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ABSTRACT

New dynamical systems techniques are used to analyze fluid particle paths in an eddy resolving, barotropic
ocean model of the Gulf Stream. Specifically, the existence of finite-time invariant manifolds associated with
transient, mesoscale events such as ring detachment and merger is proved based on computer-assisted analytic
results. These ‘‘Lagrangian’’ invariant manifolds completely organize the dynamics and mark the pathways by
which fluid parcels may be exchanged across stream. In this way, the Lagrangian flow geometry of a detaching
ring or a ring–jet interaction event, as well as the exact associated particle flux, is obtained.

The detaching ring geometry indicates that a significant amount of the fluid entrained by the ring originates
in a long thin region on the far side of the jet and that this region extends as far upstream as the western
boundary current. In the ring–stream interaction case, particle transport occurs both to and from the ring and
is concentrated in thin regions on the near side of the jet and around the perimeter of the ring.

1. Introduction

With the advent of long-lived, isopycnal floats, an
extensive observational database of Lagrangian particle
paths has become available for the Gulf Stream (Bower
and Rossby 1989; Owens 1984). The float data reveals
a complicated, three-dimensional structure to the La-
grangian dynamics of the stream. Even in the upper
layers where jet velocities and associated potential vor-
ticity gradients are the highest, individual trajectories
exhibit a large degree of fluctuation and incoherence.
The observations of Bower and Rossby (1989) and Song
et al. (1995) of the dataset indicate a considerable
amount of exchange between the central jet and the
surrounding fluid as evidenced by the large proportion
of floats (72% in Song et al.) that are expelled from the
stream in a relatively short period of time [;O(1
month)].

By coupling Lagrangian float data with available Eu-
lerian satellite observations, Song et al., following pre-
vious work by Bower and Rossby (1989), identify three
main mechanisms by which fluid particles are trans-
ferred from the stream to the surrounding fluid: ring
generation, ring–stream interaction, and meandering. Of
these, the meandering mechanism has received the most
modeling attention. Bower (1991) postulated a kine-
matic model for a jet meandering with constant phase
speed to describe the observed Lagrangian dynamics in
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the context of a simple Eulerian flow field. By adding
periodic time dependence to the meander speed, Sa-
melson (1991) arrived at a system that displays ‘‘cha-
otic’’ advection; the mixing of fluid particles can be
analyzed in terms of the geometry of intersecting stable
and unstable manifolds and lobe dynamics (see, e.g.,
MacKay et al. 1984; Rom-Kedar et al. 1990; Wiggins
1992). More recently, such dynamical systems ap-
proaches have been extended to nearly time periodic,
numerically generated vector fields such as tidally
forced flow in the Gulf of Maine (Ridderinkhof and
Loder 1994) and a dynamically consistent, quasigeo-
strophic model of a barotropic jet (Lozier et al. 1997;
Miller et al. 1997). The result is a systematic means of
quantifying the Lagrangian transport between qualita-
tively different flow regimes.

While these studies provide strong support to the be-
lief that chaotic advection plays a major role in trans-
porting fluid parcels into and out of the stream, they
concentrate on the nearly time periodic meandering
mechanism. Here we wish to investigate the Lagrangian
dynamics inherent in transient mixing events such as
the formation and detachment of cold (warm) core rings
and the interaction of already existent rings with the
stream; the other two transport mechanisms in the no-
menclature of Song et al.

Much of the previous work has been based on trans-
port ideas born out of lobe dynamics, which requires
restrictions on the flow studied. First, lobe dynamics
requires the infinite-time existence of an organizing hy-
perbolic particle path that behaves like a saddle: it at-
tracts particles exponentially from a certain set (its sta-
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ble manifold) while it repels fluid particles from another
set (its unstable manifold). In contrast, the available
experimental or numerical data is clearly finite in time,
but even within that finite time the existence of hyper-
bolic behavior is usually of transient nature in. Second,
the stable and unstable manifolds of a hyperbolic tra-
jectory are assumed to intersect in infinitely many lobes.
While this condition generically holds for velocity fields
with periodic or quasiperiodic time dependence, a typ-
ical aperiodic flow field will admit only finitely many
lobes, or very often, none. Third, one has to know the
location of invariant manifolds, that is, Lagrangian
structures, in the flow field to carry out a transport study,
while real-life flows are typically defined through an
experimentally or numerically generated velocity field,
that is, Eulerian data. Such a database only yields La-
grangian structures after numerical integration, which
introduces further errors to the study of a problem that
is only approximately defined to begin with.

This paper takes a different approach and targets the
available Eulerian data directly in order to uncover the
geometry of Lagrangian mixing due to intermittent, me-
soscale events such as ring detachment, merger, and
ring–jet interaction. We seek to answer the following
questions: 1) How can one rigorously infer the existence
of intense, local Lagrangian mixing from the numerical
double gyre ocean model? 2) What is the set of fluid
particles in the stream that gets entrained into a de-
taching ring, and conversely, which ring particles are
reabsorbed into the stream during an interaction event?
3) How can one obtain computer-assisted analytic es-
timates for the life span of cross-gyre mixing and the
associated flux from purely Eulerian observations with-
out numerically integrating the velocity field?

To answer the above questions, we use recent results
from dynamical systems theory given in Haller and Poje
(1998). This theory assumes nothing special about the
time dependence of the flow, focusing instead on the
transport associated with the presence of transient stag-
nation points in the velocity field. Under a set of explicit
(Eulerian) conditions, such stagnation points induce fi-
nite-time hyperbolicity in Lagrangian particle motions.
The hyperbolicity is manifested by the existence of fi-
nite-time analogs of stable and unstable manifolds that,
in turn, identify the exact location of particles that, for
example, are eventually entrained by a detaching ring.
Once the manifold geometry is known, analytic flux
calculations and error estimates allow one to quantify
the associated mixing between the jet and the ring. The
idea of Lagrangian dynamics organized by moving or
transient, ‘‘stagnation’’ points in the Eulerian frame has
been used previously in connection with the evolution
and filamentation of quasigeostrophic vortices (e.g.,
Polvani et al. 1989; Melander et al. 1987). In the case
of jet–eddy interactions, Bell and Pratt (1992) clearly
state that a stagnation point must exist for ‘‘a significant
percentage of an eddy turnover time’’ if the eddy is to
strip fluid from the jet. The theoretical considerations

in section 2 of the present work allow one to explicitly
estimate this existence time in terms of the Eulerian
data.

In each mixing scenario, the calculation of finite-time
invariant manifolds provides a considerable computa-
tional and conceptual simplification of the Lagrangian
dynamics: One need only follow short one-dimensional
segments of initial conditions (i.e., segments of the fi-
nite-time invariant manifolds) in order to obtain qual-
itative and quantitative information on a whole two-
dimensional domain of interest. The locations of these
structures at a given time unambiguously distinguish the
regions of fluid that take part in the transport from those
that do not.

While the analytic part of this work is the first ap-
plication of finite-time mixing theory to a large nu-
merical dataset, the numerical component of our study
makes use of the tools developed by Ridderinkhof and
Loder (1994), Lozier et al. (1997), and Miller et al.
(1997) for the analysis of numerically generated vector
fields.

A brief synopsis of the relevant background is pre-
sented in section 2, where we sketch the mathematical
aspects of finite-time mixing. The numerical model and
general Eulerian setting are described in section 3. In
section 4 we study the Lagrangian dynamics of particle
entrainment into a detaching cold core ring, and similar
analysis is conducted for the case of ring–stream inter-
action in section 5. A summary of the results and dis-
cussion conclude the paper.

2. Finite time transport

In this section we describe the mathematical frame-
work for transport in two-dimensional flows developed
in Haller and Poje (1998). Here we only sketch the main
results and refer the reader to that work for details.

We are concerned with incompressible velocity fields
y(x, y, t) 5 (y 1(x, y, t), y 2(x, y, t)) of the form

]c(x, y, t)
y 5 ẋ 5 ,1 ]y

]c(x, y, t)
y 5 ẏ 5 2 , (1)2 ]x

where c denotes the streamfunction. (Incompressibility
enables us to give an easier formulation, but the results
continue to hold for weakly compressible flows.) We
are interested in transport of fluid particles in the pres-
ence of a kinematic eddy, which we define as a moving
set of closed streamlines bounded by a time-dependent,
singular streamline f t that contains a saddle-type stag-
nation point p(t) 5 (x(t), y(t)) (see Fig. 1). Such a stag-
nation point will always satisfy

=c(p(t), t) 5 0, det[D2c(p(t), t)] , 0,

where D2c denotes the Hessian matrix of second partial
derivatives of c. The first condition above simply ex-
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FIG. 1. The formation of a kinematic eddy.

FIG. 2. The geometry of a finite-time mixing event.

TABLE 1. Parameter values for the numerical model.

Coriolis parameter
f 5 f0 (1 1 by)
Wind stress
Viscosity parameter
Effective gravity
Initial upperplayer depth
Domain

Grid resolution:
Rossby deformation radius

East–west
North–south

{LD 5 (1/f)[g9H0]1/2}

f0 5 6.0 3 1025 s21

b 5 0.66 (2 3 10211 1/ms)
t0 5 0.1 N m22

n 5 175 m2 s21

g9 5 0.02 m s22

H0 5 500 m

Lx 5 2000 km
Ly 5 2000 km
Dx 5 10 km
LD ø 36–52 km

presses the fact that p(t) is a stagnation point, while the
second condition ensures that p(t) is a saddle point in
the contour plot of c(x, y, t). This definition of an
‘‘eddy’’ solely in terms of the streamfunction field and
not the vorticity may be nonstandard, but it suits our
purposes here where the Lagrangian dynamics is a func-
tion only of the Eulerian velocity.

Kinematic eddies typically exist for some finite time,
say for t ∈ [t2, t1]. The t 5 t0 slices of the two-di-
mensional surface

F 5 {(x, y, t0) | (x, y) ∈ , t0 ∈ [t2, t1]}f t0

serve as instantaneous boundaries for the kinematic
eddy. (We recall that f t labels the streamline containing
the stagnation point at time t.) For this reason we call
the set F the kinematic eddy boundary (see Fig. 2).

Inspired by dynamical systems theory, we expect that
under certain conditions the hyperbolic nature of the
Eulerian stagnation point p(t) induces hyperbolicity in
the corresponding Lagrangian particle dynamics.
Roughly speaking, this would mean the existence of a
fluid particle motion G(t) 5 (Gx(t), Gy(t)), which behaves
like a saddle: it attracts a set Ws(G) of initial conditions
exponentially and repels another set Wu(G) of initial
conditions exponentially. These sets would then act as
two-dimensional dividing surfaces in the extended
phase space (x, y, t), and could be used to study transport
in the fluid, as described below. Such sets, Ws(G) and
Wu(G), are called finite-time stable and unstable man-
ifolds, respectively. They differ from the usual stable

and unstable manifolds used in earlier mixing theories
in that their definition is not based on infinite time in-
formation about particles (see Haller and Poje 1998).

Physically speaking, the above correlation between
Eulerian observations (i.e., stream function plots) and
Lagrangian dynamics can only be expected to occur if
the time dependence of the velocity field (1) is not too
fast. This requirement will impose bounds on the max-
imal velocity

m 5 max |ṗ(t)| (2)
2 1t∈[t ,t ]

of the stagnation point, as well as on its speed of rotation,
which can be characterized by the rate of change of the
eigenvalues and eigenvectors of the Jacobian matrix

J(t) 5 =y(p(t), t).

In particular, let l(t) . 0 and 2l(t) , 0 denote the
eigenvalues of J(t), and let us define the quantities

l 5 max l(t), l 5 min l(t),max min
2 1 2 1t∈[t ,t ] t∈[t ,t ]

l9 [ max |l̇(t)|. (3)max
2 1t∈[t ,t ]

We also introduce the two-by-two matrix T(t) with
det T(t) 5 1, whose columns are eigenvectors of equal
length corresponding to 2l(t) and l(t), respectively. We
then define the constants
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FIG. 3. Topology of the double-gyre circulation. Contours of the
instantaneous layer depth h(x, y, t) sometime during year 5 of the
simulation. Depths less than 500 m are shown dashed.

FIG. 4. Layer depths in the subdomain at four different times during the formation of a cold core ring. Contour information in the text.
(a) t 5 10 days, (b) t 5 30 days, (c) t 5 50 days, and (d) t 5 70 days.

C 5 max \T(t)\ 5 1/Ï|sinb(t)|,T
2 1t∈[t ,t ]

d
C9 5 max T(t) , (4)T ( (2 1 dtt∈[t ,t ]

where b(t) denotes the time-dependent angle enclosed
by the eigenvectors.

Physically speaking, the quantities introduced in (2)–
(4) measure the rate of streamline deformation near the
stagnation point p(t). More concretely, CT is the max-
imal angle between the incoming and outgoing direc-
tions associated with the saddle-type stagnation point
p(t), while measures the maximal rate at which thisC9T
angle changes. There is a need for these quantities in
our theory since the speed bound m by itself is not a
sufficient measure of the deformation speed of the
streamline structure. Indeed, even with p(t) completely
fixed in time, the streamline containing p(t) can deform
substantially over short timescales.

Hyperbolicity in the Lagrangian dynamics turns out
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FIG. 5. The location of the frozen time stagnation point, p(t), and
the the strength of the hyperbolicity, l(t), for the detaching cold core
ring.

FIG. 7. Trajectories of three different Lagrangian particles released in
the stream on day 10. Circles mark positions at two day intervals.

FIG. 8. Invariant manifolds of the cold core ring at t 5 10 days
(top) and t 5 20 days (bottom). Stable manifold W s solid; unstable
manifold W u dashed.

FIG. 6. Inverse timescales of the hyperbolicity and the rate of
change of hyperbolicity for the cold core eddy during detachment.
l2(t): open circles; 1 . . . : plus signs.l̇(t)

to depend on the nonlinear part of the velocity field as
well. To characterize the strength of the nonlinearity
near p(t), we consider a small, moving disk of fixed
radius Cz centered at the point p(t) that does not contain
stagnation points other than p(t). This disk moves to-
gether with the stagnation point for times t ∈ [t2, t1],
and one can compute numerical bounds on the nonlinear
terms of the velocity field y within the disk. In particular,
we will use the quantities

1
2C 5 max max \D y (z 1 p(t), t)\ (5)F

2 1 2t∈[t ,t ] |z |#Cz

with \D2y\ denoting the Euclidean norm of the three-
tensor obtained by differentiating =y , and

L 5 max max max |=y (z 1 p(t), t) 2 =y (p(t), t)|.F i i
2 1i t∈[t ,t ] |z |#Cz

Note that both CF and LF are scalar constants computed
through maximization over the moving disk of radius
Cz. They both measure the maximal strength of nonlin-
ear velocity components near p(t). Finally, for conve-
nience, we define the number

C 5 max(CFCz, LF),

for use in our later formulas.
As shown in Haller and Poje (1998), if the relations

2 2l . l9 1 2C l (C C 1 C9) ,min max T min T T (6)
| |]}}}}}}}}}}}}}}}}

22 3l 2 l9 1 C C [1 2 C C C ] min max T z T z Fm , 2 C9 3 min , T 2[ ] 22C l 4C C l 2 l9T min T F min max 2 C9T[ ]2C l T min

| |}}}}}}}}}}}}}}}}}}}}}}}}}

(7)
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FIG. 9. Invariant manifolds of the cold core ring at t 5 35 days
(top) and t 5 48 days (bottom). Stable manifold W s solid; unstable
manifold W u dashed.

are satisfied, then there exists a hyperbolic fluid particle
motion G(t) with the properties described above. In par-
ticular, it admits finite-time stable and unstable mani-
folds Ws(G) and Wu(G), which are exponentially unique
in the length of the time interval [t2, t1] (see Fig. 2 for
geometry). This means that any two stable manifolds
to G are tangent to each other along G. Furthermore,
within a tube of radius Cz around G in the (x, y, t) space,
any two stable manifolds are of order

1t

exp 2 [2l(t) 2O (m, C )]E z1 2
2t

close, where the quantity O(m, Cz) tends to zero as m
or Cz tends to zero. In other words, for longer Eulerian
observations, we obtain exponentially more unique sta-
ble and unstable manifolds. This means that Ws(G) and
Wu(G) can be found numerically with high accuracy.

The finite-time stable and unstable manifolds of G
separate regions of different dynamical behavior in the
flow generated by (1). We are interested in the case
where they separate a bounded set from the rest of the
phase space. In that case, inside the bounded set we
see swirling motion, while outside the set the motion
is translational. We will call such a bounded subset of
the (x, y, t) space a dynamic eddy. The boundary of the
dynamic eddy is defined as the union of pieces of W s(G)
and W s(G) with a ‘‘gate’’ surface through which initial
conditions are exchanged. More precisely, let N( p) be
a plane that intersects the manifolds W s(G) and W s(G)
transversely as shown in Fig. 2. We define the ‘‘gate
surface’’ G as set of points on N( p) that lie between
W s(G) and W u(G), that is, between the two curves gu

and g s . (Note that gu and gs may intersect, in which
case the surface G locally shrinks to a point at the time
of intersection.) We consider the surface S u , W u(G)
bounded by the curves G and gu , and the surface S s ,
W s(G) bounded by G and gs . We then define the dy-
namic eddy as the interior of the cylindrical surface

B 5 Su < G < Ss.

It is clearly of interest to determine the flux, flux(t), of
initial conditions through the dynamic eddy boundary
B in order to describe the transport of fluid particles
between the eddy and its environment. This flux turns
out to be independent of the particular choice of N(u),
and obeys the estimate

2 2A(t) 2 A(t ) L(t) 1 L(t ) l Cmin B L DT1flux(t) 2 # 2 1 L DT e ,22 2 2) ) [ ]t 2 t t 2 t l 2 C l 2 l9 (8)min A min max
| |}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

as was shown in Haller and Poje (1998). Here A(t) is
the area of the t 5 const slice of the kinematic eddy
(see Fig. 2); L(t) is the arclength of the boundary of
A(t); the constants DT, L1, and L2 are defined as

L(t )0DT 5 max max ,
2 1 |=c(z, t )|t ∈[t ,t ] |z2p(t )|$C ,p∈f 00 0 z t0

L 5 2 max max max |=y (z, t)|,1 i
2 1i t∈[t ,t ] |z2p(t)|#Cz

L 5 2 max max max |] y (z, t)|,2 t i
2 1i t∈[t ,t ] |z2p(t)|#Cz

where z 5 (x, y) and CA, CB are small constants de-
pending on the shape of the kinematic eddy boundary.

In most oceanographic applications, the right-hand side
of Eq. (8) is small, hence the flux can be well approx-
imated by the difference of the kinematic eddy areas at
the beginning and at the end of the observation.

3. Numerical model

The double-gyre configuration has become a stan-
dard test bed for a number of oceanographic mixing
studies (e.g., Figueroa and Olson 1994; Bower and
Lozier 1994; Lozier and Riser 1989). Here we use the
velocity fields given by a reduced gravity, single layer
primitive equation numerical model (see Poje et al.
1996 for details).
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FIG. 10. Local stable manifold and mixing channel (shaded) su-
perimposed on three particle trajectories. The stable manifold cor-
responds to day 10, the launch date for the particles.

Briefly, the shallow water equations,

]u ]u ]u ]h
u 21 u 1 y 2 f (1 1 by)y 5 2g9 1 F 1 n¹ u0]t ]x ]y ]x

]y ]y ]y ]h
y 21 u 1 y 1 f (1 1 by)u 5 2g9 1 F 1 n¹ y0]t ]x ]y ]y

]h ](uh) ](yh)
1 1 5 0,

]t ]x ]y

are solved on a regular grid using second-order finite
difference methods. Further, Fx,y is the imposed wind
stress on the top of the layer and the effects of smaller-
scale motions have been subsumed in the Laplacian dif-
fusion terms with ‘‘eddy viscosity’’ coefficient n; g9 is
the reduced gravity, the normal gravitational accelera-
tion weighted by the density difference between the ac-
tive upper layer and the quiescent lower layer Dr/r. No
slip boundary conditions are imposed on the velocities
at the side walls. The double gyre is set up by imposing
a wind stress (Fu, F y ) given by

t 0uF 5 sin(2py/L )yrH0

and F y 5 0. The rest of the parameters in the model
are chosen as ‘‘typical’’; see Table 1.

The grid resolution is chosen to adequately resolve
spatial features of the flow on scales comparable to the
Rossby deformation radius. The total integration time
is approximately 10 years. After the initial spinup pe-
riod, the velocity field was archived twice per simulation
day.

The general topology of the double gyre is shown in
Fig. 3. The cyclonic subpolar gyre in the north meets
the anticyclonic subtropical gyre along the western
boundary of the domain. The interaction of the two leads
to the formation of a strong, free jet flowing eastward

in the center of the domain. This jet is barotropically
unstable, resulting in violent meanders of the current
about the basin centerline. These meanders intermit-
tently roll up, pinching off cyclonic (anticyclonic) rings
or eddies north (south) of the jet. Two such anticyclonic,
‘‘warm core’’ rings are present in the figure. The larger
eddies generated by the model have time and length
scales comparable to typical Gulf Stream rings; ring
radius lr ø 100 km and life time, from meander pinch
off to reentrainment in the western boundary current,
on the order of 100–200 days (Richardson 1983).

Note that the reduced gravity shallow-water model
used does not produce a strictly divergence-free velocity
field. However, the deviations from exact area preserv-
ing flow scale with the size of the ageostrophic com-
ponent of the velocity field, which is O(Ro). For the
flows considered here, the Rossby number, Ro 5 U/Lf,
is small, and the results of section 2 are carried over
directly. In each of the following calculations, the dif-
ference between the magnitude of the positive and neg-
ative eigenvalues of the stagnation point was found to
be less than 1%.

4. Ring detachment

a. Eulerian field

Figures 4a–d show contours of the transport stream-
function in a 1500 km by 1500 km subset of the com-
plete domain at days 95, 110, 140, and 155, respectively;
day 0 is chosen at some convenient time during the fifth
year of the simulation, well after the initial spinup phase.
The subdomain was chosen to isolate the energetic cen-
tral jet region where eddy shedding takes place.

The stream is loosely defined as locations where the
instantaneous depth lies in the range 450 m # h # 550
m. Shallow fluid on the northern side of the jet centerline
is contoured dark (450 m # h # 500 m) while deeper
fluid (450 m # h # 500 m) to the south is contoured
in lighter shades. Only those regions where the depth
lies between 450 and 550 m are contoured. For ease of
notation and to allow qualitative comparisons with Gulf
Stream observations, shallow fluid north of the jet is
considered cold, while deep, southern fluid is warm.

The times series of depth contours shows the birth of
a cold core ring from an extreme southwestern meander
of the jet near (x, y) ; (800 km, 800 km). Also evident
in the plots is the formation of a warm core ring from
an extreme northerly meander immediately downstream
of the first ring. The entire series from the birth of a
frozen time saddle point at the northern edge of the
meander loop (Fig. 4a) until the completion of pinch
off (Fig. 4d) takes approximately 60 days of simulation
time.

b. Existence of the hyperbolic trajectory

The Eulerian time slices provide the data necessary
for determining the existence of a controlling hyperbolic
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FIG. 11. Geometry of the dynamic eddy boundary used in flux calculation.
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FIG. 12. Particle flux calculated from the dynamic Lagrangian and
kinematic, Eulerian eddy areas. Eulerian calculation marked with 1;
Lagrangian with V. Flux given in Sverdrup units (1 Sv 5 106 m3 s21).

trajectory in the Lagrangian particle dynamics. The lo-
cation and the eigenvalues of the stagnation point were
computed at two-day intervals over a 100-day time pe-
riod. The results are shown in Fig. 5. The fixed point
is born, the eigenvalues of the linearization grow in time
to a maximum at approximately t 5 70 days and then
decay as the newly formed ring moves westward away
from the jet core. Note that a stagnation point exists in
the fixed time slices whenever there is an identifiable
ring structure. Kinematically, some location must exist
between the jet and the center of the ring where the
velocity vector is zero. While this hyperbolic region
exists in individual Eulerian snapshots, it is not expected
to heavily impact on the Lagrangian dynamics if the
conditions of section 2 are not met.

The estimates in Eq. (6) for the minimum allowable
eigenvector and maximum allowable speed of the fixed
point p(t) depend upon two derivative measures of ve-
locity field in local neighborhood of fixed point. The
10-km grid resolution of the numerical scheme leads to
a choice of Cz 5 40 km, thus maximization over |z| ,
Cz corresponds to maximization of the numerical fields
on the 8 3 8 matrix of values centered on the grid box
containing p(t). In this way, Lf and Cf are computed to
be

1
21L ù 0.015 day , C ù 0.002 .f f day km

The eigenvectors associated with p(t) were computed at
5-day intervals and normalized so that the matrix of
eigenvectors has a determinant of one. The maximum
values of the matrix norm of T and its time derivative
are given by

CT 5 1.06, 5 0.0015 day21.C9T

Figure 6 shows the time series of the square of the
eigenvalues of p(t) along with a numerical estimate of

the right-hand side of the of Eq. (6). The plot shows
that l2(t) is greater than the quantity 1l9max

2CTlmin( C 1 ) for almost all times in the interval2C C9T T

10 , t , 100 days. For the period of time 35 , t ,
100 days, after the initial formation of the ring and
during the slow west-southwestward drift of the struc-
ture, the inequality is well satisfied. In other words, the
timescale of the hyperbolicity is fast compared with the
timescale of changes in the hyperbolicity. The second
estimate concerning the speed of the fixed point, m 5
max[ṗ(t)] is also satisfied, but on a slightly restricted
time frame. Using lmin and for 40 , t , 80 days,l9max

Eq. (7) gives m , 6 km day21. From Fig. 5, the fixed
point moves westward at speeds less than 3.5 km day21

during this time period.

c. Lagrangian dynamics

In two-dimensional flow the position of a Lagrangian
particles is given by

ẋ 5 u(x, y, t) ẏ 5 y (x, y, t), (9)

where u(x, y, t) and y(x, y, t) are, respectively, the Eu-
lerian east–west and north–south velocity fields given
by solutions of the shallow water equations. As nu-
merical solutions, the Eulerian fields are known only at
discrete spatial and temporal points, and thus must be
interpolated in order to solve Eq. (9). The numerical
techniques for doing this are described fully in Miller
et al. 1997.

Three representative solutions to Eq. (9) are shown
in Fig. 7. The particles were initialized in the stream on
day 10 at x 5 450 km and y 5 940, 970, and 1000 km,
respectively. Although separated by relatively small
cross-stream distances, the three trajectories are mark-
edly different. The northernmost particle follows the
stream before slowing considerably in the region near
the detaching ring and eventually meandering to the
north. After approximately 24 days the particle released
at y 5 970 km is fully entrained in the ring, executing
several revolutions in the 100 days plotted. The south-
ernmost particle passes south of the detaching cold core
ring, slowing near the hyperbolic trajectory.

d. Lagrangian invariant manifolds

In order to locate the sets of initial conditions that
are eventually entrained into the detaching ring and to
examine the geometry of the transient mixing event, the
finite-time manifolds associated with the hyperbolic
point are constructed numerically. This is accomplished
by tracking the location of small line segments initially
aligned with the directions of the stable (compressing)
and unstable (stretching) eigenvectors of the fixed time,
Eulerian saddle point.

The numerical approximation to Wu, the unstable
manifold, is found by initializing a short line segment
on the unstable eigendirection at time ti 5 10 days. This
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FIG. 13. Mixing regions and depth contours for the detaching ring at days 10 and 60. The location of the
500-m depth line is shown in bold.
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FIG. 14. Mixing of a circular set of initial conditions. Marked particles are shown shaded, lines indicate computed
manifolds: (a) t 5 10 days, (b) t 5 20 days, (c) t 5 35 days, and (d) t 5 50 days.

segment is then integrated forward under the flow (see
Figs. 8 and 9). Due to the near exponential stretching
in the vicinity of the hyperbolic point, the short initial
segment rapidly grows. Compression in the transverse,
stable direction ensures that small errors in the align-
ment of the initial segment decay rapidly.

Calculation of Ws, the stable manifold, is done in a
similar manner. Starting at time ti 5 70 days, a line
segment is initialized along the stable eigendirection of
the Eulerian stagnation point. This set is then evolved
backward in time under the flow to produce the stable
manifold.

Figures 8 and 9 show the numerically generated man-
ifolds at times t 5 10, 20, 35, and 45 days: the unstable
manifold increasing in length as time progresses for-
ward and the stable set growing in backward time.

The manifolds are invariant under the flow; in other
words, particles initially in these sets remain in the sets.
In the extended phase space (x, y, t), the manifolds
sweep out two-dimensional surfaces dividing the phase
space volume into distinct regions (see Fig. 2). Due to
the uniqueness of solutions, fluid particles cannot cross
the extended manifolds; hence they act as barriers to
particle motion. In particular, the elongated mixing
channel enclosed between the two branches of the stable

manifold separates the set of initial conditions that ul-
timately find their way into the eddy from those that do
not.

Due to the fast particle speeds in the stream, the hy-
perbolic nature of the detaching eddy has a significant
nonlocal effect. The extreme length of the mixing chan-
nel implies that the eddy entrains a significant amount
of fluid from far downstream in the jet itself, not simply
from the surrounding water mass. In Fig. 10 the com-
puted stable manifold at day 10 is superimposed on the
three individual particle trajectories computed in Fig. 7.
Only the fluid particle initially launched within the mix-
ing channel is entrained in the recirculating eddy. The
thinness of the channel explains the sensitive depen-
dence of the particle trajectories on initial cross-stream
position.

e. Particle flux and ring evolution

The dynamic Lagrangian boundary of the ring is giv-
en by the intersection of Ws(G), Wu(G) and a gate surface
G, as shown schematically in Fig. 2. While Eulerian
observations of the size of the kinematic eddy lead to
estimates of scalar flux, the Lagrangian evolution of the
dynamic eddy boundary and the gate surface indicates
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FIG. 15. Evolution of initial conditions lying within the mixing channel. Marked particles are shaded, lines indicate
computed manifolds. (a) t 5 10 days, (b) t 5 20 days, (c) t 5 35 days, and (d) t 5 50 days.

exactly which particles participate in the transport pro-
cess. We define two gate surfaces, given by the line y
5 850 km at different times: G2 is this line at t 5 22
days and G1 is the line at t 5 35 days. With these in
place, there are four intersection points: (q1, q2, . . .).
The two regions, RI and RII , are defined as the area
enclosed by the following boundaries:

s u]R 5 G < W (q , q ) < G < W (q , q )I 1 1 4 2 3 2

s u]R 5 G < W (q , G) < W (G, q ),II 2 4 3

where G is the hyperbolic intersection point of Ws and
Wu; the notation Ws(q1, q4) denotes the segment of the
stable manifold between the intersection points q1, q4.
The geometry for this example is shown in Fig. 11.

Neglecting changes in layer depth, the area flux of
fluid particles into the emerging ring can be obtained
directly by calculating changes in the area of the dy-
namic eddy boundary as defined above. Sample flux
calculations are shown in Fig. 12 along with estimates
of the particle flux obtained by direct observation of the
Eulerian, ‘‘kinematic’’ eddy area. Here this area is de-
fined by the homoclinic loop, the largest closed stream-
line in a particular, frozen time slice. In this example,
the fluxes computed from differences in Eulerian areas

and the actual, dynamic particle flux estimated from the
manifold geometry compare well with an average flux
of 3 Sv. The Lagrangian analysis indicates a trend to-
ward increasing particle flux into the ring during its
westward propagation.

In order to show which initial conditions are entrained
by the detaching ring over a longer time period, we
redefine the gate surfaces. At time t0 5 10 days, G2 is
the line that joins the two legs of the mixing channel
at x 5 470 km: G1 joins the stable and unstable man-
ifolds at x 5 910 km. The domain is thus split into two
closed regions RI and RII; the evolution of these two
regions is shown for a 50-day time period in Fig. 13.

During this interval the emerging ring has doubled
in size ( ø ). As shown, the outer fluid inArea AreaR RI II

the eddy at time tf originates in an elongated region
extending several hundred kilometers upstream from the
detachment point at time t0. Note that the majority of
the marked fluid particles were initialized in the sub-
polar gyre, that is, north of the 500-m depth contour
shown in bold on Fig. 13. Thus, during the 50-day time
period considered, these initial conditions were trans-
ported from the subpolar to the subtropical gyre by the
detaching ring. Also, the presence of a hyperbolic tra-
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FIG. 16. Layer depths at four different times during the interaction between a warm core ring and the jet. Depth field contours explained
in text. (a) t 5 40 days, (b) t 5 50 days, (c) t 5 60 days, and (d) t 5 80 days.

jectory leads to extremely high rates of stretching for
fluid elements entering the ring. During the time period
considered, the length of the interfacial line marking the
boundary of regions I and II has stretched to almost 20
times its initial length. The thin mixing channel ensures
that the trajectories of entrained particles pass close to
the hyperbolic trajectory, and thus area elements are
highly stretched in one direction while being com-
pressed in the other.

In general, the slow evolution of the structure leads
to an ‘‘adiabatic’’ like transport geometry (see, e.g.,
Kaper and Kovačič 1994). The mixing regions are long
and thin, the length given by the ratio of Eulerian to
Lagrangian timescales, and the thickness given by the
inverse of that ratio.

f. Mixing

To demonstrate the general organizing influence of
the finite time manifolds on the Lagrangian dynamics,

we examine the evolution of two distinct sets of initial
conditions in the jet region.

Figure 14 shows the Lagrangian evolution of an ini-
tially circular mass of fluid straddling the instantaneous
location of the jet. The set of points evolves in a com-
plicated manner: different elements recirculating north
and south of the jet, traveling eastward or becoming
trapped in the detaching rings. The small area of fluid
initially within the mixing channel will eventually be-
come part of the recirculating eddy. All other elements
of the initial area will eventually lie outside the ring.
The unstable manifold (Wu) acts as a barrier to particle
motion, producing extreme amounts of stretching in
nearby fluid.

Figure 15 shows a similarly sized region of fluid,
initialized to lie entirely within the mixing channel given
by the computed stable manifold. Each fluid particle in
this elongated region is eventually mapped into the cold
core ring. In this case, the Lagrangian dynamics are
quite tame since every element of the initial blob must,
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FIG. 17. Local Lagrangian manifolds during the eddy–jet interaction. Ws solid; W u dashed. (a) t 5 40 days, (b) t 5 50 days, (c) t 5 60
days, and (d) t 5 80 days.

due to the presence of the stable manifold channel, sim-
ply flow into the recirculating region.

5. Ring–stream interaction

Typically, eddies detached from the stream will prop-
agate westward, eventually becoming reentrained in the
western boundary current. Intermittently, such a de-
tached ring will interact with the meandering jet. In the
process, fluid is exchanged in both directions between
the eddy and the jet. The Eulerian time series of an
ring–jet interaction event is shown in Fig. 16. Here a
warm core eddy is propagating westward to the north
of the jet. The velocity induced by the ring acts to lift
the jet northward. In Fig. 16a, the two structures collide,
giving rise to a homoclinic loop in the Eulerian stream-
function plots. The eddy and jet interact for a consid-
erable period of time until eventually the eddy is com-
pletely absorbed in the stream. Here we study the ex-
change geometry during the initial encounter.

Analysis of the strength and location of the saddle-
type stagnation point in the Eulerian data indicate that
the estimates of section 2 are more easily satisfied than
they were for the detaching ring flow. The location p(t)
of the stagnation point is almost fixed in time near x 5
650, y 5 1050. The strength of the hyperbolicity varied
between l 5 0.3 day21 and l 5 0.5 day21 during the
time analyzed.

a. Lagrangian manifolds

As in the eddy shedding case above, we calculate
numerical approximations to the local Lagrangian man-
ifolds using the Eulerian snapshots as a guide. The un-
stable manifold calculation was initialized at reference
time t0 5 10 days; the stable manifold 100 days later.

The computed manifolds are shown in Fig. 17 with
enlargements shown in Figs. 18a–c. In this case, where
fluid is mixed both into and out of the ring, we find an
additional intersection point of Ws and Wu. At time t 5



AUGUST 1999 1663P O J E A N D H A L L E R

FIG. 18. (a) Enlargement of the local manifolds near the hyperbolic
point at time (a) t 5 50, (b) t 5 60, and (c) t 5 70 days. The primary
hyperbolic point is at p, secondary intersection at p1.

50 days, both branches of Ws intersect Wu near the hy-
perbolic point, p (see Fig. 18 for details). The ring area
enclosed by the loop of Ws in Fig. 18a defines the initial
conditions that will remain within the eddy. The thin
region lying inside Wu and outside of Ws (region II in
the figure) marks the set of initial conditions that will
be mixed from the eddy into the jet.

As time progresses, the second intersection point (p1
in Fig. 18b) travels clockwise along the eddy exterior.
At time t 5 60 days, there are three distinct regions
within the eddy as shown in Fig. 18b. The central core
(region I) does not take part in the mixing. Region III,
defined by the area inside the two branches of Ws, con-
sists of fluid being mixed into the eddy, while region
II, inside the two branches of Wu, consists of fluid being
returned to the jet by the eddy.

Finally, at time t 5 70 days, the secondary intersec-
tion point has moved farther along the outside of the
ring. Again particles are exchanged from the jet in re-
gion III and to the jet in region II. Note that while the
kinematic picture given by Eulerian snapshots of the
flow in the case of eddy–jet interaction is very similar
to that for the detaching ring scenario, the particle dy-
namics and mixing are quite different, and this differ-
ence is evident in the manifold geometry.

b. Mixing

The mixing of fluid from the eddy to the jet is shown
in Fig. 19. A set of initial conditions, contained com-
pletely within the Lagrangian eddy defined in Fig. 17a,
is marked in red and evolved forward under the flow.
First a thin ribbon of fluid is shed from the exterior of
the eddy, as indicated by the manifold geometry in Fig.
17. Eventually a larger mass of fluid is expelled, this
originating in the lobe area of region II (see first panel
of Fig. 17). This eddy to jet mixing channel is eventually
replaced with jet to eddy exchange as evidenced by the
lack of any further exchange between the circular mass
within the eddy and the contorted area now in the jet.

6. Discussion

In this paper we have shown how recent mathematical
results allow the application of geometric techniques to
the study of Lagrangian particle dynamics in oceanic
flows with general time dependence. If one can isolate
a saddle-type stagnation point in the Eulerian velocity
data and the structure of this point deforms slowly rel-
ative to the advective timescale of the particles, then a
corresponding hyperbolic trajectory exists in the La-
grangian dynamics. The finite-time stable and unstable
manifolds associated with this trajectory act as con-
trolling surfaces for Lagrangian mixing and transport in
the flow. The estimates given in section 2 provide an a
priori means of determining, from Eulerian velocity
data, whether or not such a controlling hyperbolic tra-
jectory exists.
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FIG. 19. Mixing from eddy to jet. Marked particles shown shaded; depth field contoured as in text for (a) t 5 40 days, (b) t 5 50 days,
(c) t 5 70 days, and (d) t 5 80 days.

The dynamical systems theory of aperiodic mixing
guarantees that the finite-time invariant manifolds de-
scribed above are numerically robust, that is, unique up
to exponentially small errors. Using these sets as tem-
plates, one can obtain a complete understanding of the
dynamical features of a two-dimensional flow based on
the integration of one-dimensional segments of initial
conditions. This requires substantially less computa-
tional power than integrating the velocity field on a two-
dimensional grid.

For the dynamically consistent, double gyre velocity
field considered here, the majority of mixing events in-
volving mesoscale coherent structures such as rings are
amenable to analysis in this way. The resulting geo-
metric picture of the Lagrangian flow field has several
notable features.

In the case of ring formation the manifold geometries,
and hence the dynamics, are dominated by the existence
of a mixing channel, formed by the two legs of the stable
manifold, through which particles are entrained into the
ring. The invariance of the manifold implies that, at any
time, only those particles contained within this channel

will be entrained into the detaching ring. As seen in
Figs. 8 and 9, the channel consists of a teardrop-shaped
area enclosed by the detaching ring and a highly elon-
gated region that exists initially on the northern side of
the jet core and extends far upstream, nearly into the
western boundary current. The detaching ring thus en-
trains not only nearby fluid but first northern and then
southern jet water from remote distances. This ‘‘strip-
ping’’ of jet fluid by the eddy or ring is very similar to
that seen in eddy–jet interactions studied by both Stern
and Flierl (1987) and Bell and Pratt (1992). Here how-
ever, the ring (vortex) is born out of the jet and is there-
fore capable of stripping fluid from both the near and
far side of the stream. The enhanced mixing of a me-
andering jet in the presence of an eddy (Dutkiewicz and
Paldor 1994) can be directly attributed to the presence
of highly elongated Lagrangian structures that map, in
the time periodic case, fluid into and out of the eddy
(Haller and Poje 1997).

The existence of a Lagrangian invariant surface that
extends far upstream of the detaching ring implies that
there is no direct intergyre particle exchange in this
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upstream region during the time period considered. The
manifold is invariant under the flow, and thus particle
trajectories may not cross it. As in both the two-layer
dynamic simulation of Bower and Lozier (1994) and
the kinematic model of Yang (1996a,b), particle trans-
port across the jet core is confined to the eastern part
of the basin where potential vorticity gradients have
weakened. In the western half, where the jet and as-
sociated potential vorticity gradients are strongest, the
manifold geometry points to a very sensitive depen-
dence of eventual particle dynamics on initial condi-
tions. The mixing channel is extremely narrow in this
region, and, as shown by the particle trajectories in Fig.
10, the jet region is filamented by particles that are
eventually mixed by the detaching ring. We note that
the presence of a warm core ring, detaching upstream
of the cold core ring studied, further filaments the jet
core due to the action of its own Lagrangian mixing
channel.

A slightly more complex geometry exists during the
interaction of a ring with the meandering jet. In this
case, the computed finite-time stable and unstable man-
ifolds intersect at two distinct points, indicating trans-
port of fluid particles in both directions between the jet
and the ring. The precise nature of the transport between
the two regions is readily analyzed by following the
secondary intersection point of Wu(G) and Ws(G). Ini-
tially, the bulk of the exchange is from the ring into the
jet. As the ring begins to propagate westward, it entrains
fluid from the jet. The mixing, in either case, is confined
to thin filaments along the exterior of the ring and the
core is unaffected.

In general, it appears that a number of hyperbolic
points exist in any eddy resolving flow such as the one
examined in this paper, and each hyperbolic point sat-
isfying the conditions of slow deformation and motion
will have associated finite-time manifolds. The dynam-
ics of Lagrangian particles are, at least for intermediate
timescales, determined completely by the geometry and
interaction of these various manifolds. An important
open question is how these individual geometric struc-
tures influence the overall statistics of the particle mo-
tion. The anisotropy of the computed mixing channels
points to anisotropy in the dispersion statistics while the
near exponential stretching associated with the mani-
folds may be responsible for observed anomalous dis-
persion rates.
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