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Abstract

Consider a structurally stable nonhyperbolic critical manifold in a nonautonomous dynamical system. Despite the lack of hyperbolicity and
slow dynamics, sharp moving spikes can develop and move along this critical manifold. An important physical example of this phenomenon is
moving separation behind a cylinder in accelerating crossflow.

Using a combination of analytic and numerical methods, we uncover the geometric structure responsible for moving spikes. This structure,
a ghost manifold, turns out to have a footprint on the critical manifold even though the two manifolds are separated by a boundary layer. We
illustrate our results on analytical and numerical examples of off-wall fluid flow separation.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Non-hyperbolic; Averaging; Wavelets; Flow separation

1. Introduction

Spike formation is a well-known phenomenon in molecular dynamics (e.g. classical water molecule [3]), neural science
(e.g., Hodgkin–Huxley model [12]), optics (e.g., nonlinear Schrödinger equation [19]) and rigid body dynamics (see [9] for various
examples). In these examples, spikes form because of the presence of two different time scales: slow evolution along an invariant
manifold, and fast instability transverse to the manifold. At the heart of spike formation are unstable manifolds emanating from
linearly unstable (hyperbolic) slow manifolds. The location of these spikes is fixed and can be determined from an analysis of the
dynamics on the slow manifold [13]. The intensity of the spike is related to the hyperbolicity of the underlying slow manifold, and
hence can be determined from linear analysis.

Some dynamical systems, however, exhibit spikes that defy the above paradigm. Specifically, there are non-autonomous systems
that exhibit spikes moving along nonhyperbolic critical manifolds (manifolds of fixed points). Both the above-mentioned slow
component on the manifold and the hyperbolic component transverse to the manifold are absent, yet robust spikes form and move
in these problems.

An important physical example is moving unsteady separation along a no-slip wall of a fluid flow. This phenomenon can
be observed experimentally by simply placing a cylinder in a two-dimensional crossflow of increasing speed [23]. The no-slip
boundary of the cylinder is a nonhyperbolic critical manifold that is robust with respect to all physical perturbations. There is
neither any slow boundary dynamics nor any linear instability along the cylinder surface, yet two material spikes emanate from
the cylinder and move towards the wake as the Reynolds number increases (see Fig. 1). Since unstable manifolds emanating from
points of a critical manifold cannot move along the critical manifold, this physical example exhibits dynamical behavior that cannot
be explained by classical invariant manifold- and singular perturbation arguments. One faces a similar puzzle in trying to interpret
smoke experiments that show moving separation points along accelerating airfoils.
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Fig. 1. Wake behind a stationary cylinder in a two dimensional time varying crossflow. Also shown are material spikes that move towards the wake as the Reynolds
number increases.

Here we show that the moving spikes in the above examples are due to the presence of ghost manifolds, i.e., nonhyperbolic
unstable manifolds that emanate from a boundary layer near the critical manifold. The boundary layer is thin, hence the misleading
perception that unstable manifolds slide on critical manifolds. Still, these ghost manifolds turn out to have a virtual footprint on the
critical manifold that can be detected, and hence the location of spike formation can be predicted from local analysis on the critical
manifold. As far as we know, this paper is the first to describe and solve this problem mathematically.

We summarize these findings in a numerically assisted analytic criterion for moving spikes that we derive using a combination
of rescaling, dynamic averaging, topological invariant techniques and wavelet analysis. Our moving spike criterion translates to a
criterion for moving unsteady separation when applied to flow around aerodynamic bodies. We illustrate the use of this criterion in
analytical and numerical examples of flow separation.

2. Motivation

Consider a dynamical system of the form

ẋ = v(x, εt, t), (1)

where x = (x, y) ∈ U ⊂ R2, v = (u, v), and ε � 1 is a nonnegative small parameter. System (1) is therefore a non-autonomous
system whose time dependence has two components, one is of O(1) and one is of O(ε) speed.

Assume that system (1) admits a smooth compact two-dimensional manifold B of fixed points that is independent of time. As an
example, one can think of an unsteady fluid flow in which particle motions satisfy Eq. (1) with v denoting the velocity field of the
fluid. In this case, any fixed no-slip boundary of the fluid is a time-independent critical manifold. By the form of (1), the fluid flow
has a slowly evolving mean component as well as faster fluctuations.

Let xb(s) = (xb(s), yb(s)) be the arclength parametrization of B with s denoting the arclength that varies on a compact set I .
The unit tangent and the outer unit normal to B will be denoted by t(s) and n(s), respectively. Then along B, we have

v(xb(s), εt, t) = 0, nT(s)∇xv(xb(s), εt, t)n(s) = 0, (2)

for all s and t . The second condition in (2) implies that the stretching rate normal to B vanishes identically along B, which holds
true for any flow that is locally incompressible along the critical manifold B.

In order to separate the two time scales in the system (1) more explicitly, we introduce the phase variable

φ = εt,

so that in extended phase space of the (x, φ) variables, system (1) becomes

ẋ = v(x, φ, t),

φ̇ = ε. (3)

In the extended phase space, B shows up as an invariant slow manifold

S = {(xb(s), φ) | s ∈ I, φ ∈ R}, (4)

with no motion in the x-direction. and uniform slow motion in the φ-direction.
To focus on the dynamics near S, we let

x(s, η) = xb(s)+ ηn(s),



A. Surana, G. Haller / Physica D 237 (2008) 1507–1529 1509

where η is the distance from S along the normal n(s). After this transformation, system (3) can be written as

ṡ = ũ(s, η, φ, t),

η̇ = ṽ(s, η, φ, t),

φ̇ = ε, (5)

where

ũ(s, η, φ, t) =
v (xb(s)+ ηn(s), φ, t) · t(s)

1 − ηκ(s)
,

ṽ(s, η, φ, t) = v (xb(s)+ ηn(s), φ, t) · n(s), (6)

with κ(s) = x ′

b(s)y
′′

b (s)− y′

b(s)x
′′

b (s) denoting the curvature of B.
In the new coordinates (s, η, φ), the slow manifold S is simply given by η = 0, and the conditions (2) are equivalent to

ũ(s, 0, φ, t) = 0, ṽ(s, 0, φ, t) = 0, ∂ηṽ(s, 0, φ, t) = 0.

Because of these conditions, we can rewrite (ũ, ṽ) as

ũ(s, η, φ, t) = η

∫ 1

0
∂ηũ(s, ηp, φ, t) dp,

ṽ(s, η, φ, t) = η2
∫ 1

0

∫ 1

0
∂2
η ṽ(s, ηpq, φ, t)p dpdq.

We introduce an additional blow-up of the normal coordinate near S by letting

η = εη̃,

where ε ≥ 0 is a small parameter. Expanding in powers of ε and η̃, we obtain the dynamical system (5) in the form

ṡ = εη̃∂ηũ(s, 0, φ, t)+ ε2η̃2
[

1
2
∂2
η ũ(s, 0, φ, t)+O(η̃ε)

]
,

˙̃η = εη̃2 1
2
∂2
η ṽ(s, 0, φ, t)+ ε2η̃3

[
1
6
∂2
η ṽ(s, 0, φ, t)+O(η̃ε)

]
,

φ̇ = ε,

(7)

which can be thought of as a normal form of the original system (1) near S in the extended phase space.

3. Set-up and assumptions

Motivated by the normal formal (7), we now consider systems of the general form

ẋ = εf(x, φ, t)+ ε2g(x, φ, t; ε),

φ̇ = ∆ε, (8)

where x = (x, z), ε ≥ 0 is a small parameter, and ∆ ∈ [0, 1] is a constant that we shall ultimately set to one to obtain results
relevant for the normal form (7) and hence for our original system (1).

The functions

f(x, φ, t) =

(
z f1(x, φ, t)

z2 f2(x, φ, t)

)
, g(x, φ, t; ε) =

(
z2

[g1(x, φ, t)+O(zε)]
z3

[g2(x, φ, t)+O(zε)]

)
, (9)

and their derivatives are assumed to be uniformly bounded in time in a neighborhood of the invariant nonhyperbolic slow manifold

S = {(x,φ) : x ∈ I, z = 0, φ ∈ R} .

We note that z =
y
ε

denotes a rescaled coordinate normal to S.
In this general setting, we further assume the function f(x, φ, t) can be decomposed into a slowly evolving mean and fluctuations

as follows:

f(x, φ, t) = f0(x, φ)+ f̃(x, φ, t), (10)
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where

lim
T →∞

1
T

∫ t0−T

t0
f̃(x, φ, τ ) dτ = 0,

lim sup
T →∈ f t y

∣∣∣∣∫ t0−T

t0
f̃(x, φ, τ ) dτ

∣∣∣∣ < ∞,

lim sup
T →∞

∣∣∣∣∫ t0−T

t0
∇x f̃(x, φ, τ ) dτ

∣∣∣∣ < ∞, (11)

for any t0. The fluctuating part f̃ can be time-periodic or irregular in time. The lack of dependence of f0 explicitly on t creates a
frequency gap between the mean and fluctuations, as is typical in turbulent fluid flows [18].

4. Ghost manifold

4.1. Invariant manifolds in the ∆ = 0 limit

We now rewrite the decomposition (10) of system (8) as

ẋ = ε[f0(x, φ)+ f̃(x, φ, t)] + ε2g(x, φ, t; ε),

φ̇ = ε∆. (12)

Therefore, up to O(ε), the mean dynamics near the slow manifold S is governed by the system

ẋ = εf0(x, φ),

φ̇ = ε∆. (13)

Taking the ∆ = 0 limit, we obtain the equivalent system

ẋ = z f 0
1 (x, z, φ),

ż = z2 f 0
2 (x, z, φ),

φ̇ = 0. (14)

Observe that the manifold S = {(x, z, φ) | z = 0} is a critical manifold (manifold of fixed points) for system (14). Localized
pulse formation can be observed in system (14) along any smooth curve C ⊂ S of the form

C = {(p (φ) , 0, φ) : φ ∈ I ⊂ R} , (15)

provided that

f 0
1 (p(φ), φ) = 0

sup
φ∈I

∂x f 0
1 (p(φ), φ) < 0,

inf
φ∈I

f 0
2 (p(φ), φ) > 0. (16)

Indeed, if we rescale time via dτ
dt = εz(t) along trajectories of system (14), then conditions (16) render the set C a hyperbolic curve

of fixed points with a two-dimensional unstable manifold W0 off the S plane, and with a two-dimensional stable manifold within
the S plane. In forward time, W0 attracts nearby trajectories in the vicinity of C, and forces them to eject from a neighborhood
of S. Passing back to the original time t , we therefore obtain a nonhyperbolic unstable manifold W0 emanating from the critical
manifold S along the curve C (see Fig. 2).

For ∆ > 0, manifolds C and W0 no longer remain invariant for system (13), in which the slow manifold S is now filled with
(x = const., z = 0) invariant lines. Because of uniform drift on these lines in the φ direction, there cannot be any other invariant
set within S that is C1-close C (unless C is itself a straight line).

Therefore, C typically has no smooth continuation for ∆ > 0. Still, numerical simulations indicate that trajectories of system (8)
will continue to be ejected from the vicinity S (see Fig. 4), forming spikes that appear to be moving along C as the phase variable
φ (and hence time) increases. As we show below, this behavior is caused by a locally invariant piece Wg

ε of the unstable manifold
W0 that survives even for ∆ = 1 in system (8), as illustrated in Fig. 3. (By local invariance of a manifold we mean that trajectories
can only leave the manifold through its boundary.)

The invariant manifold Wg
ε lies off the slow manifold S and cannot be continued down to S. We can therefore think of Wg

ε as a
locally invariant sheet that hovers over S. For this reason, we shall refer to Wg

ε as a ghost manifold.
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Fig. 2. The geometry of the manifolds S, C and W0 for ∆ = 0 under conditions (16).

Fig. 3. The geometry of the ghost manifoldWg
ε for ∆ > 0.Wg

ε is the locally invariant piece ofW∞
ε , which is the counterpart ofW0 that survies the perturbation

∆ = 1 in the modified system Eq. (17), as described in Section 4.2.

Fig. 4. Separation geometry in the extended phase space (x, y, φ) associated with the separation bubble flow for the case G(φ) = a sin(φt) and H(φ, t) =

[c + d sin(εt)] r(t) with a = 2, c = 2, d = 0, ε = 0.1, β = 4. The subplots (a)–(d) correspond to the time instants t = 5.50, t = 22.00, t = 38.50, and t = 44.00.

4.2. Existence of a ghost manifold

In order to prove the existence of a ghost manifold Wg
ε discussed above, we consider the modified version of system (12) of the

form

ẋ = ε[f0(x, φ)+ f̃(x, φ, t)] + ε2g(x, φ, t; ε), (17)

φ̇ = ε∆M(z),
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where M(z) is a C∞ bump function (see, e.g., [1]) satisfying

M(z)


= 0 z ≤

1
q

z∗

∈ (0, 1)
1
q

z∗ < z < z∗

= 1 z ≥ z∗.

(18)

The parameter z∗ > 0 and q > 1 will be chosen later, see Appendix C for details.
Note that the inclusion of the bump function in (17) makes no difference for z ≥ z∗, but freezes the dynamics in the φ direction

close to the slow manifold S. As a result, C continues to be an invariant manifold for system (17) even for ∆ > 0. We shall construct
an unstable manifold for C in the modified system (17) for ∆ = 1. We shall then argue that a subset of this unstable manifold will
play the role of the ghost manifold Wg

ε discussed above.
Applying averaging (see Appendix A), topological invariant manifold techniques as described in Appendix B and scaling

analysis, we prove in Appendix C that under appropriate conditions, W0 perturbs into a nearby unstable manifold Wg
ε for C in

the modified system (17). Specifically, we have the following result:

Theorem 1. Assume that there exists ε0 > 0 such that the conditions

f 0
1 (p(φ), φ) = 0

sup
φ∈I

∂x f 0
1 (p(φ), φ) < 0,

inf
φ∈I

f 0
2 (p(φ), φ) > 0,

inf
φ∈I

[
f 0
2 (p(φ), φ)− ∂x f 0

1 (p(φ), φ)− ε
∣∣p′(φ)

∣∣] > 0, (19)

are satisfied for all φ ∈ I = (−∞, εt0) . Then, for all ε < ε0 small enough and for z∗
=

1
√
ε
, q ≈ 1 and ∆ = 1, the modified

system (17) admits an unstable manifold W̃∞
ε emanating from the curve C.

The term f 0
2 (x, φ) − ∂x f 0

1 (x, φ) measures the rate of stretching normal to the slow manifold S. The term |p′(φ)| is the speed
at which p(φ) varies in the slow time scale. The fourth condition in (19) therefore requires that the rate of normal stretching along
p(φ) should be larger than the speed of the leading-order spike location p(φ).

Since system (17) coincides with (12) for z ≥ z∗, we obtain that a locally invariant subset of W∞
ε also exists in system (12) in

the form

Wg
ε = W∞

ε

⋂
{(x, y, t) | y ≥ y∗, t ≤ t0}, (20)

in the extended phase space (x, y, t) for the original system (3), where

y∗
= εz∗

=
√
ε

and W∞
ε is the rescaled version of W̃∞

ε .
The locally invariant manifold Wg

ε is the ghost manifold we sketched in Fig. 3. Its existence is guaranteed as long as conditions
(19) hold on all available velocity data up to a present time t0. If only finite-time velocity information is available up to t0, the
present construction of Wg

ε can be combined with the finite-time invariant manifold approach used in [10].
As we show in Appendix D, second-order averaging can be used to obtain an approximation for the slope of W∞

ε along C. The
resulting slope s(φ) of W∞

ε relative to the normal n of S satisfies

s(φ) =
F0(p(φ), φ)

f 0
2 (p(φ), φ)− ∂x f 0

1 (p(φ), φ)
, (21)

for each φ ∈ I, where

F(x, φ, t; t0) = g1(x, t)+ f1(x, φ, t)
∫ t

t0
[ f2(x, φ, τ )− f 0

2 (x, φ)]dτ + [∂x f1(x, φ, t)− f 0
2 (x, φ)]

∫ t

t0
f1(x, φ, τ )dτ. (22)

Formula (21) can be used to approximate the slope of Wg
ε as well for small enough ε.
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4.3. Dynamic averaging using wavelets

The application of Theorem 1 in Section 4.2 requires the mean component f0(x, εt) of f(x, εt, t) to be available. In applications,
this time-varying mean component is not readily available and hence must be identified numerically. We denote the operation of
extracting the mean of f(x, φ, t) by 〈 · 〉, so that

〈f〉 (x, φ) = f0(x, φ) = 〈f(x, φ, t)〉 . (23)

Since we are concerned with extraction of the temporal mean, here we shall suppress the dependence of f on spatial variables.
The simplest approach to finding it would be finite-time averaging ([18]). In this approach, the mean operator is defined as

〈 f 〉 (φ0) =
1

2Tm(t0)

∫ t0+Tm (t0)

t0−Tm (t0)
f (τ )dτ,

where Tm(t0) is an appropriate time scale depending on the current time t0 and φ0 = εt0. There is no obvious choice for the
averaging interval Tm(t0): one typically argues that Tm(t0) should be large in comparison with characteristic period of the fluctuating
quantity f̃, but small in comparison with period of the evolving mean 〈f〉 in the vicinity of current time t0. The result of this type of
mean extraction will strongly depend on the choice of Tm(t0).

More powerful mean extraction methods have been developed for the purpose of signal processing. From a signal processing
perspective, extraction of the mean of f is just the classical problem of denoising. Denoising seeks to provide a good approximation
for a signal from its noisy measurements. In our context, noise is the high-frequency oscillatory component f̃(x, φ, t)with the signal
of interest being f0(x, φ).

One of the basic approaches to denoising is the generalized Fourier series technique. In such an analysis, the underlying function
is expanded into an orthogonal series with corresponding generalized Fourier coefficients estimated from noisy data. By shrinking
or truncating these coefficients and taking an inverse Fourier transform, a smoothed approximation to the underlying function is
obtained.

For non-local basis functions (such as trigonometric functions), however, shrinking Fourier coefficients will also affect the global
shape of the reconstructed function and hence introduce unwanted artifacts. Therefore, classical Fourier-based techniques will have
serious limitations for non-stationary and inhomogeneous signals [7] arising in applications such as turbulent fluid flows.

By contrast, wavelet-based smoothing methods provide a natural and flexible approach to the estimation of the true function
from their noisy versions due to their ability to respond to local variations without allowing pathological behavior (see, e.g., [16,4,
14]). We, therefore, propose wavelet-based denoising as an effective means to implement the averaging operator (23) numerically.

Giving a self-contained introduction to wavelets is beyond the scope of this paper; we refer the reader to [7] and the references
cited therein for a description of wavelets for applications to fluid mechanics. In numerical examples considered in Section 6, we
shall use Matlab’s Wavelet Toolbox and its standard built-in denoising functions to carry out the averaging operation (23).

5. Fluid flow separation

5.1. Physical set-up

In this section we discuss the application of Theorem 1 to moving flow separation or flow attachment on a no-slip boundary of
an unsteady fluid flow. Consider a two-dimensional time-dependent velocity field v(x, t) = (u(x, t), v(x, t)) describing a fluid flow
on a two-dimensional spatial domain parameterized by the coordinates x = (x, y). Assume that v and its derivatives are uniformly
bounded in the vicinity of a no-slip boundary at y = 0, on which v satisfies

v(x, 0, t) ≡ 0

for all times. We also assume that the flow satisfies the continuity equation

ρt + ∇ · (ρv) = 0, (24)

where ρ (x, t) denotes the fluid density. More general curved boundaries can also be treated as described in Section 2.
Fluid flow separation is loosely defined as the detachment of fluid from the boundary. (Flow attachment is the opposite

phenomenon that can be thought of as flow separation in backward time.) The detachment of fluid is characterized by the formation
of a material spike that is readily observable in laboratory-and numerical experiments. Systematic studies of this spike formation
date back to the seminal work of Prandtl [21] in 1904. He showed that two-dimensional steady flows (v has no explicit time
dependence) separate from a no-slip boundary at points where the wall shear ∂yu(x, 0) vanishes and admits a negative gradient.
Similarly, at points of steady attachment, ∂yu(x, 0) vanishes and admits a positive gradient.

An extension of Prandtl’s criteria to fixed separation and attachment in unsteady two-dimensional flows was obtained recently
by [11,15]. They used invariant manifold techniques to locate time-dependent material spikes emanating from fixed locations on
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the boundary. Their main result is simple to state for incompressible flows: material spike formation takes place up to the present
time t0 at a boundary point p =

(
x p, 0

)
whenever

lim
T →∞

1
T

∫ t0−T

t0
u y(p, s) ds = 0, lim sup

T →∞

1
T

∫ t0−T

t0
uxy(p, s) ds < 0. (25)

The conditions for fixed attachment are similar, with the direction of the inequality reversed and lim sup changed to lim inf in the
second condition.

Note that the separation point p in (25) is fixed in time, thus the criterion cannot capture a moving separation. As we described in
the Introduction, however, there are important examples of flow separation that involve time-varying separation locations. In these
examples, the flow admits periodic or turbulent temporal fluctuations that are superimposed on a slower evolutionary component of
the velocity field. For instance, one may observe a moving separation location on the wing of a turning aircraft. The turning of the
plane, however fast it may feel to the human observer, still takes place on time scales that are much longer than time scales of local
turbulent fluctuations near the wing.

Moving material spikes in such flows cannot be generated by classical unstable manifolds, since any unstable manifold would
necessarily be tied to fixed points on the boundary. We now discuss how ghost manifolds can be used to locate moving unsteady
separation and attachment.

We start by assuming the presence of a slowly-varying mean component in the velocity field, which enable us to write the
equation of particle motions as

˙x = v(x, εt, t) = (u(x, εt, t), v(x, εt, t)), (26)

where 0 < ε � 1. We introduce the change of variables

y = εze
∫ t

t0
vy(x,0,ετ,τ ) dτ

, (27)

which transforms the particle motion (26) to the form (8) (cf. Kilic et al. [15] for details) with

f(x, εt, t) =

(
z A(x, 0, εt, t)
z2C(x, 0, εt, t)

)
, g(x, εt, t; ε) =

(
z2

[Ay(x, 0, εt, t)+O(zε)]
z3

[Cy(x, 0, εt, t)+O(zε)]

)
, (28)

and

A(x, z, εt, t) = e
∫ t

t0
vy(x,0,ετ,τ )dτu y(x, ze

∫ t
t0
vy(x,0,ετ,τ )dτ

, εt, t),

C(x, z, εt, t) =
1
2

e
∫ t

t0
vy(x,0,ετ,τ )dτ

vyy(x, 0, εt, t)+ O(z). (29)

We note that the conservation of mass condition (24) is crucial in obtaining the locally incompressible normal form (28).
We assume that f admits a decomposition

f(x, φ, t) = 〈f〉 (x, φ)+ f̃(x, φ, t),

in the vicinity of the z = 0 boundary, where we have used the operator notation introduced in Section 4.3. The fluctuating part of f
is assumed to satisfy

lim
T →∞

1
T

∫ t0−T

t0
f̃(x, φ, τ ) dτ = 0.

The above assumptions put us in the general framework considered in Section 4.2. In the present context, a moving point p (εt)
satisfying conditions (16) marks locations of zero shear for the mean component of v. This is therefore the location of separation
one would obtain by applying Prandtl’s steady condition to the mean component of an unsteady flow at each time instant. This
is to be contrasted with the widespread practice in the separation literature to apply Prandtl’s condition instantaneously to the full
velocity field v. We shall see in examples how the latter procedure fails to identify the location of material spike formation correctly.

Theorem 1 asserts that applying Prandtl’s criterion to the mean flow is correct as long as the motion of the Prandtl point p (εt)
obtained in this fashion is not too fast (cf. last condition in (19)). In that case, there exists a ghost manifold Wg

ε near the Prandtl
point, generating a spike that co-moves with p (εt) near the no-slip boundary y = 0. In the extended phase space of the (x, y, φ)
variables, for each φ ∈ I, we let

Wg
ε (t) = Wg

ε

⋂
{(x, y, φ) | φ = εt, t ∈ (−∞, t0)}, (30)

be the intersection of Wg
ε with the φ = const. plane. In the physical space (x, y), Wg

ε (t) is then an attracting material line that
attracts and ejects particles from the vicinity of the y = 0 boundary without having a point of attachment to that boundary. Wg

ε (t)
is therefore the center of a moving spike that can be predicted from its on-wall signature p (εt).
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5.2. Moving separation and attachment criteria

We are now spell out the moving separation and attachment criteria that are obtained by applying Theorem 1 to a mass-conserving
time-dependent velocity field satisfying the assumptions of Section 5.1

Theorem 2. Up to time t0, moving separation due to a ghost manifold exists near the point p (εt) = (p (εt) , 0) if for all
φ ∈ I = (−∞, εt0],

〈A〉 (p(φ), 0, φ) = 0, (31)

sup
φ∈I

〈Ax 〉 (p(φ), 0, φ) < 0, (32)

inf
φ∈I

〈C〉 (p(φ), 0, φ) > 0, (33)

inf
φ∈I

[
〈C〉 (p(φ), 0, φ)− 〈Ax 〉 (p(φ), 0, φ)− ε|p′(φ)|

]
> 0. (34)

The last condition (34) in the above theorem is the only one that cannot be anticipated from an instantaneous application of
Prandtl’s steady result. This last condition states that for moving separation to occur near p (εt), particles should be ejected at a
rate faster than the speed at which the separation point moves. A directly computable form of this condition can be obtained by
differentiating (31) with respect to φ, which gives

p′(φ) 〈Ax 〉 (p(φ), 0, φ)+
〈
Aφ
〉
(p(φ), 0, φ) = 0,

or, by (32),

p′(φ) = −

〈
Aφ
〉
(p(φ), 0, φ)

〈Ax 〉 (p(φ), 0, φ)
.

This enables us to rewrite (34) as

inf
φ∈I

[
〈C〉 (p(φ), 0, φ)− 〈Ax 〉 (p(φ), 0, φ)− ε

∣∣∣∣∣
〈
Aφ
〉
(p(φ), 0, φ)

〈Ax 〉 (p(φ), 0, φ)

∣∣∣∣∣
]
> 0.

From the formula (21), we conclude that the slope s(t0) of moving separation profile Wg
ε (t0) at t0 is approximately given by

s(t0) =
〈F〉 (p(εt0), 0, εt0)

〈C〉 (p(εt0), 0, εt0)− 〈Ax 〉 (p(εt0), 0, εt0)
, (35)

where

F(x, φ, t; t0) =
1
2

e
2
∫ t

t0
vy(x,0,φ,τ )dτu yy(x, φ, t)+ A(x, φ, t)

∫ t

t0
[C(x, φ, τ )− 〈C〉 (x, φ)]dτ

+ [Ax (x, φ, t)− 〈C〉 (x, φ)]
∫ t

t0
A(x, φ, τ )dτ. (36)

Applying Theorem 1 in backward time, we obtain the following attachment criterion for moving attachment in unsteady flows
satisfying the assumptions of Section 5.1.

Theorem 3. Starting from time t0, moving attachment due to a ghost manifold exists near the point p (εt) = (p (εt) , 0) if for all
φ ∈ I = [εt0,+∞),

〈A〉 (p(φ), 0, φ) = 0,

inf
φ∈I

〈Ax 〉 (p(φ), 0, φ) > 0,

sup
φ∈I

〈C〉 (p(φ), 0, φ) < 0,

sup
φ∈I

[
〈C〉 (p(φ), 0, φ)− 〈Ax 〉 (p(φ), 0, φ)− ε

∣∣∣∣∣
〈
Aφ
〉
(p(φ), 0, φ)

〈Ax 〉 (p(φ), 0, φ)

∣∣∣∣∣
]
< 0.
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The slope of moving attachment profile relative to the normal of the wall again satisfies formula (21). Note that to identify moving
attachment, Theorem 3 requires a knowledge of future velocity data, which is typically not available.

6. Examples

6.1. Separation bubble flow

In this section we revisit unsteady bubble flow studied previously in the context of fixed unsteady flow separation in [11] and [15].
The general incompressible velocity field for the bubble model is given by

u(x, y, t) = −y + 3y2
+ x2 y −

2
3

y3
+ βxyF(t),

v(x, y, t) = −xy2
−

1
2
βy2 F(t), (37)

where F(t) is any continuous function of time. Depending on the choice of F(t), we can generate periodic, quasi-periodic or
aperiodic time dependence for the velocity field.

In order to generate a flow with a time scale dichotomy, we take F(t) = G(φ)+ H(φ, t), where H(φ, t) satisfies

lim
T →∞

1
T

∫ t0

t0−T
H(φ, t)dt = 0.

For a numerical demonstration of our main results, we consider two cases:

G(φ) = a sin(φ), G(φ) = a log(φ + b).

In both cases, we select

H(t) = (c + d sin(φ))r(t),

where r(t) is a zero mean random variable with a normal distribution and unit variance. Such a time dependence models a separation
bubble with a well-defined slow mean growth, onto which substantial random oscillations are superimposed.

The velocity field (37) satisfies the hypothesis of Section 2 and can be decomposed as

v(x, t) = v0(x,φ)+ ṽ(x, φ, t),

with the components

v0(x, φ) =

−y + 3y2
+ x2 y −

2
3

y3
+ βxyG(φ)

−xy2
−

1
2
βy2G(φ)

 , ṽ(x, φ, t) = H(φ, t)

(
βxy

−
1
2
βy2

)
. (38)

With A defined in (29), the mean 〈A〉 can be identified analytically as

〈A〉 (x, 0, φ) = x2
+ βxG(φ)− 1.

Hence, the only candidate for a moving separation point is (cf. (31)–(33))

p(φ) = −
βG(φ)

2
−

√
(βG(φ))2

4
+ 1, (39)

where

〈Ax 〉 (p(φ), 0, φ) = −〈C〉 (p(φ), 0, φ) = −

√
(βG(φ))2 + 4 ≤ −2 < 0.

Furthermore, condition (34) takes the form

〈C〉 (p(φ), 0, φ)− 〈Ax 〉 (p(φ), 0, φ)− ε

∣∣∣∣∣
〈
Aφ
〉
(p(φ), 0, φ)

〈Ax 〉 (p(φ), 0, φ)

∣∣∣∣∣ = 3

√
(βG(φ))2

4
+ 1 − εβ

∣∣∣∣∣∣G
′(φ)

2
+

βG(φ)G ′(φ)√
(βG(φ))2

4 + 1

∣∣∣∣∣∣ > 0,

which is satisfied for the parameter values that we have chosen.
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Fig. 5. Blue triangles show moving separation and reattachment locations obtained from Theorem 2, while yellow circles are the instantaneous wall-shear zeros.
Also shown at the moving separation point is the linear approximation of the separation profile obtained from our slope formula. These snapshots clearly indicate
that the particle spike tends to approach and align with the predicted separation profile. Subplots (a)–(d) correspond to times t = 11.00, t = 21.80, t = 32.60, and
t = 43.40. Parameter values are the same as for the previous figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

The slope formula (35) takes the concrete form

s(φ) =
〈F〉 (φ)

3
√
((βG(φ))2 + 4)

, (40)

where

F(t, φ; t0) = 6 + 3βp(φ) [2p(φ)+ βG(φ)]
[∫ t

t0
H(φ, τ )dτ + β2 p(φ)H(t)

∫ t

t0
H(φ, τ )dτ

]
,

One has to numerically extract the slowly evolving mean of F(t, φ; t0) at t0, regarding it as a function of t and φ.
We computed the separation location function p(φ) identified (39), and drew a line of slope (40) relative to the wall normal

at each point of the curve p(φ). The resulting line bundle is the green surface in Fig. 4 that shows numerically simulated spike
formation in the extended phase space of the (x, y, φ) variables. Also shown are some past (black) and many current (red) positions
of fluid particles launched closed to the y = 0 no-slip wall.

We recall that the green surface is a visualization of W∞
ε , the unstable manifold of an auxiliary adiabatic system we used in the

proof of Theorem 1. Therefore, only an off-wall portion of W∞
ε will act as a ghost manifold that governs material spike formation.

Indeed, it is evident from Fig. 4 that particles close to the boundary (shown in black) intersect W∞
ε transversely, and hence W∞

ε

does not act as a locally invariant manifold in the immediate vicinity of the wall. Consequently, particles do not separate from the
boundary along W∞

ε but are attracted to the upper portion of W∞
ε . This upper portion is what we have referred to as the ghost

manifold Wg
ε . The ghost manifold gives an accurate prediction for the location of the red spike, which changes as the slow phase

variable φ = εt evolves in time.
Fig. 5 shows the particle paths in physical space (x, y) along with moving separation location and the linear approximation of

the separation profile. Also shown in these plots as yellow circles are instantaneous wall-shear zeros, which are often considered as
separation locations in the aerodynamics literature. As Fig. 5 shows, this practice is unjustified.

The second case we consider here is that of G(φ) = a log(φ + b), with c 6= 0 so that the ṽ depends on the slow time scale as
well. Snapshots of particle separation are shown in the Fig. 6. Again, the ghost manifold we compute correctly predicts the location
and orientation of the spike.
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Fig. 6. Same as Fig. 5, but for the case G(t) = a log(εt + b) and H(φ, t) = [c + d sin(εt)] r(t) with a = 1.5, b = 3, c = 2.25, d = 1.5, ε = 0.1, β = 4. The
subplots (a)–(d) correspond to the times t = 3.60, t = 21.60, t = 27.00, and t = 37.80.

6.2. Separation over a moving boundary

Steady flow patterns over a horizontally moving wall is a paradigm for moving separation. Indeed, if a spike forms at a fixed
spatial location, that location becomes time-varying in a frame fixed to the wall. Sears and Tellionis [24] argued that a shear-layer
develops in the vicinity of the wall that prevents one from predicting the separation location from wall-based observations.

In order to evaluate this argument, we consider an analytic model of a two-dimensional flow with a flat horizontal boundary
that moves horizontally at speed U . Using the Perry–Chong procedure [22], we have derived a polynomial velocity field that is
the solution of the Navier–Stokes equation up to fifth order in the distance from the moving wall. The velocity field is of the
form

u(x, y, t) = U + α(t)y + y2
+ β(t)x2 y + γ (t)xy2

−
1
3
β(t)y3

+ 15y4

− x3 y2
+

1
2

[
1
6
α(t)β(t)+ 1

]
xy4

+
1

30
α(t)γ (t)y5,

v(x, y, t) = −xy2β(t)−
1
3
γ (t)y3

+ x2 y3
−

1
10

[
1
6
α(t)β(t)+ 1

]
y5, (41)

with U denoting the speed of the moving boundary at y = 0, and with time-dependent parameters, α(t) < 0, β(t) > 0 and
γ (t).

We first assume that streamline patterns of flow are constant, i.e., we fix parameters α(t) = α0 < 0, β(t) = β0 > 0 and
γ (t) = γ0 in time. We show the relevant steady streamline geometries for upstream moving (U < 0) and downstream moving
(U > 0) walls in Fig. 7(a)–(c). Similar streamlines patterns were sketched by Sears and Tellionis [24], corresponding to upstream-
slipping type and downstream-slipping separation. From these figures, it appears that particles separate from the boundary due to
a saddle-type stagnation point in the interior of the flow, without any connection to on-wall flow quantities, as suggested by Sears
and Tellionis.

In order to analyze separation in the framework developed in this paper, we need to have a fixed boundary. To achieve this, we
pass to a frame co-moving with the boundary by making the change of variables

x̃ = x − Ut.
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Fig. 7. (a) Steady streamlines for downstream moving wall with U = 0.1, (b) Same for an upstream moving wall with U = −0.1 (c) Same for downstream moving
wall U = 3.1 (d) Instantaneous streamline pattern at t = 0 in the frame comoving with the wall for U = 0.1. In all cases α0 = −1, β0 = 1 and γ0 = −5.

Dropping the tilde and introducing the phase variable φ = Ut , we obtain an unsteady velocity field vs in the co-moving frame with
components

us(x, φ) = α0 y + y2
+ β0 (x + φ)2 y + γ0(x + φ)y2

−
1
3
β0 y3

+ 15y4

− (x + φ)3 y2
+

1
2

[
1
6
α0β0 + 1

]
(x + φ)y4

+
1

30
α0γ0 y5

vs(x, φ) = −(x + φ)y2β0 −
1
3
γ0 y3

+ (x + φ)2 y3
−

1
10

[
1
6
α0β0 + 1

]
y5. (42)

Fig. 7(d) shows streamlines for the transformed velocity field vs at t = 0. We observe two streamlines emanating from the wall:
this means that wall shear is zero in the moving frame at points where these streamlines leave the wall. This suggests that contrary
to the Sears–Tellionis argument, there may be on-wall signatures of moving separation near moving walls. This streamline pattern
appears at t = 0 in the co-moving frame regardless of the wall-velocity U . For later times t > 0, this streamline pattern is of
upstream-slipping type for a downstream moving wall (U > 0) and of downstream-slipping type for an upstream-moving wall
(U < 0).

For the present flow, we have no fluctuation around the mean flow, and hence we have ṽs(x, t) ≡ 0 and v0
s (x, φ) ≡ vs(x, t), with

U playing the role of ε. The zero wall shear point in the mean flow is given by

p(φ) = −δ − φ, δ =

√
−α0

β0
. (43)

The conditions of Theorem 2 are satisfied whenever

〈Ax 〉 (p(φ), 0, φ) = −2β0δ < 0,

〈C〉 (p(φ), 0, φ)− 〈Ax 〉 (p(φ), 0, φ)− ε

∣∣∣∣∣
〈
Aφ
〉
(p(φ), 0, φ)

〈Ax 〉 (p(φ), 0, φ)

∣∣∣∣∣ = 3β0δ − U > 0,
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Fig. 8. Upstream moving wall with U = −3, α0 = −1, β0 = 1, γ0 = −5, satisfying condition (44). For this flow the instantaneous wall shear zeros (computed
in the frame moving with the wall) coincide with the moving separation and reattachment location. Also shown are streamlines in blue and the separating and
reattaching streamlines in green, along with their linear approximation in blue. Subplots (a)–(d) are taken at instants t = 3.2, t = 6.4, t = 9.6, and t = 11.2. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

which hold provided that

U < 3β0δ. (44)

For U < 0 (upstream-moving wall), this last condition is always satisfied. Furthermore, by (35), the slope of the separation spike
at any time t0 is given by the constant value

s(t0) =
1 − γ0δ + δ3

3β0δ
.

Fig. 8 shows spike formation in the case of an upstream moving wall. Separation along the ghost manifold predicted by our theory
is evident. The green streamline on the right generates an attachment, as its endpoint satisfies the conditions of Theorem 3.

Fig. 9 shows separating particle paths for a downstream-moving wall when the condition (44) is satisfied. In the case U > 3β0δ,
Theorem 2 does not apply and hence we cannot predict whether or not p(φ) defined in (43) is a moving separation point.

Fig. 10 shows the case of a fast-moving wall that violates (44). Note that particles do not separate from the vicinity of the wall
despite the presence of instantaneous wall shear zeros at p(φ). Fig. 7(c) shows steady streamlines in the lab frame for this wall
speed. A weak jet-like streamline pattern is evident in agreement with the findings of Degani [5], who found similar streamline
patterns corresponding to separation inhibition.

For intermediate wall speeds satisfying condition (44), we observe a change in the scale of separation. Fig. 11 shows a small-
scale separation for wall speed U = 1.2. This underlines the fact that our separation criteria capture separation at all scales. While
this universality is an advantage, it also a limitation: we cannot differentiate between local separation and large-scale boundary
layer separation.

6.3. Slowly pulsating flow past a cylinder

In this section, we study separated flow past a stationary circular cylinder. There are two dimensionless parameters relevant to
this flow, the Reynolds number Re = 2Umr/ν and the Strouhal number St = 2r/ (Um T ), where r is the radius of cylinder, ν is the
kinematic viscosity, Um is the mean free stream velocity and T is the time period of von Kármán vortex shedding. The flow field
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Fig. 9. Downstream moving wall with U = 0.1, α0 = −1, β0 = 1, γ0 = −5,satisfying condition (44). For this flow, the instantaneous wall shear zeros coincide
with the moving separation and reattachment location. Also shown are streamlines in blue and separating and reattaching streamlines in green, along with their
linear approximation in blue.Subplots (a)–(d) correspond to t = 5.50, t = 16.50, t = 33.00, and t = 44.00. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

inherits the periodicity of vortex shedding, which itself is a function of the Reynolds number. We introduce a slow time scale in the
system by perturbing the free stream velocity U as

U (t) = Um + A sin(εt), (45)

where ε is a small parameter such that 2π/ε � T .
We solve the two-dimensional unsteady Navier–Stokes equations

∂t u + u · ∇u = −∇ p +
1

Re
∇

2u,

∇ · u = 0,

with p denoting pressure. Fig. 12 shows the computational domain and the reference frame, along with the O-type of mesh
(generated by GAMBIT) used in our simulation. We use the spatial resolution recommended for this problem by [17].

The computational domain is partially bounded by two arcs of circle (Bi , Bo), one upstream of the cylinder and the other one
downstream, both of the same radius R. There are also two horizontal segments (Bu, Bl ) connecting the arcs and containing sectors
of 10◦ span. The inclusion of these segments defines the transition region between inlet and outlet sections. For R/(2r) > 75,
the solution is known to become independent of the location of the outer computational boundary [17,20]. For this reason we use
R/(2r) = 125 in our simulation.

In the inflow section Bi , we use a Dirichlet-type boundary condition with the free stream velocity given by (45). For the outflow
boundary Bo, the diffusion flux in the direction normal to the exit surface is taken to be zero for all flow variables. On horizontal
segments Bu and Bl , zero normal velocity and zero normal gradient for all variables are prescribed. Finally, no-slip boundary
condition is imposed on the cylinder. The initial condition for the computation is an impulsive start, i.e., at t = 0 the velocity field
coincides with a potential flow past a stationary cylinder.

We used FLUENT to carry out the computation. Lift CL = L/
(

1
2ρU 2r

)
and drag CD = D/

(
1
2ρU 2r

)
coefficients (L and D

are the lift and drag forces on the cylinder) are used as indicators of the convergence of the numerical solution. We set U = 1 m/s,
r = 1 m, A = 1 m/s, ε = 0.01/s, ρ = 1 Kg/m3, and ν = 0.01 m2/s, so that Re = 200 and St ≈ 0.2. In this case, T ≈ 10 s is the
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Fig. 10. Same as Fig. 9, but with U = 3.1, so that the condition (44) is violated. Particles are released at same location as for the case of Fig. 9. As can be seen,
though there is an initial upwelling, there is no pronounced separation. Subplots correspond to t = 3.05, t = 9.15, t = 12.20, t = 15.25.

Fig. 11. Same as Fig. 9, but with U = 1.2, for which condition (44) is satisfied. Particles are released from the same location as in the case of Fig. 9. While there is
an upwelling suggesting a small-scale separation, there is no pronounced spike formation. Subplots correspond to t = 6, t = 9.0, t = 12.0, and t = 15.0.
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Fig. 12. (a) Computational domain and (b)Mesh.

Fig. 13. Time history of (a) Lift coefficient and (b) Drag coefficient.

Fig. 14. Blue crosses show separation locations obtained from Theorem 2, while black circles are instantaneous wall-shear zeros. Subplots (a)–(d) correspond to
times t = 135.275, t = 142.275, t = 145.075, and t = 151.375.

natural period of vortex shedding and 2π/ε = 200π � T . Fig. 13 shows the time history of drag and lift coefficients; the presence
of a slow time scale is evident from these plots.

In order to implement dynamic averaging numerically, we used built-in functions of Matlab’s Wavelet Toolbox. After trial and
error, we found the sym4 wavelet to be a good choice for a mother wavelet. Denoising was performed using a nonlinear multi-level
soft thresholding, with the threshold value chosen based on the universal thresholding rule by Donoho & Johnstone [6]. Further
details can be found in [8].

Numerical computation of 〈Aφ〉(p(φ), 0, φ) in the condition (34) requires further attention. Since

ε〈Aφ〉(p(φ), 0, φ) = 〈εAφ〉(p(φ), 0, φ) = 〈A〉t (x, 0, εt) |x=p(εt), (46)

the condition (34) can be numerically computed without the explicit knowledge of ε. To evaluate the time derivative, we used
finite differencing. Fig. 14 shows the predicted separation points along with particle paths. A closeup of separation as shown in
Fig. 15, indicates that separation locations (blue crosses) obtained by application of Theorem 2 are able to capture separation well
compared to instantaneous wall shear zeros (black circles). Fixed separation occurs at the top and bottom of the cylinder, while
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Fig. 15. Closeup of separation in the positive quadrant of cylinder.

moving separation is observed at the rear. Note that our moving separation criterion is also able to capture fixed separation locations,
providing an unified approach to analyze separation in 2D unsteady fluid flows.

7. Conclusion

In this paper we have identified the root cause for moving pulses near non-hyperbolic critical manifolds of two dimensional
non-autonomous dynamical systems with slow–fast time scales. We explained the existence of moving pulses by constructing a
ghost manifold that lies off the critical manifold and yet can be predicted from its footprint on the critical manifold. Based on
slowly evolving boundary layer dynamics near the critical manifold, we determined a sufficient condition for the existence of ghost
manifolds. Wavelet based denoising was proposed to extract slow mean evolution.

We also showed how ghost manifolds arise in moving unsteady fluid flow separation over no-slip boundaries. Applying the
conditions for locating ghost manifolds, we obtained a moving separation criterion, whose validity we illustrated on analytical
models and on a numerical simulation of flow past a stationary cylinder. It appears that three-dimensional extensions of the present
ghost manifold construction are possible, which should led to a characterization of moving separation in 3D unsteady fluid flows.
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Appendix A. Averaging the modified system

To prove Theorem 1, we first observe that the fluctuations embodied by f̃ in Eq. (17) can be transformed to higher-order terms
by an appropriate version of the classical method of averaging. Specifically, we seek a near-identity transformation of the form

x = ξ + εw(ξ , φ, t), ξ = (ξ, λ),

where w = (w1, w2) is a uniformly bounded function to be determined. Substitution into (17) gives

ẋ = ξ̇ + ε∇ξ wξ̇ + ε∂φwφ̇ + ε∂t w

= εf(ξ + εw, φ, t)+ ε2g(ξ + εw, φ, t; ε)+O(ε3)

= εf(ξ , φ, t)+ ε2
[g(ξ , φ, t; 0)+ ∇xf(ξ , φ, t)w] +O(ε3). (A.1)

From the transformed equation (A.1), we obtain

[I + ε∇ξ w]ξ̇ = ε[f − ∂t w] + ε2 [g(ξ , φ, t; 0)+ ∇xf(ξ , φ, t)w − ∆M(λ)∂φw
]
+O(ε3).

If ‖∇ξ w‖ remains uniformly bounded for all t ≤ t0, then for small enough ε, we can write

[I + ε∇ξ w]
−1

= I − ε∇ξ w +O(ε2), (A.2)
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from which we obtain

ξ̇ = [I + ε∇ξ w]
−1
{
ε[f − ∂t w] + ε2

[g(ξ , φ, t; 0)+ ∇xf(ξ , φ, t)w − ∆M(λ)∂φw] +O(ε3)
}
,

= ε[f − ∂t w] + ε2 [g(ξ , φ, t; 0)+ ∇xf(ξ , φ, t)w − ∆M(λ)∂φw − ∇ξ w(f − ∂t w)
]
+O(ε3).

By choosing

w(ξ , φ, t) =

(
w1(ξ , φ, t)
w2(ξ , φ, t)

)∫ t

t0
[f(ξ , φ, τ )− f0(ξ , φ)]dτ, (A.3)

we ensure uniform boundedness of w and ‖∇ξ w‖ (cf. assumption (11)), and obtain the first-order averaged form of (17) as

ξ̇ = εf0(ξ , φ)+ ε2
[F(ξ , φ, t)− ∆∂φwM(λ)] +O(ε3),

φ̇ = M(λ+ εw2) = ε∆M(λ)+O(ε2), (A.4)

where

F(ξ , φ, t) =

(
λ2 F(ξ, φ, t)
λ3G(ξ, φ, t)

)
= g(ξ , φ, t; 0)+ (∇xf)w −

(
∇ξ w

)
f0, (A.5)

with

F(ξ, φ, t) = g1(ξ, φ, t)+ [∂x f1(ξ, φ, t)− f 0
2 (ξ, φ)]ϕ + f1(ξ, φ, t)ψ − f 0

1 (ξ, φ)∂ξϕ,

G(ξ, φ, t) = g2(ξ, φ, t)+ 2[ f2(ξ, φ, t)− f 0
2 (ξ, φ)]ψ + ∂x f2(ξ, φ, t)ϕ − f 0

1 (ξ, φ)∂ξψ,

ϕ(ξ, φ, t) =

∫ t

t0
[ f1(ξ, φ, τ )− f 0

1 (ξ, φ)]dτ, ψ(ξ, φ, t) =

∫ t

t0
[ f2(ξ, φ, τ )− f 0

2 (ξ, φ)]dτ,

w(ξ , φ, t) =

(
w1
w2

)
=

(
λϕ(ξ, φ, t)
λ2ψ(ξ, φ, t)

)
.

Appendix B. The Wasewski principle

We first recall a topological result, the Wasewski principle, in its general form; we shall apply this principle below in constructing
an unstable manifold for the averaged Eq. (A.4) obtained above.

Suppose that Ω is an open set in Rn , f : Ω → Rn is continuous and the flow map φt (x0): x0 7→ x(t; x0) of

ẋ = f (x), (B.1)

depends continuously on the initial conditions x0. We denote the closure of a set A ⊂ Ω by cl(A) and define

Φ(x0, I) = {φt (x0) | t ∈ I},

where I ⊂ R. The following formulation of Wasewski principle is taken from ([2]).
Let W ⊂ Ω be any set and consider the sets

W ev
= {x ∈ W | φt (x) 6∈ W for some t > 0},

W im
= {x ∈ W | Φ(x, [0, t]) 6⊆ W,∀t > 0}.

Clearly we have W im
⊂ W ev.

The set W is called a forward-time Wasewski set if the following conditions are satisfied:

(1) If x ∈ W and Φ(x, [0, t]) ⊂ cl(W ), then Φ(x, [0, t]) ⊂ W ,
(2) W im is relatively closed in W ev , i.e., if a Cauchy sequence in W im converges to point p ∈ W ev , then we must have p ∈ W im .

Wasewski principle: If W is a Wasewski set, then W im is a strong deformation retract of W ev , and W ev is relatively open in W .
The proof of above result follows from continuity of the flow map φt (x) (see [2] for details). An important quantity introduced

in the proof is the first-exit-time map τ : W ev
→ R, defined as

τ(x) = sup{t ≥ 0 | Φ([0, t], x) ⊂ W }.

By definition of W ev , the map τ(x) takes finite values. By continuity of the flow map φt (x0), we have Φ(x, [0, τ (x)]) ⊂ cl(W ).
Thus, by property (1) of W , φτ(x)(x) ∈ W . Now from the definition of τ , we have φτ(x)(x) ∈ W im and τ(x) = 0 for x ∈ W im . This
leads to the following corollary.
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Corollary. The Wasewski map Γ : W ev
→ W im defined as

Γ (x) = φτ(x)(x), (B.2)

is continuous.

Appendix C. Unstable manifold for system (17)

The first-order averaged equation (A.4) can be written as

ξ̇ = ελ[ f 0
1 (ξ, φ)+O(ελ)] +O(ε2λ)+O(ε3λ3),

λ̇ = ελ2
[ f 0

2 (ξ, φ)+O(ελ)] +O(ε2λ2)+O(ε3λ4),

φ̇ = ε∆M(λ). (C.1)

We introduce the change of coordinates

ζ = ξ − p(φ),

with p(φ) satisfying (16), the new equations of motion become

ζ̇ = −ε∆p′(φ)M(λ)+ ελ[ζ∂x f 0
1 (p(φ), φ)+O(ελ)+O(ζ 2)] +O(ε2λ)+O(ε3λ3),

λ̇ = ελ2
[ f 0

2 (p(φ), φ)+O(ελ)+O(ζ )] +O(ε2λ2)+O(ε3λ4),

φ̇ = ε∆M(λ). (C.2)

We also define the wedge-shaped set

W = {(ζ, λ, φ) | |ζ | ≤ λ, λ ∈ [0, h(φ)], φ ∈ I}, (C.3)

along the curve C, where the φ–dependent height, h(φ), of W is yet to be chosen.
Note that W is bounded by the surfaces

S+
= {(ζ, λ, φ) | ζ = λ, λ ∈ [0, h(φ)], φ ∈ I},

S−
= {(ζ, λ, φ) | ζ = −λ, λ ∈ [0, h(φ)], φ ∈ I},

T = {(ζ, h(φ), φ) | |ζ | ≤ h(φ), φ ∈ I},

L = {(ζ, λ, φ0) | |ζ | ≤ λ, λ ∈ [0, h(φ0)]}.

We observe the following:

1. Along S±, the outer normal to W is given by nS± =
1

√
2
(±1,−1, 0) and hence on S±, the right-hand-side vm of system (C.2)

satisfies

vm
· nS±

∣∣
S± = ±ε∆p′(φ)M(λ)+ ελ2

{[∂x f 0
1 (p(φ), φ)− f 0

2 (p(φ), φ)] +O(ε)+O(λ)}.

• For z∗
≤ λ ≤ h(φ), we have

vm
· nS±

∣∣
S± = ±ε∆p′(φ)+ ελ2

[
∂x f 0

1 (p(φ), φ)− f 0
2 (p(φ), φ)

]
+O(ελ)

< ε∆
∣∣p′(φ)

∣∣+ ε(z∗)2
[
∂x f 0

1 (p(φ), φ)− f 0
2 (p(φ), φ)

]
+ εh(φ)K1.

Fixing

∆ = 1, z∗
=

1
√
ε
, (C.4)

we obtain, under the condition (19),

vm
· nS±

∣∣
S± < −

[
f 0
2 (p(φ), φ)− ∂x f 0

1 (p(φ), φ)− ε
∣∣p′(φ)

∣∣]+ εh(φ)K1

< 0, (C.5)
for all φ ∈ I, appropriate K1 > 0 and

h(φ) ≤ H1 =

inf
φ∈I

[
f 0
2 (p(φ), φ)− ∂x f 0

1 (p(φ), φ)− ε
∣∣p′(φ)

∣∣]
2εK1

=
C1

2εK1
, (C.6)

provided that

z∗
=

{
1
ε

} 1
2

< h(φ) ≤ H1 =
C1

2εK1
, (C.7)
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or
√
ε <

C1

2K1
H⇒ ε ≤

{
C1

2K1

}2

. (C.8)

• For z∗

q < λ < z∗, following the above steps and using (C.4), we again obtain

vm
· nS±

∣∣
S± = ±εp′(φ)M(λ)+ ελ2

[
∂x f 0

1 (p(φ), φ)− f 0
2 (p(φ), φ)

]
+O(ελ)

< ε
∣∣p′(φ)

∣∣+ ε

(
z∗

q

)2 [
∂x f 0

1 (p(φ), φ)− f 0
2 (p(φ), φ)

]
+O(ελ)

< −

{
1

q2

[
f 0
2 (p(φ), φ)− ∂x f 0

1 (p(φ), φ)
]

− ε
∣∣p′(φ)

∣∣}+ εh(φ)K2

< 0, (C.9)
for appropriate K2 > 0 and q = 1 + δ with 0 < δ � 1, provided that ε and h(φ) is small enough.

• For 0 < λ ≤
z∗

q , we obtain similarly from (19) that

vm
· nS±

∣∣
S± < −ελ2

{[ f 0
2 (p(φ), φ)− ∂x f 0

1 (p(φ), φ)] +O(ε)+O(λ)}

< −ελ2
{[ f 0

2 (p(φ), φ)− ∂x f 0
1 (p(φ), φ)] + εK3 + h(φ)K4}

< 0, (C.10)
for appropriate K3, K4 > 0 provided that ε and h(φ) are small enough.

2. Along the boundary segment T of W , the outer normal is given by nT = (0, 0, 1), and

vm
· nT

∣∣
T = εh2(φ)[ f 0

2 (p(φ), φ)+O(εh(φ))+O(ζ )],

> εh2(φ)[ f 0
2 (p(φ), φ)− εh(φ)K2 − h(φ)K3]

> 0, (C.11)

for appropriate K2, K3 > 0, and small enough ε > 0 and hφ .
3. Along L , the outer normal is given by nL = (0, 0, 1), and hence, by (C.4), we have

vm
· nL

∣∣
L = εM(λ+ εw2) ≥ 0. (C.12)

We now fix h(φ) = h > 0, ε > 0 small enough so that estimates (C.5)–(C.12) for system (C.2) all hold for all
φ ∈ I = (−∞, φ0), where φ0 = εt0. We then rewrite (C.2) as an autonomous dynamical system on the extended phase space
of the (ζ, λ, φ, t) variables as follows:

ζ̇ = −ε∆p′(φ)M(λ)+ ελ[ζ∂x f 0
1 (p(φ), φ)+O(ελ)+O(ζ 2)] +O(ε2λ)+O(ε3λ3),

λ̇ = ελ2
[ f 0

2 (p(φ), φ)+O(ελ)+O(ζ )] +O(ε2λ2)+O(ε3λ4),

φ̇ = ε∆M(λ),

ṫ = 1.

For this system, we define the set

W = W × (−∞, t0),

the extension of the cone W defined in (C.3).
Observe that by estimates (C.5)–(C.12), the set of initial conditions (ζ0, λ0, φ0, t0) that immediately leave W in backward time

is given by

W im
=
{
(ζ, λ, φ, t) ∈ W | λ > 0, (ζ, λ, φ) ∈ S+

∪ S−
}
, (C.13)

which is a union of the two disjoint components
(
S+

∩ {λ > 0}
)
× (−∞, t0] and

(
S−

∩ {λ > 0}
)
× (−∞, t0].

Assume that Wev
= W , i.e., all the initial conditions eventually leave W in backward time. Then W qualifies as a backward

time Wasewski set, since

1. cl(W) = W ,
2. W im is a relatively closed subset of Wev . Indeed, Cauchy sequences in W im that converge to C (given by ζ = 0, λ = 0), have

their limit points outside W im and Wev . All other sequences in W im converge to points within W im and those points are in
Wev , since W im

⊂ W im by definition.

Thus, by the Wasewski principle, the Wasweski map Γ defined in (B.2) is continuous, which is a contradiction, because Γ maps
the connected set Wev into the disconnected set W im . Therefore, we conclude thatWev

6= W and there exists a nonempty set W̃∞
ε

of solutions which stay in W for all backward times, i.e.. for (−∞, t0]. Also
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1. W̃∞
ε is a two dimensional set,

2. W̃∞
ε extends to the top boundary T × (−∞, t0) of the Wasewki set, W , and

3. W̃∞
ε is necessarily smooth in t , because it is composed of trajectories that are smooth in t .

Next we want to argue that all solutions in W̃∞
ε tend to ζ = λ = 0 in backward time. Consider a specific initial condition

(ζ0, λ0, φ0, t0) ∈ W̃∞
ε , and denote the trajectory emanating from this initial position by (ζ(t), λ(t), φ(t)). Along this trajectory, the

λ-component of system (C.2) can be re-written as

λ̇ = ελ2
[ f 0

2 (p(φ), φ)+ ζm1(ζ, λ, φ, t)+ εm2(ζ, λ, φ, t)], (C.14)

for some appropriate smooth functions m1 and m2. Direct integration gives

λ(t) =
λ0

1 + ελ0
∫ t0

t [ f 0
2 (p(φ), φ)+ ζm1(ζ, λ, φ, τ )+ εm2(ζ, λ, φ, t)] dτ

,

≤
λ0

1 + ελ0
∫ t0

t [ f 0
2 (p(φ), φ)− H |m1(ζ, λ, φ, τ )| − ε|m2(ζ, λ, φ, t)|] dτ

,

with H being a uniform upper bound for h(φ). The above inequality holds for all t ∈ (−∞, t0], because the trajectory we consider
stays in W for all backward times. Making ε and H small enough, the uniform boundedness of mk(ζ, λ, φ, τ ) leads to the estimate

λ(t) ≤
λ0

1 +
1
2ελ0

∫ t0
t inf
φ∈I

f 0
2 (p(φ), φ) dτ

=
λ0

1 + ελ0c2(t0 − t)/2
,

which implies that

lim
t→−∞

λ(t) = 0.

Therefore, trajectories that never leave W in backward time will necessary converge to the λ = 0 boundary of W . By definition of
W , however, this convergence in the λ direction implies

lim
t→−∞

ζ(t) = 0.

We therefore conclude that all trajectories in W̃∞
ε converge to the set λ = ζ = 0 (i.e., the curve C) in backward time, thus W̃∞

ε is
an unstable manifold for C for all t ≤ t0.

Appendix D. Slope of the unstable manifold for ∆ = 0

In this section we determine a slope formula that can be used to linearly approximate W∞
ε . By the structure of the steady

adiabatic limit (14) of first order averaged normal form (A.4), we obtain (x, y) = (p(φ), y) as a first order approximation for W∞
ε .

Following the approach developed in [15] for fixed unsteady separation in fluid flows, the approximation forW∞
ε can be refined by

a second order averaging.
As in case of first-order averaging, we eliminate the oscillatory part of F in Eq. (A.4) by seeking a near-identity coordinate

change of the form

ξ = η + ε2h(η, φ, t), η = (η, µ),

where, h = (h1, h2) is a uniformly bounded function to be specified later. The above coordinate applied to system (A.4) with ∆ = 0
gives

ξ̇ = η̇ + ε2 (
∇ηh

)
η̇ + ε2 (∂φh

)
φ̇ + ε2∂t h,

= εf0(η + ε2h, φ)+ ε2F(η + ε2h, φ, t)+O(ε3),

= εf0(η, φ)+ ε2F(η, φ, t)+O(ε3), (D.1)

leading to

[I + ε2
∇ηh]η̇ = εf0(η, φ)+ ε2

[F(η, φ, t − ∂t h)] +O(ε3). (D.2)

If ‖∇ηh‖ remains uniformly bounded for all t ≤ t0, then for small enough ε, the operator [I + ε2
∇ηh] is invertible, and hence (D.2)

can be written as

η̇ = [I + ε2
∇ηh]

−1
{
εf0(η, φ)+ ε2

[F(η, φ, t)− ∂t h] +O(ε3)
}
,

= εf0(η, φ)+ ε2
[F(η, φ, t)− ∂t h] +O(ε3). (D.3)
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We recall that we have set ∆ = 0, therefore φ = const. by (A.4).
Assume that F (A.5) admits a decomposition of the form

F(ξ , φ, t) = F0(ξ , φ)+ F̃(ξ , φ, t), lim
T →∞

1
T

∫ t0

t0−T
F̃(ξ , φ, t)dt = 0.

Then by choosing

h(η, φ, t) =

∫ t

t0
[F(η, φ, t)− F0(η, φ)] dτ, (D.4)

we obtain from (D.3) the second-order averaged normal form

η̇ = εµ
[

f 0
1 (η, φ)+ εµF0(η, φ)

]
+O(ε3),

µ̇ = εµ2
[

f 0
2 (η, φ)+ εµG0(η, φ)

]
+O(ε3).

Rescaling time by letting dτ/dt = εµ(t) and ignoring higher-order terms, we obtain the system

η′
= f 0

1 (η, φ)+ εµF0(η, φ),

µ′
= µ

[
f 0
2 (η, φ)+ εµG0(η, φ)

]
.

Under the conditions of Theorem 1, the above system has an hyperbolic fixed point (p(φ), 0) for every constant φ ∈ I with an
associated one dimensional unstable manifold. The unstable manifold at φ ∈ I is tangent to the unstable eigenvector

e(φ) =

(
εF0(p(φ), φ)

f 0
2 (p(φ), φ)− ∂x f 0

1 (p(φ), φ)

)
. (D.5)

Recalling that

(η, µ) = (ξ, λ)+O(ε2) = (x, z)+O(ε) = (x, y/ε)+O(ε),

we find from (D.5) that the slope of W∞
ε relative to the normal of S becomes (21).
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