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Abstract-Cyclic systems with two essential coordinates are studied. The particular case is investig- 
ated, when a steady motion of the system is neutrally stable in linear approximation due to 
gyroscopic effects on an originally unstable equilibrium. Conditions are given to ensure the 
preservation of stability for the non-linear conservative system. In addition, a universal loss of 
stability is proved as a result of non-total dissipation or acceleration acting on the system. 

INTRODUCTION 

A great number of mechanical systems are characterized by the property that they have 
some generalized coordinates which contribute only with their derivatives to the expression 
of the energy of the system, and the generalized forces corresponding to them are zero. 
Systems of this type are usually called cyclic, or Routh-systems, because the coordinates in 
question are mostly angle coordinates, and the motion can most conveniently be described 
by Routh equations [l, 23. 

The usage of Routh equations makes it possible to reduce the dimension of the phase 
space by eliminating the cyclic coordinates, which is equivalent to fixing the generalized 
momenta canonically conjugated to them [3]. In the reduced phase space a steady motion 
of the system will appear as an equilibrium. In most cases the stability of this equilibrium, 
i.e. the stability of the steady motion, is uniquely determined by the properties of the Routh 
function [ 1,2]. There exists, however, a case when the equilibrium has a “static” instability 
of even order in the absence of gyroscopic effects. In this case the energy cannot be used as 
a Lyapunov function to prove the possible stability of the equilibrium, which possesses pure 
imaginary pairs of eigenvalues in linear approximation. 

There are several works dealing with this stability problem, which is often mentioned as 
gyroscopic stabilization (e.g. [4]). A lot of instability criteria have been established (e.g. 
[4-8]), but theorems concerning stability state only the possibility of stabilization if 
gyroscopic forces are large enough [4,9]. However, since stability is always neutral in these 
cases, strictly speaking, the results mentioned are valid for the linearized systems only. 

This trend is basically due to the fact that the usual approach to gyroscopic stability, 
using Lyapunov’s Direct Method, fails to be applicable since the equilibrium is not an 
extreme point of the total mechanical energy. Moreover, it is simply not likely to find any 
proper Lyapunov functions because of the expectably sophisticated phase space structure, 
which was revealed by ‘the Kolmogorov-Arnold-Moser theory (KAM) in the 1960s 
[3,10,11]. 

Direct applications of the KAM theory to practical examples seem to be limited to given 
conservative systems (see [3, 11, 123, etc.) but, to our best knowledge, no criterion has been 
established to capture gyroscopic stability in general. 

The first goal of this paper is to give a sufficient condition for the stability of gyroscopi- 
tally stabilized steady motions. We will focus on the case when our system has two essential 
coordinates. The reason for this initial assumption is two-fold. Firstly, this is the maximum 
number of essential freedom for which Lyapunov stability can be proved by means of the 
KAM theory. Secondly, none of the known examples of possible gyroscopic stabilization 
exceeds this limit (see, e.g. [11-14]), because in practical mechanical systems it is not 
desirable to increase complexity by a construction with more than two essential coordinates. 
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The second goal of the paper is to examine the type of instability occurring under the 
effect of dissipative or accelerating forces on the gyroscopically stabilized equilibrium. The 
destabilizing effect of positive or negative total dissipative ~rturbation is known from quite 
a long time ago [9]. Here we give the same result for the case of non-total dissipation or 
acceleration, and determine the type of instability arising in systems with two essential 
coordinates. 

Finally the results are demonstrated on a mechanical system with two essential and one 
cyclic coordinate. Within the frame of the example we examine the stability of the steady 
motion of a freely rotating flexible shaft-disc system. 

1. NOTATIONS AND DEFINITIONS 

Let us consider a conservative mechanical system with n degrees-of-freedom, where 
n 2: 3. We assume that the Lagrangian of the system does not depend explicitly on n - 2 of 
the generalized coordinates, which will be called cyclic coordinates, and can be written in 
the form of a vector 

c = col(cl c2 . . , c,.m2), CQR”*~. 

The remainder of the coordinates will be called essential coordinates, and can be written in 
the vector 

q =col(q, qs), qeRZ. 

Our system can most conveniently be described by introducing the vector of generalized 
momenta canonically conjugated to the cyclic coordinates: 

where L = T - II is the Lagrangian of the system with kinetic energy T(q, &i’) and 
potential energy II(q). Since our system is conservative (holonomic, scleronomic under the 
action of time-independent potential forces), the kinetic energy takes 

T = ) ifAtfq)tj + aj’Az(q)C + ftTA3fq)h, 

where 

the form 

(1.2) 

In (1.2) A,, A2 and A, are assumed to be smooth in q, A, and A3 are non-singular. The 
potential energy II is also supposed to be smooth in q. 

Expressions (1.1) and (1.2) imply 

iZT = (p - dTAt) A;‘. (1.3) 

We can introduce the Routh function 

R(q, 4, P) = L - ~6, (1.4) 

after substituting (1.3) into L. Straightforward calculations show that the Routh function 
(1.4) can be written in the form 

R = R2 + RI - Rt,, (1.5) 

where 

Rt = ) tj’(A, - AtA;‘&j, RI = pA;‘A:ij, R. = +pA;“pT + l-k 
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and the subscripts of R refer to the highest powers Of di (i = 1,2) in the expressions. We note 
that Re is usually called Routh potential. The Routh equations of motion are the following: 

ddR aRzO 
---- 9 
dt aq aq 

irT = (p - a’A,)A;‘, 

fi = 0. (1.6) 

In the sequel we will focus on the steady motions of system (1.6), which are defined by 

q s q” = const., e E 9 = const. (1.7) 

It is well known that q” can be determined as a function of p from the following equation: 

dR0 1 aA;’ drI 

&TP aq -pT+;5;;= 0, 

because the Routh potential has vanishing derivatives on steady motions Cl, 23. 
Fixing a value of p and linearizing (1.6) along a steady motion defined by (1.7), we are 

given a system of two equations for the essential motion: 

M&t-G;+Sij=O, +sR*, (1.8) 

whereij=q-qa,M,G,SoR * ’ *, M is positive definite symmetrical, S is symmet~cal, G is 
antisymmetrical, and 

M = (A, - A,A;‘A:)],a, S = 

d A: 
A:+pA;t-----A2 

dq 

It is well known from Cl, 4, 151, etc. that 

Case 1: If S is positive definite then the steady motion of (1.6) is stable. 
Case 2: If S is indefinite then the steady motion of (1.6) is unstable. 
Case 3: If S is negative definite then the steady motion of (1.6) may be stable. 

Case 3 is called gyroscopic stabilization, and a detailed study of this case can be found in 
[4]. According to the results, for given M and S, there exists a G for which (1.8) will possess 
two pairs of pure imaginary eigenvalues. Let us denote these eigenvalues by +ioi and 
f iw2, where o1 and o2 are called basic frequencies. If the basic frequencies are rationally 
commensurable then the solutions of (1.8) will be periodic. If, however, the basic frequencies 
are rationally independent then the solutions will be quasiperiodic, and any of them will 
constitute an everywhere dense subset of a two-dimensional invariant torus. Clearly, this 
latter case occurs with probability 1 in general. 

If we want to prove the stability of the steady motion of (1.6) in case 3, there are two basic 
steps to take. First, we have to guarantee the neutral stability of the linearized system (1.8). 
Secondly, we have to show the persistence of this stability after taking the non-linear terms 
of (1.6) into account. Naturally, the conditions for stability will depend on the fixed value of 
i” providing us the critical values of the cyclic velocities at which stability fails. 

In the next section we will make preparations to answer the question involved in the 
second step on the basis of the Normal Form theory (cf. [3, 10, 163). 

2. FOUR-DIMENSIONAL NORMAL FORM CALCULATION 

If we introduce the new variables 

0 Xj & G* = qj - qj 3 xj+2 G&+2 =:Qj+*, i== f,Z 
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system (1.6) can be rewritten in the form 

i = Nx + f(x), 

where 

(2-l) 

and f = col(0 0 fJ fs) is analytical in a neighbourhood of the origin. 
In case 3 N possesses two imaginary pairs of eigenvalues, which are assumed to be 

different to make N diagonalizable. Using a matrix T E Cz * *, which contains the eigen- 
vectors of N, we can transform system (2.1) to its eigenbasis by means of the linear 
transformation 

Z = COI(Z, 21 ~2 Z2) =T-‘~9 ZjEC, i= 1, 2, 

to obtain the equations 

ij = iWjZj + hj(Zl, Z1,Z*3 E*), i = 192, (2.2) 

where hj is a convergent power series from order two with complex coefficients. 
To make (2.2) more tractable, we transform it to its normal form (see [lo] or [16] for 

a detailed introduction to Normal Form theory). We use an analytical transformation of the 
form 

zi = Wj + @j(W,, WI, W*r W*), j = 192, 

where Qi are convergent complex series of order two. 

Lemma 2.1. Let us suppose that for arbitrary non-zero ri, r2 integers 

rlOl + r*o* # 0, 0 c lril + Ir*l 5 4. 

Then transformation (2.3) transforms system (2.2) to the following normal form: 

ij = iOjWj + kj(W,, i%l, W*, it*), i = 172, 

or 
ii = if&w, + iai,w,w*w* + ia,*w:wi + O(l(Wi iG, w* **)I’), 

\L2 = iw2w2 + ia2,w,2w2 + ia22w,iir,w2 + O((w, \?I1 w2 w2)14), 

ul,,,csR, 1, m = 1,2. 

(2.3) 

(2.4) 

(2Sa) 

(2Sb) 

Proof: Since N possesses two pairs of pure imaginary eigenvalues, (2.4) implies that the 
normal form of (2.2) (see [9] or [IO]) takes the form 

wi = iqw, + a,,w,w2G2 + a12wfW1 + O(l(w, WI w2 w2)14), 

wiyj = iw2w2 + a21wt6f2 + a22w1\?rlw2 + O(l(wi w1 w2 w2)14), 

tx[,EC, 1, m = 1,2. 

(Condition (2.4) ensures the removability of the second and third order terms of (2.2) with 
the exception of those indicated above.) 

We only have to show that the coefficients al,,, are pure imaginary, i.e. the normal form is 
general transcendental (cf. [lo]). First we show that the whole system (1.6) is invariant for 
the reversal of time. Let us reverse the time by r = -t and consider a (qr, Q,, t!,) reversal of 
some (q, tj, C) solution of (1.6). Obviously 

s(t) = ‘d--5), Q(t)= -&s,(-r). i(t)= --$.(-4, 
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so from (1.6) we have 
p,= -p = const., 

for the pt generalized momentum which is determined by the initial values of the reversed 
motion. Thus, on the basis of (1.5), R, = R holds for the reversed Routh function, which 
immediately implies the reversibility of system (1.6), since 

d d 

;I;=-ds’ 

This fact causes systems (2.1) and (2.2) to be invariant for the transformation 
r = - t, pr = - p. Then, applying the ideas of [9] for reversible systems, and making use of 
p, = - p, we obtain the statement of the lemma (cf. [9] p. 37). 

The following lemma helps to determine the coefficients of the formal power series cDi 
and ki. 

Lemma 2.2. The unknown coefficients of (2.3) and (2.5) are determined by the following 
two equations: 

iw, ( aa+ _a@ . 
wldw,-@-wl~ +4n W”aw,-W”$T( > ( aa+ _ a@ 

> 

= h’(w~ + 0’~ Grl + 5, w2 + @*, ii’, + 3) - k’(wl,wl, w2, \?1*) 

1 1 1 

- k”‘(wlt +,, ~2, G,,g - g(w,, w,, w2, iu2)g - k’“(wl, wl, w2, i~~,$, 
m m m 

(i) =(:)p (:)* (2.5) 

Proof The proof is similar to that of [lo] for the one-dimensional normal form used in 
the study of Hopf bifurcations. After differentiating (2.3) with respect to t, substituting it into 
(2.2) and comparing with (2.3), we can easily obtain equation (2.5). Then the method of 
undetermined coefficients provides the second order coefficients of 0’ as functions of the 
coefficients of h” up to order three. At the same time, the unknown coefficients of k’ can be 
gained from (2.5) as functions of the second order terms of W” (I, m = 1,2). 

On the basis of lemma 2.2 the al,,, coefficients in (2.5) have been calculated and the results 
can be found in the Appendix. 

3. SUFFICIENT CONDITION FOR STABILITY 

In this section we formulate a sufficient condition for the steady motion of (1.6) to be 
stable in Lyapunov sense with respect to essential perturbation in Case 3. 

From this point we will use the notation 

B.-C G i bijcij 
i,j=l 

for the double dot product of matrices BER”“” and CoR”““. 
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Theorem 3.1. Let us suppose that for systems (1.6) and (1.8) the following are satisfied: 

(i) S is negative definite 

(ii) - - detG> M-l..‘&!+2 

det M 

(iii) !!.%+ _M-‘..S+% 
r 

r=2,3 

(iv) det A # 0, where 

is defined by the coefficients of hP (see (2.2)) in the Appendix. 
Then the steady motion (1.7) of (1.6) is stable in Lyapunov sense. 

Proof: Simple calculations show that the characteristic equation of (1.8) has the form 

12+==tj. 

det M (3.1) 

We know that det S > 0, since S is negative definite, and det M > 0, since M is positive 
definite (det G > 0 because G is antisymmetrical and of even dimension). Applying the 
Routh-Hurwitz criterion to (3.1) we obtain that the necessary condition of stability for (1.8) 
is 

$$+M-‘**S>O, 

which is guaranteed in (ii). Furthermore, (ii) also implies (1.8) to have two pure imaginary 
pairs of eigenvalues, rf: iol and + ioz, making (1.8) stable. 

Now, we have to prove that stability holds for the non-linear system (1.6) using the basic 
theorem of the KAM theory. 

First, it requires system (1.6) to have a normal form (2.5), i.e. using lemma 2.1, o1 and o2 
are assumed to be not strongly resonant. More precisely, 

rlwl + r202 # 0 

should hold for every rl, r2 non-zero integers satisfying the inequality 

Since o1 > 0 and 0.1~ > 0, the possible resonant cases are 

01 = ro2, r = 1,2, 3. (3.2) 

Solving (3.1) with 17. = iw we get 

$!??+M-1-S 2 det S 

-det* 
(3.3) 

Substituting (3.3) into (3.2), after short calculations, we obtain 

r = 1,2, 3, 

as a non-resonance condition which holds on the basis of (ii) and (iii). 
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In addition to the non-resonance condition, according to [lo], a non-degeneracy condi- 
tion must be satisfied which requires the normal form (2.5b) to be non-degenerate in the 
sense 

but this is exactly what is assumed in (iv). 
Consequently, on the basis of the KAM theory, we have proved that the invariant tori of 

the linear system (1.8) will be preserved in majority (with some deformation) if we consider 
the whole non-linear system (1.6). Here “majority’* means that if we shrink a measurable 
Vset to the origin then the measure of initial values in V, for which the solutions run on tori 
will be tending to the measure of V. 

Our system is conservative, therefore there are three-dimensional level manifolds in the 
four-dimensional phase space which involve orbits with the same energy. As it is pointed 
out in [3], the two-dimensional preserved tori divide the three-dimensional level manifolds 
of the energy. Because of this, any solutions starting from the interior of a torus cannot 
escape from it, which completes the proof of Lyapunov stability. 

Remark 3.2. Condition (iv) for non-degeneracy in theorem 3.1 is often considered to be 
of minor importance because, apart from constructed examples, it is fulfilled with probabil- 
ity 1 for given mechanical systems. In other words, for realistic mechanical systems 
degeneracy of this kind may occur for a set of parameters which has zero measure in the 
parameter space. In addition, the basic theorem of the KAM theory is a sufficient one, and 
the lack of condition (iv) does not imply instability. 

Remark 3.3. Clearly, if (i)-(iv) in theorem 3.1 are satisfied, stability will also hold for such 
o1 and o2 values which are “almost” strongly resonant. However, the diameter of the 
domain of stability tends to zero while the ratio of o1 and o2 is tending to 1,2 or 3. 
Therefore, in cases close to internal resonances system (1.6) may produce an unstable-like 
behaviour for lack of a tangible domain of stability. 

4. HIGH AND LOW FREQUENCY LOSSES OF STABILITY 

In this section we will investigate the case when a gyroscopically stabilized system is 
exposed to the effect of dissipative or accelerating forces. The destabilizing impact of these 
perturbations is well known if the matrices corresponding to these forces are definite 

(e.g. PI). 
Now we study semi-definite dissipative or accelerated systems with two essential coordin- 

ates. In addition to this, a universal loss of stability will be shown regardless of the 
definiteness or semi-definiteness of the perturbation. 

First we deal with positive dissipation, i.e. we suppose that system (1.6) is under the effect 
of dissipative forces. We assume that the dissipative forces are of Rayleigh-type, i.e. they can 
be derived from a Rayleigh function D of the form 

D = hiTWqM, (4.1) 

where e > 0, B E R 2 ’ 2, and B is continuous in q. Moreover, B is supposed to be symmetrical 
and positive semi-definite or positive definite. 

Now equation (1.6) is modified by D to the form 

d aR dR aD ----=-- 
dt aa aq. aq' 

C ‘T = (p - tjTAz)A,-‘. 

fi = 0. (4.2) 
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After the same reduction of the phase space as in Section 1, we have the same equations 
for the equilibria of the reduced system (steady motions of the original system (1.6)). 

Linearizing (4.2) along a steady motion defined by (1.7) we are given the following system 
of linear differential equations (cf. [l, 43): 

iW; + (ii + G)i i- si = 0, (4.31 

where M, G, S and i are the same as in (t.8), R is symmetrical, either positive definite or 
positive semi-definite, and 

P = sB(q’) = EK, E > 0, 

where K is obviously of the same type as g. 
Straightforward caIculations show the characteristic equation of (4.3) to be of the form 

2’ + a3J3 + atR2 + a,E + a0 = 0, 

where 

. 
a3=M-lss& a2=&f-L**S+det~e~~G, al=!&$!, ao=det det M’ (4.41 

In (4.4) g* denotes the associate matrix of g, i.e. 

Lemma 4.1. Let us suppose that A, BE R2 ’ 2T where A # 0 is positive semi-definite or 
positive definite, and B is definite. Then 

(i) A* * - B > 0, if B is positive definite, 
(ii) A * * - B < 0, if B is negative definite. 

Proof: Let us consider first the case when B is negative definite. Then, using the 
conditions of the lemma we have 

and 
all>O, a22 20, ali t-a22 >O, 

btl < 4 b22 < 0, 

(4.5) 

(4.6) 

thus from (4.5) and (4.6) we obtain 

ad22 + a2Al < 0. (4.7) 

Using the negative definiteness of B we can write 

detB=b,,&,,-b&>O, 
implying 

t&l < x/G. 
Similar reasoning leads to 

h2l I JZG. 

Multiplying (4.8) and (4.9) we are given 

Using 

(4.8) 

(4.9) 

(4.10) 

allb22az2bll 6 asi’b22’ l a22tb11’ =$/allbz2 + a22bll/, 
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from (4.10) we get 
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(4.11) 

From (4.7) and (4.11) it follows that 

a,,bzz + a22btl - ta12b12 = A***B c 0, 

so we have proved (i). But then (ii) follows from (i) because a positive definite matrix can 
always be written as a product of a negative definite matrix and - 1. 

From this point on we assume that 

(Hl) S is negative definite in (4.3), 

(H2) 
det G 
det > -M-‘**S + 2 

According to the proof of theorem 3.1, (Hl) and (H2) imply system (4.3) has two different 
pairs of pure imaginary eigenvalues for E = 0. We assume that E > 0 is small, therefore the 
eigenvalues of (4.3) can be written in the form 

Finally, without loss of generality we can assume that 

(H4) o,(O) < ~2(0). 

Theorem 4.2. Under hypotheses (Hl)-(H4) the following are valid for the dissipative 
system (4.2) with E > 0: 

(i) the q = q” steady solution of (4.3) is unstable, 
(ii) a2 c 0 < a1, 

(iii) Iall < /a21. 

Proof. Since 

M-‘..g = &M***K =&K***M, 

and det M, det G > 0, det K 2 0, all the coefficients of (4.4) are positive with the exception of 
al (see lemma 4.1), from which (i) immediately follows on the basis of the Routh-Hurwitz 
criterion. (Note that the proof of (i) requires (Hl) and (H2) only. Actually, this result is 
known for higher dimensional systems as well (cf. e.g. [17]).) 

Using the definition of K we can write (4.4) in the form 

sZdetK +detG 

det M > 
#I2 

+edetM 
iK*--Sj_ +g=O. (4.12) 

Differentiating (4.12) with respect to s, after some ordering, we obtain 

dR K***M13 + 2.e det Ki.’ -t- K***S11 

Z=- 4detMi3 + 3&K**-MI.’ + 2(M***S + a2detK + detG)1 + eK**SV 
(4.13) 
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Taking (4.13) at E = 0+ and substituting A(0) = iw(0) # 0 and K = sK, we are given the 
expression 

dl 1 w’(O)K*a*M - K***S 

z =- a=O+ 2detM detG 
~+M-1.*S-2~2(0)’ 

(4.14) 

Using lemma 4.1 we can see that the numerator of (4.14) is always positive, thus the sign of 
(4.14) depends on the sign of its denominator. 

It is clear from (3.4) that the denominator of (4.14) could be zero only at the strong 
internal resonance w = Al = uz(0), but this is excluded by (HZ). Therefore, 

and 

where 

I I 22 z=o+ <aI :,..;+-I;_ { >O, if o<w* 

e-o+ <O, if w>o* 

**=&(-g$GJ. 

(4.15) 

It follows from (4.15) that w1 < o* < CC)~, and a2 -C 0 < al for small E, so we have proved 
(ii). But in (4.4) CI~ > 0, implying a1 + a2 c 0, which proves (iii). 

Now we examine the effect of accelerating perturbation on a gyroscopically stabilized 
system of the form (1.6). We assume that the accelerating forces can be derived from an 
acceleration potential 

D = #eB(q)q, E < 0. (4.16) 

ft follows from (4.16) that expressions (4.1)-(4.4) are still satisfied but with E < 0. 

~eore~ 4.3. Under hypotheses (Hl)-(H4) the following are valid for the accelerated 
system (4.2) with E < 0: 

(i) the q = q” steady solution of (4.3) is unstable, 
(ii) a2 > 0 > al, 

(iii) Iall < Ia21. 

Proof: The theorem is a direct consequence of theorem 4.2 because dl/ds is smooth in 
E at E = 0. 

Universal losses of stability can be seen in Fig. 1 for the dissipative and for the accelerated 
system, i.e. for positive or negative 8 respectively. 

Lfmh Afmh 

- %@) 8 )O 49 - &(O 

W,(O) - - 40) 

ReX Reh 

- 

Fig. 1. Low and high frequency loss of gyroscopic stability for system (4.2). 
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‘Imh AImh 

$0) =Qo, c >o $0) =$O> E(O 
-- 

ReX 
c 

Reh 

Fig. 2. Change of eigenvalues under perturbation at the strong internal resonance o1 = oz. 

In case of the strong internal resonance w1 = w2 (see the proof of theorem 3.1) the 
displacement of eigenvalues from the imaginary axis is described by Fig. 2 for both the 
dissipative and the accelerated system. 

It seems instructive to compare the results of theorem 4.2 and theorem 4.3. Dissipative 
forces cause a weak instability at lower frequencies, accelerating forces give rise to a 
stronger unstable behaviour at higher frequencies. 

The majority of computer simulation programs and solving algorithms are not able to 
cope with the difficulty caused by very weak instability, and stabilize the motion showing 
endless bounded oscillations in the neighbourhood of the origin. This may suggest the 
presence of an attractor close to the origin in the non-linear system. Therefore, one must be 
careful when making a conclusion about attractors, because this suspection is based on bad 
simulation data, and the local non-existence of an attracting torus is simple to show in most 
cases. The real effect of dissipation is a slow, but definite way to unstable behaviour for 
practical values of damping. 

5. AN EXAMPLE 

We would like to demonstrate the results of the previous sections on the stability problem 
of a freely rotating flexible shaft-disc system. Our goal is to investigate the stability of the 
model above the critical angular velocity. 

The physical model (cf. [13, 18-J) is described in Fig. 3, which shows the disc from the 
direction of the theoretical axis of rotation. The disc, with mass m and radius R, is fixed on 
the shaft in its point D with excentricity e between its centre of gravity S and point D. For 
i = 0, D falls in the line of the bearings, i.e. D s 0. For C # 0 the shaft is flexibly bent which 
is modelized by a spring with stiffness s between 0 and D. 

This system has two essential coordinates, q1 and q2, and one cyclic coordinate c. The 
equations of motion take the form 

miil - ma 
’ + s(q1 - ecosq2) = 0, 

mdJ 2mqlil J(P + 542) 
mq:+J ii2 + 

(w? + J12 
+ seq, sinq, = 0, 

i = P + Jiz 
mqf + J’ 

d = 0. 
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m - -3-m 

J- 

e - 

R- 

S- 

‘S - 

D- 

o- 

ll‘c13J, 

moment of inertia, 
excentricity. 
radius, 
stiffness of the shaft, 
center of gravity. 
shaft-disc intersection, 
intersection of the shaft 
and the axis of rotation, 

q, *42 .c - coordinates. 

Fig. 3. Sketch of the mechanica model. 

Introducing the critical angular velocity a = fi the steady motions of (5.1) above a are 
defined by 

0 d=w, qt 
a2e 

=-J---J* q20== (5.2) 
Linearizing the first two equations of (5.1) along (5.2) we get a linear system of the form (1.8) 
with 

0 
2mpqf2 J 

-(mqP’ + J)’ 
2mpqF’J 

h (mqf2 + 5)’ 
0 

M= 

s= 

i 

, G= 

s + p2(3md2 -J) 

(md2 + 3)' 

o 

0 - seqf 

Now we apply theorem 3.1 to system (5.1). From (i) of theorem 3.1 we get the condition 

w > ws, (5.3) 

where 

w, = a 

From condition (ii) of theorem 3.1 we obtain 

(5.4) 

It is easy to show that the validity of (5.3) implies (5.4) making (5.4) ignorable. 
From condition (iii) of theorem 3.1, after some computation and ordering, we obtain the 

non-resonance conditions 

(Sj - l)y* + 4gjy3 + (493 + (3 - gj)t)_Y2 + 22(2 - gJ)_V + +gjZ* # 0, j = 192 

with 
16 9 2e2 CO* 

$?l=:Z, gz=Tg> z=jp Y’-p--1, 

where the different values Of gj belong to the 1: 2 and 1: 3 resonances of the basic frequencies 
respectively. With the help of the sign rule of Descartes it can be shown that both internal 



Gyroscopic stability 125 

detA 

m=400 kg 
R =0.6 m 
e =3 mm 
s =8835.73 kN/m 

cx =169.10 l/s w 

us= 174.04 1 /s 

Fig. 4. The zeros of det A(o). 

Fig. 5. Stability chart for system (Fig. 3). 

resonances do occur for any choice of parameters, and the resonant angular velocities can 
be estimated as follows 

cl x 3a, c2 x 2a. (5.5) 

Finally, if we check condition (iv) of theorem 3.1 by computer we will find that for fixed 
parameters and varying CO above a det A, as a function of o, will have two zeros only (see 
Fig. 4). Hence, in accordance with remark 3.2, the degenerate angular velocities can be 
ignored. 

In the view of (5.3), (5.5) and remark 3.3 a practical stability chart for system (5.1) can be 
seen in Fig. 5. The three bands of instability in Fig. 5 are of the same saddle type, but not of 
the same origin. The band at a results from the “linear instability” of the model and has been 
detected on the basis of the linearized system with M, G and S. The other two bands are due 
to possible “non-linear instability’* on the basis of theorem 3.1. Here the instability of the 
rotor always means bounded motions in ql, tjl and cj*, but unbounded in q2, as it can be 
concluded from the expression of the total energy of the system. 

The results have been verified by computer-simulation which showed deformed invariant 
tori in the neighbourhood of the origin of the reduced system for non-critical values of 
w (see Fig. 6) 

The effect of small dissipative perturbation (viscous damping on the spring) can be seen in 
Fig. 7. Here, as it was pointed out at the end of the last section, the numerical simulation 
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Fig. 6. Projection of two deformed invariant tori with the same energy onto the coordinate space 
(4t94t. 42). (grn.,= -qlmln = 0.0018 m, 4 lmaI= -41,i. = 0.2623 m/s, q2m.x= --qzrntn = 0.9810, 

energy = 1895.56 kl.) 

Fig. 7. Stable-like motion of (5.1) in case of small dissipative perturbation (q,,,,,‘= -iI,,.= 
0.0002 m, 41~,~= -Qlmin = 0.0020 m/s, q2,,,.== -q2,,,,” = 0.0071, initial energy = 1895.56 kJ, 

k = 10 Ns/m). 

shows steady oscillations near the unstable origin. In spite of this there is no attractor round 
the origin, as it can be proved via energetical considerations. 
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APPENDIX 

Here we give the necessary normal form coefficients for system (2.1) as functions of the coefficients of the 
standard form (2.2). in which b has the form 

hP = f hJ,_z{i:z:i~, p = L2. 
,*k+lr,-z 

where j, k. 1 and m are non-negative integers. 

+ 
h’ h’ h* h’ h&,h&,, -h&,,,/i&,,l 0101 0020 - ,001 0020 

2ws -w, 
+ 
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ala = h:t,e -i 
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