbert space structure via the inner product

〈 f, g〉L2 = 1

π

∫ π

0
f (x)g(x)∗ dx,

with the star denoting complex conjugation. Any function f ∈ L2(0, π) can then be
written uniquely as a Fourier series

f (x) =
∑

n∈Z
f̂ne

2inx ,
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where

f̂n =
〈
f, e2inx

〉

L2
= 1

π

∫ π

0
f (x)e−2inx dx

is the nth Fourier coefficient of f . By Parseval’s theorem, cf. Adams and Fournier
(2003), the L2-inner product may be expressed as

〈 f, g〉L2 =
∑

n∈Z
f̂n ĝ

∗
n , (10)

for the Fourier coefficients f̂n of f and ĝn of g, respectively, and the L2-norm of f
can be written as

‖ f ‖2L2 =
∑

n∈Z
| f̂n|2. (11)

For any s ∈ N, let Hs(0, π) be the space of functions f ∈ L2(0, π) such that

‖ f ‖2Hs =
∑

n∈Z

(
1− (2n)2s+2

1− (2n)2

)

| f̂n|2 < ∞. (12)

The Hilbert spaces Hs(0, π) are called Sobolev space of order s. For a detailed theory
of Sobolev spaces and related topics, we refer to Adams and Fournier (2003).

Remark 3.1 We chose to define the Sobolev space in terms of the decay of Fourier
coefficients. Equivalently, one can characterize elements of aSobolev space by summa-
bility properties. In fact, any element f ∈ Hs(0, π) possesses weak derivatives up to
order s in L2(0, π). This enables us to write the norm in Hs equivalently in an integral
form as

‖ f ‖2Hs = 1

π

∫ π

0

s∑

j=1

(
d j f

dx j
(x)

)2

dx, (13)

where the derivatives have to be understood in the weak sense. For details, we refer to
Adams and Fournier (2003).

In order to incorporate the boundary condition (7), we introduce the following linear
subspace of Hs(0, π) for even s ∈ N:

Hs
0 (0, π) =

{

f ∈ Hs(0, π) : d
2 j f

dx2 j
(0) = d2 j f

dx2 j
(π) = 0, for j = 1, ...,

s

2

}

.

(14)
Any element f ∈ Hs

0 (0, π) may be written as a Fourier-sine series

f (x) =
∞∑

n=1

f̂n sin(nx).
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A possible unbounded operator A : H → H on a Hilbert space with domainD(A)

is called dissipative if for all x ∈ D(A) we have that

〈Ax, x〉 ≤ 0 (15)

For a possibly unbounded operator A : H → H on a Hilbert space with domain
D(A), let σ(A) denote its spectrum and let ρ(A) denote its resolvent set. The point
spectrum of A, denoted σp(A), then consists of all eigenvalues of finite multiplicity.
For a detailed discussion of spectral properties of unbounded operators on Hilbert
spaces and related topics, we refer to Hislop and Sigal (2012) and Teschl (2014).

4 Spectral Submanifolds

Wewill be interested in the behavior of solutions to equation (1) in the neighborhood of
special solutions. In the case of no external forcing, the special solution of interest will
be the fixed point u ≡ 0, while in the presence of external periodic forcing, the special
solution will be time-periodic. Existence of such a time-periodic solution is proved
in “Appendix I,” Lemma 5.10, by a Poincaré map argument. Following Haller and
Ponsioen (2016), we call all solutions with a finite number of frequencies nonlinear
normal modes.

To study the beam equation (1), we rewrite it as a first-order system:

(
ut
vt

)

= A

(
u
v

)

+
(

0
f (u) + εh(x, t)

)

, (16)

where we have set v := ut and

A :=
(

0 1
−M−1(α∂4 + γ ) M−1(β∂2 − δ)

)

, (17)

for the operator
M = 1− μ∂2. (18)

The spectrum of the matrix of operators (17) is given explicitly by

σ(A) = {λ±n }n∈N+

=
⎧
⎨

⎩
− βn2 + δ

2+ 2μn2
± i

√

αn4 + γ

1+ μn2
−
(

βn2 + δ

2+ 2μn2

)2
⎫
⎬

⎭
n∈N+

.
(19)

ByAssumption 2.6, the real parts of the eigenvalues in (19) are negative,monotonically
decreasing and bounded from below (cf. Fig. 5).

The corresponding eigenvectors are given by

{
v+n , v−n

} =
{(

1
λ+n

)

sin(nx),

(
1

λ−n

)

sin(nx)

}

. (20)
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Fig. 5 Real parts of the eigenvalues given by formula (19), for parameter values β = 0.08, δ = 0.04 and
μ = 0.5. Observe that the real parts converge to −0.08 as n →∞

As the underlying space for equation (1), we choose the standard energy space
H := H1

0 (0, π)× L2(0, π). We prove well posedness of equation (16) in the Hilbert
space H in “Appendix 1,” Theorem 5.1 and Theorem 5.2, while we prove global
existence of solutions to equation (16) in Appendix I, Proposition 5.5. This permits
us to define a semi-flow map φT

ε : H → H, (u0, v0) �→ φT
ε (u0, v0) for any fixed

time T > 0 and for ε > 0, which maps initial conditions (u0, v0) to solutions of
equation (16). LetAε denote the linearization of the flowmap at the fixed time T > 0.

FollowingHaller andPonsioen (2016), introduce the following definition of spectral
submanifolds for the flow map of equation (16).

Definition 4.1 A spectral submanifold (SSM) associated with a spectral subspace Eε

of the operator Aε around the special solution U ε
0 is a manifold, denoted by W (Eε),

with the following properties:

(1) The manifold W (E)ε is forward-invariant under the flow map φT
ε , tangent to Eε

at U ε
0 and has the same dimension as Eε.

(2) The manifold W (Eε) is strictly smoother than any other manifold satisfying (1).

A slow spectral submanifold (slow SSM) is an SSM W (Eε,slow) associated with a
spectral subspace Eε,slow of finitely many eigenvalues with the largest real parts within
the total spectrum of Aε.

In the presence of time-periodic forcing, the fixed point U ε
0 of φT

ε corresponds to
a non-trivial periodic orbit of 1, while in the case of no external forcing, U 0

0 = 0 also
determines a fixed point for the flowmap of equation 1. For model-reduction purposes,
the dynamics on a slow SSM is a faithful approximation to the full dynamics for large
times. For a discussion on an SSM that is not associated with the slowest modes, we
refer to “Appendix II.”

We choose a 2N -dimensional eigenspace E ∼= C
2N of the linear operator A with

corresponding eigenvalues λ1, ..., λN , N ∈ N
+. For such an eigenspace, we define
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the relative spectral quotient as the positive integer

q(E) :=
[
inf j>N Reλ j

Reλ1

]

∈ N
+, (21)

where the square bracket denotes the integer part.
For the unperturbed equation, the relative spectral quotient is a measure of how

unique the SSM W(E) is. Specifically, W(E) will turn out to be unique among class
q(E)+1 invariant manifolds tangent to E . Note that in the presence of forcing, quantity
(21) implicitly depends upon ε (cf. “Appendix II,” in particular Lemma 6.6).

In order to apply an abstract existence result for SSMs by Cabré et al. (2003),
we make the following non-resonance assumption on the spectrum of the matrix of
operators A.

Assumption 4.2 Let λ1, .., λN be the N eigenvalues of Awith the N largest real parts
and let q(E) be the corresponding relative spectral quotient. Assume that

s1λ1 + s2λ2 + ... + sNλN �= λ j , si ∈ Z
+, (22)

for 2 ≤ s1 + s2 + ... + sN ≤ q(E) and j > N .

Theorem 4.3 Assume that the parameters in equation (1)are such thatAssumption2.6
and Assumption 4.2 are satisfied. Assume further that the nonlinearity f (u) satisfies
Assumption 2.1 with r = a, while the external forcing satisfies Assumption 2.3. Then,
for sufficiently small ε > 0, there exists a unique, analytic SSM, W (Eε), that is tangent
to the spectral subspace Eε along the periodic solution U ε

0 .

(i) The manifoldW(Eε) is unique among all class Cq(Eε)+1 forward-invariant man-
ifolds tangent to Eε along U ε

0 .
(ii) The dynamics on the SSM are conjugate to a differential equation with a polyno-

mial right-hand side of degree not larger than q(Eε) − 1.

Proof We refer to “Appendix II.” ��
Theorem 4.3 states that there exists an open subsetU ⊂ C

N and a parameterization
Kε : U → H such that the slow SSM associated with the spectral subspace Eε is given
by W (Eε) = Kε(U ). Furthermore, there exists a polynomial map Rε : U → U of
degree not larger than q(E) − 1 such that the equation

A · Kε + Gε ◦ Kε = DKε · Rε + ωDθK (23)

holds true.
In the case of no external forcing, we obtain a similar result under slightly weaker

assumptions on the nonlinearity.

Theorem 4.4 Let ε = 0 and assume that that the parameters in equation (1) are
such that Assumption 2.6 and Assumption (4.2) are satisfied. Assume further that the
nonlinearity satisfies Assumption 2.1 with r ∈ N ∪ {∞, a} and q(E) ≤ r . Then there
exists a unique SSM W (E) of class Cr that is tangent to the spectral subspace E at
the trivial solution U0 = 0.
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(i) The manifoldW(E) is unique among all class Cq(E)+1 forward-invariant mani-
folds tangent to E along U0.

(ii) The dynamics on the SSM are conjugate to a differential equation with a polyno-
mial right-hand side of degree not larger than q(E) − 1.

Proof We refer to “Appendix II.” ��
There exists an open subset U ⊂ C

N and a parameterization K : U → H such
that the slow SSM associated with the spectral subspace E is given byW (E) = K (U ).
Finally, there exists a polynomial map R : U → U ot degree not larger than q(E)− 1
such that the equation

A · K + G0 ◦ K = DK · R (24)

holds true.

4.1 An Example with No External Forcing

To illustrate the above results, we consider an example with no external, time-
dependent forcing present, i.e., set ε = 0. In the following,wewill compute a reduction
in equation (1) to a two-dimensional, slow invariant manifold around the fixed point
u = 0.

Consider a cubic nonlinearity

f (u) = −κu3, (25)

and set the internal damping

β = 4δμ

1− 3μ
.

The parameters are chosen in a way that facilitates the calculations and hence do not
correspond to a particular physical beam geometry. Evaluating the spectral quotient
(21), we find that

q =
[
infn Reλn

Reλ1

]

=
[
β(1+ μ)

(β + δ)μ

]

= 4, (26)

meaning that we are looking for the analytic invariant manifold around the fixed point
u ≡ 0 that is unique among allC5 invariantmanifolds. The reduced dynamics are given
by a polynomial right-hand side of degree not larger than 3. As the parametrization
space for the invariantmanifold,we choose the eigenspace associatedwith the complex
eigenvalues

λ1 = − β + δ

2+ 2μ
+ i

√

α + γ

1+ μ
−
(

β + δ

2+ 2μ

)2

. (27)

That is to say, we choose as E the spectral subspace

E = span

{(
1
λ1

)

sin(x),

(
1
λ1

)

sin(x)

}

∼= C
2. (28)
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We will denote coordinates in the space E as (z, z).
In accordance with Theorem 6.3, the dynamics on the invariant manifold W(E)

can be approximated by a Taylor-series expansion on the space E . That is, there is an
analytic function K : C2 → H1

0 (0, π) × L2(0, π) given by

K (z) =
∞∑

|n|=1

Knz
n, (29)

for z = (z1, z2), Kn ∈ H1
0 (0, 2π) × L2(0, π) and n = (n1, n2) ∈ N

2.
Note that the function K parametrizes the unique slow manifold in the space

H1
0 (0, 2π)×L2(0, π), which also admits complex Fourier coefficients. Of course, we

have again that z2 = z1, and therefore, one finds that the Kn’s written in the eigenbasis
(20) satisfy the relation

K(n2,n1) =
(
0 1
1 0

)

K (n1,n2), (30)

as a comparison of powers in z and z shows.
Since we have assumed that the damping is small, the slow modes are almost in

resonance:
2λ1 + λ1 ≈ λ1, λ1 + 2λ1 ≈ λ1. (31)

This follows from the explicit formula for eigenvalues (19) and the smallness of
the parameters μ and δ. A similar line of reasoning has been employed in Szalai et al.
(2017) for the computation of backbone curves.

In view of Theorem 4.4, we assume that the conjugated dynamics on the slow SSM
W(E) are given by

(
ż

ż

)

=
(

λ1z + R0z2z

λ1z + R0zz2

)

. (32)

Note that the tangency to the spectral subspace E , as it is guaranteed by Theorem 4.4,
is incorporated in the linear part of R. This specific form of R will turn out to be
the simplest reduced dynamics on the SSM, while at the same the coefficients of the
parametrization K do not include small denominators for an appropriate choice of R0.

Inserting the defining equations (29) and (32) for K and R, respectively, into equa-
tion (24), we obtain the following relation:

∞∑

|n|=1

A · Knz
n + f(K (z))

=
∞∑

|n|=1

((
λ1z1 + R0z

2
1z2
)
n1z2 +

(
λ1z2 + R0z1z

2
2

)
n2z1

)
K(n1,n2)z

n1−1
1 zn2−1

2

=
∞∑

|n|=1

(λ1n1 + λ1n2)Knz
n +

∞∑

|n|=1

(R0n1 + R0n2)Knz
n+(1,1)

=
∞∑

|n|=1

(λ1n1 + λ1n2)Knz
n +

∞∑

|n|=3

(R0(n1 − 1) + R0(n2 − 1))Kn−(1,1)z
n .
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Since f (K (z)) = O(|z|3), we find that equation (4.4), at order one, becomes

A · K(1,0) = λ1K(1,0), A · K(0,1) = λ1K(0,1), (33)

which implies that K(1,0) and K(0,1) are eigenvectors for the operator A with eigen-
values λ1 and λ1, respectively, i.e.,

K(1,0) =
(
1
0

)

sin(x), K(0,1) =
(
0
1

)

sin(x). (34)

At order two, equation (4.4) becomes

A · K(2,0) = 2λ1K(2,0),

A · K(1,1) = (λ1 + λ1)K(2,0),

A · K(0,2) = 2λ1, K(2,0).

(35)

Since the Kn’s arewritten in the eigenbasis of the operator A, the only possible solution
to equation (35) is

K(2,0) = 0, K(1,1) = 0, K(0,2) = 0. (36)

Knowing the first-order terms, we may now easily represent the cubic nonlinearity in
the eigenbasis of the operator A. For a vector x = (x1, x2), we denote by [x]i = xi ,
i=1,2, the i th component of x. The nonlinearity f (u) = κu3 then takes the form

G(K (z)) =V−1 ·
⎛

⎜
⎝

0

−κ

(
∞∑

|n|=1
[V · Kn]1zn

)3

⎞

⎟
⎠

=κ

4
(z + z)3

(
3 sin(x)

λ1 − λ1
− sin(3x)

λ3 − λ3

)(
1
−1

)

+O(|z|4),

(37)

where we have set the operator

V : H1
0 (0, π) × L2(0, π) → H1

0 (0, π) × L2(0, π) (38)

as

V ·
∞∑

m=1

(
um
vm

)

sin(mx) :=
∞∑

m=1

(
1 1

λm λm

)(
um
vm

)

sin(mx), (39)

which realizes the change of basis from physical coordinates to coordinates in the
eigenbasis of A. We may now compute the terms of order three in the expansion of
K by comparison of powers in z and z. Here, we only show the computations for the
coefficient K(3,0) and K(2,1). The equations for the other coefficients then follow from
the symmetry condition in equation (30). Using equation (37) and the eigenexpansion
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of the parametrization K , we find at order z31:

A · K(3,0) + κ

4

(
3 sin(x)

λ1 − λ1
− sin(3x)

λ3 − λ3

)(
1
−1

)

= 3λ1K(3,0), (40)

which implies that

K(3,0) = 3κ sin(x)

4(λ1 − λ1)

(
1

2λ1
,

1

λ1 − 3λ1

)

+ κ sin(3x)

4(λ3 − λ3)

(
1

λ3 − 3λ1
,

1

3λ1 − λ3

)

.

(41)

Similarly, at order z21z2:

A · K(2,1) + 3κ

4

(
3 sin(x)

λ1 − λ1
− sin(3x)

λ3 − λ3

)(
1
−1

)

= (2λ1 + λ1)K(2,1) + R0K(1,0),

(42)

which has the solution

K(2,1) = sin(x)

4(λ1 − λ1)

(
9κ − 4(λ1 − λ1)R0

λ1 + λ1
,− 9κ

2λ1

)

+ 3κ sin(3x)

4(λ3 − λ3)

(
1

λ3 − 2λ1 − λ1
,

1

λ1 + 2λ1 − λ3

)

.

(43)

By equation (30), the remaining two coefficients are given by

K(1,2) = sin(x)

4(λ1 − λ1)

(
9κ

2λ1
,
4(λ1 − λ1)R0 − 9κ

λ1 + λ1

)

,

+ 3κ sin(3x)

4(λ3 − λ3)

(
1

λ3 − 2λ1 − λ1
,

1

λ1 + 2λ1 − λ3

)

,

K(0,3) = 3κ sin(x)

4(λ1 − λ1)

(
1

3λ1 − λ1
,− 1

2λ1

)

+ κ sin(3x)

4(λ3 − λ3)

(
1

λ3 − 3λ1
,

1

3λ1 − λ3

)

.

(44)

Since λ1 + λ1 ≈ 0 by the smallness assumption on the damping, (31), the quantities
K(2,1) and K(1,2) in (34) would contain large denominators. This, however, would
limit the validity of the Taylor- series expansion (29) to a smaller domain, which is
unfavorable in applications. We, therefore, set the parameter R0 in (32) as

R0 = 9κ

4(λ1 − λ1)
= 9κi

8 Im λ1
, (45)
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which eliminates the small denominators in equations (43) and (44):

K(2,1) := sin(x)

4(λ1 − λ1)

(

0,− 9κ

2λ1

)

+ 3κ sin(3x)

4(λ3 − λ3)

(
1

λ3 − 2λ1 − λ1
,

1

λ1 + 2λ1 − λ3

)

,

K(1,2) := sin(x)

4(λ1 − λ1)

(
9κ

2λ1
, 0

)

+ 3κ sin(3x)

4(λ3 − λ3)

(
1

λ3 − 2λ1 − λ1
,

1

λ1 + 2λ1 − λ3

)

.

(46)

Now, we may analyze the reduced dynamics, given by the equation

ż = λ1z + R0z
2z +O(|z|4), (47)

or, writing the complex variable z = x + iy and the eigenvalue λ1 = A + Bi, we
obtain the equivalent system

(
ẋ
ẏ

)

=
(
A −B
B A

)(
x
y

)

+ 9κ

8B
(x2 + y2)

(−y
x

)

+O((|x | + |y|)3). (48)

Rewriting system (47) in polar coordinates z(t) = r(t)eiθ(t), we obtain the following
equations up to order three: ⎧

⎨

⎩

ṙ = Ar

θ̇ = B + 9κ

8B
r2.

(49)

System (49) can be integrated explicitly to

r(t) = eAtr0, θ(t) = θ0 + Bt + 9κr0
16BA

(e2At − 1), (50)

where (r(0), θ(0)) = (r0, θ0) (Fig. 6).
In the physical coordinates, the motion along the SSM takes the form

K (r(t), θ(t), x) =2Re
(
V · (z, z)

)
sin(x) + 2r(t)2Re

(
zV · K(2,1)(x)

)

+ 2Re
(
z3V · K(3,0)(x)

)
+O(|z|4).

(51)

This motion is depicted in Figs. 7 and 8.
The right-hand side of (49) in the θ -variable provides a measure for the instanta-

neous oscillation frequency of the full system at leading order. We therefore set

�(r) = B + 9κ

8B
r2. (52)
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Fig. 6 A typical phase portrait for the reduced system (49) with parameter values α = 1, β = 0.6, γ = 1,
δ = 0.5, μ = 1, κ = 1, A = −0.275 and B = −0.9614

We define the nominal instantaneous amplitude as the quantity

Amp(r) =
√

1

2π

∫ 2π

0
|V · K (z1(r, θ), z2(r, θ))|2 dθ, (53)

where V is the change of coordinates to the physical variables, defined in (39). In
our example, Amp (r) = 2r + O(r2). Now, the backbone curve associated with the
dynamics of the reduced system (49) is defined as B : R → R

2,

B(r) =
(

�(r)
Amp(r)

)

. (54)

Backbone curves for different parameter values of κ are depicted in Fig. 9.

4.2 An Example with Weak External Time-Periodic Forcing

To illustrate Theorem 4.3, we consider an example with weak external time-periodic
forcing. As in the previous example, we assume a cubic nonlinearity
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Fig. 7 Time evolution of the displacement with initial condition −0.0990 sin(x) + 0.0011 sin(3x) along
the parametrized SSM (51) with parameter values α = 1, β = 0.6, γ = 1, δ = 0.5, μ = 1 and κ = 1

Fig. 8 Time evolution of the displacement with initial condition −0.0577 sin(x) + 1.1121 sin(3x) along
the parametrized SSM (51) with parameter values α = 1, β = 0.6, γ = 1, δ = 0.5, μ = 1 and κ = 1
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Fig. 9 Backbone curves for the
reduced system (49) with
parameter values α = 1,
β = 0.6, γ = 1, δ = 0.5, μ = 1,
A = −0.275, B = −0.9614 and
κ = 0.8 (blue), κ = 1 (orange)
and κ = 1.2 (green) (Color
figure online)
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f (u) = −κu3 (55)

and set the internal damping to

β = 4δμ

1− 3μ
, (56)

while as time-periodic external forcing, we choose

h(x, t) = cos(ωt) sin(x). (57)

In the eigenbasis of A, forcing (57) takes the form

h(x, θ) = 1

λ1 − λ1

(−1
1

)

cos(θ) sin(x). (58)

We assume that the forcing frequency ω is not in resonance with the eigenfrequencies
λn of the linear part of (1) in 19, i.e.,

Im (λn)

ω
/∈ Z, (59)

for all n ∈ N
+. In the following, we will compute the dynamics on the SSM up to first

order in ε.
As the parameter ε is small, the eigenvalue λ1 in (27) either perturbs into an eigen-

value λ1(ε) with geometric multiplicity two or splits into two eigenvalues, λ1,1(ε)

and λ1,2(ε), both with geometric multiplicity one, respectively, cf. “Appendix II,”
Lemma 6.7. In any case, we choose as our spectral subspace the two-dimensional
eigenspace associated with the perturbed eigenvalue or the split eigenvalues. By ana-
lytical spectral perturbation theory, cf. “Appendix II,” Proposition 6.10, the perturbed
spectral subspace is ε-close to the unperturbed spectral subspace defined in (28), i.e.,
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Eε = E +O(ε) ∼= C
2. (60)

Denote the coordinates in the space Eε as zε = (zε1, z
ε
2) and denote the coordinates in

the space E again as z = (z1, z2). It follows from Pythagoras theorem and equation
(60) that

|zε| =
√
|z|2 +O(ε2).

Hence, using
√
1+ x = 1+O(x), for |x | < 1, we have that

zε = z +O(ε2). (61)

In accordance with Theorem 4.3 and equation (23), we assume that the unique spectral
submanifold W(E) can be parametrized by an analytic function Kε : Eε × Sω → H
given by

Kε(θ, zε) =
∞∑

|n|=1

Kn(θ, ε)(zε)n, (62)

for n = (n1, n2) and the coefficients themselves depend analytically upon ε:

Kn(θ, ε) =
∞∑

m=0

Km
n (θ)εm, (63)

for all θ ∈ Sω. The dynamics on the spectral submanifold can be described by a
polynomial

Rε = R0 + εR1 +O(ε2), (64)

where R0 is given by the polynomial obtained in the unforced example, cf. (47), i.e.,

R0(z) =
(

λ1z + 9κi
8 Im λ1

z2z

λ1z − 9κi
8 Im λ1

zz2

)

. (65)

From equation (61), we know that

Kε = Kε|zε �→z +O(ε2),

DKε = ∂Kε

∂zε

∣
∣
∣
∣
zε �→z

+O(ε2),

DθKε = ∂Kε

∂θ

∣
∣
∣
∣
zε �→z

+O(ε2).

(66)

This implies that equation (23) can be written as

A · Kε(z)+ G(Kε(z))

= DKε(z) · R0 + εDKε(z) · R1 + ωDθKε(z)− εh(x, θ) +O(ε2),
(67)
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where, again, z ∈ E . Since Kε = K0 + O(ε), for K0 as defined in equation (29), it
follows from equation (67) and the first-order tangency condition (34) that

K 0
(1,0) =

(
1
0

)

sin(x), K 0
(0,1) =

(
0
1

)

sin(x). (68)

In particular, the parametrization Kε does not depend upon θ at zeroth order in ε.
Equation (67) at order z0 becomes

0 = ε

(
K(1,0)
K(0,1)

)

· R1
0 −

1

λ1 − λ1

(−1
1

)

cos(θ) +O(ε2). (69)

Using equation (68), we find that equation (69) has the solution

R1
0(θ) = 1

λ1 − λ1

(−1
1

)

cos(θ). (70)

Due to the persistence of the non-resonant nature of the perturbed eigenvalues, we
may choose the dynamics on the spectral submanifold as

Rε(z, θ) =
(

λ1z + 9κi
8 Im λ1

z2z

λ1z − 9κi
8 Im λ1

zz2

)

+ 1

λ1 − λ1

(−1
1

)

cos(θ)ε +O(ε2). (71)

We will now solve equation (67) for Kε up to order two in z. To exemplify the general
computations, we only compute the expansion at order z21. At order z

2
2 and z1z2, similar

computations can be carried out.
At order zero in ε, equation (67) is solved by the unperturbed parametrization K 0.

At order one in ε, equation (67) becomes

A · K 1 + d

dε

∣
∣
∣
∣
ε=0

(G(Kε)) = DK 1 · R0 + DK 0 · R1 + ωDθK
1 − h (72)

At order z1, we find:
A · K 1

(1,0) = λ1K
1
(1,0) + ωK̇ 1

(1,0). (73)

Due to the non-resonance condition (59), the only periodic solution of (73) is given
by

K 1
(1,0) = 0. (74)

Similarly, we find that
K 1

(0,1) = 0. (75)

At order z21, equation (72) becomes

A · K 1
(2,0) = 2λ1K

1
(2,0) +

cos(θ)

λ1 − λ1

(
K 0

(2,1) − 3K 0
(3,0)

)
+ ωK̇ 1

(2,0). (76)
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Using equation (43), and expanding

K 1
n =

∞∑

l=1

∑

m∈Z
K 1,l,m
n eimθ sin(lx), (77)

for n = (n1, n2), we find that

∞∑

m∈Z

(

ωim +
(

λ1 0
0 2λ1 − λ1

))

K 1,1,m
(2,0) e

imθ = 9κ cos(θ)

4(λ1 − λ1)

⎛

⎝

1
2λ1

λ1−λ1
2λ1(λ1−3λ1)

⎞

⎠ ,

∞∑

m∈Z

(

ωim +
(
2λ1 − λ3 0

0 2λ1 − λ3

))

K 1,3,m
(2,0) e

imθ

= − 3κ cos(θ)

4(λ3 − λ3)

⎛

⎝

λ1−λ1
(λ3−2λ1−λ1)(λ3−3λ1)

λ1−λ1
(λ1+2λ1−λ3)(3λ1−λ3)

⎞

⎠ ,

(78)

which can be solved as

K 1
(2,0)(θ) = 9κ

8(λ1 − λ1)

⎛

⎝

1
2λ1(λ1+iω)

λ1−λ1
2λ1(λ1−3λ1)(2λ1−λ3+iω)

⎞

⎠ eiθ sin(x)

+ 9κ

8(λ1 − λ1)

⎛

⎝

1
2λ1(λ1−iω)

λ1−λ1
2λ1(λ1−3λ1)(2λ1−λ3−iω)

⎞

⎠ e−iθ sin(x)

+ 3κ

8(λ3 − λ3)

⎛

⎝

λ1−λ1
(λ3−2λ1−λ1)(λ3−3λ1)(2λ1−λ3+iω)

λ1−λ1
(λ1+2λ1−λ3)(3λ1−λ3)(2λ1−λ3+iω)

⎞

⎠ eiθ sin(3x)

+ 3κ

8(λ3 − λ3)

⎛

⎝

λ1−λ1
(λ3−2λ1−λ1)(λ3−3λ1)(2λ1−λ3−iω)

λ1−λ1
(λ1+2λ1−λ3)(3λ1−λ3)(2λ1−λ3−iω)

⎞

⎠ e−iθ sin(3x).

(79)

As in the unperturbed example, we can rewrite dynamics (71) in polar coordinates
z(t) = r(t)eiφ(t):

⎧
⎨

⎩

ṙ = Ar − ε
B cos(ωt) sin(φ)

φ̇ = B + 9κ

8B
r2 − ε

Br
cos(ωt) cos(φ),

(80)

where again λ1 = A + Bi.
We note that the overall dynamics of system (80) are close to the dynamics of the

unperturbed system (49), as it is also depicted in Fig. 10.
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Fig. 10 Sampled dynamics of system (80) for the sampling time T = 2π

4.3 Conclusion

We have constructed a rigorous reduction in a nonlinear, damped-forced continuum
beam model to a two-dimensional spectral submanifold (SSM). This SSM acts as a
slow manifold both in the unforced and in the time-periodically forced case, even
though the underlying beam problem admits no clearly defined timescale differences
embodied by small parameters. We have also pointed out why simpler beam models,
such as Euler–Bernoulli beam theory, and other damping mechanisms, such as pure
viscous damping or viscoelastic damping, do not qualify for the analysis given here.

For the Rayleigh beam analyzed here, we combined existence and uniqueness
results, a careful analysis of the linearized spectrum and infinite-dimensional Poincar
map techniques with an abstract theorem for maps on Banach spaces by Cabré et al.
(2003).Webelieve that our result is the firstmathematically rigorous example of reduc-
ing an infinite-dimensional structural vibration problem to a low-dimensional model.
The analysis presented here also appears to be the first infinite-dimensional applica-
tion of the parametrization method developed in Cabré et al. (2003) for constructing
invariant manifolds.

The analysis here justifies model reductions carried out on discretizations and
Galerkin projections of the underlying PDE, but only with carefully chosen damp-
ing models. While viscous and viscoelastic damping enable model reduction without
technical difficulties in finite-dimensional systems, they lead to either conceptual dif-
ficulties (lack of determinism for a non-stochastic linear vibration under viscoelastic
damping) or technical difficulties (lack of distinguished modes for model reduction
under viscous damping) at the level of the PDE.

The methods presented in this paper should be applicable to more general nonlin-
ear PDEs with a time-reversible flow, such as non-homogeneous beam equations or
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nonlinear wave equations. It would be feasible to extend the analysis to PDEs that
only admit a semigroup as a flow map, such as the heat equation or reaction–diffusion
systems. This, however, would also require new abstract invariant manifold results
that do not depend on the invertibility of the linearization.
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5 Appendix I: Well Posedness and Global Existence

In this section, we give the technical background for the evolution equation (1) in
detail. We will prove well posedness, even differential dependence on initial data, for
system (1) and show that the solutions exist globally in time, provided that the time-
dependent forcing term εh(t, x) is sufficiently well behaved.We first consider the case
of no external forcing (ε = 0) and then turn to the case ε > 0. In our presentation
of these classical applications of semigroup theory, we will be following (Engel et al.
1999; Pazy 1992).

We recall that a pair of functions (u, v) in some appropriately chosen space is called
classical solution to (1) if the map t �→ (u(t), v(t)) is continuously differentiable and
satisfies equation (16) pointwise. We will refer to the flow map for the linear part of
the right-hand side of (16) as

(u0, v0) �→ eAt (u0, v0). (81)

That is to say, (81) solves the initial value problem

{
Ut = AU

U (0) = U0,
(82)

forU = (u, v) andU0 = (u0, v0). In Sect. 5.1, we will show that problem (82) indeed
has a solution that depends continuously on the initial data. Once this is established,
we may proceed with the analysis of the full system (16).

Since solving an evolution equation in the classical sense may be too restrictive, we
introduce a weaker form of solution. This also permits us to use archetypal arguments
from nonlinear analysis on Banach spaces, in particular fixed-point arguments. A
function t �→ U (t) := (u(t), v(t)) is called a mild solution if it satisfies equation (16)
in the integral sense

U (t) = et AU0 +
∫ t

0
e(t−s)AGε(u(s), x) ds, t ≥ 0, (83)
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where U0 = (u0, v0); the one-parameter family of operators t �→ et A again denotes
the solution to the linearized equation (82), and Gε(u, x) = (0, f (u) + εh(x, t)). A
priori, it is not clear that equation (16) possesses a solution of any kind at all. We
will show that a solution actually exists and depends in a differentiable fashion on the
initial conditions due to the properties of the nonlinearity (2.1).

5.1 The Linearized Equation

In order to show that a mild solution to equation (16) exists, we first prove that the
matrix of operators (17) generates a C0-semigroup of contractions. We recall that a
one-parameter family of operators T : R+ → L(X) on someBanach space X is called
a strongly continuous semigroup, or for short C0-semigroup, if

• T (0) = I dX .
• T (s + t) = T (s)T (t), for all s, t ≥ 0.
• For all x ∈ X : ‖T (t)x − x‖ → 0 as t → 0.

A C0-semigroup {T (t)}t∈R+ is called contractive if in addition

‖T (t)‖ ≤ 1

for all t ≥ 0. Here, we have denoted the set of all bounded linear operators on X
by L(X). A linear operator generates a C0-semigroup if and only if the underlying
evolution equation is well posed (cf. Engel et al. 1999; Pazy 1992).

For the forthcoming analysis of equation (16), we choose the Hilbert space

H := H1
0 (0, π) × L2(0, π). (84)

We introduce the following inner product on the space H1
0 (0, L), depending on three

parameters α, γ, μ ≥ 0 :

〈 f, g〉α,γ,μ :=
∞∑

n=1

(
αn4 + γ

1+ μn2

)

ûn v̂
∗
n . (85)

For α, γ, μ > 0, the norm induced by the inner product (85) is equivalent to the
standard norm (12) on H1(0, π), as can be seen by direct comparison. Next, for fixed
α, γ, μ > 0, we endow the space H with the inner product

〈U1,U2〉H := 〈u1, u2〉α,γ,μ + 〈v1, v2〉L2 , (86)

where U1 = (u1, v1),U2 = (u2, v2) ∈ H.
The domain of definition of the matrix of operators (17) is the dense subspace

H2(0, π) × L2(0, π) ∩ H1
0 (0, π) × L2

0(0, π) ⊂ H, denoted by D(A).

Theorem 5.1 The matrix of operators A generates a C0-semigroup of contractions.
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Proof Let us show that A is dissipative for U = (u, v) ∈ D(A). First, we expand the
functions u, v in Fourier-sine series as

u(x) =
∞∑

n=1

ûn sin(nx), v(x) =
∞∑

n=1

v̂n sin(nx).

Then, using the inner product on H defined in (86), Parseval’s formula (10) and the
characterization of dissipativity in (15) we can write

〈AU,U 〉H = 〈u, v〉α,γ,μ + 〈v,M−1(−αuxxxx − γ u + βvxx − δv)〉L2

=
∞∑

n=1

[
(αn4 + γ )ûn v̂∗n − (αn4 + γ )ûn v̂∗n − (βn2 + δ)|v̂n|2

1+ μn2

]

= −
∞∑

n=1

(n2β + 1)|v̂n|2
1+ μn2

≤ 0.

This proves dissipativity for the operator A.
Next, we calculate the spectrum of A in H. The operator A − λI is not invertible

if and only if for some n ∈ N
+ we have

det

( −λ 1

−αn4+γ

1+μn2
− (βn2+δ)

1+μn2
− λ

)

= 0. (87)

Computing the zeros of the corresponding characteristic polynomial, we find that

λ±n = − βn2 + δ

2+ 2μn2
±
√
(

βn2 + δ

2+ 2μn2

)2

− αn4 + γ

1+ μn2
, (88)

and hence σ(A) = {
λ±n
}

n∈N+ . Since the spectrum is a countable set of isolated
eigenvalues, λ0 I − A is surjective whenever λ0 /∈ σ(A). Applying the Lumer–Phillips
theorem, we conclude that the operator A generates a C0-semigroup of contractions
(cf. Engel et al. 1999). ��

Expanding the initial conditions as Fourier series

u0(x) =
∞∑

n=1

û0n sin(nx), v0(x) =
∞∑

n=1

v̂0n sin(nx),

and assuming that λ+n �= ±λ−n for all n ∈ N
+, we may write the semi-flow map

generated by A explicitly as
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et A
(
u0
v0

)

=
⎛

⎝
∞∑

n=1

(
λ−n eλ+n t − λ+n eλ−n t

)
û0n + (eλ−n t − eλ+n t )v̂0n

λ−n − λ+n
sin(nx),

∞∑

n=1

λ+n λ−n (eλ+n t − eλ−n t )û0n +
(
λ−n eλ−n t − λ+n eλ+n t

)
v̂0n

λ−n − λ+n
sin(nx)

⎞

⎠ .

(89)

5.2 The Full Equation

Now that we know that the matrix of operators (17) generates a C0-semigroup, we
can proceed with the analysis of the full nonlinear and non-autonomous system (16).
First, we use the following theorem to show that the nonlinear equation (16) is well
posed and the flow depends on the initial data in a differentiable fashion.

Theorem 5.2 Let A generate a C0-semigroup on H. If G : [0, T ] × H → H con-
tinuous in t on the interval [0, T ] and uniformly Lipschitz continuous onH. Then for
any U0 ∈ D(A), the initial value problem (16) has a unique mild solution.

If the forcing G is even continuously differentiable from [0, T ] × X into X, then
the mild solution with U0 ∈ D(A) is also a classical solution.

A proof based on fixed-point arguments can be found in Pazy (1992).
We now have to show that the function f : D(A) → H is continuously differen-

tiable as a map on Hilbert spaces. To this end, we will need the following result.

Lemma 5.3 Let f : R → R satisfy the assumptions in 2.1 and let p ≥ m. Then the
nonlinear operator

f :L p(0, π) → L
p
m (0, π),

u �→ f (u),

between Hilbert spaces is well defined and r-times continuously differentiable in the
Fréchet sense, with derivative

f ′(u) · v = f ′(u)v (90)

for all v ∈ L p(0, π).

A proof (under weaker assumptions) can be found in Cazenave and Haraux (1998).
Now we have to relate the L p-space in the previous lemma to the Sobolev space Hs .
This is done in the following

Lemma 5.4 Let u ∈ H1(0, π). Then the inequality

‖u‖L∞(0,π) ≤ C‖u‖H1(0,π)

holds true for some C > 0.
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Proof Expanding u as a Fourier-sine series, for any x ∈ [0, π ], we have the estimate

|u(x)| ≤
∞∑

n=1

|ûn| ≤
( ∞∑

n=1

1

1+ ñ2

) 1
2
( ∞∑

n=1

(1+ ñ2)|ûn|2
) 1

2

= C‖u‖H1(0,π),

where we have used the Cauchy–Schwartz inequality and the convergence of the series∑∞
n=1

1
1+ñ2

. Taking the supremum of the left-hand side of this inequality then proves
the claim. ��

We can now deduce that the map f : Hs(0, π) → L2(0, π), u �→ f (u), is
differentiable for all s ≥ 1. Indeed, if we set p = 2m in Lemma 5.3 and recall that
L∞(0, π) ⊂ L p(0, π) for all p ≥ 1, it follows from Lemma 5.4, that Hs(0, π) ⊂
L2m(0, π) for all s ≥ 1 and allm > 1. By Theorem 5.2, the initial value problem (16)
has a unique, classical solution.

Theorem 5.2 guarantees existence and uniqueness of a local solution to equation
(16). We now show that a solution to equation (16) exists for all times t ≥ 0, provided
that the external forcing is sufficiently well behaved.

Proposition 5.5 Assume that the external forcing in (1) satisfies Assumption 2.3. Then
any solution to equation (1) exists for all times.

Proof The proof relies upon a straightforward energy estimate for the quantity

E(u) = 1

2

∫ π

0

[
u2t + αu2xx + γ u2 + μu2t x − 2F(u)

]
dx, (91)

where we have set

F(x) :=
∫ x

0
f (ξ) dξ.

Indeed, by equation (13) and by the definition of the α-γ -μ-norm in (85), we find that

1

2
‖(u(t), v(t))‖2H = 1

2

∞∑

n=1

(
αn4 + γ

1+ μn2

)

|ûn|2 + |v̂n|2

≤ 1

2

∞∑

n=1

(
αn4 + γ

)
|ûn|2 + |v̂n|2

≤ 1

2

∞∑

n=1

(
αn4 + γ

)
|ûn|2 + (1+ μn2)|v̂n|2 −

∫ π

0
F(u(x)) dx

= E(u)

(92)
by assumption (5).

123



1138 J Nonlinear Sci (2018) 28:1109–1150

We will now show that energy (91) is decreasing in time. Using equation (1) and
integration by parts to shift the derivatives, we obtain the estimate

d

dt
E(u) =

∫ π

0
ut (utt − μuttxx + αuxxxx + γ u − f (u)) dx

=
∫ π

0
ut (βutxx − δut + εh(x, t)) dx

≤ −β‖utx‖2L2 − δ‖ut‖2L2 + ε‖ut‖2L2‖h‖2L2

≤ ‖ut‖2L2(εH0 − δ)

≤ 0,

(93)

where we have used the Cauchy–Schwartz inequality in the third line and Assump-
tion 2.3 in the fourth line. The estimate in the last line holds true for sufficiently small
ε. Since E decreases in time, it follows from (92), that the norm of a solution (u, v)

stays bounded for all times. This proves global existence. ��
Remark 5.6 Estimate (93) actually shows that the mechanical system (1) loses energy
in time—this is due to the damping term δut . The dissipation of energy outperforms
the periodic forcing if the mean kinetic energy is sufficiently small.

Remark 5.7 For later computations, we note that if ‖U0‖H � ε, then ‖U (t)‖ � ε for
all t ≥ 0. Indeed, by (92) and (93), we have that

‖U (t)‖H ≤ ‖U0‖H −
∫ L

0
F(u0) dx

� ε +
∫ π

0
|u0|m+1 dx

� ε + ‖u0‖L2(0,π) � ε,

(94)

where we have used the fact that ε is small and that Lq(0, π) ⊆ L p(0, π) if q ≥ p.

5.3 Fixed Points of the Poincaré Map

Because of the presence of an ω-periodic forcing term, we introduce the phase θ ∈ S1

and consider the equivalent autonomous dynamical system

{
Ut = AU + f(U ) + εh(x, θ),

θt = ω,
(95)

with f(u, v) = (0, f (u)) and h(x, t) = (0, h(x, t)). This system is equivalent to our
equation (1), but a fixed point of the returned map of equation (95) now corresponds
to a periodic orbit of (95). Due to the presence of time-periodic forcing, the trivial
solutionU (x, t) = (0, 0) is no longer a fixed point of the flow map. However, we can
prove that the suspended system (95) admits a fixed point for its Poincaré map, as long
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as ε is small. Let F
2π
ω

ε : H× Sω → H× Sω be the flow map of system (95). For any
fixed ω0 ∈ Sω, see (6), we define the Poincaré map with base ω0 as

Pε : H → H, U0 �→ πH(Fω
ε (U0, ω0)), (96)

where πH : H × Sω → H is the projection on our underlying Hilbert space. The
implicit dependence of Pε upon ω0 is suppressed for notational reasons in the follow-
ing.

The assumptionsmade in (2.1) and (2.3) are strong enough to guarantee well posed-
ness and global existence for the suspended system (95), as we may deduce from the
well posedness and global existence result for equation (16).

Next, we observe that the linearization of equation (1) with forcing present,

wt t − μwt t xx = −αwxxxx + βwt xx − γw − δwt + εh, (97)

admits a time-periodic solution of period ω. To see this, we seek a time-periodic
solution and expand w as well as h as Fourier series, both in the x- and in the t-
variables, as

w(x, t) =
∑

m∈Z

∞∑

n=1

ŵn,me
2π im

ω
t sin(nx), h(x, t) =

∑

m∈Z

∞∑

n=1

ĥn,me
2π im

ω
t sin(nx),

and insert these expressions into equation (97). We find that in order to obtain a time-
periodic solution, we should set

ŵn,m = εĥn,m

im̃(δ + βn2)+ αn4 + γ − m̃2(μn2 + 1)
, (98)

provided the denominator is nonzero for any m ∈ Z and n ∈ N
+. Here we have set

m̃ := 2πm
ω

. Equivalently, passing to a vector formulation of (97) with W = (w,wt ),
we know that the system

Wt = AW + εh (99)

possesses a time-periodic solution of period ω.
In order to prove that the Poincaré map possesses a fixed point, we impose the

following non-resonance condition relating the spectrum of the linear system (97) to
the period of the external forcing

Assumption 5.8 The spectrum of the linear flow at time ω does not contain 1, i.e.,

1 /∈ σ(eωA). (100)

We may write assumption (100) equivalently as

2π il

ω
�= − βn2 + δ

2+ 2μn2
±
√
(

βn2 + δ

2+ 2μn2

)2

− αn4 + γ

1+ μn2
(101)
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for any n, l ∈ N. Note that for β, δ > 0, the above assumption is always satisfied.
Using a perturbative argument in the proof of the existence of a fixed point for Pε,

we have to show that the derivative of the flow map of (16) for ε small is close to the
derivative of the flow map at ε = 0. This will be achieved in the following

Lemma 5.9 Let Ft
ε be the flow map of equation (16) at time t > 0. If we assume that

the nonlinearity f satisfies Assumption 2.1, while the forcing satisfies Assumption 2.3,
then, for any fixed time t > 0, the estimate

‖(DFt
0(U )− DFt

ε (U )) · V ‖H � ‖V ‖H, (102)

holds for any U, V ∈ H, provided ε > 0 is sufficiently small.

Proof To show estimate (102), we first note that the derivative DFt
ε satisfies the

integral equation

DFt
ε (U ) · V = et A · V +

∫ t

0
e(t−s)A∇UGε(F

t
ε (U ))DFt

ε (U ) · V ds, (103)

as it can be seen by taking the Fréchet derivate of equation (83) and using the regularity
properties of f derived in Lemma 5.3. We rewrite (103) as

(
DFt

ε (U ) − DFt
0(U )

) · V
=
∫ t

0
e(t−s)A

(
∇UGε

(
Ft

ε (U )
)
DFt

ε (U ) −∇UG0
(
Ft
0(U )

)
DFt

0(U )
)
· V ds

=
∫ t

0
e(t−s)A

(
∇UGε

(
Ft

ε (U )
)(

DFt
ε (U )− DFt

0(U )
))

· V ds

+
∫ t

0
e(t−s)A

((
∇UGε

(
Ft

ε (U )
)− ∇UG0

(
Ft
0(U )

))
DFt

0(U )
)
· V ds.

Using the fact that ‖DFt
0(U ) · V ‖H = ‖et A · U‖H � ‖U‖H for any U ∈ H along

with Assumption 2.1, we obtain

‖(DFt
ε (U )−DFt

0(U )
)·V ‖H �

∫ t

0
‖(DFt

ε (U )−DFt
0(U )

)·V ‖H ds+‖V ‖H. (104)

Applying Gronwall’s inequality to equation (104) proves the claim. ��
We are now ready to prove the following

Lemma 5.10 For ε > 0 small enough, the Poincaré map (96) admits a unique fixed
point.

We follow closely the argument provided in Holmes and Marsden (1981), under
slightly weaker assumptions.
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Proof Let Uper (x, t; ε) denote the unique time-periodic solution to equation (99).
Passing to the weak formulation, we know that U per satisfies the integral equation

Uper (x, t; ε) = et AUper (x, 0; ε) + ε

∫ t

0
e(t−s)Ah(x, t) ds, (105)

together with the condition Uper (x,
2π
ω
; ε) = Uper (x, 0; ε) for any x ∈ (0, π). We

are looking for a solution to the integral equation

U (x, t; ε) = et AU (x, 0; ε) + ε

∫ t

0
e(t−s)Ah(x, t) ds +

∫ t

0
e(t−s)Af(U ) ds, (106)

together with the condition that U (x, 2π
ω
; ε) = U (x, 0; ε) for all x ∈ (0, π). Let Bε

denote the ball of radius ε around the solution to the linear problem Uper (x, 0; ε) in
the space H. Subtracting equation (105) from equation (106), we obtain

U (x, t; ε) −Uper (x, t; ε) = et A
(
U (x, 0; ε) −Uper (x, 0; ε)

)+
∫ t

0
e(t−s)Af(U ) ds,

(107)
as we see by equation (107). We note that U is a fixed point for the Poincaré map if
and only if it is a fixed point for the functional

Sε(U (0, x)) = U per (0, x; ε)+(1−e
2π
ω
A)−1

∫ 2π
ω

0
e
(
2π
ω
−s
)
Af(U (x, s; ε)) ds, (108)

which is well defined by assumption (100). This can be seen by inspecting equation
(107).

We can now use the estimate derived in (94) to show that S maps the ball
Bε into itself. Indeed, we know from equation (98) that ‖Uper (x, t; ε)‖H ≤
ε(‖h(x, t)‖L2(0,π) + ‖ht (x, t)|‖L2(0,π)) � ε, where we also have used assumption
(2.3). We find that

‖S(U (0, x)) −U per (0, x; ε)‖H �
∫ 2π

ω

0
‖f(U (x, s))‖H ds

�
∫ 2π

ω

0
‖u‖mL2 ds

� εm,

(109)

where we have used assumption (2.1) as well as the fact that L2m(0, π) ⊂ L2(0, π)

for m > 1. For ε sufficiently small, this proves the claim.
Now we show that the functional S is a contraction on Bε. To this end, note that

∥
∥
∥
∥

∂S

∂U0

∥
∥
∥
∥ �

∫ 2π
ω

0

∥
∥
∥
∥

∂f
∂U

∂U

∂U0

∥
∥
∥
∥ ds � εm−1, (110)
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wherewe have used the assumption on the derivative of f in (2.1), the fact that ∂U/∂U0
is close to eA, and that εm−1 � ε for ε small. Applying a standard fixed-point argument
then proves the lemma. ��

6 Appendix II: Existence and Uniqueness of Spectral Submanifolds

We now recall some general results on invariant submanifolds tangent to spectral
subspaces from Cabré et al. (2003). Let F ∈ Cr (U,Y ), with r ∈ N ∪ {∞, a} and let
0 be a fixed point of F . In the following, we denote the complex unit disk by

D := {z ∈ C : |z| < 1}. (111)

Assumption 6.1 Let A be the derivative of the Cr -map F at zero, i.e., A = DF(0).
Assume further that

(1) The operator A is invertible.
(2) The underlying Banach space X admits a decomposition as a direct sum X =

X1 ⊕ X2, where the space X1 is invariant under A, i.e.,

AX1 ⊂ X1.

We write π1 : X → X1 and π2 : X → X2 for the linear projections on the
respective subspaces. For ease of notation, we set A1 := π1A|X1 and A2 :=
π2A|X2 .

(3) The spectrum of A1 lies strictly inside the unit circle, that is to say

σ(A1) ⊂ D.

(4) The spectrum of A2 does not contain zero, i.e.,

0 /∈ σ(A2).

(5) For the smallest integer L ≥ 1 with the property that

σ(A1)
L+1σ

(A−1
2

) ⊂ D

we have

σ(A1)
i ∩ σ(A2) = ∅

for every integer i ∈ [2, L] (in case L ≥ 2).
(6) The order of differentiability r of F and the integer L satisfies

L + 1 ≤ r.
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Remark 6.2 As a consequence of assumption (2) in (6.1), the operator A admits a
representation

A =
(A1 B

0 A2

)

, (112)

with respect to the decomposition X = X1 ⊕ X2, where B = π1A|X2 . If X2 is also
an invariant subspace for A, then B = 0. The main result in Cabré et al. (2003) is the
following

Theorem 6.3 Let F : U → Y be a Cr -map that satisfies assumptions (6.1). Then the
following holds true:

(1) There exists a Cr manifold M1 that is invariant under F and is tangent to the
subspace X1 at 0.

(2) The invariant manifold M1 is unique among all CL+1 invariant manifolds of
F that are tangent to the subspace X1 at 0. That is, every two CL+1 invariant
manifolds with this tangency property will coincide in a neighborhood of 0.

(3) There exists a polynomial map R : X1 → X1 of degree not larger than L and a
Cr map K : U1 → X, defined on some open subset U1 ⊂ X1 that contains 0,
satisfying

R(0) = 0, DR(0) = A1, K (0) = 0, π1DK (0) = I, π2DK (0) = 0

such that K serves as an embedding of M1 from X1 to X and R represents the
pullback of the dynamics on M1 to U1 under this embedding. Specifically, we
have

F ◦ K = K ◦ R. (113)

The proof can be found in Cabré et al. (2003).

Remark 6.4 If additionally the non-resonance condition

σ(A1)
i ∩ σ(A2) = ∅

holds for every integer i ∈ [M, L], then we can choose R in (113) to be a polynomial
of degree not larger than M − 1. Furthermore, the Cr -manifoldM1 is unique among
all CL+1 locally invariant manifolds tangent to the subspace X1 at 0 (see Cabré et al.
2003 for details).

6.1 The Case of No External Forcing (ε = 0)

We will now apply Theorem 6.3 to our system (1) with ε = 0. To this end, we choose
as our underlying space X = H2(0, π) × L2(0, π) and as our map F = U (., 1), the
time-one map of system (16).

The mild solution U = U (t,U0) ∈ H, which is also a classical solution by The-
orem 5.2, is a fixed point to the function on the right-hand side of equation (83). If
we regard the right-hand side of (83), as the flow map U0 �→ UT (U0) := U (T,U0)
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for some fixed time T > 0, we can take Fréchet derivatives with respect to initial
conditions U0 = (u0, v0) ∈ D(A) = H4(0, π) × H4(0, π) on both sides to obtain

∂UT

∂U0
= eT A +

∫ T

0
e(t−s)A∇U F(u(s), x) ds · ∂UT

∂U0

= eT A +
∫ T

0
e(t−s)A

(
0 0

f ′(u(s)) 0

)

ds · ∂UT

∂U0
.

(114)

In particular, using the fact thatUT (0, 0) = 0 for all T ≥ 0 by uniqueness of solutions
and employing Assumption 2.1, we deduce that

∂UT

∂U0
(0, 0) = eT A (115)

for all T ≥ 0.
This means that, from existence and uniqueness, we infer that F(0) = 0, while

from equation (115), we infer that

A = eA.

Let us nowverifyAssumption6.1 stepby step.To see thatA is invertible,wemayhave a
look at the explicit formula (89) and compare the asymptotic growth of the coefficients.
A look at (88) confirms that eλ±n stays bounded and away from zero as n → ±∞, so
that we can deduce that the flow et A maps the space H2(0, π) × L2(0, π) to itself.
Since the map (u0, v0) �→ et A(u0, v0) is bijective, as it can be seen by inspecting (89),
it follows from the bounded inverse theorem on Banach spaces that the linearization
A is invertible (cf. Rudin 2006). In fact, we may write down the of A in closed form
as

A−1
(

w

z

)

=
⎛

⎝
∞∑

n=1

eλ+n +λ−n

(
λ−n eλ−n − λ+n eλ+n

)
ŵn −

(
eλ−n − eλ+n

)
ẑn

λ−n − λ+n
sin(nx),

∞∑

n=1

eλ+n +λ−n
−λ+n λ−n

(
eλ+n −eλ−n

)
ŵn+

(
λ−n eλ+n −λ+n eλ−n

)
ẑn

λ−n − λ+n
sin(nx)

⎞

⎠ .

(116)
Since the space L2

0(0, π) admits a basis, namely {eiñx }n∈Z, which is an eigenbasis for
the right-hand side of equation (1), we may choose any subset of the eigenbasis of the
matrix of operators A as our space X1. An easy computation shows that for a fixed
frequency eiñx , the eigenvectors for the matrix of operators A are given by (1, λ+n )

and (1, λ−n ), respectively. Therefore, for any subset N × M ⊂ N
+ × N

+, we define
the parametrization space as

X1 := span
({(

1, λ+n
)
sin(nx)

}

n∈N ∪ {(1, λ−m
)
sin(mx)

}

m∈M
)
. (117)
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The space X2 in Assumption 6.1 is then automatically given as X2 = X⊥
1 . We find

that X1 is indeed invariant under A, taking a look at the explicit formula (89) again.
Since the operator A is invertible and has pure point spectrum, we may deduce

from the spectral mapping formula, cf. Engel and Nagel (2006), that

σ(A) =
⎧
⎨

⎩
exp

⎛

⎝− βn2 + δ

2+ 2μn2
±
√
(

βn2 + δ

2+ 2μn2

)2

− αn4 + γ

1+ μn2

⎞

⎠

⎫
⎬

⎭
n∈N+

. (118)

Remark 6.5 Note that the above result is non-trivial in infinite dimensions. In general,
the spectrum of the semi-flow generated by some operator A : A ⊂ H → H is not
equal to its exponential spectrum, i.e.,

σ(et A) �= etσ(A)

for some t ≥ 0. There are examples of semigroups that cannot be extended to operator
groups and therefore are not invertible.

Since all constants in equation (1) are chosen positive, we immediately find that
σ(A) ⊂ D and that σ(A1) ⊂ D for any choice of the subspace X1. Thus, (2) of
Assumption 6.1 is automatically satisfied. By the same token, 0 /∈ σ(A2), and hence,
(3) of Assumption 6.1 is always satisfied as well.

In order to give a criterion under which (5) of Assumption 6.1 is satisfied, we first
note that

(σ (A1))
L+1σ

(A−1
2

) ⊂ D

is satisfied if and only if

sup
{− Reμ+ (L + 1)Re λ

}
< 0,

where the supremum is taken over all λ ∈ {λ+n }n∈N ∪ {λ−m}m∈M and all μ ∈ σ(A) \
({λ+n }n∈N ∪ {λ−m}m∈M ).

Here, we have used the relation between the point spectrum of an invertible operator
A and the point spectrum of its inverse

σP (A−1) \ {0} = σp(A)−1.

A proof can be found in Hislop and Sigal (2012).
Since λ±n is negative for all n ∈ Z, the above condition is equivalent to

L ≥ inf Reμ

supRe λ
− 1. (119)

This proves the existence of a SSM in the case of no external forcing.
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6.2 The Case of Weak External Forcing (ε > 0)

In the following, we will apply Theorem 6.3 to equation (1) with ε > 0. Again,
our underlying space will be X = H2

0 (0, π) × L2
0(0, π). This time, however, we set

F = Pε, with Pε being the Poincaré map defined in (96). There exists then a fixed
point of Pε (cf. Lemma 5.10), which we will denote by U 0

ε . We also let

Aε = DPε

(
U 0

ε

)
.

Since eAT is invertible and Aε is close to eAT in norm for ε small by Lemma 5.9, it
follows that also Aε is invertible.

Since we cannot write down the spectrum of Aε explicitly, as we were able to do
for eA, we will aim to prove that σ(Aε) is close to σ(eAT ). To this end, we will apply
analytical spectral perturbation theory. Recall that, by the assumption in Theorem 4.3,
the nonlinearity in (1) is real analytic

f ∈ Ca(H,H), (120)

which in particular implies that the for any U ∈ H, the map ε �→ AεU is analytic
around zero in the topology of H. This follows by the implicit function theorem for
analytic functions on Banach spaces, cf. Lang (1999). Thus, Aε defines a so-called
analytic family and we can apply the following

Lemma 6.6 (Analytical Spectral Perturbation) Let Tε : H → H be an analytic fam-
ily of bounded operators about ε = 0. For any discrete eigenvalue λ0 ∈ σ(T0),
there exist discrete eigenvalues λ1(ε), ..., λr (ε) ∈ σ(Tε), with r = r(ε), such that
λ j (0) = λ0, for j = 1, ..., r and such that the total algebraic multiplicity of the λ j is
equal to the algebraic multiplicity of λ0.

For a proof, which also includes the more general case of unbounded operators as
well, we refer to Hislop and Sigal (2012). Since the algebraic multiplicity is always
greater or equal to the geometric multiplicity, a fortiori we know that sum of the
dimensions of the eigenspaces associated with the split eigenvalues λ1(ε), ..., λr (ε)

cannot exceed the total multiplicity of λ0.
FromLemma6.6,we know that in a neighborhood of the eigenvalueλ0 are eigenval-

ues λ1(ε), ..., λr (ε) of the perturbed operator Aε, which converge to the eigenvalue
of the unperturbed operator as ε → 0. The following Lemma guarantees that the
spectrum is stable with respect to perturbations.

Lemma 6.7 Let Tε : H → H be an analytic family of bounded operators about ε = 0,
and let G be an open, bounded subset of the complex plane such that G ⊂ ρ(T0).
Then G ⊂ ρ(Tε) for ε sufficiently small.

A proof can be found in Hislop and Sigal (2012). Choosing now as ourG the whole
of C with small balls around the discrete eigenvalues of eA excluded, we can deduce
that

σ(Aε) ⊂ D, (121)
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as desired for the application of Theorem 6.3.
To choose a parametrization space Xε

1, we introduce the so-called Riesz projection.
Let�ε be a collection of isolated eigenvalues of the operatorAε and let� : [0, 1] → C

be a simply closed curve with winding number one that encircles �ε and does not
intersect with the remaining spectrum of Aε. Define the operator-valued function
ε �→ Pε,

Pε :=
∮

�

(z −Aε)
−1 dz. (122)

The operator Pε defines a projection, cf. Hislop and Sigal (2012). Moreover, the
underlying Hilbert space admits a splitting as

H = ker(Pε) ⊕ Range(Pε), (123)

both ker(Pε) and Range(Pε) are invariant spectral subspaces for the operatorAε, i.e.,

σ(Aε|Range(Pε)) = �ε,

σ (Aε|ker(Pε)) = σ(Aε) \ �ε.
(124)

Aproof for the above result, theRiesz decomposition theorem, can be found inGohberg
et al. (2013). Now, for any collection of split eigenvalues �ε of the operator Aε, we
set

Xε
1 := Range(Pε),

Xε
2 := ker(Pε).

(125)

Equally, the parametrization space can be written as

Xε
1 =

⊕

n∈N

⊕

k(n)

Eig
(
λk(n)
n (ε)

)
, (126)

where {λn}n∈N ⊂ σ(eA) is some subset of the spectrum of the unperturbed linear flow
map, while the index n �→ k(n) describes some choice of the split eigenvalues for the
perturbed operator.

By the above considerations, the space Xε
1 is invariant and clearly σ(Aε

1) ⊂ D by
relation (121). Also, since 0 /∈ σ(Aε) for small enough ε and since the operator Aε

decomposes according to (112), we conclude that 0 /∈ σ(Aε
2).

The eigenvalues of a family of self-adjoint operators {Tε}ε, depending analytically
on ε, also depend analytically upon ε, cf. Hislop and Sigal (2012). However, in our
case, the analytic family {Aε} is not self-adjoint and in general each eigenvalue λ j (ε)

is only analytic in ε1/p for some integer p, i.e., λ j possesses a Puiseux expansion in ε.
However, all isolated eigenvalues ofA0 being non-degenerate, the following Theorem
applies in our case.

Theorem 6.8 Let {Tε}ε be an analytic family of type A about ε = 0. Let λ be a
discrete, non-degenerate eigenvalue of T0. Then there exists an analytic family, λ(ε),
of discrete, non-degenerate eigenvalues of Tε, such that λ(0) = λ, for |ε| sufficiently
small.
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Moreover, the associated Riesz projections, ε �→ Pε, depend analytically on ε.

A proof can be found in Hislop and Sigal (2012).

Remark 6.9 If the eigenvalue λ is degenerate, then Theorem 6.8 in general fails, as
already the finite-dimensional example Tε : R2 → R

2,

Tε =
(
2 1
ε 2

)

,

shows. Indeed, the spectrum of T0 consists of the eigenvalue λ = 2 with algebraic
multiplicity two, while σ(Tε) = {2 ± √

ε}. Using a standard residue calculus argu-
ment, one readily finds that the Riesz projection for the eigenvalue λ(ε) = 2+√

ε is
given by

Pε =
∮

�

1

(z − 2)2 − ε

(
z − 2 1

ε z − 2

)

dz = 1

2

(
1 1√

ε√
ε 1

)

,

which is not analytic in ε around zero.

Proposition 6.10 The spectral subspace Eε, associated with the set of perturbed
eigenvalues �ε ⊂ σ(Aε), is ε-close to the spectral subspace E , associated with
the collection of eigenvalues � ⊂ σ(A0) of the unperturbed operator A, i.e.,

Eε = E +O(ε). (127)

Proof Since, by Theorem 6.8, the perturbed Riesz projection is analytic in ε, i.e.,
Pε = P0 +O(ε), it follows that

Eε = Range(Pε) = Range(P0) +O(ε) = E +O(ε) (128)

by the Riesz projection theorem and equation (125). This proves the claim. ��
Since all eigenvalues ofA0 are simple by equation 19, Proposition 128 guarantees

that the perturbed spectral subspaces Eε are ε-close to the unperturbed eigenspaces of
A0.

For condition (5) in Theorem 6.3, we have a look at the relation obtained in (119)
and note that it will hold true if we perturb λ and μ only slightly, that is to say for
small enough ε. Sincewe assumed (120), condition (6) in Theorem6.3 is automatically
satisfied for any L ∈ N.

We deduce from Theorem 6.3 that there exists a unique, analytic invariant manifold
for the Poincaré map tangent to the spectral subspace Xε

1. Since the choice of the base
pointω0 in the definition of the Poincaré map (96) was arbitrary, we obtain an invariant
manifold for any such ω0 ∈ Sω. By analytical dependence upon initial conditions for
the flowmap, a forteriori, the Poincarémap dependence analytically uponω0. Because
of the uniqueness of the invariant manifold, obtained for any ω0 ∈ Sω, we deduce that
there exists a unique, invariant manifold for the flow of equation (95) by continuing
the spectral submanifold for any θ ∈ Sω.
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