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Abstract We show how spectral submanifold (SSM)
theory can be used to provide analytic predictions
for the response of periodically forced multi-degree-
of-freedom mechanical systems. These predictions
include an explicit criterion for the existence of iso-
lated forced responses that will generally be missed by
numerical continuation techniques. Our analytic pre-
dictions can be refined to arbitrary precision via an
algorithm that does not require the numerical solutions
of the mechanical system.We illustrate all these results
on low- and high-dimensional nonlinear vibration
problems.We find that our SSM-based forced response
predictions remain accurate in high-dimensional sys-
tems, in which numerical continuation of the periodic
response is becoming computationally expensive.

Keywords Spectral submanifolds · Model order
reduction · Forced response curves · Isolas

1 Introduction

For an n-degree-of-freedom, periodically forced, non-
linear mechanical system, the forced response curve
(FRC) gives the amplitude of the periodic response of
the system as a function of the frequency of the peri-
odic forcing. The FRC may contain isolated branches
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of periodic solutions, also known as isolas, that are
detached from the main FRC. A small change in the
forcing amplitude might result in the merger of the
isola with the main branch of the FRC (cf. Detroux et
al. [1] and Noël et al. [2]), which can lead to an unex-
pected and significant increase in the response ampli-
tude.

The existence of isolated branches of periodic solu-
tions in the frequency response of nonlinear oscilla-
tory systems has been known since the 1950s [3].
For an extensive review of the subject, we refer the
reader to Habib et al. [4]. It is broadly agreed that
the identification of isolas is difficult, because numer-
ical continuation techniques are generally initiated
on a non-isolated solution branch and will there-
fore miss any isolated branch. Similarly, a frequency
sweep of the full system will generally not capture
an isolated response unless the sweep is initialized on
one.

The detection of isolas and the prediction of their
behavior under changing systemparameters can be crit-
ical in practice because their merger with the main
FRC may lead to a dramatic shift in the resonance
frequency and response amplitude. Habib et al. [4]
use singularity theory in combination with averag-
ing for the prediction and identification of isolas in
a specific single-degree-of-freedom mechanical sys-
tem with nonlinear damping. The averaging method
they use (cf. Sanders et al. [5]), however, requires
both the forcing amplitude and the nonlinear damp-
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ing coefficients to be small. Hill et al. [6] use a
second-order normal form technique to obtain ana-
lytical expressions for the autonomous conservative
backbone curves (i.e., amplitude–frequency plots of
nonlinear periodic orbits) of a specific two-degree-
of-freedom mechanical system. They give leading-
order criteria for the intersection of this backbone
curve with the forced response curve and postulate
this location to be a potential starting point for an
isola, which is to be constructed numerically in a
separate effort. This procedure also relies on the
smallness of the nonlinear and damping coefficients,
as well as on the absence of quadratic nonlineari-
ties.

In summary, while the significance of isolas is
broadly recognized, their existence has only been
studied in specific, low-dimensional examples under
restrictions on the nonlinearities. A conclusive analyt-
ical criterion for predicting isolas in multi-degree-of-
freedom systemswithout costly numerical simulations,
therefore, has been unavailable.

In this work, we seek to fill this gap by develop-
ing a generally applicable methodology for the pre-
diction of isolas in multi-degree-of-freedom, forced
mechanical systems. Our approach is based on the
mathematically rigorous theory of spectral subman-
ifolds (SSMs) that are the unique, smoothest, non-
linear continuations of spectral subspaces of the lin-
earized, unforced limit of a mechanical system (cf.
Haller and Ponsioen [7]). The reduced dynamics on
a two-dimensional SSM serves as an exact, single-
degree-of-freedom reduced-order model that can be
constructed for each vibration mode of the full non-
linear system (cf. [8–12]).

By construction, these rigorously, simplified two-
dimensional reduced models will capture all isolas that
are remnants of periodic-orbit families of the conser-
vative limit of the system. As we show for a cubic-
order approximation, the reduced SSM dynamics gives
a closed form first-order prediction for isolas that can
even be calculated by hand in simple examples. Higher-
order refinements to this analytic formula can be recur-
sively constructed and have been implemented in the
publicly available matlab script ssmtool.1 We show
the use of the analytic formula as well as its numerical
refinements on simple and more complicated exam-
ples.

1 ssmtool is available at: www.georgehaller.com.

2 System set-up

We consider n-degree-of-freedom, periodically forced
mechanical systems of the form

Mÿ + Cẏ + Ky + g(y, ẏ) = εf(Ωt), 0 ≤ ε � 1,

g(y, ẏ) = O
(
|y|2 , |y| |ẏ| , |ẏ|2

)
, (2.1)

where y ∈ R
n is the generalized position vector;

M = MT ∈ R
n×n is the positive definite mass matrix;

C = CT ∈ R
n×n is the linear damping matrix;

K = KT ∈ R
n×n is the linear stiffness matrix, and

g(y, ẏ) denotes all the nonlinear terms in the system.
These nonlinearities are assumed to be analytic for sim-
plicity. The external forcing εf(Ωt) does not depend on
the positions and velocities.

System (2.1) can be transformed into a set of 2n
first-order ordinary differential equations by introduc-
ing the change of variables x1 = y, x2 = ẏ, with
x = (x1, x2) ∈ R

2n , which gives

ẋ =
(
0 I
−M−1K −M−1C

)
x +

(
0
−M−1g(x1, x2)

)

+ ε

(
0
M−1f(Ωt)

)

= Ax + Gp(x) + εFp(Ωt). (2.2)

The transformed first-order system (2.2) has a fixed
point at x = 0 when the system is unforced (ε = 0);
A ∈ R

2n×2n is a constant matrix and Gp(x) is an ana-
lytic function containing all the nonlinearities. Note
that M−1 is well defined because M is assumed posi-
tive definite.

The linearized part of system (2.2) is

ẋ = Ax, (2.3)

where the matrix A has 2n eigenvalues λk ∈ C for
k = 1, . . . , 2n. Counting multiplicities, we sort these
eigenvalues based on their real parts in the decreasing
order

Re(λ2n) ≤ Re(λ2n−1) ≤ · · · ≤ Re(λ1) < 0, (2.4)

assuming that the real part of each eigenvalue is less
than zero and hence the fixed point of Eq. (2.3) is
asymptotically stable. We further assume that the con-
stant matrix A is semisimple, i.e., the algebraic multi-
plicity of each λk is equal to its geometric multiplicity:
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alg(λk) = geo(λk). We can, therefore, identify 2n lin-
early independent eigenvectors vk ∈ C

2n , with k =
1, . . . , 2n, each spanning a real eigenspace Ek ⊂ R

2n

with dim(Ek) = 2 × alg(λk) in case Im(λk) �= 0, or
dim(Ek) = alg(λk) in case Im(λk) = 0.

3 Non-autonomous spectral submanifolds and
their reduced dynamics

BecauseA is semisimple, the linear part of system (2.2)
is diagonalized by a linear change of coordinates x =
Tq, with T = [v1, v2, . . . , v2n] ∈ C

2n×2n and q ∈
C
2n , yielding

q̇ = diag(λ1, λ2 . . . , λ2n)︸ ︷︷ ︸
�

q + Gm(q) + εFm(φ).

(3.1)

We now consider the two-dimensional modal subspace
E = span {v1, v2} ⊂ C

2n with v2 = v̄1. The remaining
linearly independent eigenvectors v3, . . . , v2n span a
complex subspace C ⊂ C

2n such that the full phase
space of (3.1) can be expressed as the direct sum

C
2n = E ⊕ C. (3.2)

We write the diagonal matrix � as

� =
[

�E 0
0 �C

]
, Spect (�E ) = {λ1, λ2} ,

Spect (�C) = {λ3, . . . , λ2n} , (3.3)

with �E = diag(λ1, λ2) and �C = diag(λ3, . . . , λ2n).
Following Haller and Ponsioen [7], we now define a

non-autonomous spectral submanifold (SSM), W(E),
corresponding to the spectral subspace E of � as a
two-dimensional invariant manifold of the dynamical
system (3.1) that:

(i) Perturbs smoothly from E at the trivial fixed point
q = 0 under the addition of the O(ε) terms in
Eq. (3.1).

(ii) Is strictly smoother than any other invariant mani-
fold with the same properties.

We also define the absolute spectral quotient Σ(E) of
E as the positive integer

Σ(E) = Int

[
minλ∈Spect(�) Reλ

maxλ∈Spect(�E ) Reλ

]
∈ N

+. (3.4)

Additionally, we introduce the non-resonance condi-
tions

aReλ1 + bReλ2 �= Reλl , ∀λl ∈ Spect(�C),

2 ≤ a + b ≤ Σ(E), a, b ∈ N0. (3.5)

We now restate the following result from Haller and
Ponsioen [7], for the existence of an SMM in system
(3.1).

Theorem 3.1 Under the non-resonance conditions
(3.5), the following hold for system (3.1):

(i) There exists a unique two-dimensional, time-
periodic, analytic SSM, W(E).

(ii) W(E) can be viewed as an embedding of an open
set U into the phase space of system (3.1) via the
map

W(s, φ) : U ⊂ C
2 × S1 → C

2n . (3.6)

WecanapproximateW(s, φ) in a neighborhoodof
the origin using a Taylor expansion in the param-
eterization coordinates s, having coefficients that
depend periodically on the phase variable φ.

(iii) There exists a polynomial functionR(s, φ) : U →
U satisfying the invariance relationship

�W(s, φ) + Gm(W(s, φ)) + εFm(φ)

= DsW(s, φ)R(s, φ) + DφW(s, φ)Ω, (3.7)

such that the reduced dynamics on the SSM can
be expressed as

ṡ = R(s, φ). (3.8)

Proof We have simply restated the main theorem by
Haller and Ponsioen [7], which is based on the more
abstract results of Cabré et al. [13–15] for mappings on
Banach spaces. 
�
Wegive an illustration of a time-periodic SSM inFig. 1.
We have assumed a case in which the SSM has three
limit cycles for a given forcing frequency, with two
of these limit cycles contained in an isola. The SSM
approach can be viewed as a refinement and extension
of the seminal work of Shaw and Pierre [16], who envi-
sion nonlinear normal modes as invariant manifolds
that are locally graphs over two-dimensional modal
subspaces of the linearized system.We explain in detail
how to construct time-periodic SSMs in “AppendixA.”

Our next result concerns the dynamics on the SSM
described in Theorem 3.1.
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Fig. 1 Illustration of a
time-periodic SSM. For a
given forcing frequency Ω ,
we illustrate how the SSM
may contain three limit
cycles, of which two fall in
an isola

Theorem 3.2 The dynamics on the two-dimensional
SSMgiven inTheorem3.1 canapproximately bewritten
in polar coordinates (ρ, ψ) as

ρ̇ = a(ρ) + ε ( f1(ρ,Ω) cos(ψ) + f2(ρ,Ω) sin(ψ)) ,

(3.9)

ψ̇ = (b(ρ) − Ω) + ε

ρ
(g1(ρ,Ω) cos(ψ)

−g2(ρ,Ω) sin(ψ)) , (3.10)

where

a(ρ) = Re(λ1)ρ +
M∑
i=1

Re(γi )ρ
2i+1, (3.11)

b(ρ) = Im(λ1) +
M∑
i=1

Im(γi )ρ
2i , (3.12)

f1(ρ,Ω) = Re(c1,0) +
M∑
i=1

(
Re(c1,(i,i)(Ω))

+Re(d1,(i+1,i−1)(Ω))
)
ρ2i , (3.13)

f2(ρ,Ω) = Im(c1,0) +
M∑
i=1

(
Im(c1,(i,i)(Ω))

− Im(d1,(i+1,i−1)(Ω))
)
ρ2i , (3.14)

g1(ρ,Ω) = Im(c1,0) +
M∑
i=1

(
Im(c1,(i,i)(Ω))

+ Im(d1,(i+1,i−1)(Ω))
)
ρ2i , (3.15)

g2(ρ,Ω) = Re(c1,0) +
M∑
i=1

(
Re(c1,(i,i)(Ω))

−Re(d1,(i+1,i−1)(Ω))
)
ρ2i , (3.16)

with 2M + 1 denoting the order of the expansion.

Proof We derive this result in “Appendix B.” 
�

In the unforced limit (ε = 0), the reduced system
(3.9)–(3.10) can have fixed points but no non-trivial
periodic orbits. This is because (3.9) decouples from
(3.10), representing a one-dimensional ordinary differ-
ential equation that cannot have non-constant periodic
solutions. By construction, the trivial fixed point of
(3.9)–(3.10) is asymptotically stable and will persist
for ε > 0. These persisting fixed points satisfy the sys-
tem of equations

F(u) =
[
F1(u)

F2(u)

]

=
[

a(ρ) + ε ( f1(ρ, Ω) cos(ψ) + f2(ρ, Ω) sin(ψ))

(b(ρ) − Ω)ρ + ε (g1(ρ, Ω) cos(ψ) − g2(ρ, Ω) sin(ψ))

]
= 0,

(3.17)

where

F(u) : R3 → R
2, u =

⎡
⎣

ρ

Ω

ψ

⎤
⎦ .

As we show in “Appendix C,” under appropriate
non-degeneracy conditions, the zeros of (3.17) form
a one-dimensional manifold, which, after a projection
onto the amplitude–frequency space, will represent the
FRC. The stability of these fixed points (which corre-
spond to periodic solutions of the full mechanical sys-
tem) is determined by the real parts of the eigenvalues
of the Jacobian of F(u).
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Fig. 2 Example of the zero-level set of Eq. (3.18) for a damped,
nonlinear, periodically forced mechanical system with a hard-
ening nonlinearity. The blue and red curves correspond to K+
and K−. These two segments come together exactly at the point
where the discriminant of the quadratic Eq. (D.2) is equal to zero.
(Color figure online)

Theorem 3.3 The amplitudeρ of the T -periodic orbits
of the reduced dynamics (3.9)–(3.10) are given by the
zeros of the function

G(ρ;Ω) = (b(ρ) − Ω)ρ

+ ε

(
g1(ρ,Ω)

1 − K±(ρ;Ω)2

1 + K±(ρ;Ω)2

− g2(ρ,Ω)
2K±(ρ;Ω)

1 + K±(ρ;Ω)2

)
= 0, (3.18)

where

K±(ρ;Ω) =
−ε f2(ρ,Ω) ±

√
ε2

(
f1(ρ,Ω)2 + f2(ρ,Ω)2

) − a(ρ)2

a(ρ) − ε f1(ρ,Ω)
.

(3.19)

Proof We derive this result in “Appendix D.” 
�
The zero-level set of Eq. (3.18) yields the forced
response curve in the (Ω, ρ)-space. This curve will
consist of two segments obtained from K+ and K−
in Eq. (3.19). The two segments meet exactly at the
point where the square root term in the definition of
K±(ρ;Ω) is equal to zero.We sketch this for a damped,
nonlinear, periodically forced mechanical system in
Fig. 2.

Because the isolated branches of periodic solutions
are also a part of the FRC, the zero-level set ofG(ρ;Ω)

can predict isolas as well. In contrast, detecting isolas
by numerical continuation requires one to start on the
isola and hence assumes a priori knowledge of an iso-
lated branch of periodic solutions. We will discuss this
in Sect. 4.

4 Analytic criterion for isolas

We will now give an analytic criterion for the emer-
gence of isolas in terms of the function a(ρ) defined in
Eq. (3.11). An essential question is how approximate
zeros obtained from finite-order Taylor series expan-
sions persist as M → ∞, where 2M + 1 is the order
of the SSM expansion. Jentzsch [17] proved that in the
limit of the order of the Taylor series expansion going
to infinity, the non-persistent spurious zeros come arbi-
trarily close to the boundary of the domain of con-
vergence. Hurwitz [18] showed that in the same limit,
the uniform convergence of the Taylor series polyno-
mial leads to a good approximation of the genuine
zeros inside the circle of convergence. Christiansen and
Madsen[19] numerically verified this behavior on sev-
eral examples. We will call such a zero ρ0 of a(ρ),
non-spurious if it converges to a genuine zero of a(ρ)

in the limit of M → ∞.

Theorem 4.1 Assume that ρ0 �= 0 is a non-spurious
transverse zero of a(ρ), i.e.,

a(ρ0) = 0, ∂ρa(ρ0) �= 0. (4.1)

Then, for ε > 0 small enough, system (3.17) has an
isola that perturbs from the unforced damped backbone
curve Ω = b(ρ) near the amplitude value ρ0.

Proof We derive this result in “Appendix E.” 
�
In order to verify if a non-trivial zero of the Tay-

lor series expansion of a(ρ) is also non-spurious, we
compute the (generally complex) zeros of the function
a(ρ) for increasing order of approximation M . As we
discussed before Theorem 4.1, spurious zeros will con-
verge to the circle defining the radius of convergence of
a(ρ), whereas non-spurious zeros stay bounded away
from that circle andhence converge to the genuine zeros
of a(ρ).

In Fig. 3, we sketch qualitatively the statement of
Theorem 4.1: a non-spurious, transverse zero ρ0 of
a(ρ) indicates a nearby isola.
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Fig. 3 An isola of periodic
solutions near the damped
backbone curve, emerging
from a non-trivial transverse
zero ρ0 of a(ρ). The isola
curve can be parameterized
by the variable ψ

4.1 Leading-order analytic formula for isolas

For higher-order approximations of a(ρ), we can deter-
mine the roots of a(ρ) numerically. Restricting our-
selves to a 3rd-order approximation of the SSM, we
can, however, extract even an analytic criterion for
the existence of an isola. Following the work of Bre-
unung and Haller [10], we truncate the parameteri-
zation W(s, φ) and the reduced dynamics R(s, φ) at
O(ε|s|, ε2), which they justify by introducing the scal-
ing s → ε

1
4 s, such that the zero problem of the reduced

system can be written as

F̃(u) =

⎡
⎢⎢⎢⎣

Re(λ1)ρ + Re(γ1)ρ
3

︸ ︷︷ ︸
a(ρ)

+ε
(
Re(c1,0) cos(ψ) + Im(c1,0) sin(ψ)

)

(Im(λ1) + Im(γ1)ρ
2

︸ ︷︷ ︸
b(ρ)

−Ω)ρ + ε
(
Im(c1,0) cos(ψ) − Re(c1,0) sin(ψ)

)

⎤
⎥⎥⎥⎦ = 0. (4.2)

Here, we have f1 = g2 = Re(c1,0) and f2 =
g1 = Im(c1,0). We now show in Theorem 4.2 that this
approximation gives an analytically computable con-
dition for the existence of an isola.

Theorem 4.2 Assume that for system (4.2), Re(γ1) >

0 is satisfied and the cubic-order zero ρ1 =√|Re(λ1)|/Re(γ1) of a(ρ) is non-spurious. Then, the
following holds:

(i) For ε > 0 small enough, an isola of the type
described in Theorem 4.1 exists near the point
(Ω, ρ) = (b(ρ0), ρ0) of the damped backbone
curve.

(ii) The isola will be disconnected from themain FRC
for ε > 0 values satisfying

ε <
1∥∥c1,0

∥∥

√
4|Re(λ1)|3
27Re(γ1)

. (4.3)

(iii) The isola will merge with the main FRC approx-
imately at the ε value

εm = 1∥∥c1,0
∥∥

√
4|Re(λ1)|3
27Re(γ1)

. (4.4)

Proof We derive this result in “Appendix F.” 
�

5 Numerical examples

5.1 The modified Shaw–Pierre example

As a typical benchmark, we first consider a modified
version of the example of Shaw and Pierre [20], in
which an additional cubic nonlinear damper is added,
as in the single-degree-of-freedom example of Habib
et al. [4]. The equations of motion of our two-degree-
of-freedom system in first-order form are given by

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

− 2k

m

k

m
− c1 + c2

m

c2
m

k

m
− 2k

m

c2
m

−c1 + c2
m

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x
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+

⎡
⎢⎢⎢⎣

0
0

− κ

m
x31 − α

m
x33

0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Gp(x)

+ε

⎡
⎢⎢⎢⎣

0
0

P

m
cos(Ωt)

0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Fp(Ωt)

, (5.1)

where x = [x1, x2, x3, x4]� = [y1, y2, ẏ1, ẏ2]�. The
matrix A has the eigenvalue pairs

λ1,2 =
(

−ζ1 ± i
√
1 − ζ 2

1

)
ω1,

ζ1 = c1
2mω1

, ω1 =
√

k

m
, (5.2)

λ3,4 =
(

−ζ2 ± i
√
1 − ζ 2

2

)
ω2,

ζ2 = c1 + 2c2
2mω2

, ω2 =
√
3k

m
, (5.3)

assume that both modes are underdamped, i.e., 0 <

ζ1 < 1 and 0 < ζ2 < 1. The matrix T that transforms
our system to complex modal coordinates is composed
of the eigenvectors of our system, i.e.,

T =

⎡
⎢⎢⎣

1 1 1 1
1 1 − 1 − 1
λ1 λ̄1 λ3 λ̄3
λ1 λ̄1 − λ3 − λ̄3

⎤
⎥⎥⎦ , (5.4)

with the inverse of T given by

T−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− λ̄1

2(λ1 − λ̄1)
− λ̄1

2(λ1 − λ̄1)

1

2(λ1 − λ̄1)

1

2(λ1 − λ̄1)
λ1

2(λ1 − λ̄1)

λ1

2(λ1 − λ̄1)
− 1

2(λ1 − λ̄1)
− 1

2(λ1 − λ̄1)

− λ̄3

2(λ3 − λ̄3)

λ̄3

2(λ3 − λ̄3)

1

2(λ3 − λ̄3)
− 1

2(λ3 − λ̄3)
λ3

2(λ3 − λ̄3)
− λ3

2(λ3 − λ̄3)
− 1

2(λ3 − λ̄3)

1

2(λ3 − λ̄3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.5)

In this example, we can compute the cubic coeffi-
cient of a(ρ) explicitly. Specifically, we have

Re(γ1) = Re

(
−3α

m
[T−1]1,3[T]23,1[T]3,2

−3κ

m
[T−1]1,3[T]21,1[T]1,2

)
(5.6)

= Re

(
−3

(
αλ21λ̄1 + κ

)

2m(λ1 − λ̄1)

)
(5.7)

= − 3αk

4m2 . (5.8)

Therefore, for α < 0, the reduced dynamics on the
third-order autonomous SSM will have a non-trivial
zero. If, additionally, this zero is non-spurious, then
Theorem4.2 guarantees the existence of an isola. Using
Eq. (4.4), the isola will merge with the main FRC for

εm =
8m

√
1 − ζ 2

1 ω1

|P|

√
16m2(ζ1ω1)3

81k|α| . (5.9)

Weverify this analytic prediction numerically inExam-
ple 5.1 below.

Example 5.1 We choose the parameter values listed in
Table 1 and compute the forced response curve for sys-
tem (5.1). Note that for this choice of damping param-
eters, the non-resonance conditions (3.5) are satisfied.

Plugging in the parameter values of Table 1 into
Eq. (5.8), we observe that the third-order coefficient of
the autonomous part of the SSM is

Re(γ1) = − 3αk

4m2 = 1.35 > 0. (5.10)

We now numerically verify that this transverse zero
is non-spurious by computing the (complex) roots of
a(ρ) for an increasing order M of expansion in for-
mula (3.11) using ssmtool. In Fig. 4, we show these
roots, up to 50th order, with lighter colors indicating
higher orders of approximation. Equation (5.10) and
Fig. 4 allow us to conclude from statement (i) of Theo-
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Table 1 Parameter values for example 5.1

Symbol Value

m 1 kg

c1 0.03N s/m

c2
√
3 · 0.03N s/m

k 3N/m

κ 0.4N/m3

α − 0.6N (s/m)3

P 3N

rem 4.2 the existence of an isola near the amplitude
value |ρ±

1 |, where ρ±
1 are the two non-trivial, non-

spurious zeros of a(ρ) seen in Fig. 4. By Eq. (5.9),
the isola will merge with the main branch of the forced
response curve approximately at the parameter value

εm = 0.0028. (5.11)

We now verify this analytic prediction for the isola
merger numerically. In Fig. 5, we show in red the
leading-order forced response curves for ε = 0.0027
and ε = 0.0029. Also shown in black are the forced
response curves of the full system obtained via the
periodic-orbit toolbox of coco [21]. We conclude that
the FRC obtained from our two-dimensional, SSM-
reduced system perfectly predicts the behavior of the
full system.

Example 5.2 In this example, we add a quintic nonlin-
ear damper to system (5.1), which yields the modified
equations of motion in first-order form

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

− 2k

m

k

m
− c1 + c2

m

c2
m

k

m
− 2k

m

c2
m

−c1 + c2
m

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x

+

⎡
⎢⎢⎢⎣

0
0

− κ

m
x31 − α

m
x33 − β

m
x53

0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Gp(x)

+ε

⎡
⎢⎢⎢⎣

0
0

P

m
cos(Ωt)

0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Fp(Ωt)

.

(5.12)

Fig. 4 Plot of the roots of a(ρ) in the complex plane for Exam-
ple 5.1, with brighter colors indicating an increasing order M in
the expansion of a(ρ), up to 50th order (roots that are negative
of each other are to be identified). The zeros from the highest
approximation are highlighted in magenta. We observe that a
non-trivial transverse zero ρ±

1 persists for higher-order approxi-
mations and is clearly within the domain of convergence of the
function a(ρ). (Color figure online)

We again use the parameter values in Table 1 and addi-
tionally select the quintic damping coefficient β =
1.2N (s/m)5. We use ssmtool to calculate the func-
tions included in the reduced dynamics (3.9)–(3.10)
up to 5th order in ρ. The function a(ρ) now has two
positive, non-spurious zeros located at ρ+

1 = 0.13 and
ρ+
2 = 0.17 (seeFig. 6). Therefore,Theorem4.1 implies

the existence of two separate isolas bifurcating from the
damped backbone curve under periodic forcing.

We show the extracted forced response curves for
three different values of ε in Fig. 7. As we have pre-
dicted above, two isolas are born out of the non-trivial
transverse zeros of a(ρ) along the autonomous back-
bone curve. The isola with lower amplitudes is unsta-
ble, whereas the isola with higher amplitudes is par-
tially stable. If we increase the forcing amplitude ε, the
two isolas merge. Increasing ε further will make the
merged isolas merge with the lower FRC branch. The
branches of the forced response curve, extracted using
SSM theory, are again verified using the periodic-orbit
toolbox of coco [21]. In order to initialize the continu-
ation algorithm, we integrate the full system to provide
an initial solution guess that is used to start the contin-
uation process. For higher-amplitude values, our 5th-
order approximation slightly deviates from the numer-
ical continuation results, which is expected because
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Fig. 5 a Forced response
curve for ε = 0.0027 in
Example 5.1, which is
slightly below the predicted
value εm for the merger of
the isola with the main
branch of the FRC. The
dashed lines indicate that
the isola is unstable. b
Forced response curve for
ε = 0.0029, which is
slightly above the predicted
merging value εm . The
unstable isola has indeed
merged with the main FRC
branch, as predicted
analytically

(a) (b)

SSMtheory is local in nature. For lower amplitudes, our
SSM-based prediction perfectly matches the numerical
result.

A major advantage of our SSM-based reduction
method, as compared to other model-reduction meth-
ods, is that we are able to quantify what the mean-
ing is of the word local for each individual SSM-
reduced model. Figures 4, 6 and 9 give an illustration
of this, identifying the domain of convergence of the
autonomous part of the SSM.

5.2 A discretized, forced Bernoulli beam with a cubic
spring

Inspired by a similar example of Peeters et al. [22], we
now construct a reduced-order model for a discretized,
cantilevered Bernoulli beam with a cubic spring and
damper attached to the free end of the beam.We obtain
the reduced model by computing the dynamics on the
slowest, two-dimensional, time-periodic SSM of the
system.This example is complex enough so that numer-
ical continuation for obtaining the forced response is no
longer feasible numerically, whereas our SSM-based
predictions can still be carried out and will be seen to
be accurate.

We consider a square beam of length L , with cross
section A, situated in a Cartesian coordinate system of
(x, y, z) and basis (ex , ey, ez). The line of points coin-
ciding with the x-axis is called the beam’s neutral axis.
The Bernoulli hypothesis states that initially straight
material lines, normal to the neutral axis, remain (a)

Fig. 6 Plot of the roots of a(ρ) in the complex plane for Exam-
ple 5.2, with brighter colors indicating an increasing order M in
the expansion of a(ρ), up to 50th order (roots that are negative
of each other are to be identified). The zeros from the highest
approximation are highlighted in magenta. We observe that the
non-trivial transverse zeros ρ±

1 and ρ±
2 persist for higher-order

approximations and is clearly within the domain of convergence
of the function a(ρ). (Color figure online)

straight, (b) inextensible, and (c) rotate as rigid lines to
remain perpendicular to the beam’s neutral axis after
deformation.These kinematic assumptions are satisfied
by the displacement field,

ux (x, y, z, t) = −z
∂w(x, t)

∂x
, (5.13)

uy(x, y, z, t) = 0, (5.14)

uz(x, y, z, t) = w(x, t), (5.15)
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(a) (b)

(c)

Fig. 7 aResulting forced response curve for ε = 0.001 inExam-
ple 5.2. Two isolas are born out of the non-trivial transverse zeros
of a(ρ), located at (b(Ω), ρ) on the autonomous backbone curve.
The dashed lines indicate that the lower-amplitude isola is unsta-
ble in nature, whereas the higher-amplitude isola is partially sta-

ble. b Forced response curve for ε = 0.0025. Both isolas have
merged into one bigger isolated region. The lower half of the
merged isolas is unstable in nature, whereas the upper half is
stable. c Forced response curve for ε = 0.003. The two merged
isolas now have merged with the lower branch of the FRC
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where (ux , uy, uz) are the components of the displace-
ment field u(x, y, z, t) of a material point located at
(x, y, z). The transverse displacement of a material
point with initial coordinates on the beam’s neutral axis
at z = 0 is denoted by w(x). The rotation angle of
a transverse normal line about the y-axis is given by
−∂xw(x). Using the Green–Lagrange strain tensor, we
can express the relevant strains as

εxx = −z
∂2w(x, t)

∂x2
, γxz = 2εxz = 0. (5.16)

We assume an isotropic, linearly elastic constitutive
relation between the stresses and strains, i.e.,

σxx = Eεxx , (5.17)

which finally leads to the equation of motion of the
beam

ρA
∂2w(x, t)

∂t2
− ρ I

∂4w(x, t)

∂x2∂t2
+ E I

∂4w(x, t)

∂x4
= 0.

(5.18)

We assume that the thickness of the beam is small com-
pared to its length, i.e., h � L , and hence, we can
neglect the mixed partial derivative term in Eq. (5.18)
(cf. Reddy and Mahaffey [23]).

After discretization of (5.18) (cf. Reddy [24]), we
obtain the set of ordinary differential equations

Mẍ + Kx = 0, (5.19)

where x ∈ R
2m , and m is the number of elements used

in the discretization. Each node of the beam has two
coordinates related to the transverse displacementw(x)
and the rotation angle−∂xw(x) of the cross section.We
assume structural damping by considering the damping
matrix

C = αM + βK, (5.20)

with parameters α and β. We apply cosinusoidal exter-
nal forcing on the transverse displacement coordinate
at the free end of the beam with forcing frequency Ω

and forcing amplitude εP . Additionally, we add a cubic
spring and damper along this coordinate, with coeffi-
cients κ and γ , respectively. As a result, the equations
of motion of the beam can be written as

Fig. 8 Forced Bernoulli beam with a cubic spring and damper

Mẍ + Cẋ + Kx + g(x, ẋ) = εf(Ωt). (5.21)

We illustrate the kinematics, the forcing and the cubic
spring and damper in Fig. 8.

We select m = 25 for the number of discretized
elements, which gives x ∈ R

50, resulting in a 100-
dimensional phase space. We list the geometric and
material parameter values in Table 2.

For these parameter values, the eigenvalues corre-
sponding to the slowest eigenspace are

λ1,2 = −0.0061884 ± 7.0005i. (5.22)

As earlier, introducing the scaling s → ε
1
4 s, we obtain

the approximations

a(ρ) = − 0.0061884ρ + 0.036202ρ3, (5.23)

b(ρ) = 7.0005 + 0.031689ρ2, (5.24)

c1,0 = 0.54645 + 0.00048i. (5.25)

The function a(ρ) in Eq. (5.23) has a non-trivial, trans-
verse, positive zero at ρ+

1 = 0.413. Fig. 9 shows this
zero to be non-spurious. Therefore, by Theorem 4.2, an
isola will perturb from the point (Ω = b(ρ+

1 ), ρ+
1 ) of

the autonomous backbone curve. Also by Theorem 4.2,
the isola will merge with the main branch of the FRC
approximately for

εm = 1∥∥c1,0
∥∥

√
4|Re(λ1)|3
27Re(γ1)

= 0.0018. (5.26)

To verify our predicted merger amplitude in (5.26),
we perform a discrete numerical sweep of the full sys-
tem, in which we force the system at different forc-
ing frequencies and plot the resulting maximum abso-
lute value of the transverse displacement of the tip of
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Table 2 Geometric and
material parameters for the
Bernoulli beam

Symbol Value Meaning (unit)

L 2700mm Length of beam (mm)

h 10mm Height of beam (mm)

b 10mm Width of beam (mm)

ρ 1780 × 10−9 kg/mm3 Density (kg/mm3)

E 45 × 106 kPa Young’s Modulus (kPa)

I 833.3mm4 Area moment of inertia (mm4)

κ 6mN/mm3 Coefficient cubic spring (mN/mm3)

γ −0.02mN s/mm3 Coefficient cubic damper (mNs/mm3)

A 100mm2 Cross section of beam (mm2)

P 0.1mN External forcing amplitude (mN)

α 1.25 × 10−4 s−1 Structural damping parameter (s−1)

β 2.5 × 10−4 s Structural damping parameter (s)

Fig. 9 Plot of the roots of a(ρ) in the complex plane for the beam
example, with brighter colors indicating an increasing order M
in the expansion of a(ρ), up to 50th order (roots that are negative
of each other are to be identified). The zeros from the highest
approximation are highlighted in magenta. We observe that a
non-trivial transverse zero ρ±

1 persists for higher-order approxi-
mations and is clearly within the domain of convergence of the
function a(ρ). (Color figure online)

the beam, while keeping the forcing amplitude fixed
(see Fig. 10). We additionally verified the existence
of the unstable isola using the po toolbox of coco
on the same beam example with a coarser mesh (20-
dimensional phase space).

6 Conclusion

We have used the exact reduced dynamics on two-
dimensional time-periodic spectral submanifolds

(SSMs) to extract forced response curves (FRCs)
and predict isolas in arbitrary multi-degree-of-freedom
mechanical systems without performing costly numer-
ical simulations. We showed that for a cubic-order
approximation, the reduceddynamics on theSSMgives
an analytic prediction for the isolas, valid for any mode
of a multi-degree-of-freedom oscillatory system. For
simple examples, these predictions can explicitly be
expressed as functions of the system parameters. Our
lower-order predictions can be refined to higher orders
using the publicly available matlab script ssmtool.2

For mechanical systems of high degrees of freedom,
numerical continuation techniques for forced response
curves become computationally expensive. Instead,
using the non-autonomous SSM and the corresponding
reduced dynamics on the SSM, we are able to approx-
imate all possible FRCs for different forcing ampli-
tudes, as our expressions depend symbolically on the
forcing amplitude ε. An additional advantage of the
results derived here is that the isolas are uncovered
by the transverse intersection of the zero-level sets of
our two reduced equations. These isolas will gener-
ally be missed by numerical continuation techniques,
which require starting on an isolated solution branch.
As we have shown, our predictions for the main FRC
branches, as well as for isolas, remain valid and com-
putable in high-dimensional problems in which numer-
ical continuation is becoming computationally expen-
sive for constructing these curves.

2 ssmtool is available at: www.georgehaller.com.
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(a) (b)

Fig. 10 a Extracted forced response curve for ε = 0.0016 in the
beam example. An unstable isola is born out of the non-trivial
transverse zero of a(ρ), located at (Ω = b(ρ+

1 ), ρ+
1 ) on the

autonomous backbone curve. b Extracted forced response curve
from the reduced dynamics for ε = 0.002 > εm. The main
FRC branch has merged with the unstable isola. A discrete fre-
quency sweep has been performed on the full 100-dimensional
system to verify the accuracy of our two-dimensional reduced
model. The frequency region in which the FRC becomes unsta-

ble, as predicted by the SSM-based reduced dynamics, is con-
firmed by the full numerical frequency sweep. We additionally
verified the existence of the unstable isola using the po toolbox
of coco on the same beam example with a coarser mesh (20-
dimensional phase space). The numerical results from the beam
with the coarsermesh, extracted using collocation, alreadymatch
the SSM predictions perfectly (which was constructed from the
100-dimensional system)

The current two-dimensional SSM approach does
not allow for resonances between eigenvalues corre-
sponding to the spectral subspace E and the remain-
ing eigenvalues outside the spectral subspace. There-
fore, the current method will not identify isolas caused
by any such external resonances. However, if the
non-resonance conditions (3.5) are violated due to an
external resonance, we can increase the dimension of
the SSM, moving the previously resonant eigenvalues
inside the spectral subspace E , causing Eq. (3.5) to
be satisfied again. The investigation of such higher-
dimensional SSMs has not yet been carried out and is
planned as future work. Additionally, using the general
results of Haller and Ponsioen [7], one can extend the
periodic approach to detect quasi-periodic responses
and isolas under quasi-periodic forcing.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
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A Coefficient equations for the non-autonomous
SSMs

As the SSM perturbs smoothly with respect to the
parameter ε, we can expand W(s, φ) and R(s, φ) in
ε, obtaining the expressions

W(s, φ) = W0(s) + εW1(s, φ) + O(ε2), (A.1)

R(s, φ) = R0(s) + εR1(s, φ) + O(ε2). (A.2)

The forcing terms in system (3.1) are of order ε; there-
fore, the leading-order terms in Eqs. (A.1)–(A.2) are
not functions of φ. We now substitute Eqs. (A.1)–(A.2)
into the invariance Eq. (3.7) and collect terms of equal
order in ε. Given thatGm(q) = O(|q|2), we can Taylor
expand Gm(W(s, φ)) around ε = 0, to obtain

Gm(W(s, φ)) = Gm(W0(s))

+εDqGm(W0(s))W1(s, φ) + O(ε2). (A.3)
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Collecting terms of O(1), we obtain

�W0(s) + Gm(W0(s)) = DsW0(s)R0(s), (A.4)

and, subsequently, collecting terms ofO(ε)wefind that

�W1(s, φ) + DqGm(W0(s))W1(s, φ) + Fm(φ)

= DsW0(s)R1(s, φ) + DsW1(s, φ)R0(s)

+ DφW1(s, φ)Ω. (A.5)

Equation (A.4) is derived and solved in Ponsioen et
al. [8] to compute autonomous SSMs using the Kro-
necker product. The construction of the autonomous
SSMs has been automated and cast into the matlab-
based computational tool ssmtool. In the following
sections, the O(ε) terms of the SSM will simply be
referred to as the non-autonomous part of the SSM.
Note that in order to solve Eqs. (A.5) and (A.4) needs
to be solved first for the autonomous SSM and for the
reduced dynamics, since the respective terms obtained
from Eq. (A.4) are needed in Eq. (A.5).

The autonomous and non-autonomous parts of the
SSM and the reduced dynamics, which have previously
been derived from an expansion in ε, are in turn Taylor
expanded in the parameterization coordinates s, which
we explicitly express as

W0(s) =
⎡
⎢⎣

w0
1(s)
...

w0
2n(s)

⎤
⎥⎦ , w0

i (s) =
∑
m

W 0
i,ms

m,

(A.6)

R0(s) =
[
r01 (s)
r02 (s)

]
, r0i (s) =

∑
m

R0
i,ms

m, (A.7)

W1(s, φ)=
⎡
⎢⎣

w1
1(s, φ)

...

w1
2n(s, φ)

⎤
⎥⎦, w1

i (s, φ)=
∑
m

W 1
i,m(φ)sm,

(A.8)

R1(s, φ) =
[
r11 (s, φ)

r12 (s, φ)

]
, r1i (s, φ) =

∑
m

R1
i,m(φ)sm.

(A.9)

Here, we have made use of the multi-index notation
m ∈ N

2
0. We now assume that Eq. (A.4) has already

been solved for W0(s) and R0(s), and therefore, their
coefficients W 0

i,m and R0
i,m are known.

Theorem A.1 For φ ∈ S1, the coefficient equation
related to the kth-power term of the i th row of the non-
autonomous invariance Eq. (A.5), is equal to
⎛
⎝λi −

2∑
j=1

k jλ j

⎞
⎠W 1

i,k(φ) − DφW
1
i,k(φ)Ω

=
2∑
j=1

δi j R
1
j,k(φ) + Pi,k(φ), (A.10)

where Pi,k(φ) can be written as

2∑
j=1

∑

m≤k̃ j
m �=e j
m j>0

m jW
0
i,mR1

j,k̃ j−m
(φ)

+
2∑
j=1

∑

m≤k̃ j
m �=k
m j>0

m jW
1
i,m(φ)R0

j,k̃ j−m

− Fi,k(φ) −
⎡
⎣

2n∑
j=1

Dx j gi (W0(s))w1
j (s, φ)

⎤
⎦
k
(A.11)

Proof Assuming that φ ∈ S1, we obtain that for the
i th row, the kth-power terms on the right-hand side of
Eq. (A.5) can be expressed as

[DsW0(s)R1(s, φ)]ki =
2∑
j=1

∑

m≤k̃ j
m j>0

m jW
0
i,mR1

j,k̃ j−m
(φ),

(A.12)

[DsW1(s, φ)R0(s)]ki =
2∑
j=1

∑

m≤k̃ j
m j>0

m jW
1
i,m(φ)R0

j,k̃ j−m
,

(A.13)
[
DφW1(s, φ)Ω

]k
i = DφW

1
i,k(φ)Ω, (A.14)

where we have made use of the multi-index notation

m ∈ N
2
0, k ∈ N

2
0, k̃ j = k + e j , (A.15)

with e j denoting a unit vector.
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The kth-power terms on the left-hand side of the i th
row of Eq. (A.5) can be written as

[�W1(s, φ)]ki = λiW
1
i,k(φ), (A.16)

[
DqGm(W0(s))W1(s, φ)

]k
i

=
⎡
⎣

2n∑
j=1

Dqj gi (W0(s))w1
j (s, φ)

⎤
⎦
k

, (A.17)

[Fm(φ)]ki = Fi,k(φ). (A.18)

Therefore, the coefficient equation related to the kth-
power term of the i th row of the non-autonomous
invariance Eq. (A.5) is
⎛
⎝λi −

2∑
j=1

k jλ j

⎞
⎠W 1

i,k(φ) − DφW
1
i,k(φ)Ω

=
2∑
j=1

δi j R
1
j,k(φ) + Pi,k(φ), (A.19)

where

Pi,k(φ) =
2∑
j=1

∑

m≤k̃ j
m �=e j
m j>0

m jW
0
i,mR1

j,k̃ j−m
(φ)

+
2∑
j=1

∑

m≤k̃ j
m �=k
m j>0

m jW
1
i,m(φ)R0

j,k̃ j−m

−Fi,k(φ)−
⎡
⎣

2n∑
j=1

Dqj gi (W0(s))w1
j (s, φ)

⎤
⎦
k

,

(A.20)

which concludes the proof of Theorem A.1. 
�

A.1 Solving the non-autonomous invariance equation
for |k| = 0

For |k| = 0, Eq. (A.10) reduces to

λiW
1
i,0(φ)−DφW

1
i,0(φ)Ω =

2∑
j=1

δi j R
1
j,0(φ)−Fi,0(φ),

(A.21)

which is equivalent to the 0th-order expansion of Bre-
unung and Haller [10]. Assuming that the forcing term
Fi,0(φ) can be written as

Fi,0(φ) = F̃i,0
eiφ + e−iφ

2
, (A.22)

we express W 1
i,0(φ) and R1

i,0(φ) in the following form

W 1
i,0(φ) = ai,0e

iφ + bi,0e
−iφ,

R1
i,0(φ) = ci,0e

iφ + di,0e
−iφ. (A.23)

As the SSM is constructed over a two-dimensional
spectral subspace E , corresponding to the eigenvalues
λ1 = Reλ1 + iImλ1 and λ2 = λ̄1 = Reλ1 − iImλ1, we
can write the solution of Eq. (A.21) as

W 1
i,0 = δi1c1,0 + δi2c2,0 − 1

2 F̃i,0
λi − iΩ

eiφ

+δi1d1,0 + δi2d2,0 − 1
2 F̃i,0

λi + iΩ
e−iφ. (A.24)

Our main goal is to obtain the forced response curve
around the frequency Imλ1, which corresponds to
the spectral subspace E . For lightly damped systems
where Reλ1 is small, we obtain small denominators
in Eq. (A.24) if the forcing frequency Ω is approxi-
mately equal to Imλ1. We, therefore, intend to remove
this near-resonance by setting

c1,0 = 1

2
F̃1,0, c2,0 = 0, d1,0 = 0, d2,0 = 1

2
F̃2,0.

(A.25)

A.2 Solving the non-autonomous invariance equation
for |k| > 0

For |k| > 0, the solution to the non-autonomous invari-
ance Eq. (A.10) is given by

W 1
i,k(φ) =

∑2
j=1 δi j c j,k + αi,k

λi − ∑2
j=1 k jλ j − iΩ︸ ︷︷ ︸
ai,k

eiφ

+
∑2

j=1 δi j d j,k + βi,k

λi − ∑2
j=1 k jλ j + iΩ︸ ︷︷ ︸
bi,k

e−iφ, (A.26)

where we have let Pi,k = αi,keiφ +βi,ke−iφ . Using the
same reasoning as in Sect. A.1, we want to choose ci,k
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Table 3 Resonant terms in the non-autonomous part of the SSM
for small damping and forcing frequency Ω ≈ Imλ1

i = 1 i = 2

ai,k k1 = k2 k1 = k2 − 2

bi,k k1 = k2 + 2 k1 = k2

and di,k in Eq. (A.26) in such away that the coefficients
ai,k and bi,k, which become large when the damping
is small and the forcing frequency Ω is close to Imλ1,
are completely removed. These terms are the so-called
resonant terms. In Table 3, we list the resonant terms
ai,k and bi,k for small damping and for Ω ≈ Imλ1.

The terms listed in Table 3 will be removed from
the expressions ofW1(s, φ) and included into the non-
autonomous part of the reduced dynamics R1(s, φ), in
order to avoid small denominators inW1(s, φ).

B Proof of Theorem 3.2

The O(ε) approximation of the reduced dynamics for
s can be written as

ṡ = R(s, φ) = R0(s) + εR1(s, φ), (B.1)

where the first row of Eq. (B.1) takes the form

ṡ1 = λ1s1 +
M∑
i=1

γi s
i+1
1 si2

+ ε

(
c1,0e

iφ +
M∑
i=1

(
c1,(i,i)(Ω)si1s

i
2e

iφ

+d1,(i+1,i−1)(Ω)si+1
1 si−1

2 e−iφ
))

, (B.2)

and the second row of Eq. (B.1) is, by construction,
the complex conjugate of the first row. Introducing a
change to polar coordinates, s1 = ρeiθ , s2 = s̄1 =
ρe−iθ , dividing by eiθ and introducing the new phase
coordinate ψ = θ − φ, we obtain

ρ̇ + iρ(ψ̇ + Ω) = λ1ρ +
M∑
i=1

γiρ
2i+1

+ ε

(
c1,0e

−iψ +
M∑
i=1

(
c1,(i,i)(Ω)ρ2ie−iψ

+ d1,(i+1,i−1)(Ω)ρ2ieiψ
))

. (B.3)

We obtain the result listed in Theorem 3.2 by splitting
Eq. (B.3) into its real and imaginary part. 
�

C Extracting the forced response curve

For convenience, we restate our zero problem (3.17),

F(u) =
[
F1(u)

F2(u)

]

=
[

a(ρ) + ε ( f1(ρ,Ω) cos(ψ) + f2(ρ,Ω) sin(ψ))

(b(ρ) − Ω)ρ + ε (g1(ρ,Ω) cos(ψ) − g2(ρ,Ω) sin(ψ))

]
= 0,

(C.1)

where

F(u) : R3 → R
2, u =

⎡
⎣

ρ

Ω

ψ

⎤
⎦ .

If there exists a regular point p = (ρ,Ω,ψ), such that
F(p) = 0 in (C.1) and the Jacobian of F evaluated
at p is surjective, then by the implicit function theo-
rem, locally there exists a one-dimensional subman-
ifold of R3 which will represent the forced response
curve when projected onto the (Ω, ρ)-space. Equiva-
lently, the zero-level sets of F1(u) and F2(u) in (C.1),
which we will denote by Mp

1 and Mp
2, will be two

two-dimensional submanifolds in the (ρ, ψ,Ω)-space
that, locally around p, intersect each other transversely,
yielding the forced response curve. We illustrate this
concept in Fig. 11, which is a typical picture for a
damped nonlinear periodically forced mechanical sys-
tem with a hardening nonlinearity.

D Proof of Theorem 3.3

Let u0 be a regular point of the map F(u) (3.17) such
that F(u0) = 0, and DuF(u0) is surjective. Then, by
the implicit function theorem, locally there exists a one-
dimensional submanifold ofR3 around u0. We express
ψ as a function of ρ andΩ , using the tangent half-angle
substitution and the trigonometric identities,

ψ

2
= tan−1 (K ) , cos (ψ) = 1 − K 2

1 + K 2 ,

sin (ψ) = 2K

1 + K 2 . (D.1)
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Fig. 11 a, b Intersection of
M1 (green) and M2 (red),
yielding the
frequency-response curve in
blue. (Color figure online)

Setting Eq. (3.9) equal to zero and substituting the iden-
tities into Eq. (3.9), we obtain a quadratic equation in
K ,

(a(ρ) − ε f1(ρ,Ω)) K 2 + 2ε f2(ρ,Ω)K

+ (a(ρ) + ε f1(ρ,Ω)) = 0, (D.2)

which has the solution,

K (ρ;Ω)± =
−ε f2(ρ,Ω) ±

√
ε2

(
f1(ρ,Ω)2 + f2(ρ,Ω)2

) − a(ρ)2

a(ρ) − ε f1(ρ,Ω)
.

(D.3)

Substituting Eq. (D.3), together with the trigonometric
identities in (D.1), into Eq. (3.10), we obtain the result
stated in Theorem 3.3. 
�

E Proof of Theorem 4.1

We now consider ε to be a variable in our zero problem
(3.17), i.e.,

F(u, ε) : R4 → R
2, u =

⎡
⎣

ρ

Ω

ψ

⎤
⎦ .

If there exists a non-spurious non-trivial transverse zero
ρ0 : a(ρ0) = 0 and ∂ρa(ρ0) �= 0, then by restricting
ourselves to the autonomous backbone curve (see Pon-
sioen et al. [8]), i.e.,

u0 = [ρ0,Ω0, ψ0, ]�, Ω0 = b(ρ0),

ψ0 = const., ε = 0,

we have found a solution

F(u0, 0) = 0. (E.1)

The Jacobian of F with respect to ρ and Ω , evaluated
at the solution (u0, 0), is given by the square matrix

D(ρ,Ω)F(u0, 0) =
[

∂ρa(ρ0) 0
∂ρb(ρ0)ρ0 − ρ0

]
, (E.2)

which is invertible. Therefore, by the implicit func-
tion theorem, we can continue our solution as a
two-dimensional submanifold of R4. Locally, we can
express ρ and Ω as a function of ψ and ε. For ε > 0,
an isola is born out of the non-trivial transverse zero on
the autonomous backbone curve located at (Ω, ρ) =
(b(ρ0), ρ0). For a fixed forcing amplitude ε, the isola
is parameterized by ψ (as illustrated in Fig. 3). 
�

F Proof of Theorem 4.2

In the setting of (4.2), our implicit function (3.18) will
reduce to

G(ρ,Ω) = (b(ρ)−Ω)ρ±
√

ε2
∥∥c1,0

∥∥2 − a(ρ)2 = 0.

(F.1)

Any zero ρ0 that makes the square root term in Eq. (F.1)
vanish, will also be a zero of (F.1) itself by setting
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Ω = b(ρ0), and therefore will be on the forced
response curve and on the autonomous backbone curve.
Additionally, at this point, two segments of the FRC
will meet and create a fold over the Ω direction. We
set the argument inside the square root inEq. (F.1) equal
to zero and rewrite it as

Δ(ρ) = a(ρ) ± ε
∥∥c1,0

∥∥ = 0. (F.2)

Restricting ρ ∈ R
+
0 , then for Re(γ1) > 0, the third-

order autonomous function a(ρ) will have a trivial
transverse zero and a non-trivial transverse zero located
at

ρ0 = 0, ρ1 =
√

|Re(λ1)|
Re(γ1)

, (F.3)

such that a(ρ0) = 0, a(ρ1) = 0, ∂ρa(ρ0) �= 0 and
∂ρa(ρ1) �= 0. Under the assumption that the cubic-
order zero ρ1 is a non-spurious zero for the function
a(ρ), then, using the same type of argument as in the
proof of Theorem 4.1, an isola will be born out of this
non-trivial transverse zero for system (4.2).

We note that between ρ0 and ρ1, a(ρ) will have a
local minimum at,

∂ρa(ρ) = −|Re(λ1)| + 3Re(γ1)ρ
2 = 0

⇒ ρ̃ =
√

|Re(λ1)|
3Re(γ1)

. (F.4)

Therefore, for ε > 0 small enough, the function a(ρ)

will have three intersections with the constant curves
±ε

∥∥c1,0
∥∥, meaning that we have found three zeros,

0 < ρa
0 < ρa

1 < ρb
1 ofEq. (F.2), that correspond to three

folding points of the FRC over the Ω direction. In this
setting, ρa

0 corresponds to the maximum amplitude of
the main FRC branch, ρa

1 corresponds to the minimum
amplitude of the isola,whereasρb

1 will be themaximum
amplitude of the isola.

We can increase ε such that ρa
0 = ρa

1, which merges
the maximum amplitude of the main FRC branch with
the minimum amplitude of the isola, which is exactly
at

εm = 1∥∥c1,0
∥∥

√
4|Re(λ1)|3
27Re(γ1)

, (F.5)

whereas for

0 < ε <
1∥∥c1,0

∥∥

√
4|Re(λ1)|3
27Re(γ1)

. (F.6)

the isolawill be disconnected from themainFRC, prov-
ing Theorem 4.2. 
�
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