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Abstract 

In this paper we study the dynamics near resonant elliptic equilibria in three-degree-of-freedom Hamiltonian systems. The 
resonances we consider have multiplicity two, and the corresponding local normal form for the equilibrium is integrable at 
cubic order. We prove the existence of families of 3-tori and whiskered 2-tori with nearby chaotic dynamics in the quartic 
normal form. The whiskers of the 2-tori intersect in a non-trivial way giving rise to multi-pulse homoclinic and heteroclinic 
connections. These connections survive in the full system as orbits homoclinic to invariant 3-spheres. 

1. Introduction 

Suppose  that the quadrat ic  pa r t /42  of  a three-degree-of-freedom (3 -DOF )  smooth Hami l ton ian  H = H2 + /7 /  

is of  the form 

3 

H2 = ½ Z wk(q~ + p~), (1 .1)  
k=l 

which is characterized by the frequency vector o) = (o)l ,o)2,  o)3). This  frequency is said to be resonant  if we 

can find a nonzero  integer vector n = (nl,n2,n3) such that 

(o),n) = 0 1.2) 

is satisfied. We usual ly  speak about  a strong resonance i f  there exists an integer vector n ver i fying (1 .2)  with 

Inl = {nil + [nz{ + In3[ <__ 4. One  can also introduce the term full resonance (or  multiplicity-two resonance) 
which means  that there are two l inearly independent  integer vectors n and fi sat isfying the relation (1 .2) .  
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1.1. The nature o f  dynamics near resonant elliptic equilibria 

It is well known that the six-dimensional phase space of (1.1) is foliated by a three-parameter family of 
3-tori, which best manifest themselves in action-angle variables (see, e.g., Arnold [4] ). System (1.1) also has 
three families of distinguished motions, usually called normal modes, which are periodic orbits with only one 
nonvanishing action. As we know from the appropriate version of the KAM theory (see, e.g., Arnold et al. 
[ 5 ] ), in a neighborhood of the origin q = p = 0 most of the 3-tori typically persist under the effect of the 
higher order terms in /-1 provided w is not strongly resonant. In these cases, close to the origin, the observed 
perturbed dynamics is reminiscent of the unperturbed one, at least for finite times. 

As it was soon revealed by computer experiments following the appearance of KAM-type results, the dynamics 
around a strongly resonant equilibrium may differ significantly from the picture described above (see, e.g., Ford 
and Waters [20] and Ford and Lunsford [2l]  ). In particular, one can observe significant short-time deviation 
from the solutions of ( 1.1 ). Trajectories of H starting close to the linear normal modes of the quadratic part H2 
may leave and return on time scales much shorter than those mentioned above. Moreover, plotting the action 
values of these trajectories, one experiences irregular patterns in the change of action, which is usually referred 
to as energy transfer between different modes (cf. Ford and Waters [20], Ford and Lunsford [21 ], Van der 
Aa and Sanders [57,58], etc.) Though this terminology is descriptive, it is not quite accurate since the linear 
normal modes of H2 do not necessarily persist as nonlinear normal modes under the effect of/7/. Hence, the 
first natural question one might ask about the nature of full resonances should be about the fate of the linear 
normal modes and the possible creation of new periodic orbits. 

A general answer to this question is given by the work of Weinstein [60] (see also Moser [48] and Ito 

[ 30] ). If H2 is definite, his results guarantee the existence of at least three distinct periodic orbits on every 
energy surface H = const. For more specific results one has to appeal to the method of normal forms (see, 
e.g., Arnold et al. [5], Sanders and Verhulst [54] ) and simplify the general Hamiltonian H =/-/2 + H3 for the 
purposes of the analysis. This is achieved through a smooth near-identity change of variables which puts H to 
the Birkhoff normal form 

H = H2 + H3 + H4 + . . .  + Hr + O ( r +  1), (1.3) 

where Hj is a homogeneous polynomial of order j in the new coordinates ( q ' , p ' )  with {H2, Hi}  = O, { , } 

denoting the Poisson-bracket. If we truncate (1.3) at some order less than r to obtain a Hamiltonian H, the 
corresponding system has two independent first integrals: /4 and/-/2. If o) is not fully resonant, we can always 
find one more independent integral (see Arnold et ai. [5] ); hence the normal form is integrable if truncated 
at any finite order. This effectively means that system (1.3) exhibits a resonance only between two of the 
frequencies and can be analyzed by the methods developed for 2-DOF resonant Hamiltonians (see Arnold et al. 
[5], Churchill et al. [8,9], Sanders and Verhulst [54], and the references cited therein). To obtain inherently 
3-DOF effects, one therefore needs to assume that the frequency o) is fully resonant, in which case the truncated 
normal form is not automatically integrable. 

1.2. Previous work on 3-DOF resonant normal forms 

To describe how complex a given fully resonant normal form is, we may speak about a genuine kth order 

resonance if (1.3) truncated at order k + 2 (and not below) exhibits full coupling between all the three degrees 
of freedom (for a precise definition see Sanders and Verhulst [54] ). A systematic study of periodic solutions 
and their stability for genuine first order resonances was carried out in Van der Aa [58] (see also Sanders 
and Verhulst [54] ). Related results for symmetric systems appeared in, e.g., Montaldi et al. [45,46], and the 
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references therein, which also address the question of persistence of periodic solutions for the full system (1.3). 

Parallel to this, one can also see an increasing interest in the integrability of fully resonant normal forms. The 
picture arising from the works of Martinet et al. [43], Van der Aa and Sanders [57], Van der Aa [58], Van 
der Aa and Verhulst et al, [59], is that genuine first order resonances (truncated at cubic order) do not seem 
to have a third independent integral in general. Nice exceptions are the l: 2:2 resonance and resonances with 

discrete symmetries. For these integrable cases the methods of symplectic and Poisson reductions (Abraham 
and Marsden [ 1 ] ) gave insights into the foliation of the phase space (see Cushman [ 1 1 ] and Kummer [38] ), 

making use of related results for two degrees of freedom (cf. Kummer [37], Cushman and Rod [ 12], Churchill 

et al. [9], Knobloch et al. [34] ). The work of Kummer [38] extends this point of view to n degrees of 
freedom and also gives a persistence theorem for a class of n - 1-tort arising from the truncated normal form. 

Recently Hoveijn [29] gave a nice classification of the possible reduced phase spaces of integrable 3-DOF 

resonances using the theory of singular reduction. He also proved the existence of invariant spheres in these 
systems. 

As a rule, most of the above results seem to focus on regular behavior (periodic orbits, 2-tort) in 3-DOF 
resonances. The first reference pointing towards irregularity appears to be Duistermaat [ 15] with a proof that 

the 1: l: 2 resonance is typically nonintegrable. Duistermaat shows an infinite branching of complex continuation 

of manitolds of periodic orbits with constant frequency, which is known to be an obstruction to integrability 
(see Arnold et al. [5]) .  

A more geometric discussion of another resonance, the 1: 2:3 is given by Hoveijn and Verhulst [28], who 

consider a given fourth order normal form and present numerical results showing the existence of an orbit 
homoclinic to a relative equilibrium. Using Melnikov's method Hoveijn [29] completed this study by proving 

that the stable and unstable manifolds of the relative equilibrium intersect transversally for a special choice of 
the quartic normal form terms. As Hoveijn points out, the algebraic splitting of separatrices in the truncated 

1: 2:3 normal form is an indication that the chaotic behavior occurring near 3-DOF resonant equilibria is much 
stronger than near 2-DOF resonant equilibria, for which the local normal form is integrable up to any order of 
truncation. 

A general study of the dynamics near multi-degree-of-freedom resonant equilibria appears in Delshams [ 13] 

(see also de la Llave and Wayne [40] ). Delshams considers equilibria with a simple resonance and establishes 

the existence of whiskered tort for the truncated normal form in the vicinity of the equilibrium. His calculations 
indicate the survival of these tort in the full system with their whiskers exhibiting exponentially small splittings. 

1.3. A special class o f  multiplicity two resonances 

In this paper we would like to go one step further in exploring the mechanism and onset of chaos near 3-DOF 

resonant equilibria. We consider fully resonant systems for which the resonance relationship (1.2) is satistied 
with lnjl = 2, In2[ = 1. (This resonance is usually referred to as Fermi resonance in the physics literature.) In 
the usual terminology, we assume that the resonance has a generator of the form h = (2, 1,0) or ( 2 , -  I, 0). 

Rescaling the frequencies by wl, we then obtain the new frequency vector ~ = ( I , i 2 ,  r.b3), where ¢b3 is a 
nonzero rational number. We want to ensure that the corresponding normal form is integrable when truncated 

at cubic order and intend to treat higher order normal form terms as perturbations on this integrable structure. 
To obtain an integrable cubic normal form we may make various assumptions. Either we require 16a31 > 5 or 
[~31 = 2 to hold (see hypothesis (H2i) of Section 3.2) or we assume that the full Hamiltonian H is close 
to being discrete symmetric at cubic order (see (H2ii) of Section 3.2). A large number of multiplicity two 
resonances satisfy one of these assumptions and can be cast in the same type of normal form. In particular, 
we can treat the genuine first order resonances 1:2: 1, 1:2: 3, and I: 2:4 with appropriate discrete symmetries, 
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and the 1 : 2:2 without any symmetry assumed. All the genuine second order resonances with cubic generator fi 

also qualify (i.e., the 1: 2: 6, 2: 4: 3, 3: 6: 1, and the 3: 6: 2), and, we repeat, all resonances of the form l : 2: oJ3, 
oJ3 >_ 5 are covered without symmetry assumptions. Further, in all the cases listed here and above, the signs of 
individual frequencies may be negative. 

1.4. Main results 

Our study is based on the global knowledge of the integrable geometry of the cubic normal form. This 
enables us to establish the survival of two families of three-dimensional tori on most energy surfaces of the full 
system. We also pay special attention to a family of invariant 3-spheres of the integrable cubic truncation which 

have four-dimensional homoclinic manifolds. Each 3-sphere is filled with a two-parameter family of periodic 
solutions. Under the effect of higher-order normal form terms these periodic orbits are all destroyed, but in the 

typical case new invariant 2-tori are created by the quartic normal form terms on a four-dimensional invariant 
set J~/l~ that perturbs from the family of 3-spheres. 

The tori are connected through heteroclinic and homoclinic orbits, which are not amenable to Melnikov-type 

methods because the 2-tori are created by the perturbation acting on the integrable limit. This introduces a 
singular perturbation problem that can be dealt with using an appropriate version of the energy-phase method 
which is developed for 2-DOF Hamiltonian and dissipative systems in Haller and Wiggins [24]. Using this 

method we obtain criteria for the existence of multi-pulse connections between the whiskered 2-tori which pass 

repeatedly near AA~ before approaching a torus in backward or forward time. Along the multi-pulse solutions 

the stable and unstable whiskers of the corresponding 2-tori intersect at an angle of O(e )  which enables us to 

prove the existence of Smale horseshoes and chaotic dynamics on most energy levels. This implies the existence 
of observable irregular behavior on energy levels close to the resonant equilibrium, even if the equilibrium is 
Lyapunov-stable. Although it is most likely true, we are not able to prove at this point that the invariant 2-tori 

persist under the effect of the "tail" of the normal form (cf. Section 7.4). Instead, we show how the multi-pulse 
solutions survive and asymptote to certain invariant 3-spheres. In fact, the multi-pulse orbits turn out to be 

transverse homoclinic orbits to these spheres in the full system. 

The organization of this paper is as follows. In Section 2 we describe our main assumptions and the resonances 

we study. Section 3 contains a detailed description of the dynamics of the integrable cubic normal form for 
these resonances. In Section 4 we introduce new coordinates that are more appropriate for the study of the 
effect of higher order normal forms on the integrable truncation. In Section 5 we describe our basic tool for the 
study of resonant manifolds, which is a version of the 2-DOF energy-phase method developed in Hailer and 
Wiggins [24]. In Section 6 we use this method to obtain multi-pulse solution sets in higher-order truncations 
of the normal form that connect 2-dimensional whiskered tori with two different time scales. In Section 6 we 

study what remains of the structures of the quartic truncation under the effect of the tail of the normal form. In 
particular, we analyze the fate of families of 3-tori using Arnold's results on properly degenerate Hamiltonians 
(see, e.g., Arnold et al. [5] ) and also study the fate of the multi-pulse solution sets. Finally, in Section 8 we 
summarize our results and their applications and comment on aspects of chaos and diffusion near the resonant 
equilibria we studied. 

2. Set-up and assumptions 

We are concerned with Hamiltonians of the form 
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H(q,p) = H2(%P) f &74& (2-l 1 

where (q, p) are canonical coordinates on the phase space (R?, w) with w = dqAdp. In (2.1) HZ is a quadratic 

polynomial and R satisfies DA(O) = 0 and 02fi(0) = 0. Throughout this paper we assume that H is a Cr+’ 

function with r 2 6. This smoothness requirement is imposed on the Hamiltonian by one of the tools we use: 

a version of the KAM theorem which requires a Hamiltonian of class C7 for 3-DOF systems, as shown in 

Poschel [ 521. 

With the notation x = (q,p) the Hamiltonian equations associated with (2.1) take the form 

i = J&H(x), 36 = 

where Id3 E !R3x3 1s the identity matrix. We assume that x = 0 is an elliptic fixed point of system (2.2) and 

.J6D2H2(0) is semisimple, in which case a linear canonical transformation puts Hz in the form 

3 

&(q>p) = f~~k(q:+p:). 

k=l 

(2.3) 

(2.2) 

Here fi = (WI, 02,w3) E lR3 - (0) is the frequency vector of the linear flow generated by Hz. We introduce 

the canonical change of variables 

z = q - ip, 2 = q + ip, z, z E C3, (2.4) 

with its inverse defined as Tr : (z, 2) H (q, p), and consider the transformed system on the phase space ( c3, 0) 

with 0 = iIm( dZ A dz ) . Letting z -+ EZ, 7 + SZ with E > 0 small, and dividing (2.1) by c2, we arrive at the 

Hamiltonian 

H(z,Z;c) = H2(z,f) +E~~(z,?;E), (2.5) 

with 

H2(z,Z) = ;~~k(Zk12, fi(z,z;E) = c EI~l+14-3~L*~Z~~~ + 0($-I), (2.6) 

k=l 

where hlnr = &I E @. for i,m E N3, and )I] = Ii + Z2 + Is. In (2.6) we used the usual notation ZP: = .$‘$zp. 

2.1. The type of the resonance 

To describe the resonances we study, we introduce the resonant module 

M={nEZ3 ](w,n) =O}. 

We then assume that, after a possible reindexing of the variables zk, &, 

(Hl) Either (2,1,0) EM or (2,-1,0) E MholdsanddimM=2. 

(H2) If s E M and jst]/]s~j # 2, then one of the following is satisfied: 

(i) Js] > 4, 
(ii) For any 1, m E N3 with 111 + (m( = 3, 1 - m = s, we have hl, = 0. 

(2.7) 
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Here ( H I )  means that the first two frequencies satisfy the strong resonance relationship I wil: 1~o2[ = 1:2 
and there is one more independent resonance relationship among the three frequencies. If  (H2i) holds then 
(2, +1 ,0 )  is the unique third order generator of the resonant module M. This is satisfied by all resonances of 

the form 1: ±2:w~ with Iw31 _> 5, and by a number of other resonances, like the 1:2:6, 2:4:3,  3:6: 1, 3:6:2, 
3: 6: 10, etc. If, alternatively, (H2ii) holds then (2, 4-1,0) is not the only third order generator of M. We then 

require certain coefficients of/7/ to vanish, which usually translates into the assumption that the Hamiltonian 

(2.5) is close to having a discrete symmetry at cubic order. (One can also assume ht,z = ue which requires 
the symmetry breaking terms to be less in order than the symmetric cubic terms.) We note that all genuine 
first order resonances in 3-DOF Hamiltonians (i.e., 1: +2: o~3, Iw31 = 1,2, 3,4) with appropriate weakly broken 

discrete symmetries satisfy hypotheses (H1) and (H2ii) (see Sanders and Verhulst [54] for the definition of 
genuine resonances and discussion on the effect of discrete symmetries). 

2.2. The resonant normal form 

Based on hypothesis ( H I )  we can rescale the frequencies by letting 

(.O 3 
wl = 1 ,  w 2 = 2 ,  oa3 ~ - - ,  (2.8) 

O91 

where we have set the sign of w2 positive for convenience. Although the basic results are the same, some of 
the geometry is different in the case w2 = - 2 .  We believe that, based on the material presented below, it is 

straightforward to make the necessary modifications for that case. We finally note that (H1) implies that the 

rescaled frequency w3 is a rational number. 

In order to simplify the Hamiltonian (2.5) further, we apply a near-identity canonical change of variables 
which puts our system in Birkhoff normal form up to some order p with 4 < p <_ r + 1 (see Arnold [4] or 

Sanders and Verhulst [54], etc.). Using ( H I ) , ( H 2 ) ,  and the rescaling (2.8), we can write the normalized part 
of the Hamiltonian in the form 

where 

= H2 + 8H3 + 132/7/4 q'- 83H5 + • • • + eP-2Hp, 

and 

(2.9) 

/Z/4 = H4 -+-/~4, 

with 

{H2, Hi} = 0 ,  3 < j  ___ r, {H2 , /~4}  = 0, (2.11) 

where { , } is the canonical Poisson bracket. In (2.10) Hj contains resonant terms of the form ztg" with 
Ill + [ml = j,. l - m E M. We note that, in general, the normalization procedure yields a term of the form 
H3 = Re (AzlZg2), A E C and one needs to apply an additional symplectic change of coordinates Zl 
exp( - iarg(A) /2 )Z l ,  ~ --+ exp( - iarg(A) /2)~ l ,  to bring H3 to the form in (2.10) with a = 21AI (see 
Kummer [38] ). From this point on we will assume that the nondegeneracy condition a ~ 0 holds. 

The expression ~4 in (2.1 1 ) contains some possible quadratic detuning of/-/2 from the exact resonance and 
cubic terms htmztg m of the normal form with htm= O(e) ,  which may arise in the case of hypothesis (H2). 

H2 = ½[Zll 2 + Iz2i 2 + ½w31z312, H3 = ½aRe(Zl2~2), a E ~,  (2.10) 
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We remark that for w = (1: J:2: ± 2 )  system (2.5) can be put in the form (2.10) even if (H2)  is not satisfied 
(see Kummer  [38] ) .  

With the normal form transformed into the form (2.9),  integrability at cubic order is clear. This can be seen 
due to the fact that z3 "separates" from the z~ - z2 dynamics leaving a 2-DOF Hamiltonian system, and all 
2-DOF truncated Hamiltonian normal forms are integrable by construction (since {H,/-/2} = 0).  

Realistic physical systems are never in perfect resonance so it is important to allow for the presence of  some 
detuning from the resonance. In this paper the detuning is assumed to be of  the form ~Hj  = e H a o  + (-9(8 2) 
with 

H,z0 = ½dlZll 2. 

It can be easily verified that, when considered up to order O ( e ) ,  the normal form is still integrable with the 
addition of  this term. In particular, 

= 1  1 z 2 H , = H 2 + e H a o + e H 3 ,  J1 ~[zll2+lz212, 1 2 = 3  3 (2.12) 

are integrals for the Hamiltonian system defined by Hc. Note that we allow the detuning to be fairly large in 
the (zj ,  ~j ) degree of  freedom for which it has the same order of  magnitude as the nonlinear terms in the flow 

generated by He. This is required, e.g., for the chemical application described in Haller and Wiggins [25].  
From now on we assume that the O ( e  2) and higher-order terms in the detuning have been incorporated in /44. 

3. IntegrabiUty and geometry of the cubic normal form: symplectic reduction 

In this section we briefly discuss the geometry of the cubic, detuned normal form 

Hc = ½ (1 + ed)  IZl 12 + lz212 + ½w31z3l 2 + e½aRe (z~Z2). (3.1) 

We study this Hamiltonian using symplectic reduction, for which the standard terminology can be found in 

Abraham and Marsden [1].  The results we present in Subsection 3.1 are essentially adaptations of  those of  

Kummer ]37,3811, Churchill et al. [9],  and Cushman [ 11 ], to the class of  resonances under consideration. 

3.1. Set-up for  symplectic reduction 

Let us introduce the notation P = C 3 and consider the symplectic action of the Lie group G = "II `2 = S I × S 1 

on (P, s'2) given by 

@:G × P --~ P, (gl ,g2,zl ,z2,  z3) ~ (e - igJz l , e -2 ig l z2 ,  e- ig2z3),  (3.2) 

and ~g : P --* P denotes the induced mapping with a particular group element g held fixed. We define the 

mapping 

j : p _ ~ .  ~_~2 (z~,z~,z3) ~ (½1z~12+ Iz212,½[z312), (3.3) 

where g* denotes the dual of  the Lie algebra g of  G. For any fixed s c C g we also introduce the map 
j ( c ) :  p ~ ~2, j ( sC) (z )  = ( j ( z ) , s c ) ,  where ( , ) denotes the natural pairing between elements of  g* and ~I. 

Using the definition of  J we have 

1 z 2,,- J(~:) (z)  = (½1z~12 +lz21=)~:~ + ~ 3 ~-2. (3.4) 
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Let us also define for any ~: E g the vectorfield (p: P --~ TP by 

d ,__0qO(exp t~:, ¢:p(z)=~ z), ~:E0, z~P, 

which is just the infinitesimal generator of the action corresponding to by s ~ E g. A straightforward calculation 
shows that 

sOP ( z ) = ( -i~:l zl, -2is~| z2, -i(2z3 ), 

which together with (3.4) yields 

i¢~(z)/2(z) = d J ( ( ) ( z ) ,  z E P, 

with i¢~, 12 denoting the interior product of the vectorfield s ¢ with the symplectic form /2. Consequently, J is 
a momentum mapping for the action ,#. Since G is Abelian, J is Ad*-equivariant, i.e., the following diagram 

commutes: 

p ~ p 

JT T J (3.5) 

ad~_, 0 

with the map Ad~_,:g* --~ g% (Ad~_,tz,~) = (tz, Adg~}, for all g E G, /z  E g*, and s c E g. 
With the momentum mapping in hand, the program of symplectic reduction can now be carried out. Any 

nonzero/z E 0* is a regular value of the momentum mapping, from which it follows that j - i  (/z) is a smooth 
manifold. The reduced phase space is defined as Pu = j-1 (I*)/Gu, which is well-defined since J is Ad*- 
equivariant. From the general theory, if the action of the isotropy subgroup G~, = {g E GJAcI~_,tz = tz} = G 

on j - l  ( # )  is free and proper, then P~, is a smooth manifold. Since G is compact, the action is proper, but 
it is not free (G has nonidentity elements leaving (0, z2, z3) E j -1  (/z) fixed). Hence the Marsden-Weinstein 
reduction theorem does not guarantee that Pu is a smooth manifold, and it is indeed not. As we will see, Pa 
has a singularity that has some very interesting dynamical consequences. 

3.1.1. Realization of the reduced phase space 
Next we describe an explicit realization of the reduced phase space Pu in a form due to Churchill et ai. [9] 

(see also Knobloch et al. [34] ). Consider the "Euler-variables" 

Wi = Re(z~£2), W2 = Im(zj2~2) W3 = i 2 , ~lzJl , ( 3 . 6 )  

which, by direct substitution, can be shown to satisfy the relation 

W~ + W~ = 4We3(J~ (z)  - W3). (3.7) 

Let Z~ C IR 3 denote the zero set of the function f~: IR 3 --~ R defined as 

f~,(Wi, W2, W3) = W 2 + W 2 - 4W2(/Zl - W3). (3.8) 

This two-dimensional surface in R 3 is a realization of the reduced phase space P~ (see Churchill et al. [9] or 
Cushman [11] for details). It is not hard to see from (3.8) that P~ is homeomorphic to S 2 and that it has a 
singular point, or "pinch" at the origin of the W-space. Thus, Z~, is a pinched sphere, with the W3 axis as an 
axis of symmetry (see Fig. 1). Note that the pinch occurs where the action of G on j - I  (~)  is not free. 
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l 
w 

w 2 

w 3 

P.. 

Fig. I. The  reduced  phase  space  P~,. 

3.1.2. Dynamics on the reduced phase space 
Churchill et al. [9] show that the reduced flow of (3.1) on Pt, is given by the Euler-like equations 

= ~7Hc × V f u ,  (3.9) 

where /4, is restricted to Pu, i.e., 

Hc = ].LI + o)3t./, 2 + edW3 + elaWl. 

Explicitly, the reduced vector field is given by 

Wj = -e2dW2, 

W2=e2(dWI - a ( W 2 -  2W3(t~I - W3))),  

W3 =eaW2. (3.10) 

One can readily verify that the function dW3 + ½aW~ is an integral for (3.10). Hence the trajectories of 

(3.10) are given by the intersection of the planes dW3 + ½aWl = const, with the pinched sphere Zu. Therefore 
the trajectories are either closed curves or isolated points. We illustrate these orbits in Fig. I. Note that for 

I ~ j  - W3 - d2/a 2 > O, (3.10) has a homoclinic orbit connecting the pinch to itself. This orbit satisfies 

Wj =- (2d /a )W3 ,  W 2 = 2 W 3 ~ / / z l - W 3 - d 2 / a  2, 0 <  W3 < / z l - d 2 / a  2. (3.11) 

3.1.3. Reconstruction of orbits in the full six-dimensional phase space 
Using the fact that for any/z  E ~1" a subset of J - J  (/z) is a 2-torus bundle over Pu - {0}, we can reconstruct 

invariant structures in the phase space of (3.1) based on our knowledge of the orbits of the reduced system 
(3.10). Closed curves not passing through the pinch correspond to 3-tori in the full phase space, and the two 
elliptic fixed points at the top and bottom of Pu correspond to 2-tori in the full phase space. The pinch requires 
a separate analysis in order to determine its manifestation in the full phase space, and we turn to this next. 

3.2. Singularity from the symplectic reduction 

Consider the set of points in a given energy surface {He = h} that are mapped to the singularity via the 
quotient projection 7"r~,: P --~ Pu. This is an invariant set, denoted by M h C P, with h > 0, which is given by 



328 G. Hailer, S, Wiggins / Physica D 90 (1996) 319-365 

Mh= U "n'; 1(0). 
#1 +/z2=h 

Using (3.6) and (2.4), one can immediately see that the image of M h under the diffeomorphism T1 (defined 
after (2.4)) satisfies 

1 2 TI(M h) = { (q,p) C ~6[q]  =Pl  = 0, q2 + p 2  + ~o93(q3 +P~)  = h}. (3.12) 

This shows that for 093 > 0, M h is diffeomorphic to S 3, while for (o3 < 0 it is a three-dimensional hyperbolic 
surface of revolution. In either case, M h is connected to itself by a four dimensional homoclinic manifold W h. 
This follows from the nature of the reduced dynamics discussed in Section 3.1.2. 

3.2.1. Orbit space reduction of M h 

One can check that for any h > 0, M h is entirely filled with periodic orbits. Two of these closed orbits are 

distinguished: they are the (nonlinear) normal modes of Hc given by 

N ={z cC31zl = z 3  = 0 ,  Lz21 = 

Nh={ z EC31z l=z2=O,  Iz3[= ~ } .  

These two normal modes survive from the quadratic Hamiltonian /-/2 under the effect of the cubic terms in 

(3.1). This can be seen by noting that M h is an invariant manifold, and the dynamics o n  M h i s ,  from (3.12), 

that of two linear oscillators which, by hypothesis (HI ) ,  are in 2:0)3 resonance. With the exception of N~', 
all the periodic orbits in M h have two-dimensional stable and unstable manifolds, which foliate W h into a 
two-parameter family of cylindrical surfaces. 

S i n c e  M h is a manifold of periodic orbits, the flow of the Hamiltonian (3.1) restricted to M h c a n  be considered 
as the action of the group S l o n  M h. We can then define F h = Mh/s 1, the quotient space corresponding to 

this action, with the usual quotient projection ~F: Mh ---+ Fh. In other words, F h is the orbit space of the 

periodic solutions contained in M h. From (3.12) we see that the set T] ( M  h) "~ M h can be considered as the 

three-dimensional energy surface for a Hamiltonian system of two linear oscillators which, by ( H I ) ,  are in 

2:o93 resonance. Accordingly, F h c a n  be viewed as the reduced phase space for these oscillators with respect to 
the resonant 2:093 action of S 1 . As is shown by Churchill et al. [9], this reduced phase space is homeomorphic 

to S 2. Furthermore, if KI and K2 are relatively prime positive integers with 

2 K1 
- ( 3 . 1 3 )  

10)31 K 2 ' 

then F h is a pinched sphere with a Kl-order singularity at its north pole, and with a K2-order singularity at its 

south pole (e.g., Kl = 1,2, 3 would mean no singularity, conical singularity, and cusp singularity, respectively). 
We summarize the observations of this section in the following proposition. 

Proposition 3.1. Suppose that o93 > 0 holds. Then on any energy surface Hc = h (with h > 0) of the 
integrable Hamiltonian system defined by Hc there exists an invariant set M h defined by Zl --- ~l = 0, which is 
diffeomorphic to S 3. The set M h is entirely filled with periodic orbits. Furthermore, 

(i) Any invariant subset M0 h C M h that does not contain the third normal mode N3 h, is normally hyperbolic 
and is connected to itself by a four-dimensional homoclinic manifold W0 h. 

(ii) The orbit space F h = Mh/s 1 of periodic solutions in M h is homeomorphic to a 2-sphere with a Kl-order 
singularity at its north pole, and with a K2 order singularity at its south pole (see (3.13)).  
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The notion of  normal hyperbolicity is defined and discussed in detail in Appendix B. We note that invariant 

spheres similar to M h have been found recently in a large class of  Hamiltonian resonances by Hoveijn [29].  
The methods we use in the following sections can be used to study perturbations of  those spheres as well if 
they admit a homoclinic structure similar to W h. 

4. The "blown-up" cubic normal form and the formulation of the perturbation problem 

The goal of  this section is to introduce coordinates which are suited to the study of what happens to the 
manifolds M h and W h in the normal form (2.9) under the perturbative effects of  the terms e2/44 + . . .  + 
e r - 2 H ,  + o ( e r - I ) .  

4. 1. The b low-up  transformat ion 

Let us first introduce action-angle variables for the quadratic pa r t / / 2  of (2.9) by letting 

zk = V / ~ e  idak, zk = V / ~ k e  -i4k,  k =  1,2,3,  (4.1) 

with the inverse change of  variables T2: (1, &) ~ (z, Z). We apply a further canonical change of variables 

~bl = ~bl, K1 = I1 + 212 + oa313, 

,t//2 = ~b3 -- o.)Mbl, K2 = 13, (4.2) 

xj = X/~2  sin (&2 - 2~br), x2 = X/~2  cos (~b2 - 261) ,  

with the inverse coordinate transformation being /'3: (x,  K,g,) ~ ( 1 , 6 ) .  In this final set of  variables our 

Hamiltonian (3 . l )  takes the form 

H , ( x ,  K, g, ) = Kl + e ( d + ax2)  ( KI - w3K2 - txl2).  (4.3) 

The corresponding Hamiltonian vectorfield is smooth and defined on the set 

7 ~ = {(x,  K I , ¢ I  ,K2,~b2)I x E R2, K E ]~2,fft E ,~2}, (4.4) 

with the symplectic form 

w = dxl  A dx2 + d~l, A dK, (4.5) 

but it is related to system (3 . l )  only in the domain 

73 = {(x,K,~p)  6 791 KI - w3K2 >_ O, K2 > 0 } .  (4.6) 

The vector field corresponding to the cubic truncated Hamiltonian Hc takes the form 

5;I = e [ a ( K i  - co3K2 - x~ - x~) - 2 (d  + ax2) x2],  

de2 =e2x l  ( d  + ax2)  , 

/;;2 = 0, 

~2 = --et03 (d  + ax2)  , 

[~ = O, 

(yl = l + e ( d + ax2 ) . (4.7) 



330 G. Haller, S. Wiggins / Physica D 90 (1996) 319-365 

iK..A 
Fig. 2. Phase portrait of the x-component of (4.7). The shaded region indicates the region where the orbits of the blown-up normal form 
will be related to orbits in the original normal form and the boundary of the shaded region is given by x 2 + x~ = Kl - ~o3K2, KI > 0. 

Note that the x component of  (4.7) decouples from the rest of  the equations since K does not change in 

time. It is a simple phase plane analysis, coupled with the use of  the Hamiltonian (4.3), to verify that for 

K1 -- w3K2 >_ 0 and /(2 > 0 the phase portrait for the x-equations appears as in Fig. 2. 
Our main goal with the sequence of  transformations (4.1) ,(4.2)  is to "blow up" the singularity of  the reduced 

phase space. This is achieved, as we will see next, by extending the transformations (4.1) ,(4.2)  to the domain 

ll = 0, in which case (4.1) is not a diffeomorphism any longer and the angle variable ~bj is not well defined. It 

should also be emphasized that since M h is characterized by Ii = 0, we have to study the effect of  this singular 

transformation if we want to relate our later results on the perturbation of  M h back to the original normal form 

(2.9). 

4.2. The phase space of the "blown-up" normal form 

Broadly speaking, there are two types of  geometric structures, or invariant manifolds, for the normal form 

(4.7). Normally elliptic invariant manifolds containing families of  elliptic 2 or 3-tori and normally hyperbolic 

invariant manifolds that contain families of  resonant "whiskered" tori. The special form of  (4.7) makes it 

particularly easy to determine these structures. 

Proposition 4.1. The system (4.7) has two three-parameter families of  elliptic 3-tori and two two-parameter 
families of  elliptic 2-tori. 

Proof This result follows easily from the structure of  the x-component of  (4.7). The 3-tori are the Cartesian 

product of  the periodic orbits of  the x-component of  (4.7) with ~2 and ~bl. The three parameters are Hc, K2, 

and KI. The elliptic 2-tori are the Cartesian product of  the elliptic fixed points of  the x-component of  (4.7) 
with ~P2 and ~Pl. The two parameters are K2 and Kl. [] 

Next we consider homoclinic and heteroclinic structures that arise in the blown-up normal form. 

Proposition 4.2. Suppose that w3 > 0 is satisfied. Then on a fixed five-dimensional energy surface He(x,  K, ~)  = 
h with h - d2/a 2 > 0, the following hold: 
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T, - j  = D h .a/l h D h ( i ) 3 o Tf- I ( M h) [..J where the set satisfies 

Dh= { (x,K,~P) ET~[lxl2 +o~3K2=h, x2 vL --d/a,  K, = h } ;  

hence D h is diffeomorphic to the disjoint union of two four-dimensional open disks. The set .A4 h consists 
of  two connected components given by 

.L-l~., = { ( x , K , ~ ) E 7  9 x 2 = - d / a ,  x, =-~k / /h -d2 /a2-o .J3K2 ,  g, =h}, 
and 

. A 4 0 h 2 = { ( x , K , ~ )  E79 x 2 = - c d / a ,  x, = + x / h - d 2 / a 2 - w 3 K 2 ,  K , = h } .  

Hence, each component of  A/[ h is diffeomorphic to S 2 × S 1 . Furthermore, .A4 h is filled with two- 

dimensional invariant tori. All these whiskered tori carry a resonant flow as they are all filled with 
periodic orbits. The manifold D h consists of  orbits of  (4.3) that are forward and and backward asymp- 

totic to periodic orbits on the whiskered tori in .A,4 h. 
(ii) The manifold )IV h = T~ -1 o l"2 1 (W h) satisfies 

w h =  { (x,K,,&) E 7 9 ] x 2 = - d / a ,  Ix l < v / h - o a 3 K 2 - d 2 / a  2, K1 = h } ;  

thus W h is diffeomorphic to B 3 × S 1 where B 3 is the open unit ball in/R 3. Furthermore, W h is filled 

with a three-parameter family of  orbits positively and negatively asymptotic to periodic orbits in .A//h. 
(iii) Let rr~-: .A4 h --+ .Y "h = A/Ih/s 1 be the quotient projection from .M h to its orbit space ~h ,  and let Qh be 

defined through the diagram 

j~h T2°T~ M h 

In other words, let Qh be the map between the quotient spaces f h  and F h induced by Tz o T3. Then 

b t-h is diffeomorphic to S 2. Moreover, if Mo h is a compact subset of  M h which does not contain the 

periodic orbits N~' and N3 h, then 5 rh has a bounded subset .To h consisting of  two connected components 
and not containing A/'2 h = ( a h ) - I  o 77-F(N h) and Af3 h = (O h)-I  o 77"F(Nh). Furthermore, the map Qh 

restricts to a Kl-fold smooth covering map onto rrF(M~) on any of the two connected components of  
&" = 

Remark. The superscript h in the notation for the various invariant manifolds indicates that we fix KI = h. 

Proof The proof  of  statements ( i ) , ( i i )  is a direct computation based on the definition of  T2 and T3, which we 
omit. To prove (iii) we first note that the change of  variables (4.1) puts the vectorfield corresponding to (3.1) 

into the form 

[l = e2all V/~2s in  (2~1 - ~b2), 

i2 = -ea l l  v / ~ 2  sin (2~j  - ~b2), 

13 = 0, 

<bj = I + e a v / ~ 2 c o s  (2~bl - , ;be)  + e d ,  
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Identify with 

H F ( N ~ )  

I-IF(N ~ ) 
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nF(N 
Fig. 3. Parametrization of  the orbit space F h. 

..g 

K,  

N~ x I 
1 A,  

0 

-d I 

Fig. 4. Parametrization of  the orbit space u h .  

11 cos 2 0~2 = 2 + ~ a - - - - ~ 2  ( ~ l  - 02 ), 

q~3 = 0-/3. (4.8) 

First we obtain a parametrization of F h. Straightforward calculations show that the periodic orbits in T2 L (M h ) 

(described by ll = 0) can be labelled by the two parameters 

1 ( . ,2  c e = h = g  , t 2 + p  2) E [0,½hl, 
27"/" 

/3 = o93~2 - 2q~3 modo)3-- ,  (4.9) 
K2 

which, combined with the definition of T2, gives a parametrization of F h. The parametrization is singular on 
7rF(N~) and 7rr(N h) in the sense that all points of F h with c~ = 0 should be identified with zrF(N3 h) and all 
points with ~ = h/2 should be identified with ~r (Nh) .  We illustrate this in Fig. 3. 

Next we seek a representation of ~-h. Using (4.2) and (4.9) we can see that on the set .Ad h the coordinates 
(x, K, ~p) and the parameters (a,/3) satisfy the following relationships: 
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I 

T 
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/ 

Fig. 5. The effect of the blow-up transformation on the reduced phase space 7~u. 

~ l = l ,  

~02 = - f l / 2  d~ ½w3 c o s - '  ( - d / a v / 2 - ~ a ) ,  

Xl = -4-V/2Ce - d 2 / a  2, 

K 1 = h ,  

K2 = (h - 2a ) /w3 ,  

X 2 = - d / a .  

(4.1o) 

Factoring out the uniform rotation in the ~1 coordinate in the above equations is equivalent to passing to the 

quotient space .T "n. Performing this, we find from (4.10) that .T "h can be identified with the set defined by the 

equation 

9 x1 + oJ3K2 = h - d 2 / a  2 (4.11) 

for h - d 2 / a  2 > 0. But (4.11) represents a 2-sphere in the (Xl,K2,~P2) space (viewing K2-~02 as polar 

coordinates, as shown in Fig. 4).  
Choosing a compact set M0 h as in statement (iii) of  the proposition, (4.9) and (4.10) show that .T0 h = 

rrT(.M~) has two components: one on the northern hemisphere (xj > 0) and one on the southern hemisphere 

(xj < 0) of  .T a. We denote these two components by ~1~ and .A~, respectively, and note that both can be 
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globally parametrized by the variables (K2, ¢2). From (4.10) we in fact obtain a coordinate representation of 
ohlA~ U .A~ in the form 

h ~ h = ~  Q : o LJ.A~ ~ ' r r F ( M  h) C F h, 

e(K2,¢2) ~ (h - K2w3) , -2¢2 - o)3cos - l  signxl = (a ,  fl).  (4.12) 

We see from (4.12) that two relative equilibria pl 4:P2 in .T "h - (TrF(N "h) U ~'F(N'3h)) represent the same 
periodic solution in M h if and only if Qh(pl ) = Qh(p2), i.e., one of the following holds: 

(1) pl and p2 lie on the same hemisphere of ~-h (i.e., their x] coordinates have the same sign), their K2 

coordinates are the same, and their ¢2 coordinates differ by some integer multiple of 

7r 2¢r 
~2 = ( - 0 3 - -  -- (4.13) 

/(2 KI 

This implies that O h restricts to a tq-fold smooth covering map onto 7rF(M~) on any of the two connected 
components of ~-0 h = "rr~-(.Moh). 

(2) pj and P2 lie on different hemispheres of .T "h, their K2 coordinates are the same, and the difference in their 

4'2 coordinates satisfies 

~ - n - -  + w3cos -1 , (4.14) 
K2 

for some integer n. [] 

Based on this proposition we show the effect of the blow-up transformation on the original reduced phase 

space in Fig. 5. 

4.3. Perturbations of  the integrable, cubic normal form 

Throughout Sections 5-8 we will analyze the effect of perturbations to (4.7). We postpone the discussion 

of the persistence for the 3-tori described in Proposition 4.1 to Section 7.1 since it is a direct application of a 
result of Arnold [2] combined with some of the calculations in Kummer [36]. We do not address the question 

of persistence of the elliptic 2-tori of Proposition 4.1 for two main reasons. First, there are no KAM-type 
results in the literature that would apply to them. (Note that the results of Moser [47] and P6schel [53] on 
lower-dimensional elliptic tori do not apply to our situation because in the limit e ~ 0 one frequency on the 
tori vanishes). Second, the family of 2-tori forms an isolated, codimension-two set in the six-dimensional phase 

space before perturbation, hence it does not have a detectable influence on typical motions. 
The other main issue we will study is the effect of higher order perturbations on the hyperbolic structure 

described in Proposition 4.2. This turns out to be a more complicated problem because the hyperbolic structure 
is degenerate in several respects. First, it completely disappears in the limit e = 0. Second, for e > 0 its 
"strength" of hyperbolicity is only of the order O(e) .  Third, it is completely filled with resonant 2-tori, all of 
which will be seen destroyed by the perturbation. To overcome these problems, we proceed in two steps. First 
we consider the perturbation arising from a finite number of higher-order normalized terms. The second step is 
to consider terms of all orders, i.e., consideration of the effect of the "tail" of the normal form. 

Accordingly, we first rewrite the full Hamiltonian (2.9), normalized through O(ep-2) ,  in terms of the 
(x, K ,¢ )  coordinates: 

EI(x,K,¢2;e)  = Hc(x ,K)  + e2FI4(x ,K,¢2)  + . . . + e p - 2 H p ( x , K , ¢ 2 ) .  (4.15) 
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Note that the quantities listed in (4.15) do not depend on ~Pt, which follows from the fact that the symplectic 
transformations defined in (4.1),(4.2) preserve the bracket relations in (2.11). 

The underlying idea of our study will be the following: the Hamiltonian (4.15) has an unbroken S l symmetry 
corresponding to rotations in the gq coordinate which allows a reduction to a 2-DOF subsystem. This practically 
means considering (after rescaling the time by t ~ t / e )  the Hamiltonian system 

= JzDxHo(x ,  K2) + eJzDxHj  (x ,  1£2, ~92; e),  

Re = - e D ~ 2 H l  ( x,  K2, ~//2; e),  

~t2 = DK2Ho(x, K2) + s D x z H l ( x ,  K 2 , ~ 2 ; e ) ,  (4.16) 

with 

HO(X,K)  = (d  + ax2 ) (  Ki - w3K2 - ] x l 2 ) ,  
P 

H I (x, K,~2; 8) =/')4 (x, K, ~2) 4- ~d-3Hi(x, K, 4'2). (4.17) 
j=5 

System (4.16) derives from the Hamiltonian H = H0 + 8HI through the symplectic form 

o) h = dXl A dx2 q- d~2 A dK2, (4.18) 

on the phase space 

'] 9/' = { (X, K2,///2) {x C ~I~ 2, K2 E 11~ +, ,~2 E S 1 }, (4.19) 

with Ki = h fixed. 
For the invariant manifolds 3,4 h and W h this reduction means a passage to the quotient spaces 5 ch and W h / S  j , 

respectively. Since J~4 h is entirely filled with periodic orbits that coincide with the orbits of the symmetry group, 
the 2-DOF reduced system has a 2-manifold of (relative) equilibria, which we identify with .T "h. This invariant 

2-sphere is connected to itself by a three-dimensional homoclinic manifold which we identify with w h / s  I . Any 

subset of  b eh not containing the poles and the equator therefore appears as a normally hyperbolic 2-manifold 
of equilibria which is connected to some other subset of ~h through the appropriate subset of the homoclinic 
3-manifold W h  / S I . 

We would like to find out what happens to the set .T "h and its homoclinic structure w h / s  I under the effect 
of the terms of (_9(e) and higher in (4.16). Since Uh is entirely filled with equilibria, we are faced with a 

singular perturbation problem which is not amenable to usual Melnikov-type global perturbation methods (see, 

e.g., Wiggins [62] for a survey of such methods). Instead, we use a version of the energy-phase method 

developed for 2-DOF systems in Hailer and Wiggins [24]. This method can be used to show the existence of 

orbits homoclinic or heteroclinic to invariant sets on slow manifolds that perturb from the original manifolds 
of fixed points or resonant manifolds. The homoclinic or heteroclinic orbits obtained this way are nontrivial: 
they may make repeated passages near, and departures from, slow manifolds before they start approaching their 

slow limit sets. 
Another complication in our analysis is due to the fact that the set .T "h is not normally hyperbolic. In order 

to apply the energy-phase method, we have to consider two disjoint normally hyperbolic subsets of . f  "~' which 
appear as two 2-manifolds of equilibria with heteroclinic connections in the system defined by (4.15) on Y 'l'. 
(These subsets will be ,A~ and ,A~ defined in the proof of Proposition 3.1.) We will analyze the effect of 
higher-order perturbations on these subsets of b rh, but first discuss an appropriate heteroclinic version of the 

energy-phase method in the next section. This involves no new ideas compared to Haller and Wiggins [24] 
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(where the homoclinic case was considered), but the formulation of some of the results will be somewhat 

different. 

5. Perturbation of resonant manifolds: the energy-phase method 

In this section we describe a specialized form of the energy-phase method developed in Haller and Wiggins 

[24] that can be used to study the effect of perturbations on normally hyperbolic invariant manifolds of 
equilibria with a heteroclinic structure. 

5. I. Setting and initial assumptions 

We consider 2-DOF Hamiltonian systems of the form 

± = J2DxHo(x, 1) + eJ2DxH1 (x, 1, ~b; e),  

] = -eD6H1 (x, 1, ~b; e) ,  

fb = D1Ho(x, I)  + eDiHl  (x, I, ~b; e) ,  (5.1) 

on the phase space 7 3 C R 2 x I~ × S 1 equipped with the symplectic form ~ = dxl Adx2 +dfb  A d l .  In (5.1) 

we use the notation 

We assume that the Hamiltonian H = H0 + ell1 is C r+l smooth in its arguments with r > 3, and 

(A1) There exist I1,I2 E JR, ll < 12, such that for e = 0 any for any 1 E [11,12], the x-component of system 
(5.1) has two hyperbolic fixed points, ~1 ( i )  and ~2(I ) ,  connected by a cycle of heteroclinic trajectories, 
xh '+l( t , l ) ,  x h ' - I ( t , I )  and xh '° ( t , l ) ,  with 

lim xh '+l( t , l )  = lim x h ' - l ( t , l )  = ~ 1 ( I ) ,  
t - - ~ + ~  t - - ~ + ~  

lim xh'+J(t, 1) = lim xh ' - l ( t , 1 )  = ~cZ(l), 
t ---~ -- O0 l ---~ -- O0 

lim xh'O(t,l) =.~1(1), lim xh'O(t,I) = ~2(1). 
t---*-- OO t ~ + O O  

We assume that the heteroclinic orbits are arranged in the xl - x2 plane in a manner that they can be 
smoothly deformed into the arrangement shown in Fig. 6. 

(A2) For every 1 E [ 11,12 ] 

DtUo(YcJ(1), l)  =0 ,  j = 1,2. (5.3) 

It follows from assumption (AI )  that system (5.1) possesses two two-dimensional normally hyperbolic invariant 
manifolds (with boundary) defined as 

={(x , l ,~b )  E 73[ x=YcJ(1) , l  E [I1,12],dp E S1}, j = 1 , 2 .  (5.4) 

These sets are the images of the annulus A = [ 1~,/2 ] × S 1 under the embeddings 

g~ : a ---~ ,A~ C 73, ( I, dp ) H ( M ( I ) , I, dp ) . (5.5) 
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x2 ' _ x ~  

x h ' - I (  t , I  ) 

Fig. 6. Geometry associated with the heteroclinic cycle. 
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W,7 

Fig. 7. The manifolds 142 O, W +,  and 1421; . 

Note that .4~ has a three-dimensional unstable manifold WU(.A~) which coincides with the three-dimensional 
stable manifold Ws(A~) along two branches, to form the heteroclinic manifolds W~- and W o.  Assumption 
(A 1 ) also implies that there exists another heteroclinic manifold in the phase space, defined as V~00 = Ws(A~) A 
Wu(.A~) (see Fig. 7). 

As a consequence of assumption (A2), the manifolds ,A~, j = 1,2, are entirely filled with equilibria. 
Solutions of (5. l ) in V~0 and W~ are heteroclinic connections between these equilibria. An important quantity 
associated with these heteroclinic connections is the net change of the coordinate q~ along them. This change 
will be referred to as the phase shift, and denoted by A~b +1, A~b °, and A& -t for orbits in W~-, "~0 and W o , 
respectively. From (5.1) we easily find that 

q - o o  

A~bk(l) = f DlHo(xh'k(t , l) ,I)dt ,  k = + l , 0 , - l .  (5.6) 

- - O Q  
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5.2. Slow manifolds 

Since, for j = 1,2, .A~ is a compact, normally hyperbolic invariant manifold, for small e > 0, system (5.1) 
has a two-dimensional invariant manifold ¢4~, which is O(e)  Cr-close to .A~, and is still a C r embedding of 
the annulus A through a map 

g~:A--*,A~ c P ,  (l,q~) ~-*(xJ(1, qb),l,q~) =(YcJ(1)+eYfl(1, qb;e),l, qb). (5.7) 

Let i{: .A~ ¢---, 75 be the inclusion map of A j with e _> 0. Then it can be shown that for small e > O, (,AJ~, (iJ) "6~) 
is a symplectic 2-manifold with 

(i-~)*to = ( l  + O(e)  )ddp A dl. 

(The notation (i.~)'6~ refers to the pull-back of the form ~ under the map iJ.) 
On (.A j,  (i.~)*6J) the vector field (5.1) derives from the restricted Hamiltonian 

~J = Hlcff ~ = ( iJ)*H = ho + e ~  j + O(E:2), (5.8) 

with 

h0 = HoIA~ = const., ~J( l , (b)  = Hi (YcJ(l),l, gb;O). (5.9) 

Eq. (5.8) justifies the usual terminology of slow manifold for a manifold perturbing from a set of equilibria 
since it shows that the characteristic time scale of motions on .AJ is of order O(e) .  We call 7-/J(I,~b) the 
reduced Hamiltonian corresponding to the manifold .A~, and consider it to be defined on the annulus A. We say 
that an orbit y C A of some Hamiltonian system defined on A is an internal orbit if it is either a periodic orbit 
or an orbit homoclinic to a hyperbolic fixed point, and it is bounded away from OA. Similarly, an orbit ~,~ E .A~ 
of the restricted Hamiltonian H j is called an internal orbit if ( ~ )  -1 (y~) is an internal orbit of the Hamiltonian 
(g~) * H { on ( A, (g J) * (5). By definition, internal orbits are structurally stable with respect to small Hamiltonian 
perturbations, hence for small e the internal orbits of the reduced Hamiltonian "]"~J give rise to O(e)  Cr-close 
internal orbits of (g{)*~J (see (5.8)).  We also note that for small nonzero e we have persisting, locally 

invariant 3-manifolds W~o~(.A ~) and W~oc(C4J), that are O(e)  Cr-close to W/~oc(A~) and W~c(A£), respectively 
(see Fenichel [17] or Appendix C.I ). As usual, WlSoc(.A j)  and W~c(.A ~) can be extended to globally defined 
invariant sets Ws(A~) and W"(.A~). 

In the following we give conditions for the existence of N-pulse heteroclinic orbits connecting the two 
manifolds A~ and .A~ to one another. 

Definition 5.1. An N-pulse heteroclinic orbit is an orbit that is negatively asymptotic to an orbit in ..41, and 
makes N - 1 passages through a neighborhood of .4 2 before reentering this neighborhood for the Nth, and 
final, time. Then it asymptotically approaches an orbit in .A 2. 

We discuss the existence of N-pulse heteroclinic orbits under the simplifying assumption 
(A3) Consider system (5.1) but only with the leading order term H1 (x, I, ~b; 0) in the perturbation Hamiltonian 

H1. We assume that under this perturbation, for any e > 0 small, Ws(.A~) = W"(A2), i.e., ),V~- and )A; o 
possibly deform into the heteroclinic manifolds 1/V + and )/Vj, but do not break. 

Note that this assumption forbids the existence of homoclinic connections to orbits in either .A~ or .A~ under the 
effect of the leading order terms in the perturbation. To illustrate Definition 5.1 and assumption (A3), we show 
schematically the (xl ,  x2)-projections of a simple, a 2-pulse, and a 3-pulse heteroclinic connection between the 
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X, 

1 i~ ~A 2 

a) simple heteroclinic orbit 

b) 2-pulse heteroclinic orbit c) 3-pulse heteroclinic orbit 

Fig. 8. Simple and multi-pulse heteroclinic orbits between the slow manifolds. 

two slow manifolds in Fig. 8. We finally note that assumption (A3) is not necessary for the general theory, but 
greatly simplifies the statement of the results. Moreover, it will be shown to hold for the perturbation problem 
for the 2-DOF subsystem outlined in the previous section. 

W s A 2 5.3. lnvariantfoliationsofW~(A~) and ( e) 

One of the key tools used in the energy-phase method is foliations of the stable (respectively unstable) 
manifold of ,A~ by one-dimensional C r curves, which were first constructed by Fenichel [18] (see also 
Appendix C. 1 ). These curves are referred to as fibers and each fiber intersects .A~ in a unique point called the 
basepoint of the fiber. Thus, the foliation is a 2-parameter family of one-dimensional C r curves, that are also C r 
with respect to the basepoint. The important feature of these fibers is that points on a fiber correspond to initial 

conditions that asymptotically approach as t ---, cxz (respectively t --~ -cx~) the trajectory on .A~ that passes 
through the basepoint of the fiber. We use the notation f~(q) for a stable fiber contained in WS(.A 2) which has 
basepoint q E .A~. Similarly, f~ (p)  denotes an unstable fiber contained in W u (A~). The properties of fibers 
enable us to identify lower-dimensional invariant manifolds within stable and unstable manifolds. For instance, 

if y~ c_ Al~ is a slow orbit then it has its own unstable manifold WU(y~) which is simply the union of all 

unstable fibers which have their basepoints lying on "y~. Since the time scales of motions in y~ are much longer 
than those of motions in WU(y~), the basepoint p E y~ of an unstable fiber f~(p)  also serves as "take-off" 
point tot any solution in WU(y~) that intersects f~ (p ) :  Such a solution slowly asymptotes to y~ in backward 
time but leaves abruptly a neighborhood of y~ in forward time near the point p. Similarly, the basepoints of 
stable fibers can be thought of as "landing" points for the solutions intersecting those fibers. We give a precise 

formulation of all these properties in Appendix C. 
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5.4. Energy-difference functions, jump sequences, and pulse numbers 

We now describe our main tools that can be used to follow solutions in the unstable manifold WU(y~) of 
some slow internal orbit y~ C ,.4 I. These tools will enable us to establish intersections between WU(y~) and 

Wioc(.A 2) that lead to multi-pulse heteroclinic orbits described in Definition 5.1. 
Suppose that y~ C ..41 is an internal orbit. Then, as described in the previous subsection, W~(yl~) contains 

1 all the unstable fibers f~(p)  whose basepoints p - g~(ll,, q~p) lie on yl. This implies that any solution u(t) 
that intersects f~(p)  "takes off" from the slow manifold ,AI~ near the point p. By standard Gronwall estimates 

for e > 0 small, u(t) will enter a neighborhood U0 of the other slow manifold .A2~. Upon entry it may or may 
not intersect the local stable manifold s 2 Wioc(,A~). To check whether this intersection occurs, we can monitor 
the energy difference between u(t) and the locally closest trajectory sl (t) in W~oc(.A2). It can be shown (see 

Haller and Wiggins [24] ) that sl ( t)  intersects a stable fiber f~(ql ) such that the basepoint of that fiber satisfies 

ql = g2 ( lp + O( x/e) , qSp + Afb° ( It, ) + O( x/-e) ). 

Then it is not hard to see from (5.8) that the leading order difference in the energies of u(t) and sl ( t)  is 

eA l ~ (  lp, dpp ) with 

A17-/(l, ¢;b) = ~2(1,  ~b + A~°(1) )  - ~1 (I ,  b ) ,  

since the fibers have necessarily the same energies as their basepoints. It follows that if the function MTY(1, ~b) 
z 1) . ( _ 1 ,  has a transverse z e r o  (It,,q~p) falling on Y~ (i.e., p = ge(Ip,qbp) @ Te then the unstable manifold W ),~) 

contains a solution that takes off from Yl near the point p and lands on the slow manifold ,A 2 near the point 
ql defined above. This establishes a simple transverse heteroclinic connection between y~ and a slow orbit 

72 c ..42. In particular, if y~ is periodic and all slow orbits on ,A~ passing near ql are periodic then we obtain 

a "fast" transverse heteroclinic connection between two slow periodic orbits. 
In general, however, the function A17-/ need not have any zero falling on the orbit y 1. This means that for 

e > 0 small enough, " I W (Y~) leaves the neighborhood U0 of ,,42 without intersecting s 2 Wioc(,A~). Looking at Fig. 
7 we see that WU(y 1) may exit U0 in the direction of one of the two persisting heteroclinic manifolds 14; + 

or W# (see assumption (A3)) .  The exit direction turns out to depend on the sign of AITYIT~ where y~ is an 

orbit of the reduced Hamiltonian ~1 passing through the point (It,, ~bp ). This dependence can be described in 

the following way. Let p(m) denote the unit vector normal to the heteroclinic manifold Wo o at m C l~0, which 
points in the direction of t'V~- (see Fig. 6). We define the quantity 

o" = sign(DxHo( m ), p( m) ). (5.10) 

Note that by assumption (AI ) ,  o- is independent of the choice of m. For o- = +1 the orbits inside the region 

bounded by W ° U 14;~- have higher energies than the orbits inside the region bounded by V~0 U 14; o .  For o- = - 1 
the opposite holds. We also introduce the parameter 

X I  (~/0)  = -o-sign (A ~7-tlY0~ ). 

After a littlethinking one realizes that for e > 0 sufficiently small, X1 (Y~) = +1 implies that WU(y l)  exits 

U0 in the direction of VI;~- and Xl (T~) = - 1  implies that W"(TI) exits U0 in the direction of W o .  This 
again follows from the fact that ez~lT-/Iyl is a function that approximates the leading order difference in energy 

I~7U( Ix between solutions in n, Y~) and the solutions closest to them in Wioc(.A~).; 2 
Depending on its exit direction, W"(TI) is guided back to the slow manifold ..41 by either the unbroken 

heteroclinic manifold W + or by its counterpart W~-. Then it passes near .,41 and subsequently enters the 
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neighborhood U0 of  .A 2. This time the leading order energy-differences between solutions in WU(y 1) and 
s 2 Wloc(.A~) turn out to be given by ~z~27-1(I, Cb) where (1, ~b) are the coordinates of  take-off points on y01 and 

A27-/(1, ~b) = 7-/2 (1, q5 + 2AqS°(l) + Aq5 x' ~'oJ ) (1 ) )  -- 7-/I (1, qS). 

Again, if 427-/ has a transverse zero on (Ip,~p) on y~, then it follows that y~ is connected through a 

transverse 2-pulse heteroclinic orbit (see Definition 5.1) to a slow orbit Y2 C ,,42 that passes near the point 

q2 = g~(It,, ~p + 2A~°( /p )  + AOSx' ~ ) ( lp ) ) .  I f  A2~-/ h a s  n o  zeros on y~, then we define the constant 

X2(Y~) = -o-sign (AzT-/ly~), 

and the sign of  this constant again gives us the correct exit direction for W~(y~) from U0. 

We can now repeat this construction recursively. Assuming that y~ does not contain any zeros of  the functions 

A17-/, A27-1 . . . . .  2~"-17-/, for the nth entry of  W"(T~) into U0 we define the nth order energy-d(fferencefunction 

( ) AnT-/(l,q~) ='7-/2 l, fb+nAfb°( l )+ ZAfbX'~ro (1) -7-[l(1,(b). (5.11) 
/=1 

If  this function has a transverse zero (lp, qhp) on y~, then we conclude the existence of  a transverse, n-pulse 
heteroclinic connection between y~ C ,A~ (that contains the take-off point p = g~(Ip, (bp) after perturbation) 

and another slow orbit y2 C ,,42 which passes 69(v/~)-close to the approximate landing point 

( ) q,, = g~ lp,fbp + nAqb°(Ip) + Z AfbX'(V~)(Ip) . 
/=1 

Then we call the sequence X (Y~) = {X/(Y~) }t~-~' the jump sequence associated with y~ because it describes how 
the n-pulse orbit jumps between neighborhoods of  the two heteroclinic manifolds W + and "l/V~-: I f  Xt (Y~) = +1 

the orbit makes its lth pulse near W +~ , while for Xt(Y~) = - 1  the orbit makes its lth pulse near ~/V~-. For 

example, for the 2-pulse heteroclinic orbit shown in Fig. 8b the jump sequence is simply XI = +1,  while lbr 

the 3-pulse heteroclinic orbit in Fig. 8c the jump sequence is XI = - 1 ,  X2 = +1.  
Notice that for any internal orbit y~ of the reduced Hamiltonian 7-/l the sequence of  energy-difference 

functions and the jump sequence are well defined. Both sequences may be infinite, which means that for e > 0 

small enough, there are no "finite-pulse" heteroclinic orbits backward asymptotic to y~. I f  the sequences are 

finite, i.e., they terminate at an index N, then we conclude the existence of  an n-pulse orbit backward asymptotic 
to y~. We then call the number N = N(y~) the pulse number of y01. We summarize this construction in the 

lbllowing theorem. 

Theorem 5.1. Let us assume that ( A 1 ) - ( A 3 )  hold. Suppose that for an internal orbit y~) c A of  the reduced 

Hamiltonian 7-/l , 

(A4) N=_N(T~) < o~, 
(A5)  Let Z u C A be the transverse zero set of  A/VT-/. Suppose that Z u intersects y~ transversally in a point 

bj = (It,, (bp) and y2 is an internal orbit of  the reduced Hamiltonian 7-[ 9 that contains the point (It,, (aqN) 
with 

N--I  

qSqN = cbp + UAdp°(lp) + ~ AqbX~(~)(lp). 
1=1 
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Then there exists e0 > 0 such that for 0 < e < e0, 
(i) There exists an N-pulse heteroclinic orbit yff which is backward asymptotic to an internal orbit ~/~ E .AI~ 

and forward asymptotic to an internal orbit y2 E .A 2. Moreover, ( g l ) - t  (y l )  and y~ are locally O(e)  
- 2 ) - 1 (  2-  Cr-close near the point (lp,dpp), and tg~ ye) and y0 2 are locally (.9(~) Cr-close near the point 

(1., 4'q~ ). 
(ii) yY lies in the intersection of W"(- 1, W s- 2), r~p and t7~ which is transversal within the energy surface {H = h} 

with h = Hly~ = H[y 2. The manifolds WU(y~) and WS(y 2) intersect along yN at an angle of (9(1) as 

8 -----~ 0 .  

(iii) If XI(Y~) = + l ,  then yy makes its lth pulse near the heteroclinic manifold W~. 
(iv) The manifolds W" (.AI~) and W s (.4 2) intersect along the solution y U with (.9 (e) transversality. 

Proof. The theorem follows from our previous discussion and the results in Haller and Wiggins [24]. [] 

Remark 5.1. Notice the peculiarity of statement (ii) stating that the stable and unstable manifolds of the slow 
orbits 7~ and y2 intersect with 69( 1 ) transversality as a result of an order ©(e)  perturbation. On the surface, 
this contradicts elementary facts from perturbation theory. However, one should not forget that we are not in a 
regular but in a singular perturbation context: the slow periodic orbits together with their stable and unstable 
manifolds are created by the perturbation. So although the stable and unstable manifolds of 7~ and 3, 2 keep 
intersecting at an angle of 69( 1 ) as e ---* 0, they suddenly disappear at the singular limit of e = 0. 

Remark 5.2. In most applications the nth order energy-difference functions and the jump sequences are in- 

dependent of the choice of internal orbit y~. (They are always independent in the homoclinic version of the 
energy-phase method, see Hailer and Wiggins [ 24].) In that case one does not have to go through the recursive 
construction we described and the energy-difference functions and the jump sequence can be written down 
immediately. In that case the application of the energy-phase method simplifies to finding the zero set Z ~_ of 
A"7-( for all n and identifying the internal orbits of ~ l  that have transverse intersection with, say, Z~ but no 
intersections with Z ~_ . . . . .  Z~ -1. In this manner one can obtain a global characterization of the internal orbits 
of 7-( 1 in terms of their pulse numbers and hence a classification of all existing multi-pulse orbits in a given 
problem. We study such a case in Hailer and Wiggins [25] where the theory developed in this paper is applied 
to low energy oscillations of the water molecule. 

Remark 5.3. Using Melnikov's method combined with a version of the exchange lemma of Jones et al. [32] 
described in Tin [56] and Jones et al. [32], one can find further multi-pulse orbits in the exponentially small 
vicinities of single-pulse orbits homoclinic to slow manifolds. This is shown in Kaper and Kova~i~ [33] for 
the case when the slow manifold .A~ arises in the blow-up of a resonance band on a two-dimensional normally 
hyperbolic invariant manifold. 

6. Dynamics  in the 3-DOF truncated normal form 

In this section we first study the dynamics of the 2-DOF subsystem (4.16) using the energy-phase method, 
then discuss the immediate implications of these results for the 3-DOF truncated normal form which is generated 
by the Hamiltonian/4 in (4.15). 
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/ / / ~  X 2 "XI 

1 

,A- 0 
?, 

Fig. 9. The invariant manifolds of system (4.16) for e = 0 .  

6.1. lnvariant manifolds and multi-pulse orbits in the 2-DOF subsystem 

Substituting (l,~b) for (K2,~P2) in (4.16), we see that the 2-DOF subsystem (4.16) is exactly of the form 
(5.1). We fix some small but arbitrary ,~ > 0 and define the annulus 

A = [A, (1 /o~3)(h-  d2/a 2) - h] × S 1. (6.1) 

Then 

.A~={ (x, K2,,t92) C T 'h IXl = - v / h  -w3K2 - d Z / a  2, x2 = -d /a ,  (K2,,t, b2) C A}, 

.A~={ (x, K2,~2) C 79hlxl = + v / h -  w3K2 - d 2 / a  2, x2 = -d /a ,  (K2,~/,2) C A}, (6.2) 

are two normally hyperbolic 2-manifolds connected through the heteroclinic manifolds 

~/V ° ={ (x, K2,~P2) E 7~hllxll < x / h -  0~3K2, x 2 = - d / a ,  (K2,¢2) CA} ,  

Wo F ={ (x, K2,~2) C79hlx2+x2=h--~o3K2, x2 > - d / a ,  (K2,~2) c a } ,  

W(7 ={ (x, g2,~2) C 79h[x21+ xZ=h-w3K2,  x2 < - d / a ,  (K2, ,t/.t2) CA}.  (6.3) 

We illustrate the geometry of these invariant manifolds in Fig. 9 (cf. Fig. 7). From (5.3)-(5.5) and (6.2) we 
see that for fixed K1 the embedding of the manifold .A~ can be written as 

gJo(K2,~P2)=(( - l )Jx /K, -w3K2-d2/a  2, -d /a ,  K2, ~P2), j = l , 2 .  (6.4) 

It follows from our earlier discussion that assumption (AI)  is satisfied for system (4.16) (see Fig. 2). 
Furthermore, as we see from Fig. 2, the heteroclinic orbits for our system have the geometry of Fig. 6. Also, 
from (4.16) and (6.2), we see that DK2Ho(x,K) = 0 on ¢4~ and .A~ for K2 C [A, (1/w3)(K~ - d 2 / a  2) - a]. 
Hence assumption (A2) is also satisfied. As a result, all the sets and quantities of the energy-phase method 
discussed at the beginning of Section 5 can be defined for system (4.16) with the substitution (1,~b) --~ 
(Kz,~b2), and (75,6~) ~ (ph,wh). 

The phase shifts defined in (5.6) can be easily computed (see Appendix A) and are found to be 
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A¢0 (K2) =0 ,  

( - )  A¢+I (K2) = -0~37r + 093 cos -1 a x / h T - o ) 3 K  2 

A¢2 -1 (K2) =~o3cos -1 affh-~_~BK2 , 

where the superscript 4-1 refers to the phase shift on W~, and the subscript 0 refers to the phase shift on Wo °. 
The restricted Hamiltonians 7-l~ defined in (5.8) take the form 

7-/'{(K2, ¢2 ) = h + 827"/J(K2, ¢2; K1) + O(83) ,  (6.6) 

with the reduced Hamiltonians being specifically 

7[J(K2,¢2;KI)=FI4((-1)JVKI-rO3K2-d2/a 2, -d /a ,  K1, K2, ¢2),  j = l , 2 .  (6.7) 

Throughout this section K1 = h is regarded as a fixed parameter in the function 7-/J. Note that by our discussion 
at the end of the proof of part (iii) of Proposition 4.2 (see (4.13),(4.14)),  for any k E Z we have 

7-/J(K2,¢2 + k~2) =7/J(K2,¢2) ,  j = 1,2, (6.8) 

7-~1 (K2, ¢2) = .-1.~2 (K2, ¢2 + "n'ko)3/K2 4- 093 c o s - l ( - d / a x / h  - ¢03K2)). (6.9) 

Next, we give a sufficient condition under which assumption (A3) in Section 5 is satisfied for the 2-DOF 
subsystem (4.16). 

Lemma 6.1. Suppose that 

(A3') the resonant module M defined in (2.7) contains no element of the form (1, n2, n3) with the integers 

nl and n2 satisfying [n2l + In3] = 3. 
Then assumption (A3) is satisfied for the 2-DOF subsystem (4.16). 

Proof Since assumption (A3) involves statements on invariant manifolds for the leading order perturbation in 
system (4.16), throughout the proof all perturbed invariant manifolds will be defined with respect to quartic 
perturbation ~2/t4 of the cubic normal form Hamiltonian. 

It is easy to verify that assumption (A3) implies the quartic complex normal form H2(z, Z) + eH3(z, ~) + 
e2/7/4(z,Z) to have an invariant manifold satisfying Zl = Zl = 0. Using the coordinate transformations in- 
troduced in (4.1),(4.2),  we see that this invariant manifold is given by Kl -o)3/(3 - I x ]  2 = 0 in terms 
of the (x ,K,¢)  coordinates. This implies that for any fixed K 1 = h the Hamiltonian system generated by 
Hc(x, K) + e2H4(x, K,¢2) has a four-dimensional invariant manifold ~V which is diffeomorphic to S 3 × S 1 
and satisfies the equation 

x 2 + X22 + o)3K 2 = h. (6.10) 

We first want to show that under the effect of the leading order perturbation Hamiltonian ~2~4, the perturbed 
invariant manifolds .AJ must be contained in W. 

Suppose the contrary, i.e., suppose that, say, ,42 contains a point p such that p ~/W. We recall that .A~ is 
(.0(8) Cr-ciose to ,4~, and the stable fibers in W{oc(.A~) are O(e)  Cr-close to stable fibers in W{oc(.A~). Now the 
stable fibers in Wl~oc(.A~) intersect the manifold W transversely at their basepoints with (.9( 1 ) transversality. As 
a result, the stable fiber fS(p) must intersect the manifold W transversely. By assumption, the intersection point 
is not the basepoint p of this fiber. But this implies that W{oc(.A ~) intersects W transversally near f~(p) A W. 



G. Hailer, S. Wiggins / Physica D 90 (1996) 319-365 345 

But this contradicts the invariance of W hence ,'42 C W must hold. A similar argument shows that .A~ C W 
must also hold. 

Now observe that 142 also contains the manifold WU(,A~) and this implies that Wu(.A 2) is O(e)  Cr-close 
to 142. Therefore, W and W~c(.A 2) both have the properties that they are locally invariant in forward time, 
their closures contain ,,45, and they are are O(e)  Cr-close to W~c(A~). But the existence theory of unstable 
manifolds of normally hyperbolic invariant manifolds guarantees that the only manifold that has all these 
properties in a neighborhood of .,45 is the local unstable manifold W~loc',[A2"~"~e J" Consequently, W and W'(,A 2) 
coincide near the slow manifold .,45. Then, by invariance, they must coincide globally on W - (.An U ,,42). A 
similar argument shows that WS(.A~) - W -  (.Ale [..J ,.,42), which implies that W~(.A 2) - Ws(.A~). [] 

We note that (A3') is always satisfied if Kl is odd (cf. (3.13)). If (A3') is not satisfied in a given 
application, one can replace it by some alternative assumption (e.g., by an appropriate fbrm of reversibility 
assumption on the quartic normal form terms) that also implies (A3). 

To apply the energy-phase method we need to compute the energy-difference functions as defined in (5.1 1 ). 
Using (6.7) we directly obtain that 

n . / n-- I ) 
A 7-((K2,~I,2,K1) =/Q4 x//K1 - w3K2 - d2/a 2, -d /a ,  K1, K2, ~2 + ZA~'X'(~'~)(K2) 

l---O 

- / ' } 4 ( - ~ ¢ / K I - w 3 K 2 - d 2 / a  2, -d /a ,  KI, K2, 0 2 ) ,  (6.11) 

where X0(Y~) = 0 and the jump sequence {Xl(Y~)}t can be computed for a given H4 and y~, as we described 
in Section 5. After evaluating (6.11) for a concrete application, we can use Theorem 5.1 directly to show the 
existence of transverse multi-pulse heteroclinic orbits in system (4.16). The choice of y~ then depends on what 
parts of the slow manifolds .AJ carry the types of motions we are interested in. 

Remark 6.1. We note that since the jump sequence {Xt(Y~)} is defined via "open" conditions, it will be the 
same for a family F N of internal orbits that contains y~. As a result, the same energy-difference function defined 
in (6.1 1) can be used for this whole family of internal orbits to find transverse, N-pulse heteroclinic orbits 
backward asymptotic to members of the family. Each member in the family F N intersects Z N, the zero set of 
the corresponding Nth order energy-difference function, transversally. Note that the order of this transversality 
is 69( 1 ), i.e., members of the family F N intersect the zero set Z_ u transversally at an angle of 69( 1 ) as e --~ 0. 

Remark 6.2. It is shown in Hailer and Wiggins [24] that the zero sets Z u are O(x/~) Cl-close to a curve of 
basepoints of stable fibers, that intersect the N-pulse orbits backward asymptotic to the family F N described in 
Remark 6.1. In other words, based on our discussion in Section 5.3, Z_ u approximates the set of approximate 
take-off points for the N-pulse orbits as they leave the f ami ly /w  in forward time. 

6.2. Implications for the 3-DOF truncated normal form 

We now discuss what the results of the previous theorem for the 2-DOF subsystem mean for the blown-up, 
3-DOF truncated normal form 
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kl = e[a(K1 -- to3K2 - x 2 - x 2) - 2 (d  + ax2) xz] + e2DxzH1 (x,  K, ~2; e),  

x2 =e2xl (d  + ax2) - eZDx~Hl(x,K,~h2;e),  

[¢2 = -eZ  D~2HI ( x, K, ¢2; e) , 

~2 = - s o 3  (d  + ax2) + e2DK2H1 (x,  K, ~h2; ~), 

R1 =0,  

~1 = 1 + e (d  + ax2) + e2DK~H1 (x,  K, ~P2; e) (6.12) 

with H1 defined in (4.17). Subsequently, we show that similar results hold for the original truncated complex 
normal form (2.9). 

Recall that system (6.12) derives from the Hamiltonian (4.15) on the phase space (79, w). Since K1 is an 
integral for this system, any invariant set S in the phase space (7 9h, ~o h) is manifested as an invariant set S* 

in the KI = h hypersurface of the phase space (79,o~), such that $* is diffeomorphic to S l × S. Now letting 
Kl = h vary in some open interval U C R +, we obtain a one-parameter family of invariant sets of the form 
U × S*. In particular, for e > 0, we obtain the four-dimensional, normally hyperbolic invariant manifolds 

.AJ4J=_UxS  l x.A j,  j = l , 2 .  (6.13) 

which are given by the two C r embeddings 

C,~:UxSlxA--~79, (KI,O1,K2,~2) t---~(KI,OI,g~(Kz,~2)), j =  1,2. (6.14) 

Although they are not hyperbolic, .AT'[ j still exist as smooth limits of manifolds, with the corresponding 
embeddings G£ : U x S 1 x A ---, 79, j = 1,2. The manifolds .ASIJ have five-dimensional stable and unstable 

manifolds of the form 

Ws'u(.AS[ j)  = U × S l × Ws'u(.A~), j = 1,2. (6.15) 

The following proposition gives us information about the dynamics on 3,;ft. 

Proposition 6.2. There exists e0 > 0 such that for 0 < e < e0 the following are satisfied: 
(i) Let [~J : .AS~J ~ 79 denote the inclusion map of .A,74J, j = 1,2. Then (.ASIJ, ([J)  * w) are invariant, symplectic 

4-manifolds on which the (integrable) dynamics is generated by the restricted Hamiltonian /-)].ATI~ = 
(I~)*H. 

(ii) For any fixed Kl = h E U and for j = 1,2, an internal orbit ~0 of the reduced Hamiltonian (6.7) for 
the 2-DOF subsystem (4.16) yields a two-dimensional invariant manifold ~J C (.A74~ N {K1 = h}) for 
system (6.12). If ~ is periodic then ff'j is an invariant two-dimensional torus which is O(e)  Cr-close 
to the set (~({h}  x S' x 3/£). 

(iii) ~ /  has three-dimensional stable and unstable manifolds, denoted W S ( ~  j )  and WU(']-J), respectively. 

Proof  These results follow from our calculations in Section 6.1 and from Theorem 5.1 by noting that after 
rescaling time by e, the (x, K2, ~2) equations in (6.12) coincide with the 2-DOF subsystem (4.16). [] 

Next, we consider how N-pulse heteroclinic connections in the 2-DOF subsystem are manifested in system 
(6.1 2) that is generated by the truncated Hamiltonian/4. First, note that under assumption (A3/) in the previous 

section, it follows that WS (.AT'I~)= WU (.AT'I~) which have "upper" and "lower" components denoted 79 + and 

79~-, respectively. To facilitate the statement of the results, we introduce the set 
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E(hl,h2) = {(x,K,~p) E T'[KI = h~,ffl(x,K, O2) = h2}. (6.16) 

Notice that for fixed hi > 0, ]he] < hi, the set E(hl, h2) is a four-dimensional sphere that lies in the intersection 
of the two five-dimensional spheres Ki = K I 0  = const, and /-1 = const, with /.it defined in (4.15). Without the 
quartic and higher order terms in the normal form, this 4-sphere contains the three-dimensional set A.4 h (with 
h = Kio + eh2) and the bounded components of its stable and unstable manifolds. It is easy to verify from the 
expression for the Hamiltonian Hc that the intersection of the two 5-spheres is non-transverse along .A4 h but is 
transverse away from .L4 h. 

Theorem 6.3. Suppose that assumption (A3') is satisfied and that ~0 E ,A~, j = 1,2, are internal orbits of the 
2-DOF subsystem satisfying the hypotheses of Theorem 5.1. Then there exists e0 > 0 and an open set U C •+ 
w i t h h E  U s u c h t h a t f o r 0 < e < e 0  and K1 = h E U ,  

(i) The corresponding sets "]-J E .A74J A {K~ = h}, j = 1,2, described in Proposition 6.2 are connected by a 
two-dimensional, N-pulse cylindrical surface ~'~ which is diffeomorphic to yff x S j (see the statement 

of Theorem 5.1 ). 
(ii) The solutions contained in ~'~ make their/ th excursion around D + if Xt(Y~) = +1, or around D~ if 

Xt(T~) = -1 .  
(iii) The manifold W~(~ 1) intersects WS('~2~ ) transversally within the 4-sphere E~(h, ffll~ I) with O(1)  

transversality, but the intersection is not transversal within the corresponding full energy surface H = 

const. 
(iv) The manifolds W~(.AS/~) and Ws(./CA~) intersect transversally along the N-pulse solution set Y~ with 

transversality of order 0 (~ ) .  

Proof Statements ( i ) - ( i i i )  are immediate applications of Theorem 5.1 and Proposition 6.2. The transversal 

intersection of u - I ~ - 2 W" ( A4~) along statement W (A,4~) and ~-U in (iv) follows from the fact that the manifolds 

W " ( ~  2) and W~(~ 2) intersect transversally within the surface E~(h,/-z/]~l), hence at any point p E ~,U the 
tangent space TpW"(.;QI~) contains a one-dimensional subspace that is not contained in the three-dimensional 
space TpW~(2~ 2) (see also Remark 5.1). The order O(e)  transversality of the intersection follows from (its) of 
Theorem 5.1. and the persistence theory of normally hyperbolic invariant manifolds (see, e.g., Appendix C).E] 

In most cases the internal orbits yl  and 9; 2 appearing in this theorem are members of families of periodic 
orbits in the annulus A. It may also happen that they map to the same set of points in the orbit space F h (defined 
in Section 3.2.1) under the map Qh defined in (4.12) (see, e.g., Haller and Wiggins [25] or the potential 
problem considered in Van der Aa and Verhulst [59] ). Thus transverse heteroclinic connections between their 
perturbed counterparts actually yield transverse homoclinic connections in system (2.9). For this case we have 

more specific results. 

Proposition 6.4. Suppose that y~ and y2 are periodic orbits with the assumptions of Theorem 6.3 holding. Then 

for e > 0 small enough, 
(i) ~l  and ,]-2 are members of two-parameter families of whiskered 2-tori. The whiskers W ' ( ~  1 ) and 

W-~(ff-~ 2) intersect transversally within E(h, HI~ 1), and their intersection contains a two-dimensional, 
N-pulse, cylindrical set diffeomorphic to yU × S ~ ' Along this set the manifolds WU(~ 1 ) and W"(ff'~2~. ) 

intersect at an angle of order O( 1 ) as e ---, 0. 
Suppose further that 
(A6) For some integer k either + l ±. 7~ (3;0) = 3;o 2 or ~ - ( y ~ )  = 3/o 2 where the rotation maps 77,. k . A --+ a are 

defined by 
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7~ k (K2,~b2) = K2,¢2 + ~ k  w3 -t- w3cos -1 (6.17) 
K2 

(see (4.14)).  
Then for e > 0 small, 

(ii) On energy surfaces close to the surface / )  = h C U an appropriately defined four-dimensional Poincar6 

map of system (6.12) has invariant Cantor sets of two-dimensional annuli. On these Cantor sets the 

Poincar6 map is topologically conjugate to a full shift on a finite number of symbols. 
(iii) The truncated normal form (6.12) does not possess any nontriviai analytic integral other t han / ' / and  Kl. 

Proof  Statement (i) is a consequence of Theorem 6.3. To prove statement (ii) we observe that under as- 

sumption (A6) the proof of (iii) of Proposition 4.2 shows that the orbits yl  and yz 0 both lie in the image of 
a single closed curve C~ under the covering map Qh. In Theorem 6.5 below we prove that C~ does imply the 

existence of an invariant torus ~ in the original problem, hence we obtain the existence of a one-parameter 

family of homoclinic orbits to ~ .  Now the S I symmetry of the truncated normal form is of course present in 
the Hamiltonian system generated by (2.9) as well, hence one can also reduce the original problem to a 2-DOF 

(complex) subsystem. That system then contains a periodic orbit corresponding to C~ that has a transverse 
homoclinic orbit. By the Smale-Birkhoff homoclinic theorem (Smale [55]) this implies the existence of an 

invariant Cantor set of points in the 2-DOF complex subsystem on which an appropriately defined Poincar6 
map is topologically conjugate to a full shift on a finite number of symbols. For the full 3-DOF complex system 

this implies the existence of a Cantor set of annuli with similar properties. Since these Cantor sets are isolated 
from the normally hyperbolic invariant manifold T2 o 7"3 (.ATIJ) by construction, they map diffeomorphically into 

the phase space of system (6.12) under the transformation ~-1 o T2 -1 (see also the proof of Theorem 6.5). 
This completes the proof of statement (ii). Finally, statement (ii) and a theorem of Moser [ 49 ] together prove 

(i i i) .  [] 

Notice that Proposition 6.2, Theorem 6.3, and Proposition 6.4 are statements about the blown-up normal form 

(6.12). Since this system is related to the original truncated normal form (2.9) via the singular transformation 

T2 o 7"3, the validity of these statements for the original normal form (2.9) is an issue we need to address 
separately. 

Theorem 6.5. There exists e0 > 0 such that for 0 < e < e0 the following are satisfied for the truncated complex 
normal form (2.9): 

(i) Let M~ = T 2 o T3 (.A741 U .A7"[2~) and let/~: AT/~ ~ C 3 be the inclusion map of M~. Then (M~,/~*S2) is a 

four-dimensional, normally hyperbolic, symplectic invariant manifold for the Hamiltonian (2.9). 

(ii) For any fixed K1 = h C U and for j = 1,2, an internal orbit ~0 of the reduced Hamiltonian (6.7) for the 
2-DOF subsystem (4.16) yields a two-dimensional invariant manifold 7 ~j = 7"2 o T3(']'J) C ()9/~ U {zx = 

Zj = 0}) (see (ii) of Proposition 6.2). If  ~ is periodic then 7 ~j is a two-dimensional invariant torus 
which is CO(e) Cr-close to the set 7"2 o7"3 o (~ ({h}  × S l × ~0). Since (7"2 oT3) - j  is multi-valued, there 
exist different tori of the form ~ and ~ that map to the same torus 7 ~j under the map T2 o T3. 

(iii) 7 ~j has three-dimensional stable and unstable manifolds, denoted W s (7 ~j) and W u (T  J) ,  respectively. 
(iv) Suppose that the assumptions of Theorem 6.4 hold. Then the two-dimensional tori 7 ~j are connected by 

a two-dimensional, N-pulse heteroclinic manifold which is diffeomorphic to yN X S 1 (see the statement 
of Proposition 6.4). Solutions in this manifold are backward asymptotic to ~2, leave and return to a 
neighborhood of the plane zl = zl = 0 N-times, and finally approach ~2 asymptotically. Moreover, 

~( -2 --~ 0) within the set WU(7~2 ) intersects W' T~ ) transversally at an angle of order O ( I )  (as e 
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E z (h,/z/17~ ) = {(z, ~) E C 6 I n2(z,  Z.) = h, H(z,  g) = B17~2 }. 
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Suppose further that assumption (A6) of Proposition 6.4 are satisfied. Then 
(i) T,: _= T,I = 7~ is a member of a two-parameter family of invariant, whiskered tori. The whiskers 

W'(7~) and W"(I"~) intersect transversally with O(1)  transversality within the set E: (h,/z/[7~) in a 
two-dimensional, N-pulse, homoclinic manitbld, which is diffeomorphic to yN X S I . 

(ii) On energy surfaces close to the surface /z/= h E U an appropriately defined lour-dimensional Poincar6 

map tbr the system generated by (2.9) has invariant Cantor sets of two-dimensional annuli. On these 

Cantor sets the Poincar6 map is homeomorphic to a full shift on a finite number of symbols. 

(iii) The truncated normal form (2.9) has no nontrivial analytic integral other than /~ and He. 

Proof Statement (i) follows directly from (i) of Proposition 6.2 so we turn to the proof of ( i i ) -  ( vii ). 
From (4.1) and (4.2) one can verify that the coordinate representation for the inverse transtbrmation T2 o T~ 

is given by 

~, = v / 2 ( K ~  - ~3K2 - Ixl 2) c o s O l  + i v /2 (K,  - w3K2 - Ixl 2) s i n g , , ,  

Z2 = X2 COS 2 ~ 1  - -  Xl sin 2~/,1 - i(xj  cos 2~p~ + X 2 sin2~pl ), 

zs = 2X/~2 cos (~/'2 + w3~Pl) + i 2X/~esin (~2 + o~3¢1 ), (6.18) 

and of course, we have the complex conjugates of these expressions for zj, z2, and ,~a. This inverse translormation 
is a composition of symplectic diffeomorphisms away from W (defined in (6.10)).  Since the stable manitblds 

of the manifolds ff'~ in system (6.12) do not intersect W (because ~ C W),  they are mapped back 
diffeomorphically into C 6. Similarly, the unstable manifolds of the manifolds ~J map to diffeomorphic objects 
in C 6, which proves the second part of statement (i). Also, the Smale horseshoes described in (vi) are separated 

from W by construction, so statements (v i ) - (v i i )  follow directly from Proposition 6.4. However, the inverse 
translbrmation (6.18) is degenerate on W, so the existence of two-dimensional whiskered tori and the related 

statements in ( i i ) - ( iv )  and in the first part of (v) for the normal form (2.9) do not ~bllow immediately. 
We construct the tori in question in a limit procedure that uses the invariant foliations of stable and unstable 

manitolds of Mr. (see also Sections 5.3 and 7 for discussion). We observe that the closure of, e.g., T2 o 

T3(W{~,~(L') ) intersects /f/~ in an object diffeomorphic to L I. Using the results of Fenichel 1181 on the 

lbliation of unstable manifolds (see Appendix C.1), we conclude, that this object is a set of basepoints of 
\ / 

unstable fibers that is Cr-diffeomorphic to a two-dimensional torus. By the invariance properties of fibers this 
torus is necessarily invariant and it carries the same types of motions as ~ t .  Therefore M~ contains an invariant 

torus corresponding to ~1 which has a three-dimensional unstable manifold. Using the local stable manitbld 
Wi'o,.(~ 2 ) we obtain in the same manner that 19/~ also contains an invariant torus corresponding to ~2 which 

has a threc-dimensional stable manifold. Since each torus on/9/~ has representations in both .£'/J~. and .A4~ (see 

(iii) of Proposition 4.2), we obtain that each torus in the normally hyperbolic invariant manitbld 191,; has both 
stable and unstable manifolds. Then statements ( i i ) - ( iv )  follow from Proposition 6.2 and Theorem 6.4. 

Remark 6.3. We note that the same statements are true for the corresponding truncated normal form of our 
initial system (2.2) given in the (p ,q )  coordinates, since the transformation TI introduced in (2.4) is a 
diffeomorphism. The only difference is, that the stable and unstable manifolds of the whiskered tori intersect at 
an angle of order (.9(e) as a result of the scaling of variables (described after (2.4)) which we used to obtain 

the complex Hamiltonian system defined by (2.5). 
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7. Dynamics in the full 3-DOF system 

We now return to our original 3-DOF system which appears in the (x, K, ~p) coordinates in the form 

5c = J2DxHc( x, K) + e2 J2 DxHl ( x, K, ~2 ; e) + e p-1J2DxHr( x, K, ~; e) , 

[£2 = -eZ Do2H1 ( x, K, ~P2; e) - eO-l Dj,2Hr( x, K, ~; e), 

t~2 =DK2Hc(x,K) + e2Dx2Hl(x,K,~z;e) + eP-l Dx2Hr(x,K,~b;e), 

K1 = --eP-l Do, Hr( x, K, ¢; e ) , 

~1 = Dx~Hc(x,K) + e2DrjHl(x ,K,~2;e)  + ep-l Dr~Hr(x, K,t/,;e). (7.1) 

This system derives from the Hamiltonian 

H ( x , K , ~ ; e )  = Hc(x ,K;e)  + e2Hl(x,K,~2;e)  + eP-l H r ( x , K , ~ ; e ) ,  (7.2) 

where He = K1 + eHo(x ,K)  is the cubic normal form Hamiltonian (see (4.3) and (4.17)),  HI contains 

higher-order normalized terms (see (4.17)) and Hr  contains the "tail" of the normal form which we have 

ignored so far. 
First we examine the existence of regular motions in this system which lie on the continuations of the 

invariant 3-tori described in Proposition 3.l. These motions can be divided into two distinct families and will 

be seen to occupy a set of large measure in the phase space. As a result, they have substantial influence on 
typical trajectories. However, they do not account for the irregular behavior which is usually observed near 

strongly resonant equilibria. As our results for the truncated normal form indicate, strongly irregular motions 

can exist in a neighborhood of the hyperbolic structure described in Proposition 4.2, which forms the boundaries 
of the two domains that contain 3-tori. We analyze the persistence of elements in this hyperbolic structure after 
discussing the continuation of 3-tori. First we examine the persistence of AS[l~ and AS[~ along with their stable 

and unstable manifolds, and their foliations (discussed after Theorem 5.1), under the O(e  p-1 ) terms in (7.1). 
- 2  Then we study the persistence of invariant 3-spheres on A74 1 and A4~, and subsequently examine what remains 

of the N-pulse heteroclinic or homoclinic connections between 2-tori. Finally, we relate our results back to the 
original complex Hamiltonian system (2.5) defined on the phase space (C 3,/2). 

7.1. Persistence of 3-tori: regular motions 

We rewrite the full Hamiltonian (7.2) in the form 

H(x,K,~b;e) = Ki + eHo(x,K)  + O(e2) ,  (7.3) 

with H0 defined in (4.17). As we described in Proposition 4.1, without the O(¢ 2) terms this system has two 

3-parameter family of 3-tori, that correspond to the families of periodic orbits shown in Fig. 2. For fixed values 
of Ki and /('2, we can express the variable x2 on these periodic orbits as piecewise smooth function of Xl in 
the form 

X2 = XZ(XI; K1,/('2, h0) ,  

where h0 denotes the value of H0 on a given periodic orbit. (For simplicity, we do not distinguish in our 
notation between the two families of periodic orbits). Now we can introduce action-angle variables for the 
periodic orbits using the usual construction for 1-DOF Hamiltonians (see, e.g Arnold [4] ) .  The action-angle 
variables (J3, O3) are related to x2 and x 1 via a transformation 
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xl =al(J3,03;KI,K2),  x2=a2(J3,03;Kl,K2),  

which transforms the two-form dxl Adx2 into dO3 AdJ3 for fixed values of Ki and K2, and puts the Hamiltonian 
Ho(x, K) to the form 

/7/o( Ki, K2, J3 ) = Ho(a(J3, 03; K1, K2), Ki, K2). (7.4) 

To make this transformation canonical for the full system (i.e., for the case when Kj and K2 are allowed to 

vary), we also transform the variables (KI, K2, ~/'1, ~P2 ) to (J1, J2, O1, O2) using the generating function 

Xl 

S(xj,  ~b2, ~2, JI, J2, J3 ) = [ X2(y; Jj, J2, Flo( JI, J2, J3)dy + Ol J1 + 02J2 ,  
J 
o 

which generates the transformation 

K1 = J l ,  
X I 

= o, - f (D,, x2 + z),,,,x2z),, &) dy, 
o 

K2 = J2, 
Xl 

~'2 = 02 - / (Dj2X2 + DhoX2Dj~FIo) dy. 

o 

In this new set of variables we obtain the transformed full Hamiltonian 

H( J) = Hoo( J1 ) + ell01 ( J )  + (-.9(*:2), 

(7.5) 

(7.6) 

with 

H00(Ji) = J l ,  H01(J) =/-)'0(J) =Ho(a(J3,03;Jl ,J2),Ji ,J2).  (7.7) 

This Hamiltonian is formally in the proper coordinates for the application of the KAM theory to the invariant 

3-tori present without the 0(52)  terms. However, H becomes degenerate in the limit of e = 0 because H00 

does not depend on the action variables J2 and J3, and as a result, all unperturbed tori are resonant. This is 
exactly the situation that is called proper degeneracy in Arnold et al. [5]. It is shown in Arnold [2] that if the 
term eHo~ "removes" the degeneracy of the e = 0 limit, i.e., it creates a family of 3-tori which satisfy certain 
regularity assumptions, then most of these newly created 3-tori will persist under the effect of CO(E 2) terms. 

Sufficient regularity conditions are isoenergetic nondegeneracy for H00 and nondegeneracy for H0j with respect 

to the (J2, J3) variables. In our case this leads to the conditions 

Dj, Hoo 4= O, det(D~j2,j~)Hol) 4= O, (7.8) 

2 where O(j2,j3)mol denotes the Hessian of Hm with respect to the variables J2 and J3. The first condition is 
obviously satisfied, but verifying the second one leads to formidable calculations. Fortunately, some related 
calculations are performed in Kummer [36] for the existence of quasiperiodic motions in the truncated 1: 2:3 
normal form for parameter values near a symmetry. The Hamiltonian that arises there can be shown to be 

equivalent to our Hamiltonian Hm for zero detuning (d = 0). Using this analogy we can make use of the 

calculations of Kummer and prove the following result. 

Lemma 7.1. There exists do > 0 such that for detunings with ]d] < do both nondegeneracy conditions in (7.8) 
are satisfied on all but a finite number of isolated, measure zero subsets of a finite number of energy surfaces 

H01 = const .  

Proof See Appendix B. [] 
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From this lemma, using the results in Arnold et al. [5], we obtain the following theorem on the existence 

of quasiperiodic motions in the full 3-DOF system (7.1). 

Theorem 7.2. There exist e0, do > 0 such that for 0 < e < e0 and ]d I < do most invariant 3-tori of the cubic 
truncated normal form (4.3) survive on all but a finite number of energy surfaces in the full system (7.1) and 

hence in the original complex system (2.5). On each energy surface the surviving tori form two families, and 

carry quasiperiodic motions with one frequency of order (.9(1) and with two frequencies of order O(e ) .  The 

measure of the tori that do not survive tends to zero as e ~ 0. 

We remark that Arnold's theorem is originally proved for analytic Hamiltonians, but as for other versions of 
the KAM theorem, smoothing techniques introduced by Moser can be employed to obtain the same result for 
n-DOF Hamiltonian which that are of class C 2"+1 (see P6schel [52] or Arnold et al. [5]) .  

7.2. Persistence of  Y,4 j, W u's ()CA j ) ,  the invariant foliations, and the multi-pulse solution sets 

Neither the persistence of .AS,/J nor the persistence of W~'"(.A74 j) with their invariant foliations are trivial 

issues because .A74J is only weakly normally hyperbolic in system (7.1): its stable and unstable manifolds, 

as well as .,~J itself disappear for e = 0. So the general persistence theory for normally hyperbolic invariant 
manifolds (see, e.g., Wiggins [63] ) does not apply immediately and some extra work is needed to show that 

the weakly hyperbolic .A3/{ and its stable and unstable manifolds are sufficiently robust to survive the effect 

of the tail of the normal form. Once this is established, the survival of multi-pulse solutions follows easily 
since they lie in the transverse intersection of surviving manifolds. Their exact asymptotics, however, is a more 

difficult question which will be addressed in Sections 7.3 and 7.4. 

To formulate the persistence result we need, let us consider KI values lying in some closed interval V1 C U. 
As earlier, we choose some small but arbitrary A > 0 and consider 

I 1 (KI -d2/a 2)-A 1 K2 C V2 == - A, to--- ~ 

We then have the following result. 

Theorem 7.3. There exists e0 > 0 such that for 0 < e < e0 and for j = 1,2, 
(i) System (7.1) has an invariant, four-dimensional C r manifold .A4{ given by an embedding GJ: Vi x S l x 

V 2 x S 1 --. 79, which is O(e  2) Cr-close to the map ~ on its domain. 

(ii) If  IJ:AA j ~ 79 is the inclusion map of .A,4 j then (./vtJ, lJ*w) is a symplectic manifold on which the 
dynamics is generated by the Hamiltonian ~ J  = HIA4~ with H defined in (7.2). 

(iii) .A.4J has five dimensional stable and unstable manifolds Ws(A4 j)  and W"(.A.4{), which are O ( e  2) 
Cr-close to WS(A.St j)  and Wu(.A74J), respectively, in a neighborhood of the manifold .A4~. 

(iv) If  the conditions of Theorem 6.3 are satisfied then Wu(.A4~) and Ws(.A4 2) intersect transversally along 
a four-dimensional invariant set yN. This set contains N-pulse solutions with jump sequence X(Y~) (see 
Theorem 6.3). 

Proof  For the proof of (i) and (iii) see Appendix C. Then statement (ii) follows from the fact that .A4~ is 
O ( e  2) Cr-close to .AS'/{ hence lJ~*w remains nondegenerate, and it is trivially closed. Statement (iv) follows 

u,s  j u , s  - j from (iv) of Theorem 6.3 and from the O(e )  Cr-closeness of Wio c (.A4~) to Wio c (.A4~). [] 
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Both the stable and unstable manifolds of  .A,SIJ~ are foliated by invariant families of  submanifolds, or fibers 
with properties similar to those discussed in Section 5.3. The following theorem describes the properties of  the 
stable foliation in the context of  system (7.1),  but similar results hold for the unstable foliation. 

Theorem 7.4. There exists e0 > 0 such that for 0 < e < e0 there exists a four-parameter family of  curves, 
called the stable fiber that can be represented as 

x = f ~ ( x l :  Kb,~Pb,e), 

K = ,fK (Xl ; Kb,~[tb,8), 
g' = fg,(xl; Kb,~l,,e). (7.9) 

The four parameters for this family are given by the coordinates (Kb,~b) of  points b C .AA z, and f~, fK, 
and j~  are C ~ functions of  these coordinates and of Xl and e. The point b = GZ(Kb,~b) is referred to as the 

basepoint of  the stable fiber represented by the functions ( fx( ' ;Kb,  ~b,e),  fK ( ' ;  Kb, ~9b, e), f~ (-; Kt,, ¢P/,,e)). 
N / 

Furthermore, 

(i) Fibers are mapped into fibers by the time t flow map of  system (7.1).  

Wtoc( 3"4~) = UbcM~ fx(x l ;  Kb,~'b,e), f x ( x l ;  Kb, Ob,e), f e ( x l ;  Kb,Ob,e) • 

(iii) Let (Kb(t) ,Oh(t))  be a trajectory in .Ad2~ satisfying ( K b ( 0 ) , O b ( 0 ) )  
( x ( t ) , g ( t ) , ~ ( t ) )  be a trajectory in ' 2 Wioc (.A4~) satisfying 

= (Kb,cP~,) and let 

x(O) = fx (x ,  (0); Kh, Cb, e), 

K(O) = fK(Xl (0); Kb, ~tb, ~), 

g'(O) = ¢(X, (0); Kb, g'b, e), (7.10) 

(iv) 

(v) 

i.e., the trajectory starts on the fiber with basepoint b. Then 

I (x( t ) ,K (  t ) , ¢ (  t) ) - G~( Ko( t) ,~b( t) ) I < Ce -at 

for all t > 0 and for some C, A > 0 as long as (Kb(t),~bo(t)) E .AA z. In other words, trajectories 
starting on a stable fiber asymptotically approach the trajectory in Ad z that starts on the basepoint of  the 
same fiber. 
The N-pulse solution-set yU described in Theorem 7.3 intersects a 3-parameter family of  unstable fibers 
in u 1 Wloc(.A,4~) whose basepoints form a three-dimensional hypersurface Z N in the manifold .A4~. Z N is 
(..9(v/e) CI-close to the set G l ( u  × S l × z N), where Z_ N is the zero set of  the energy-difference function 
A N ~  defined in (6.11).  

Based on assumption (A5) of  Theorem 5.1, let us define the rotation map 7~N: A --~ A of  the annulus A 

by 

7~N(K2,~b2) = K2,02 + NA~b°(K2) + A~/'x'(;'°L)(K2) . 
l=1 

Then the N-pulse solution-set yN also intersects a 3-parameter family of  stable fibers in s 2 Wioc (.M~) whose 
basepoints form a three-dimensional hypersurface Z+ N in the manifold .A4 z. Z+ N is (9(x/~) CI-close  to 
the set G2(U x S l × T~N(ZU) ). 
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Fig. 10. Double-pulse solution set Ye 2 with the corresponding take-off and landing surfaces Z_ u and Z+ u. 

Proof For the proof of ( i ) - ( i i i )  see Appendix C. Statements (iv) and (v) follow from Theorem 5.1, Remark 

6.2, and the fact that the stable and unstable fibers are C r functions of ~. [] 

A schematic visualization of statements (iv) and (v) can be seen in Fig. 10 for the case of a double-pulse 

solution set Y~. 

7.3. Persistence of invariant 3-spheres on A4{ 

In Proposition 6.4 we described how periodic orbits of the reduced Hamiltonian 7-/j (defined in (6.7)) give 

rise to two-dimensional invariant tori on the four-dimensional invariant manifold ASI{ in the quartic truncated 

normal form. If  these tori lie in a neighborhood of an equilibrium on .Ad{ at which the restricted Hamiltonian 

7-/J is positive definite, then the energy surfaces containing the tori are diffeomorphic to the three-dimensional 
sphere S 3. While the survival of the whiskered tori on the manifold .A/l{ is a subtle question (see Section 7.4), 
the survival of the 3-spheres containing them is relatively easy to show. In this subsection we address this issue 

and also relate the persisting multi-pulse solution sets to the surviving spheres. 

Theorem 7.5. Suppose that assumption (A3 ~) of Section 6.1 is satisfied and for j = 1,2, ~0 C A is a periodic 
orbit of the reduced Hamiltonian (6.7). Suppose further that "fl0 C A is a member of a family of periodic 
solutions encircling an equilibrium point at which the reduced Hamiltonian ~J  (/(2, ~2; Ki) (see (6.7)) is 
positive definite. Then for e > 0 sufficiently small, 

(i) There exists a one-parameter family of invariant 3-spheres on the manifolds .A41~ and .A.4~ z which are are 
connected by N-pulse heteroclinic orbits contained in the set Y~, where N =- N(y~) is the pulse number 
of y~ (cf. Theorems 7.3,7.4). These N-pulse solutions make their lth excursions near the set W~ if 
Xt(Y~) = + l ,  where X(Y~) is the jump sequence associated with y~ (cf. Section 5.4). 

(ii) Any two 3-spheres S~ and S~, that are connected by N-pulse orbits, have four-dimensional stable and 
unstable manifold. The intersection of these invariant manifolds is transverse within their energy surface. 
Finally, the order of splitting of Wu(S~ ) and Ws(s~) along an N-pulse heteroclinic orbit is (..9(1) as 
e --+ 0. 
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(iii) I f  assumption (A6)  of  Proposition 6.4 holds then an appropriate Poincar6 map for system (7.1) possesses 

invariant Cantor sets of  two-dimensional annuli. On these Cantor sets the Poincar6 map is topologically 
conjugate to a full shift on a finite number of  symbols. As a consequence, system (7.1) has no more 
than two nontrivial, independent, analytic integrals. 

(iv) The persisting 3-spheres, the heteroclinic orbits connecting them, and the Cantor sets described in ( i ) -  

(iii) also exist in the original Hamiltonian (1.3).  There the connections are all homoclinic if (A6)  is 

satisfied. However, the order of  splitting of stable and unstable manifolds of  the 3-spheres is 0 ( 8 ) .  

Proof Let us consider the restricted normal form Hamiltonian/41A74~ = KI + 82~-U(K2, ,/P2, Ki ) + O(83)  (here 

we use the definition of  the reduced Hamiltonian from (6.7),  but consider K1 as a variable). By the assumptions 

of  the theorem, /t1A74~ is positive definite on a domain containing an equilibrium close to Kj = 0, K2 = K20, 

¢'2 = ~P20. (Note that all such equilibria are mapped back into the trivial zero equilibrium of the original 
Hamiltonian H(p, q) since K1 = 0 implies p = q = 0.) As a result, there exists a family of  level surfaces of  
/41./k5/~ that are three-dimensional spheres embedded in the four-dimensional manifold .A74{. These spheres are 

the intersections of  the five-dimensional energy spheres /7/= h = const, with the invariant manifold A74.~. 

First we want to argue that these invariant spheres survive on the perturbed manifold .MJ. It is clear that they 
survive if we include higher order normal form terms in the normal form Hamiltonian/z/ (see (4 .15) ) ,  as those 

still generate an integrable dynamics on the corresponding perturbation of .AT'IJ. To establish their persistence 

for the full Hamiltonian H, it suffices to show that the 3-spheres lie in the O(  1 ) transverse intersection of their 
energy surfaces {/~ = const.} with the manifold .AT-IJ. Then the nonsingular energy surfaces and the manifold 
.A.3/~ perturb smoothly under the effect of  the O(e p-l)  "tail" of  the normal form, hence their (compact)  

intersection set perturbs smoothly to a nearby, diffeomorphic intersection set. To prove transversality, we will 
identify a subspace of the tangent space of .ASlJ at the points of  intersection which is not contained in the 
tangent space of  the energy surface {t7/= const.} at those points. 

The invariant manifold .;QJ for the truncated normal form Hamil tonian/q  can be written in the tbrm 

x l  = 4 h - - d 2 / a 2 - w 3 K 2 + 8 2 1 ( K , ~ )  + 0 ( 8 2 ) ,  x2 =-d /a+8Yc2(K ,¢ )  +(._9(82). (7.11) 

In terms of  the coordinates (x,  K,¢,),  one tangent vector at any point of  this manifold is given by 

u¢, 2 = ( 0 , 0 , 0 , 0 , 0 ,  1). 

At the same time the gradient of  the Hamil tonian/- t  at any point of  .LS/J is given by 

D~ l f4  ~ = 82DH41JGIs o + 0(83), 

hence we obtain that at any point p E AT/J, 

(D/4, v,2) 

I D/~/llw~21 
- Do2H41./QJo + 0 (8 ) .  (7.12) 

Since y~ is assumed to be a member  of  a family of  periodic orbits encircling a fixed point, it follows that on 
any solution on any of  the spheres D~o2H4 = 0 can only hold at isolated points. Hence on any solution contained 
in a 3-sphere we can pick a point p such that the expression in (7.12) is nonzero at p. Consequently, re, 2 is not 
in the tangent space of  the energy surface at p, i.e., {/-t = const.} intersects .A74J transversally at p. Moreover, 
the transversality is of  order O ( 1 )  as 8 ---* 0, as we see from (7.12).  Now the flow map of  the system is 
a diffeomorphism for any fixed finite time, hence the (.9( 1 ) transversality between the two invariant surfaces 
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{/7/= const.} and A7'/.~ is preserved for finite times. In particular, O( 1 ) transversality holds at any point of the 
invariant 3-spheres on .A,4~. This completes the proof of the persistence of spheres on .L4 j. 

To finish the proof of statement (i),  we note that, as we pointed out in Remark 6.1, y~ is a member of a 
family of periodic solutions of the reduced Hamiltonian ~J(K2,~2; Kl0) that intersect the zero set Z_ u with 
69( 1 ) transversality. This implies directly that a one-parameter family of the three spheres ,_¢~ in the truncated 

-1  normal form intersects the set GIe(u X S 1 X Z _  N) with O(1)  transversality within the manifold .M e. Since the 
surviving spheres on .AdJ~ deform smoothly by an order O(e)  amount and the "take-off" set Z N is 6O(x/~) 
CI-close to G~(U x S l × Z N) (cf. Theorem 7.4), we obtain that Z_ N is intersected by a one-parameter family 
of 3-spheres with transversality of O( 1 ). The same argument applied to the "landing surface" Z N of N-pulse 

solutions proves statement (i). 
The local stable and unstable manifolds of any surviving 3-sphere can be constructed by taking the union of 

stable and unstable fibers whose basepoints are contained in the 3-sphere. Then the global stable and unstable 
manifolds of the sphere are obtained in the usual way by applying the flow to the local stable and unstable 
manifolds. The (_9(1) transversality of the intersection of these surfaces along the surviving N-pulse orbits 
again follows from the O( 1 ) transversality already present in the truncated normal form, which can be seen 
immediately based on the geometry of the spheres and the basepoint set Z_ N. This completes the proof of (ii). 

Statement (iii) follows from Proposition 6.4 and from the structural stability of horseshoes under the (_9(eP - I  ) 

perturbation given by the tail of the normal form. Finally, the proof of statement (iv) is the same as the proof 
of Theorem 6.5 (cf. Remark 6.3). D 

7.4. Persistence o f  whiskered tori 

In Proposition 6.4 we described how periodic orbits of the reduced Hamiltonian ~J (defined in (6.7)) give 
rise to two-dimensional invariant tori on the four-dimensional invariant manifold .A74J in the quartic truncated 

normal form. Now we would like to see whether these tori continue to exist on the persisting manifold .A/tJ in 
the full system (7.1). The significance of possible surviving tori is great since they can be used to identify the 
exact asymptotic behavior of the multi-pulse solutions which are homoclinic to the 3-spheres described in the 
previous theorem. At this point we can only conclude that the multi-pulse solutions stay close to the 2-tori of 
the truncated normal form on time scales of order O ( l / e P - l ) .  

Unlortunately, there seems to be no version of the KAM theory that can be used to show that the majority 
of the 2-tori survive the effect of the tail of the normal form. In particular, the results of Moser, Graft, or 
Zehnder (see [47,22], and [64] ) require constant Lyapunov exponents along the unperturbed whiskered tori. 
Another reason why these results do not apply directly is that fact that for e = 0 the manifold .A,4~ simply 
disappears. A direct application of the KAM theory to the dynamics on .A,4J is not possible either since the 
restricted symplectic form is noncanonical. As a result, the restricted Hamiltonian vector field cannot he written 
in a near-integrable form in any obvious way. 

Nonetheless, the survival of the majority of the above tori can most likely be obtained by going through 
the main steps of the KAM construction in the context of our particular system. In fact, we expect much 
more of these tori to survive than in usual applications of the KAM theorem. The reason is that the order of 
possible resonances between the frequencies of unperturbed tori is 69(1/~:2). For our C r smooth Hamiltonian 
H~ this means that the first resonant terms in its Fourier series that cannot be removed by successive changes 
of coordinates, have amplitudes of order o(eZ(r+l)). This follows from the usual estimates on the decay of 
Fourier amplitudes for C r functions (see, e.g., Lochak and Meunier [41 ] ). Then applying an argument similar 
to Theorem 1 in Neishtadt [50], but replacing the O ( e  -c/~2) Fourier amplitude estimate for the analytic case 
with O(e  2~r+l)) for C r Hamiltonians, one should obtain that the relative measure of the destroyed tori is of 
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order O(e  2~r+l)) instead of the usual O(x/~).  

357 

8. Conclusions: chaos and diffusion near the equilibrium 

In this paper we studied the structure of the phase space near resonant equilibria in a class of 3-DOF 

Hamiltonian systems. We proved that under general conditions on the quartic terms of the Taylor expansion of 
the Hamiltonian and for small detunings from the exact resonance, there exist two large families of quasiperiodic 

solutions on most energy surfaces. However, the two domains of quasiperiodic motions are separated by 
hyperbolic structures which can create sophisticated families of motions. In particular, we gave criteria for the 

existence of non-trivial multi-pulse heteroclinic and homoclinic connections between three-dimensional invariant 

spheres with two different time scales. These connections pass repeatedly near the plane p~ = q~ = 0 (i.e., 

zl = gt = 0) before they asymptote to tori in forward and backward time. 

Some of the results in this paper on the truncated normal form are extensions and improvements of those 
appearing in Haller and Wiggins [23]. In an upcoming paper (Haller and Wiggins [25] ) we apply the results of 

our present study to low energy oscillations in a 3-DOF model of the classical water molecule. In that problem 

motions on the surviving 3-tori represent regular, quasiperiodic exchange of energy between neighborhoods of 

nonlinear normal modes, whereas the multi-pulse solutions connecting whiskered tori give a natural mechanism 
for irregular, irreversible energy transfer between these neighborhoods. 

We conclude this paper by some comments on near-equilibrium diffusion in the class of resonant Hamiltonians 
we considered. Since Kj is an integral at any order of truncation for the the normal form, the whiskered tori 

we constructed on the 4-spheres E(K1,  h2) (see (6.16)) within the level surfaces /4 = const, are isolated from 

each other, and there are no transition chains created by the transversal intersection of whiskers that would 
yield diffusion through different 4-spheres. In the full system (7.1) this isolation of the (possibly surviving) 

whiskered tori does not exist any more and the whiskers of tori originally lying on different level surfaces of 

H2 ~ Kj do intersect generically (see Section 7.4). However, these secondary intersections are results of further 
splittings caused by the "tail" and are smaller than any power of e for C ~ Hamiltonians. This is not surprising 

since the speed of the drift through the tangles of these secondary intersections has to obey Nekhorosev's general 

estimates (Nekhorosev [51], Arnold et al. [5])  as established in Lochak [42] for perturbations of resonant 
linear oscillators (see also Benettin and Gallavotti [6] for the case of nonresonant oscillators). Although the 

tori we constructed are not amenable to the usual Melnikov-type methods that are used in the study of Arnold 
diffusion, the elements of the construction of a transition chain of tori would be the same in our case. That 
would, however, involve the study of exponentially small splitting directions. Related results exist for rapidly 

forced 1-DOF systems (see Holmes et al. [27], Delshams and Seara [ 14], Ellison et al. [ 16] and the references 

therein) which can be applied to normal forms of 2-DOF Hamiltonians (cf. Holmes et al. [27]) .  hnportant 

results concerning the splitting of separatrices in two classes of model problems appeared recently in Chierchia 
and Gallavotti [7] where the splitting distances turned out to be non-exponentially small in all directions. We 

also mention the paper of Churchill and Rod [ 10] which proves the existence of homoclinic and heteroclinic 
orbits in rapidly forced symmetric systems without control over the transversality of these orbits. 

We emphasize that in our problem the possible exponentially slow diffusion created by intersecting whiskers 
does not imply instability for the equilibrium. In particular, throughout our study we assumed for convenience 
that the Hamiltonian in positive definite at the origin, hence the resonant equilibrium is Lyapunov-stable. So, 
as opposed to the usual instability associated with diffusion, in our problem diffusion means a "mixing" of 
solutions on a given five-dimensional energy sphere near the resonant stable equilibrium. This mixing is rather 
intense in directions tangent to the 4-spheres E(KI ,  h2), because in these directions the splitting of whiskers is 
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of order O(e )  for the original Hamiltonian (1.3). Numerical results visualizing the structures corresponding to 
this mixing will appear in Haller and Wiggins [25]. On the other hand, in directions vertical to the 4-spheres 

the possible diffusign is exponentially slow and it is questionable whether it is numerically observable at all. 
For this reason we believe that the energetical implications of this "vertical" diffusion are negligible compared 

to the observable chaos associated with "horizontal mixing" in the vicinities of the 4-spheres E(K1, h2). 
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Appendix A. Calculation of the phase shifts 

In this appendix we outline the calculations of the phase shifts defined in (5.6) for the 2-DOF subsystem 

(4.16). Since ~2 - 0 on the manifold W °, we immediately obtain Asb°(K2) - 0. The remaining two phase 
shifts are given by the integral 

(3O 

2 (K2)=--°93 d+ax~ '+l ( t ;K i ,K2)  dt, (A.1) 

- - O O  

where x~ '±1 (t; K1, K2) is taken along the appropriate heteroclinic connection (cf. (6.3)).  
From (4.16) (with e = 0) and (4.3), we have 

dx2 dx2 
dt = 

Jr2 2Xl ( d + ax2) ' 

from which we see that 

i w 3 / d x 2  (1.2)  - 0 3  (d + ax2) dt = ---~- Xl 

Therefore, expressing Xl as a function of x2 on the heteroclinic connections, and substituting (A.2) into (A.1) 
yields 

+ ,/KI -- w3 K2 
f dx2 

AJ,2~ ( K2)  = - , 0 3  x/K~ - o,3K2 - x~ '  
-a/a 

Computing these integrals, and using the identity sin -1 x + cos - I  x = ¢r/2 gives 

d 
A~b~-(K2) = -w3"rr + w3 cos - l  

a~/K1 - w3K2' 
d 

A~/,~- (K2) = w3 cos - l  
a~/K1 - w3Kz" 
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Appendix  B. P roo f  of  L e m m a  7.1 

We start by recalling that the for d = 0 (zero detuning) the cubic normal form Hamiltonian H01 is given by 

H01 (x,  K) = a(  Kl - 093K2 - x~ - x2)x2 .  

Regarding Kl as a fixed parameter, this 2-DOF Hamiltonian is exactly of  the form studied in Kummer [36],  p. 

89. (In Kummer ' s  notation H01 = K ~°), K1 = I ,  K2 = J3, Xl = y, x2 = x, X = g'2, and his symplectic form has a 
sign opposite to ours.) Using Kummer ' s  approach from that paper, we can factor the Hamiltonian by writing 

H01 = C3/2,~, C = (K  1 - 093K2) 3/2, .h. = n o l / J  3/2. 

As we discussed in Section 7.1, the Hamiltonian Hot admits action-angle variables (J, O) on two open domains 

of  its phase space corresponding to the elliptic regions shown in Fig. 2. We can therefore write 

H0j (x,  K) =/40 ( J l ,  ./2, J3) = C 3/2,~. (B.1) 

Kummer  realized that the functional relationship between the quantities C and h and the action-angle variables 
is somewhat easier to handle than the actual action-angle transformation itself from ( x , ¢ 2 , K 2 )  to (./2 - 

K2,692, J3,693).(Note that in his notation C = J and ,~ = p.) This enables us to write the second nondegeneracy 

condition in (7.8) in terms of  C and ,~, and verify them for specific parameter values. We then argue, following 
Kummer, that the determinant of  the Hessian in the nondegeneracy condition involves analytic functions of  ,~, 
hence if it is nonzero at some specific value, then it may be zero only for a finite number of  ,~ values in any 

finite ,~-interval. Our calculation will differ from Kummer 's  in that he verifies isoenergetic nondegeneracy for 

H01 which turns out to be less computational, than verifying nondegeneracy in the sense of  (7.8).  Finally, we 

only have to note that the nondegeneracy established this way clearly remains true for sufficiently small values 

of  the detuning d, for which the Hessian of /10  can be considered as a perturbation of the Hessian for d = 0. 
Following this program, we introduce the quant i ty/z  by letting 

J3 

Kummer  shows tha t /z  is an analytic function of ,~, and writes 

1 
= ~ a ( a ) .  

Here s2 is a complicated analytic function defined in terms of a complex integral. Its derivative s2 ~ is also 

analytic (in Kummer ' s  notation S2 ~ = wl) .  For our purposes, all we need to know about the function s2 are the 

following: 

Using the definitions o f / z  and C, implicit differentiation yields the relations 

09 2 1 093 D2flx 3 A~ dA 27"r 
DJ2/x = C '  DJ3/x =/Z--C '  = 2/XC -5'  - d/z - g2'" (B.3) 

Using these relations together with (B. I)  we obtain the following expressions for the second partial derivatives 

of  H01: 
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D~zH m 3 ,2t,-, - I / 2 ~  = ~w3,., ,, -- 3w3CI/2AtDj21 ~ + C3/2 , ( ' (Dj2#)2  + C3/2AID~2tz, 

D~Hol  = C-1/2A t, 

D & D j 3 H o l  1 , , h ( ' , - 1 / 2 ~ /  = - -~  . . . . .  --~ c l /2 ,h t tDj2 i j~ .  

These expressions and (B.2) yield that the determinant of  the Hessian of  Hot evaluated at A = ± 2 / x / ~  is 
given by 

w 2 / 6 2) 
(D22/r /°D2' /q°-  (D'2Dj3FI°)2) a = 4 - 2 / V ~  = 2A.{~-- ±--V'~ - v~ O, 

which proves the lemma as we discussed above. [] 

Appendix C. Persistence of invariant manifolds and invariant foliations 

C. 1. Normally hyperbolic invariant manifolds 

We first give a brief description of  the invariant manifold results that we will need following the notation 
and formulation in Wiggins [63].  The general set-up is as follows. Consider a C r, r > 1 vector field on R n, 

k = f ( x ) ,  (C.1) 

with its flow denoted by dpt(x). Suppose that (C.1) has an overflowing invariant manifold, M = M 0 3M. By 

the term overflowing invariant we mean that the vector field is tangent to M and points strictly outward on aM. 
Therefore, all trajectories starting on aM leave ~Q. 

Suppose we have the following continuous splitting of  the tangent bundle of  ]1~ n restricted to M: 

TRnIM = TM • N s ® N u, 

with the associated projections 

H u : T1RnIM ~ N u, (C.2) 

H s : T ~ n I M  ----+ N s. (C.3) 

We note that N =_ N s @ N u is the normal bundle of  M. We assume that the subbundles TM • N u and TM ~3 N s 

are each invariant under D~bt for all t < 0 (i.e., overflowing invariant). Moreover, we assume that for each 

p C M Np is u-dimensional and N], is s-dimensional; therefore M is n - (s  + u)-dimensional.  
Growth rates of  vectors in these subbundles under the linearized dynamics are characterized by generalized 

Lyapunov type numbers defined as follows: 

,V(p )  = l i m s u p  [1 HUDq~_t(P)IN~ II 1/', 
t ~  

v*(p)  = l i m s u p  II Hsoq~t (f lP-t(P))IN; I[ l/t, 
t----* O~ 

o-S(p) = l i m s u p  log II Dqb-tlM(P) [I (C.4) 
, - .~  - l o g  II HsD4,, (4,-,(p))IN~ I1' 

The manifold hT/ is called normally hyperbolic if for any point p c 19/, AU(p) , l ,S(p)  < 1 and o'S(p) < 1/r  

hold. We have the following persistence theorem for normally hyperbolic invariant manifolds and their unstable 
manifolds. 
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Theorem C.1 (Fenichel [17] ) .  Suppose Jc = f ( x )  is a C r vector field on R", r > 1. Let ,Q -- M U c~M be 

a C r, compact connected manifold with boundary overflowing invariant under the vector field f ( x ) .  Suppose 

~,S(p) < 1, ,~U(p) < 1, and o-~(p) < 1 for all p E M. Then there exists a C r overflowing invariant manifold 
r 

WU()f4) containing /f/ and tangent to the embedding of  N" into ~" along )9/ with trajectories in Wu(K'/) 

approaching /f/ as t ~ -c<z. Moreover, the unstable manifold is persistent under perturbation in the sense 

that for any C r vector field fP~t(x)  O ( e )  Cl-close to f ( x ) ,  with e sufficiently small, there is a manifold 
W u ()(/p~rt) overflowing invariant under fpert(x) and C ~ diffeomorphic to W" (/9/). 

Next, we consider the existence of  foliations of  W"(/tT/) by submanifolds corresponding to initial conditions 

that approach the same trajectory on /17/ at the most rapid rate as t ---, - ~ .  First, we need to characterize 

growth rates with generalized Lyapunov type numbers. In addition to the three type numbers given above, we 

have the two additional type numbers 

e f " ( t , )  = l imsup  II D¢,IM (¢-t(P))I11/'1[ IIUD¢-t(P)IN;I II u ' ,  
f ~ O O  

oJ"(p) =l imsup II H"O¢-t (P) l~:  I1~/'11HSO&t (¢-t(P))IN/; II '/ '  (c .5)  
t ~ O O  

We have the following unstable manifold foliation theorem. 

Theorem C.2 ( Fenichel [18] ) .  Suppose J; = f ( x )  is a C r vector field on R n, r >_ 1. Let 117/ ~ MUOM be 

a C r, compact connected manifold with boundary, overflowing invariant under the vector field f ( x ) .  Suppose 

A"(p) < I, o-C"(p) < 1, and o'SU(p) < 1 for every p E /f/1. Then there exists a n - (s + u)-parameter family 

.T" = U/,EMf" (p)  of  u-dimensional surfaces f~ (p)  (with boundary),  such that the following hold: 

(1) 9 t "  is a negatively invariant family, i.e., ¢ - ,  ( f " ( p ) )  C fu (&_ , (p ) )  for any t >_ 0 and p E M. 

(2) The u-dimensional surfaces fU(p) are C ~. 
(3) f " ( p )  is tangent at p to the embedding of  N~", into R". 

(4) There exist C, ,  ,~, > 0 such that if q E fU(p) then 

II OS-,(q) - ¢ - , ( P )  I1< Cu e-a"', 

for any t>_0.  
(5) Suppose q E fU(p) and q~ E fU(pl). Then 

II & - , ( q )  - ¢ - , ( P )  II ~ 0 as t T ~ ,  
II & - t ( q ' )  - & - , ( p )  II 

unless p = pt. 

(6) f " ( p )  N fU(p, )  = ~}, unless p = p ' .  
(7) If  the hypotheses of  the unstable manifold theorem hold, i.e., if additionally pS(p) < 1 and o-S(p) < ~ for 

every p E 19/, then the u-dimensional surfaces fU(p) are C r with respect to the basepoint p. 

(8) .T" = W~oc(M). 

We note that since /9/ is overflowing invariant it only makes sense to consider the unstable manifold o f / f / .  

If  M were inflowing invariant then we would consider dynamics in the limit t ---* + ~  and the above theorems 

would be recast as stable manifold and stable manifold foliation theorems. If  M is invariant, such as would 
be the case if M were boundaryless or if the both the unperturbed and perturbed vector fields were tangent to 
the boundary, then Theorems C. 1 and C.2 can be applied to the time-reversed vector field to conclude that the 

manifold persists along with its stable and unstable manifolds with stable and unstable foliations. 
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C.2. Proof of  Theorems 7.3 and 7.4 

We now apply Theorems C.1 and C.2 to the 3-DOF system (7.1) to prove statements ( i ) - ( i i i )  of Theorem 
7.3 and statements ( i ) - ( i i i )  of Theorem 7.4. We do not construct the manifold .M~ as the perturbation of A.ZIJ~, 
but as a perturbation of the manifold of equilibria M~ of the cubic normalized Hamiltonian (4.3). We note that 
.M j is both overflowing and inflowing invariant, i.e., invariant. As a result we can consider its survival under 
perturbation without modifying the vectorfield on its boundary. Similarly, both the persistence of its stable and 
unstable manifolds can be studied directly. 

We first compute the generalized Lyapunov type numbers defined in (C.4),(C.5). We sketch the calculations 
for .At 2, the calculations for .h4~ are identical. 

Recall that the invariant manifold A//2 is given by 

. h 4 ~ -  { ( x , K , ~ )  ET~ lx ,  = . ~ ( K ) = v / K , - w 3 K 2 - d Z / a  2, x 2 = - d / a ,  ( K 2 , ¢ ' 2 ) C A } .  

Letting (82, 8/(, 8~)  denote variations in the corresponding variables, the linearization of (4.7) about .M 2 is 
given by 

8K 
8j, 

where 

= B 8K , 
8¢, 

-2aj :2(K) 4d a - a w  3 0 0 ~ 

0 2 a ~ ( K )  0 0 O0 
0 0 0 0 O0 

B = e  0 0 0 0 O 0  

0 a 0 0 O0  
0 - a w 3  0 0 0 0 

It is easy to see that -2a.~12(K) and 2a.~(K) are simple eigenvalues of B whereas 0 is a repeated eigenvalue. 
Clearly, there are four independent eigenvectors corresponding to 0 since the manifold .M 2 of fixed points 
is four-dimensional. As a result, after a linear change of coordinates the exponential of the matrix B can be 
written in the form 

e B t = ( e o ° t  O x 4 , eea°t=diag(e-e2ayc~t, ee2aYc~t). (C.6) 

Note that the matrix e Bt is a representation of the linearized flow operator Debt used in the previous subsection. 
Furthermore, since .A402 is a manifold of fixed points, for any p E .A420 we have cb- t (p)  - p .  Using these facts 
together with (C.6) gives 

[I II"Oqb-t(P)lN,/, II--[I t / s o 4  ,, (4 , - , (p ) ) lu ;  II = e-2~a~'~', [I O4'-,IM(P)11= 2, (C.7) 

where we used the usual Euclidean matrix norm. Then a direct substitution of these expressions into (C.4)-(C.5) 
shows that for fixed e > 0, 

AU(p) = AU = e -21alex/x'-a'3Kz-d2/a2 < 1, 

~,U(p) = v u =  e--2]alex/K2--a,3Kz--dZ/a2 < 1, 
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o " ( p )  = o-" = 0, 

0 "~" (p)  = 0 "c~ = e-2M ~x/K, -~,~X2-d2/a 2 < I, 

o'SU(p) = O  "su = e -41alek/K'-w3K2-dz/a2 < 1. 

Since all the type numbers computed above satisfy the conditions of Theorems C.1 and C.2 we conclude 
that for e > 0 fixed, all vectorfields sufficiently Cl-close to the truncated cubic normal form admit invariant 

manifolds and foliations with the properties described in Theorems C.1 and C.2. This, however, does not imply 

the existence of such manifolds and foliations for the full 3-DOF system (7.1). The reason is that in that 

system the perturbation is of fixed order for e > 0 fixed. In other words, in our problem the "strength" of 
the normal hyperbolicity and the size of the perturbation are not independent. This "weak hyperbolicity" is 
a general phenomenon that arises when one applies normally hyperbolic invariant manifold theory to normal 

forms. 

The problem of weak normal hyperbolicity can be dealt with as follows. We consider the following artificial 

two-parameter system: 

21 = e [ a ( K i  -- w3K2 - x~ - x 2) - 2(d  + ax2)x2] + O(~2), 

J'2 =e2xj (d + ax2) q- (.Q(~2), 
~2 = -e.w3 ( d + ax2) + (Q( g2), 

= O(@2), 

~l = I + e (d + ax2) + O(g2),  

R~ = O(g2) ,  (c .8)  

where we view e as small and fixed, and g as an independent perturbation parameter. In this way, for g 

sufficiently small, (C.8) has a normally hyperbolic invariant manifold dk4~. We want to argue that this is true 
for g < e. In order to make this conclusion we must compute the generalized Lyapunov type numbers for the 

perturbed normally hyperbolic invariant manifold .M~ and show that these type numbers satisfy the hypotheses 
of Theorems C.1 and C.2 for g <_ 8. Of course, this cannot generally be done without knowing an explicit form 

for the perturbed invariant manifold. However, an indirect argument due to Kopell [35] will suffice. 
In the proof of Theorem C.I, the perturbed manifold is constructed as the graph of a section of a C r 

transversal bundle of the unperturbed manifold. Thus, symbolically, we denote the perturbed manifold as 

AA 2 = graph Ge. 

We carry out the argument for the generalized Lyapunov type number ,~U(p). The argument for the remaining 
four type numbers is similar. Using the above notation, the perturbed generalized Lyapunov type number AU(p) 

is given by 

A ~ ( G ~ ( p ) )  = l imsup ]] H~D&-t(p)tN~.,, ]]l/t. 
f 4 0 0  

We write t = nT + r, where n E N and r C [O,T). We then have the inequalities 

II II~DdP-t(P)IN::,,, ]l l / t :  t1 H~DC-(nT+r)(P)IN",p I[ l/("T+r) 

- I I  H~DC-,7"(p)LN~.,, Ill/¢"T+r)ll H'~D¢-r(p)IN'L, ' II ~/' 

<-II llgD¢-r(P)lN:.~, II'/tr+r/'% / /~D¢-r(P)IG,, ,  II w 
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Taking the limsup of  this expression as t --~ c~z gives 

a°(G~(p) )  -<11 H'~D4)-T(P)IN L, II y r .  

The generalized Lyapunov type numbers are not typically differentiable (or even continuous) functions of  

parameters. Therefore the significance of  this inequality is that although the left hand side of  the inequality 
may not be continuous in g, the right hand side is C r-I in g. Thus we have 

au(G~(P) ) -<ll HU--oDqb-r(P)tNg=o, ,, II ~/T + O ( g )  = e -21al~x/x'-''3K2-a2/a2 + O(g) .  

Thus, for e small and fixed, it follows that for g sufficiently small we have 

/I.u(~g(p) ) < e -2lalex/K'-t°3Kz-d2/a2 + O ( g )  < e -2lalex/gI-wsK2-d2/a2 + O ( g )  < 1. 

Hence, au(G~(p)) < 1 fore_< e. 
Thus, Theorems C.l and C.2 can be applied to our setting and the statements ( i ) - ( i i i )  in Theorems 7.3 and 

7.4 are just restatements of  these results in the context of  our specific problem. 
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