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Abstract We study the dynamics of plankton in the wake of a jellyfish. Using an
analytical approach, we derive a reduced-order equation that governs the prey motion
which is modeled as neutrally-buoyant inertial particle. This modified equation takes
into account both the effects of prey inertia and self-propulsion and enables us to
calculate both the attracting and repelling Lagrangian coherent structures for the prey
motion. For the case of zero self-propulsion, it is simplified to the equation of motion
for infinitesimal fluid particles. Additionally, we determine the critical size of prey
over which instabilities on its motion occur resulting in different dynamics from those
predicted by the reduced-order equation even for the case of zero self-propulsion.
We illustrate our theoretical findings through an experimentally measured velocity
field of a jellyfish. Using the inertial equation, we calculate the Lagrangian coherent
structures that characterize prey motion as well as the instability regions over which
larger prey will have different dynamics even for the case of zero self-propulsion.
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1 Introduction

Medusae are important predators in coastal ecosystems. They feed on zooplank-
ton, fish eggs, and larvae and, therefore, directly influence plankton ecosystems
and natural fishery resources (Purcell and Grover 1990; Matsakis and Conover
1991). Medusae are also known to indirectly influence structures of marine plank-
tonic ecosystems through cascades and interactions among different trophic lev-
els in the marine food web (Purcell and Decker 2003). With more frequent and
substantial medusan population outbreaks in recent years (Kawahara et al. 2006;
Purcell et al. 2007), it is important to understand medusan predatory activities and
how they affect marine ecosystems.

One of the most important processes in medusae predation is prey encounter and
capture. Laboratory and field studies have identified several important parameters in
this process, such as bell diameter (Bailey and Batty 1983), nematocyst type (Pur-
cell and Mills 1991), tentacle orientation and placement (Madin 1988), etc. Other
morphological and physiological factors like bell shape and muscle strength can also
indirectly affect prey capture capability through swimming speed (Madin 1988) and
feeding modes (Colin et al. 2003).

Estimation of trophic effects of medusae also requires better understanding of
the variability of prey selection across different medusan species. Medusan dietary
preferences for prey organisms have been demonstrated in many studies using se-
lected prey (Hansson et al. 2005) and gut content analyses (Costello et al. 2008;
Purcell 2005). These studies suggest that the preferences are results of physical
processes during capture and ingestion, and that they depend on multiple parame-
ters including prey size, escape capability, and digestibility. However, the relative
importance of these parameters for different medusae species is still unclear. Due to
the lack of a more general understanding of the prey selection process, results in em-
pirical studies are usually limited to a small number of readily observable species and
cannot be used to predict predation by other species.

A deeper understanding of prey capture and selection mechanisms requires the
development of physical model describing the animal-fluid interactions that underlie
the capture and selection processes. Such a model can potentially test different hy-
potheses regarding prey capture and selection. It can also enable independent control
of governing parameters in a manner that is more difficult to achieve in field and lab-
oratory studies. Recent studies on large cruising scyphomedusae have made progress
in this regard. Contrary to small hydromedusae that primarily wait in ambush (Madin
1988), these large scyphomedusae swim continuously and forage simultaneously. The
concurrent activities of swimming and prey-capturing suggest that fluid motion gen-
erated during swimming also strongly affect feeding capabilities of scyphomedusae
(Colin et al. 2003). Using analytical tools from fluid dynamics and dynamical sys-
tems, Shadden et al. (2006) developed a mechanistic model that quantified fluid mo-
tions during swimming of scyphomedusae Aurelia aurita and identified a region in
which the fluid can interact with the capture surface. Peng and Dabiri (2009) further
developed the model to incorporate effects of prey properties and behaviors on cap-
ture and selection. The model considers prey as small particles whose motions are
determined by the surrounding flow and several prey parameters, such as prey size,
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capabilities of perceiving predators, and generating escape swimming force. The ef-
fect of these parameters on prey capture and selection are quantified by measuring
the size of capture region, i.e., the region in which prey can interact with the capture
surface.

Though the model was able to demonstrate prey selection based on prey size, ca-
pabilities of perceiving predators, and generating escape swimming force, it did so
by measuring the size of capture region, a collective of prey capture. It did not con-
sider individual prey dynamics nor answer the question why some prey are captured
and why others are not. The computation of the capture region was based on the
calculation of the Lagrangian coherent structures for small spherical inertial parti-
cles, modeling the prey. For fluid flows, Lagrangian coherent structures (or LCS) can
be defined as smooth sets of fluid particles with distinguished stability properties.
Specifically, repelling (or forward) LCS are material surfaces that repel all neighbor-
ing fluid trajectories; similarly, attracting (or backward) LCS attract all neighboring
fluid trajectories. These definitions are objective, i.e., invariant with respect to transla-
tions and even time-varying rotations of the coordinate frame. Therefore, LCS can be
used to explain the forward and backward-time behavior of typical infinitesimal fluid
particles. To extract Lagrangian structures from the flow, one may use the direct or
finite-time Lyapunov-exponent (FTLE) method developed in Haller (2001). For the
inertial particles dynamics, this computation requires the numerical solution of the
Maxey–Riley equation (a four-dimensional singular perturbation problem), which is
a very expensive process for the calculation of repelling LCS and an impossible com-
putation for the attracting LCS due to the numerical ill-posedness of the advection
problem backward in time.

In this work, we use recent tools from dynamical systems theory to describe the
motion of prey through a reduced-order equation without singular terms. More specif-
ically, in Haller and Sapsis (2008), a general reduced-order equation (inertial equa-
tion) for the asymptotic motion of spherical finite-size particles in unsteady fluid
flows was derived. The corresponding reduced inertial velocity field is a small per-
turbation of the ambient velocity field, with the order of the perturbation defined
as the size of the inertial particle relative to characteristic length scale in the flow.
Due to this perturbation in velocity, inertial particle motion can develop substantial
differences from infinitesimal particle motion in the same ambient flow field. For
the analysis of prey motion, we use inertial Lagrangian coherent structures (ILCS),
defined in Sapsis and Haller (2009a), as LCS extracted from the inertial equation
by the finite-time Lyapunov-exponent method. Specifically, attracting ILCS attract
finite-size particles, while repelling ILCS repel finite-size particles. The network of
repelling and attracting ILCS form the inertial analogue of tangled networks known
from simple examples of chaotic advection of infinitesimal fluid particles.

It turns out, however, that for larger particle sizes, instabilities in the dynamics
of inertial particles will develop (Sapsis and Haller 2009b). These instabilities drive
away inertial particle trajectories from the slow manifold on which the inertial equa-
tion is valid. As a result, in a given flow, an attracting ILCS may only stay attracting
for smaller particles, while larger particles ultimately spin away from the ILCS due to
their inertia. Such “spin-offs” happen in regions of high strain; the exact strain thresh-
old is derived in Sapsis and Haller (2009b) for neutrally buoyant particles without
self-propulsion.
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In this work, we use and formulate the above dynamical system tools in the con-
text of prey-motion to study the effect of the prey inertia as well as its self-propulsion.
Using the derived reduced-order inertial equation, we are able to calculate rigorously
ILCS and compute analytically the regions where instabilities on the prey motion,
due the combined effect from its size and self-propulsion, will occur. In contrast to
previous studies on the subject where coherent structures were computed purely by
analogy with infinitesimal LCS, the current study computes ILCS on a slow manifold
that is globally attracting. The reduced order of the inertial equation allows also for
the calculation of attracting ILCS, a computation which was not feasible by trying
to solve backward the full Maxey–Riley equation (since Maxey–Riley is numerically
unstable in backward time due to the singular term; see Haller and Sapsis 2008). For
larger values of prey inertia, we study the dynamical mechanism that allows prey to
escape from the capture region. This is due to a normal instability of the slow mani-
fold that occurs in specific subsets of the physical domain described by an analytical
condition. We illustrate the role of these regions by numerically solving the full equa-
tion of motion and show that larger prey may escape from the capture region which
has been computed using the repelling ILCS. This is because in these regions the
dynamical instabilities cause divergence of the prey velocity from the one imposed
by the slow manifold and thus the inertial equation is not valid. We also prove that
the existence of prey self-propulsion (with specific characteristics) always causes re-
duction of there regions. Therefore, the computed ILCS are the relevant structures for
prey motion if the prey size is smaller than a critical value which can be determined
explicitly using the presented techniques.

2 Prey Dynamics

Let x refer to three-dimensional spatial locations and let t denote time. Let u(x, t)

denote the three-dimensional velocity field of the flow of density ρf due to the motion
of the jellyfish. For simplicity, we neglect the body shape of the prey and consider
it as small spherical particles of density ρp and radius a. Hence, the prey dynamics
can be described by the Maxey–Riley equation. However, the forces on the right-
hand side of the Maxey–Riley equation only include fluid forces acting on passive
particles due to the background fluid currents and gravity. Small plankton are capable
of self-propulsion, often triggered by perception of a nearby predator. This effect
was modeled in Peng and Dabiri (2009) by the addition of a term on the rhs of the
Maxey–Riley equation representing the acceleration rate ae of prey animals due to
the self-generated escape force. This escape force may be dependent on time and the
local flow characteristics, e.g., local shear stress. Because most microscopic aquatic
animals are neutrally buoyant, we assume ρf = ρp . Therefore, the dynamics of a
prey animal can be expressed as (Peng and Dabiri 2009)

ẋ = v,
(1)

εv̇ = u(x,t) − v+ε
Du(x,t)

Dt
+εae

(
u(x, t)

)
,
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where

ε = 1

μ
� 1, μ = 2

3St
, St = 2

9

(
a

L

)2

Re,

with Re denoting the flow Reynolds number. We also assume explicit dependence
of the self-propulsion term only on the local flow field even though the following
analysis holds for general explicit dependence on space and time. Without the es-
cape acceleration term ae, (1) is the linearized Maxey–Riley equation for neutrally
buoyant spherical particles (cf., e.g., Maxey and Riley 1983; Benczik et al. 2002 or
Babiano et al. 2000). The equation has been nondimensionalized by length scale L

(the radius of the jellyfish), characteristic velocity U (the jellyfish swimming speed),
and characteristic time T = L/U .

Note that (1) is a nonautonomous six-dimensional differential equation for 3D
flows and four-dimensional for 2D flows. In addition to its temporal and dimensional
complexity, (1) also involves a singular perturbation problem due to the small para-
meter ε on the left-hand side. This causes a strong exponential instability when one
attempts to solve the equations in backward time to locate attracting invariant mani-
folds in the six/four-dimensional phase space (see, e.g., Haller and Sapsis 2008).

2.1 Reduced Order Dynamics

In Haller and Sapsis (2008), it is proven that for ε > 0 small enough, (1) without
the acceleration term ae, admits a globally attracting invariant slow manifold. This
three-dimensional time-dependent surface of particle trajectories can be calculated
explicitly up to any order of precision also for the case of nonzero acceleration ae.
Here, we follow the same methodology presented in Haller and Sapsis (2008) to de-
rive a reduced-order inertial equation that takes into account the prey self-propulsion
term. Specifically, Haller and Sapsis (2008) show for ae(u(x,t)) = 0 the existence of
ε0 > 0, such that for all ε ∈ [0, ε0), system (1) admits an attracting locally invariant
slow manifold Mε that can be written in the form of a Taylor expansion

Mε = {
(x, t,v) : v = u(x, t) + εu1(x, t) + · · ·
+ εrur (x, t) + O

(
εr+1), (x, t) ∈ D0

}; (2)

the functions uk(x, t) are as smooth as the right-hand side of (1). Inclusion of the
acceleration term ae in (1) does not modify this result. Therefore, following the same
approach, we find the new functions uk(x, t) using the invariance of Mε , which allows
us to differentiate the equation defining Mε in (2) with respect to t . Specifically,
differentiating

v = u(x, t) +
r∑

k=1

εkuk(x, t) + O
(
εr+1)

with respect to t gives

v̇ = uxẋ + ut +
r∑

k=1

εk
[
uk

xẋ + uk
t

] + O
(
εr+1), (3)
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on Mε, where subscripts denote differentiation with respect to the corresponding
argument (except of the acceleration ae). Restricting the v equations in (1) to Mε

gives

εv̇ =
[

u − v+ε
Du
Dt

+ εae

]

Mε

= −
r∑

k=1

εkuk(x, t)+ε
Du
Dt

+εae. (4)

Comparing terms containing equal powers of ε in (3) and (4), then passing back to
the original time t , we obtain the following result.

Theorem 1 For sufficiently small prey mass ε > 0 and in presence of the self-
propulsion term a(u), the asymptotic equation of motion for the prey can be written
as

ẋ = uε(x,t)≡ u(x,t) + εu1(x,t) + · · · + εrur (x, t) + O
(
εr+1), (5)

where r is an arbitrary but finite integer, and the functions ui (x,t) are given by

u1(x,t) = a(u),
(6)

uk(x,t) = −
{

uk−1
t +

k−1∑

i=0

ui∇uk−i−1

}

, k ≥ 2.

with u0(x,t) ≡ u(x,t).

We shall refer to (5) with the ui (x, t) defined in (6) as the inertial equation asso-
ciated with the velocity field u(x, t), because (5) gives the general asymptotic form
of inertial particle motion induced by u(x, t). A leading-order approximation to the
inertial equations is given by

ẋ = u(x, t) + εae. (7)

The above argument renders the slow manifold Mε over the fixed time interval
[t0 − T , t0 + T ]. Since the choice of t0 and T was arbitrary, we can extend the exis-
tence result of Mε to an arbitrary long finite time interval.

2.2 Instability Regions

For the case where prey has no self-propulsion, the slow manifold is simplified to
the fluid velocity field u(x,t). Therefore, particles should synchronize exponentially
fast with fluid elements motion. By contrast, Babiano et al. (2000) and Vilela et al.
(2006) give numerical evidence that two-dimensional suspensions do not approach
fluid elements motions; instead, their trajectories scatter around unstable manifolds
of the Lagrangian dynamics. The above phenomenon has been studied in Sapsis and
Haller (2009b) where it is shown that for larger values of ε, the slow manifold Mε
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looses its stability in certain regions of the configuration space. These instability re-
gions where divergence from the slow manifold will occur are described explicitly
by an analytical expression for any given velocity field. In Haller and Sapsis (2009),
this analysis is extended for the case of general dynamical systems that contain an
invariant manifold.

These dynamical instabilities play an important role on the motion of plankton
close to the jellyfish since they allow larger-sized prey to escape from its predator
even though the former lies inside the capturing region defined by the repelling LCS.
This can happen because over unstable regions of the slow manifold, we have diver-
gence of prey velocity from the one given by the reduced-order dynamics, and thus
the inertial equation (5), used to compute LCS, is not valid. To identify such unstable
domains, as well as the critical size of prey over which these domains exist, we apply
the theorem proven in Haller and Sapsis (2009) and we obtain the following result
for the case of self-propulsion.

Theorem 2 For prey having mass ε > 0, its velocity v(t) converges to uε(x,t) if and
only if

s(x,t) ≡ λmax

[
−∇uε(x,t)+[∇uε(x,t)]T

2

]
− 1

ε
< 0; (8)

where λmax[A] denotes the maximal eigenvalue of a tensor A; AT is the transpose
of A.

3 Prey Transport

In this section, we study the motion of prey in the realistic velocity field of a jellyfish
which has been measured experimentally. Using the inertial equation (5) derived pre-
viously, we calculate the attracting and repelling ILCS. Subsequently, we calculate
the unstable domains of the slow manifold for a specific size of prey and study their
role on prey motion by solving the full four-dimensional Maxey–Riley equation.

3.1 Flow Generation and Measurement

Juvenile jellyfish Aurelia aurita were collected from Cabrillo Marine Aquarium (San
Pedro, CA) and kept in a 75-gallon acrylic pseudokreisel tank with seawater at 14◦C.
The velocity fields generated by free-swimming jellyfish were measured by digi-
tal particle image velocimetry (DPIV) (Fig. 1). A pulsed laser of 30 Hz was fo-
cused into a thin light sheet 1 mm thick and illuminated a two-dimensional plane
in the flow. Reflective silver-coated neutrally-buoyant hollow glass spheres (mean
diameter 13 µm) were added into the tank and their motion were video-taped us-
ing a Uniq camera with 1024 × 1024 resolution at frame rate of 30 Hz synchro-
nized with the laser. The camera image plane was parallel to the laser plane. Video
sequences of jellyfish swimming with their body symmetry on the laser plane for
several consecutive swimming cycles were collected for analysis. These sequences
were analyzed using an in-house DPIV analysis system to quantify velocity field
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Fig. 1 (Color online) (a) Juvenile jellyfish Aurelia aurita. (b) Measured velocity field. The color on the
plot represents the vorticity field

measurements of the flow. For additional details of the experiments, please refer to
previous studies on swimming properties of the same species (Shadden et al. 2006;
Franco et al. 2007).

The characteristic length scale of the flow was set by the radius of the jellyfish, L =
5 cm and the characteristic velocity by the jellyfish swimming speed, U = 1 cm/s.
The corresponding Reynolds number of the flow was given by Re = 500. To model
the self-propulsion of the prey, we assume a hypothetical prey escape mechanism in
which the escape force has the form

ae = −ae

u
|u|

that represents a force with its direction always opposite to the local flow velocity
(see Peng and Dabiri 2009). It is also assumed that the escape force is persistent, and
thus the acceleration has a smaller value, with the magnitude ae = 25 in nondimen-
sionalized units.

3.2 Inertial Lagrangian Coherent Structures

For fluid flows, LCS are distinguished sets of fluid trajectories that govern the
forward-time and backward-time asymptotics of other fluid particles. They can be
located by calculating Direct Lyapunov Exponents (or FTLE, see below) from the La-
grangian equation of motion ẋ = u(x, t) for infinitesimal particles (see Haller 2001).
The FTLE method has several advantages over Eulerian methods, including frame
independence, greater detail and the ability to define structure boundaries without re-
lying on a preselected threshold. On the downside, as all Lagrangian methods, FTLE
relies on the generation of particle paths, and hence is more computationally intensive
than Eulerian methods.

In this application, we are interested to locate LCS that impact the motion of finite-
size particles. Such inertial LCS (ILCS) are obtained by applying the FTLE method
to the inertial equation (5) and have been studied previously in the context of heavy
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particles transport in hurricanes in Sapsis and Haller (2009a). Note that ILCS dif-
fer from LCS, since the latter structures are calculated for the infinitesimal particle
dynamics governed by ẋ = u(x, t).

By solving numerically the inertial equation (5) for a grid of initial conditions
x0 at t0, we determine the asymptotic inertial particle trajectories x(t,x0). For the
numerical solution of the inertial equation, a fourth-order Runge–Kutta algorithm
is combined with a cubic interpolation scheme for both space and time to improve
accuracy. As initial time, we choose t0 = 6; the integration time interval is cho-
sen for both backward and forward integration �T = 5. By numerical differentia-
tion, we compute the largest singular-value field λmax(t, t0,x0) of the deformation-
gradient tensor field ∂x(t, t0,x0)/∂x0. Then the ILCS can be represented as the lo-
cal maximizing sets of the finite-time Lyapunov exponent (FTLE) field σ t

t0
(x0) =

[lnλmax(t, t0,x0)]/(2(t − t0)), over initial positions x0. To avoid artificial structures
due to the finite domain over which the velocity field is measured (see Tang et al.
2010) we neglect a narrow zone of points close to the boundary (3% of the domain
size from each side); this does not cause significant loss of information since the im-
portant dynamics take place in the interior of the computational domain and not on
the boundary.

In Fig. 2, we present the forward and backward FTLE fields for the case of prey
without self-propulsion (ae = 0) (a) and for the case where self-propulsion is taken
into account (ae = 25) (b). As demonstrated by the backward FLTE field, due to the
axisymmetric shape of medusae, the flow is largely axisymmetric, also. However,
experimental measurements of the flow in the study has an under-resolved region on
one side of the animal because laser light used to illuminate the flow was partially
blocked the animal. Thus, the forward FLTE field is not axisymmetric with one side
under-resolved than the other. Peng and Dabiri (2009) illustrated that the capture
region for prey can be defined as the repelling LCS extracted by the forward FTLE
field computed using the full Maxey–Riley equation. Here, we use the reduced-order
inertial equation which approximates the prey dynamics successfully for sufficiently
small prey sizes. By comparing the two cases, we observe that the presence of self-
propulsion reduces the size of the lobes which are in front of the jellyfish (Fig. 2, left
column). Similar observations have been made by Peng and Dabiri (2009) using the
full Maxey–Riley equation for the computation of LCS.

The use of the inertial equation also enables us to compute the attracting LCS
through the computation of the backward FTLE field for the two cases (Fig. 2, right
column). Note that the computation of these FTLE fields through the Maxey–Riley
equation is not possible due to the numerical ill-posedness of the problem. The lower
part of the attracting LCS is strongly correlated with the arms of the jellyfish which
are also capturing surfaces and because of their flexibility tend to align with these
attracting structures. By comparing the two LCS fields (Fig. 2, right column), we
observe that the consideration of particle self-propulsion does not have an important
impact on the form of the backward FTLE field.

3.3 Prey Motion Without Self-propulsion

We now consider the case of prey without self-propulsion (ae = 0). First, we compute
both the attracting and repelling ILCS (red and green curves, respectively, in Fig. 3)
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Fig. 2 Forward and backward FTLE fields extracted from the inertial equation (5) for the case of prey
with no self-propulsion (a) and when self-propulsion is taken into account (b)

using the inertial equation for prey size parameter ε = 0.6 and for three different
time instants t = 0, 5.5, and 13.5. Subsequently, we use the analytical criterion (8)
to compute the regions of the slow manifold where instabilities will occur (shaded
regions). By requiring global stability of the slow manifold, i.e. validity of (8) over
the whole domain, we find the maximum prey size acr = 1.4 mm (ε = 0.09) for
which the reduced-order equation is valid. To illustrate the instability effects, we will
consider the case of much larger prey size so that instabilities regions occur in the
flow. As it was discussed previously, over those regions the motion of prey is no
longer described by the inertial equation (5). We initiate three pairs of particles. Each
pair consists of a neutrally buoyant particle with ε = 0.6 advected using the inertial
equation where the dynamics are reduced on the slow manifold (white dots—yellow
trajectories) and one particle advected using the full Maxey–Riley equation (blue
dots—black trajectories). The two particles of each pair are initiated in the same
locations (Fig. 3, left panel) which lie inside the capturing region predicted according
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Fig. 3 (Color online) Predator-prey interactions in the absence of self-propulsion for three time instants
t = 0, 5.5, and 13.5. White dots: particles governed by the inertial equation; blue dots: particles governed
by the full Maxey–Riley equation; red curve: attracting ILCS; green curve: repelling ILCS; blue shaded
domains: instability regions

to the repelling (or forward) ILCS. As time evolves, the pairs move together until they
enter an instability region (shaded region) where separation begins to occur (Fig. 3,
central panel). Over these regions, the dynamics of the blue particles are not governed
by the inertial equation and, therefore, ILCS do not act as barriers to their motion.
Hence, in the last time instant (Fig. 3, right panel), we can see that even though the
white particles, which evolved according to the inertial equation, end up inside the
capture region, all the blue particles escaped because of the normal instability of the
slow manifold that changed their dynamics. Even though there are initial conditions
starting outside the lobes and ending up inside the capture regions those are very few
compared with the ones described above.

In Fig. 4, we present two snapshots of inertial particle dynamics viewed in the
space of (x, y, |v|). We show the instantaneous slow manifold Mε as a surface, at two
different times; regions encircled by the black solid curves (red regions online) show
the domain of local divergence on the slow manifold. The trajectories represent the
paths of inertial particles in the (x, y, |v|) space. The smaller subplots in the figure
show the distance |u − v| of the particles from the slow manifold (in these plots,
therefore, the slow manifold appears as a plane). Note that for the inertial parameter
chosen (ε = 0.6) the unstable regions are relatively large so that the particles do not
end up converging to the slow manifold. They are repelled by the domain of local
divergence (regions encircled by the black solid curves) as predicted by our theory.

3.4 Prey Motion in the Presence of Self-propulsion

In this section, we consider the case of prey (ε = 0.6) with self-propulsion (ae = 25).
The effect of escaping acceleration ae on the capture region has been studied in Peng
and Dabiri (2009). Specifically, the capture region is determined by directly solving
the full Maxey–Riley equation and it shows that the effect of escaping acceleration
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Fig. 4 Convergence of neutrally buoyant particles to the slow manifold Mε , interrupted by regions of
divergence along the slow manifold. The repelling domain on the slow manifold, encircled by the black
solid curves, satisfy formula (8)

ae is to decrease the capture region. By assuming that prey capture rate is propor-
tional to the size of capture region, escaping mechanism reduces prey capture rate.
Here, we study the dynamical mechanism that results in this observed behavior. Sim-
ilarly, with the previous section, we first solve the inertial equation (5) (keeping terms
up to the third order) to obtain the attracting and repelling ILCS. Those are shown in
Fig. 5 for three different time instants: t = 2, 6.5, and 14.5 with red and green curves,
respectively. The instability regions are also presented as blue shaded domains. Com-
paring with the previous case, we observe that these regions are reduced in size for
the case of prey with self-propulsion although they are still important enough to al-
ter the prey dynamics. To understand this behavior, i.e., smaller instability regions in
the presence of self-propulsion, we expand the maximum eigenvalue in the stability
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Fig. 5 (Color online) Predator-prey interactions in the presence of self-propulsion for three time instants
t = 2, 6.5, and 14.5. White dots: particles governed by the inertial equation; blue dots: particles governed
by the full Maxey–Riley equation; red curve: attracting ILCS; green curve: repelling ILCS; blue shaded
domains: instability regions

condition (8) taking into account the form of the self-propulsion (in what follows

Su ≡ ∇u(x,t)+[∇u(x,t)]T
2 )

λmax
[−Suε (x,t)

] − 1

ε
< 0 ⇔

λmax
[−Su(x,t) + εaeS u

|u| (x,t)
] − 1

ε
< 0 ⇒

λmax[−Su(x,t)t] − εaeλmax
[−S u

|u| (x,t)
] − 1

ε
+ O

(
ε2) < 0.

Therefore, the contribution of the self-propulsion term on the existence of unsta-
ble regions is always opposite to the inertial effect (which is expressed through the
first term). Moreover, since, the fields u and u

|u| have the same geometry (but differ-
ent magnitude), their strain tensor fields will have eigenvalues with the same sign.
Hence, the first order correction due to self-propulsion will always cause smaller in-
stability regions for this type of prey self-propulsion. Additionally, using the above
formula, we are able to quantify the effect of prey inertia and self-propulsion on the
existence of instability regions by determining the critical values ε and ae over which
instabilities will occur for any given self-propulsion pattern.

To illustrate the effect of self-propulsion and inertia on the dynamics of prey, we
initiate three pairs of particles inside the capture region computed through the re-
pelling ILCS (green curve). Each one consists of two particles modeling prey with
self propulsion, with the first one restricted to move on the slow manifold (white) and
the second one evolving according to Maxey–Riley equation including the accelera-
tion term ae. As we observe, the pairs are initiated into unstable regions, and hence
the separation occurs very rapidly as opposed to the previous case where separation
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was more delayed since the particles were initiated into a stable part of the slow man-
ifold. As time evolves, two of the blue particles cross the repelling ILCS (i.e., the
capture region) and escape. On the other hand, the white particles remain inside the
capture region and align with the red curves that define the attracting ILCS. The third
particle has also deviated from its pair although the change on its dynamics is not
sufficient to pull it out from the capture region.

Note that the effect of prey self-propulsion on their escape depends on the de-
tailed escape behavior. For example, larger prey such as calanoid copepods, are able
to generate fast swimming escape upon perception of a predator. During escape re-
sponses, they use power stroke to generate maximal swimming force of 40 to 100
dynes, equivalent to an acceleration rate exceeding 100 m s−2, over a short span of
several hundred ms in average (Lenz and Hartline 1999; Waggett and Buskey 2007).
The net effect is a fast jump of 10 mm on average. This fast escape mechanism is
more efficient for prey to escape, compared with a slower “cruising” type of escape
exhibited by smaller prey such as brine shrimp larvae. Specifically, there are empiri-
cal studies (Sullivan et al. 1994; Hansson et al. 2005) showing that rowing medusae
like Aurelia Aurita feed mostly on slow escape prey (Artemia salina nauplii and cir-
ripede larvae) with high clearance rate, compared with low clearance rate on fast
escape prey (copepods). This prey selection suggested that fast escape mechanism is
more efficient. This also explains why jellyfish Aurelia Aurita is a good predator on
brine shrimp larvae, and not on copepods.

4 Conclusions

We have studied prey motion in the flow field around a jellyfish. Using an analytic
approach, we illustrated that for sufficiently small sizes the prey motion can be cap-
tured by a reduced-order inertial equation through the restriction of the dynamics to
an invariant slow manifold that governs the motion of finite-size particles. Although
the full Maxey–Riley equation for particles motion can only be used for the analysis
of repelling ILCS, with the inertial equation we extract both attracting and repelling
ILCS that define important collectives for the jellyfish such as the capture region or
the locations where the arms of the jellyfish (which are also capturing surfaces) will
move. We also illustrated that for larger prey size the slow manifold loses locally its
stability and in this case the ILCS are not the relevant structures for the description
of prey motion. Using analytical arguments, we have described explicitly the regions
where these instabilities will occur.

We have applied our theoretical findings to an experimentally measured velocity
field of the jellyfish Aurelia Aurita. Using the reduced-order inertial equation, we
computed both the attracting and repelling ILCS in order to give a complete char-
acterization of prey motion in the cases where self-propulsion is either ignored or is
taken into account. Then, by applying the theoretical results for the stability of the
slow manifold, we have determined the critical value of prey size over which insta-
bilities will occur. For larger prey size, the same analysis describes explicitly those
locations where the reduced-order inertial equation is no longer valid. By solving
the full Maxey–Riley equation we have shown how these instability regions alter the
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prey dynamics compared to those predicted by the ILCS. The modified dynamics al-
low prey to finally escape because of its size, although the ILCS analysis predicts that
it should get captured.

Many empirical studies have suggested that prey selection by different medusan
species is caused by many factors. However, because the species-specific approach in
these empirical studies, their conclusions are difficult to be generalized. One of the
biological insights from our study is that the model demonstrates, from a physical
and mathematical perspective that prey selection is dependent on a combination of
many factors, including characteristics of flow induced by the predator, prey size,
self-propulsion, escape strategies, etc. One of the advantages of the model is that
compared with empirical studies it is able to isolate the effect of these parameters
and potentially determine the dominant factor. This requires further cross-spectrum
studies based on the model which, combined with empirical studies, can provide more
understanding on prey selection.

Acknowledgements We are grateful to Prof. J. Dabiri for his support during the preparation of this
work, and Prof. J. Marsden for suggesting the application of finite-size particles analytical results to the
considered problem. We also thank Cabrillo Marine Aquarium in San Pedro, California for providing
animals and assistance for the experiments. This research was supported by NSF Grant DMS-04-04845,
AFOSR Grant AFOSR FA 9550-06-0092, and a George and Marie Vergottis Fellowship at MIT.

References

Babiano, A., Cartwright, J. H. E., Piro, O., & Provenzale, A. (2000). Dynamics of a small neutrally buoyant
sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett., 84, 5764.

Bailey, K. M., & Batty, R. S. (1983). A laboratory study of predation by Aurelia aurita on larval herring
(Clupea harengus): experimental observations compared with model predictions. Mar. Biol., 72, 195–
301.

Benczik, I. J., Toroczkai, Z., & Tél, T. (2002). Selective sensitivity of open chaotic flows on inertial tracer
advection: catching particles with a stick. Phys. Rev. Lett., 89, 164501.

Colin, S. P., Costello, J. H., & Klos, E. (2003). In situ swimming and feeding behaviour of eight co-
occurring hydromedusae. Mar. Ecol. Prog. Ser., 253, 305–309.

Costello, J. H., Colin, S. P., & Dabiri, J. O. (2008). Medusan morphospace: phylogenetic constraints,
biomechanical solutions, and ecological consequences. Invertebr. Biol., 127, 265–290.

Franco, E., Pekarek, D. N., Peng, J., & Dabiri, J. O. (2007). Geometry of unsteady fluid transport during
fluid structure interactions. J. Fluid Mech., 589, 125–145.

Haller, G. (2001). Distinguished material surfaces and coherent structures in 3D flid flows. Physica D,
149, 248–277.

Haller, G., & Sapsis, T. (2008). Where do inertial particles go in fluid flows? Physica D, 237, 573–583.
Haller, G., & Sapsis, T. (2009). Localized instability and attraction along invariant manifolds.

doi:10.1137/08074324X.
Hansson, L. J., Moeslund, O., Kiorboe, T., & Riisgard, H. U. (2005). Clearance rates of jellyfish and

their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden,
Denmark). Mar. Ecol. Prog. Ser., 304, 117–131.

Kawahara, M., Uye, S., Ohtsu, K., & Izumi, H. (2006). Unusual population explosion of the giant jellyfish
Nemopilemia nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Mar. Ecol. Prog. Ser., 307,
161–173.

Lenz, P. H., & Hartline, D. K. (1999). Reaction times and force production during escape behavior of a
calanoid copepod, Undinula vulgaris. Mar. Biol., 133, 249–258.

Madin, L. P. (1988). Feeding behavior of tentaculate predators: in situ observations and a conceptual
model. Bull. Mar. Sci., 43, 413–429.

http://dx.doi.org/10.1137/08074324X


1856 T. Sapsis et al.

Matsakis, S., & Conover, R. J. (1991). Abundance and feeding of medusae and their potential impact as
predators on other zooplankton in Bedford Basin (Nova Scotia, Canada) during spring. Can. J. Fish.
Aquat. Sci., 48, 1419–1430.

Maxey, M., & Riley, J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Phys.
Fluids, 26, 883.

Peng, J., & Dabiri, J. O. (2009). Transport of inertial particles by Lagrangian Coherent Structures: appli-
cation to predator-prey interaction in jellyfish feeding. J. Fluid Mech., 623, 75–84.

Purcell, J. E. (2005). Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and
Aequorea aequorea, in Prince William Sound, Alaska. Mar. Ecol. Prog. Ser., 246, 137–152.

Purcell, J. E., & Decker, M. B. (2003). Effects of climate on relative predation by scyphomedusae and
ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnol. Oceanogr., 50, 376–387.

Purcell, J. E., & Grover, J. J. (1990). Predation and food limitation as causes of mortality in larval herring
at a spawning ground in British Columbia. Mar. Ecol. Prog. Ser., 59, 55–61.

Purcell, J. E., & Mills, C. E. (1991). The correlation between nematocyst types and diets in pelagic Hy-
drozoa. In D. A. Hessinger & H. M. Lenhoff (Eds.), The biology of nematocysts (pp. 463–485). San
Diego: Academic Press.

Purcell, J. E., Uye, S., & Lo, W. T. (2007). Anthropogenic causes of jellyfish blooms and their direct
consequences for humans: a review. Mar. Ecol. Prog. Ser., 350, 153–174.

Sapsis, T., & Haller, G. (2009a). Inertial particle dynamics in a hurricane. J. Atmos. Sci., 66, 2481–2492.
Sapsis, T., & Haller, G. (2009b). Instabilities in the dynamics of neutrally buoyant particles. Phys. Fluids,

20, 017102.
Shadden, S. C., Dabiri, J. O., & Marsden, J. E. (2006). Lagrangian analysis of fluid transport in empirical

vortex ring flows. Phys. Fluids, 18, 047105.
Sullivan, B. K., Garcia, J. R., & Klein-MacPhee, G. (1994). Prey selection by the scyphomedusan predator

Aurelia aurita. Mar. Biol., 121, 335–341.
Tang, W., Chan, P. W., & Haller, G. (2010). Accurate extraction of LCS over finite domains, with applica-

tion to flight safety analysis over Hong Kong International Airport. Chaos, 20, 017502.
Vilela, R. D., de Moura, A. P. S., & Grebogi, C. (2006). Finite-size effects on open chaotic advection.

Phys. Rev. E, 73, 026302.
Waggett, R. J., & Buskey, E. J. (2007). Calanoid copepod escape behavior in response to a visual predator.

Mar. Biol., 150, 599–607.


	Instabilities on Prey Dynamics in Jellyfish Feeding
	Abstract
	Introduction
	Prey Dynamics
	Reduced Order Dynamics
	Instability Regions

	Prey Transport
	Flow Generation and Measurement
	Inertial Lagrangian Coherent Structures
	Prey Motion Without Self-propulsion
	Prey Motion in the Presence of Self-propulsion

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


